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We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear
and nonlinear elliptic partial differential equations. The unified scheme can accommodate all second-order
elliptic equations that can be formulated in first-order flux form, encompassing problems in linear elasticity,
general relativity, and hydrodynamics, including problems formulated on a curved manifold. It allows for a
wide range of linear and nonlinear boundary conditions, and accommodates curved and nonconforming
meshes. Our generalized internal-penalty numerical flux and our Schur-complement strategy of eliminating
auxiliary degrees of freedom make the scheme compact without requiring equation-specific modifications.
We demonstrate the accuracy of the scheme for a suite of numerical test problems. The scheme is
implemented in the open-source SpECTRE numerical relativity code.
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I. INTRODUCTION

Many problems in physics involve the numerical sol-
ution of second-order elliptic partial differential equations
(PDEs). Such elliptic problems often represent static field
configurations under the effect of external forces and arise,
for example, in electrodynamics, in linear or nonlinear
elasticity, and in general relativity. Elliptic problems also
often accompany time evolutions, where they constrain the
evolved fields at every instant in time or provide admissible
initial data for the evolution.
Discontinuous Galerkin (DG) methods are gaining

popularity in the computational physics and engineering
community and are currently most prevalently used for time
evolutions of hyperbolic boundary-value problems [1–4].
Many properties that make DG methods advantageous for
time evolutions also apply to elliptic problems, which lead
to the development of DG schemes for elliptic PDEs [5,6].
In particular, DG schemes provide a flexible mechanism for
refining the computational grid, retaining exponential
convergence even in the presence of discontinuities when
adaptive mesh-refinement (AMR) techniques are employed
[7,8]. Furthermore, some difficulties with DG schemes in
time evolutions, such as shock capturing, are not present
in elliptic problems and their static nature makes it often

(but not always) straightforward to place grid boundaries at
discontinuities, thus relieving the AMR scheme from the
responsibility of resolving them. See, e.g., Ref. [2] and the
seminal paper [6] for extensive discussions of DG schemes
for the Poisson equation, and Refs. [9–11] for discussions
of linear and nonlinear elasticity.
In the context of relativistic astrophysics and numerical

relativity, DG methods have been developed for hyperbolic
equations on curved manifolds thus far [12–14]. In Ref. [8]
we explored the feasibility of the DG method for elliptic
problems in numerical relativity confined to flat Poisson-
type equations with nonlinear sources. In this article we
present a DG scheme suitable to solve a significantly larger
class of elliptic problems that arise in numerical relativity.
Most notably, the scheme encompasses the extended
conformal thin sandwich (XCTS) formulation of the gen-
eral-relativistic Einstein constraint equations on a curved
manifold, and associated boundary conditions [15–17].
Solutions to the XCTS equations provide admissible initial
data for general-relativistic time evolutions, for scenarios
such as two orbiting black holes or neutron stars [18–21].
To our knowledge, this article presents the first discon-
tinuous Galerkin solution of the full Einstein constraint
equations. Aimed at applications in numerical relativity, the
scheme is implemented in the publicly available SpECTRE

code [13,22,23].
Furthermore, the elliptic DG scheme presented in this

article is not limited to applications in numerical relativity.
It applies to all second-order elliptic problems that can be
formulated in first-order flux form. Besides the classic
Poisson and elasticity equations it covers a large class
of elliptic problems in general relativity and hydrody-
namics, including coupled systems of equations and those
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formulated on a curved manifold. With our unified DG
scheme, new elliptic systems can be implemented by
supplying their first-order fluxes and sources, hence no
knowledge of the DG technology or of finite-element
formulations is required. This lowers the barrier for
extending the capabilities of a simulation code. We pay
particular attention to support a wide range of linear and
nonlinear boundary conditions so our DG scheme is suited
to solve many real-world scenarios (as well as some out-of-
this-world scenarios such as initial data for black hole and
neutron star evolutions). We are aware only of Ref. [24]
studying a nonlinear boundary condition for an elliptic DG
problem.
To formulate the unified DG scheme we present a

generalized internal-penalty numerical flux, which avoids
problem-specific parameters that are needed, e.g., in
Refs. [25–27]. We eliminate auxiliary degrees of freedom
that arise from the first-order form with a Schur-comple-
ment strategy, which has proven more suitable to the
unified DG scheme than primal formulations that are
commonly employed in the literature [2,6]. The resulting
DG scheme is compact, in the sense that it involves only
nearest-neighbor couplings and no auxiliary degrees of
freedom, and symmetric, unless the symmetry is broken by
the elliptic equations.
This article is structured as follows. Section II details the

generic first-order flux formulation that serves as the
starting point for our DG discretization. Section III devel-
ops the unified DG scheme. In Sec. IV we apply the DG
scheme to a set of increasingly challenging test problems.
The test problems include scenarios derived from general
relativity that feature sets of coupled, strongly nonlinear
equations on a curved manifold with nonlinear boundary
conditions, solved on curved meshes. We conclude in
Sec. V.

II. FIRST-ORDER FLUX FORMULATION

We consider second-order elliptic PDEs of one or more
primal variables uAðxÞ, where the index A labels the
variables. The variables can be scalars (like in the
Poisson equation) or tensorial quantities (like in an elas-
ticity problem). We reduce the PDEs to first order by
introducing auxiliary variables vAðxÞ, which typically are
gradients of the primal variables. We then restrict our
attention to problems that can be formulated in first-order
flux form

−∂iF α
i½uA; vA; x� þ Sα½uA; vA; x� ¼ fαðxÞ; ð1Þ

where the index α enumerates both uA and vA. Here the
fluxes F α

i and the sources Sα are functionals of the
variables uA and vA, but not their derivatives, as well as
the coordinates x. The fixed sources fαðxÞ are independent
of the variables. Lowercase Latin indices i, j, k, l enumerate

spatial dimensions, and we employ the Einstein sum
convention to sum over repeated indices.
The flux form (1) is general enough to encompass a wide

range of elliptic problems. For example, a flat-space
Poisson equation in Cartesian coordinates

−∂i∂iuðxÞ ¼ fðxÞ ð2Þ

has the single primal variable uðxÞ. Choosing the auxiliary
variable vi ¼ ∂iu we can formulate the Poisson equation
with the fluxes and sources

F v
i
j ¼ uδij; Svj ¼ vj; fvj ¼ 0; ð3aÞ

F u
i ¼ vi; Su ¼ 0; fu ¼ fðxÞ; ð3bÞ

where δij denotes the Kronecker delta. Note that Eq. (3a) is
the definition of the auxiliary variable, and Eq. (3b) is the
Poisson equation (2).
The equation of linear elasticity in Cartesian coordinates,

−∂iYijkl∂ðkξlÞ ¼ fjðxÞ; ð4Þ

has the primal variable ξiðxÞ, describing the vectorial
deformation of an elastic material. The constitutive relation
YijklðxÞ captures the elastic properties of the material in the
linear regime. Choosing the symmetric strain Sij ¼
∂ðiξjÞ ¼ ð∂iξj þ ∂jξiÞ=2 as auxiliary variable we can for-
mulate the elasticity equation with the fluxes and sources

F S
i
jk ¼ δiðjξkÞ; SSjk ¼ Sjk; fSjk ¼ 0; ð5aÞ

F ξ
ij ¼ YijklSkl; Sξ

j ¼ 0; fξj ¼ fjðxÞ: ð5bÞ

Again, Eq. (5a) is the definition of the auxiliary variable
and Eq. (5b) is the elasticity equation (4). The fluxes and
sources for the elasticity system (5) have higher rank than
those for the Poisson system (3).
The first-order flux form (1) also accommodates equa-

tions formulated on a curved manifold which is equipped
with a metric gijðxÞ. Such equations typically involve
covariant derivatives ∇i compatible with gij. To formulate
the equations in flux form (1) we expand covariant
derivatives in partial derivatives and Christoffel symbols
Γi
jk ¼ 1

2
gilð∂jgkl þ ∂kgjk − ∂lgjkÞ. Christoffel symbols also

appear when formulating equations in curvilinear coordi-
nates. In our scheme, the terms with partial derivatives are
assigned to the fluxes F i and the terms with Christoffel
symbols are assigned to the sources S. For example, a
curved-space Poisson equation

−gij∇i∇juðxÞ ¼ fðxÞ ð6Þ

with auxiliary variable vi ¼ ∇iu can be formulated with the
fluxes and sources
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F v
i
j ¼ uδij; Svj ¼ vj; fvj ¼ 0; ð7aÞ

F u
i ¼ gijvj; Su ¼ −Γi

ijg
jkvk; fu ¼ fðxÞ: ð7bÞ

Our strategy of expanding covariant derivatives differs from
the formulations employed for relativistic hyperbolic con-
servation laws in Ref. [12], where fluxes are always vector
fields and therefore the covariant divergence can always be
written in terms of partial derivatives and the metric
determinant.1 In contrast, fluxes in the elliptic equations (1)
can be higher-rank tensor fields, as exemplified in Eq. (5).
The fixed sources fαðxÞ could, in principle, be absorbed

in the sources Sα. However, it is useful to keep these
variable-independent contributions separate for two rea-
sons. First, they remain constant throughout an elliptic
solve, so they need not be recomputed when the dynamic
variables change. Second, the constant contributions re-
present a nonlinearity in the variables uA and vA when
included in the sources Sα. Assigning the constant con-
tributions to the fixed sources fα eliminates this particular
nonlinearity, hence allowing us to avoid an explicit lin-
earization procedure if the remaining sources Sα are linear.
The Appendix lists fluxes and sources for selected

elliptic problems. Our focus on systems in generic first-
order flux form allows us to solve a variety of elliptic
systems by only implementing their fluxes and sources. We
now proceed to discretize this generic formulation.

III. DG DISCRETIZATION OF THE FLUX
FORMULATION

In this section we develop the unified DG scheme for
elliptic equations in flux form, Eq. (1). Novel features of
our scheme are the formulation of DG residuals and
boundary conditions in terms of generic fluxes and sources
of arbitrary tensor rank (Secs. III B and III E), and the
generalized internal-penalty numerical flux (Sec. III D).
The Schur-complement strategy of eliminating auxiliary
degrees of freedom has been employed before, e.g., in
Ref. [28], but we generalize it to a larger class of equations,
including equations with nonlinear fluxes or sources
(Sec. III C). We follow Ref. [12] whenever possible and
refer to Ref. [2] for details that have become standard in the
DG literature.2

A. Domain decomposition

We adopt the same domain decomposition based on
deformed cubes detailed in Refs. [8,12,13] and summarize
it here.

A d-dimensional computational domain Ω ⊂ Rd is
composed of elements Ωk ⊂ Ω such that Ω ¼ ⋃kΩk.
Elements do not overlap, but they share boundaries, as
illustrated in Fig. 1(a). Each element carries an invertible
map ξðxÞ from the coordinates x ∈ Ωk, in which the elliptic
equations (1) are formulated, to logical coordinates ξ ∈
½−1; 1�d representing a d-dimensional reference cube.
Inversely, xðξÞ maps the reference cube to the element
Ωk. We define its Jacobian as

Jij ≔
∂xi
∂ξj ; ð8Þ

with determinant J and inverse ðJ−1Þji ¼ ∂ξj=∂xi.
Within each element Ωk we choose a set of Nk;i grid

points in every dimension i. We place them at logical
coordinates ξpi

, where the index pi ∈ f1;…; Nk;ig identi-
fies the grid point along dimension i. The points are laid out
in a regular grid along the logical coordinate axes, so an
element has a total of Nk ¼

Q
d
i¼1Nk;i d-dimensional grid

points ξp ¼ ðξp1
;…; ξpd

Þ. The index p ∈ f1;…; Nkg iden-
tifies the grid point regardless of dimension. The full
domain has Npoints ¼

P
k Nk grid points. The grid points

FIG. 1. Top: geometry of a two-dimensional computational
domain composed of four wedge-shaped blocks. Each block is
split in one or more nonoverlapping elements Ωk. Bottom: the
coordinate transformation ξðxÞ maps an element to a reference
cube ½−1; 1�2 with logical coordinate axes ξ ¼ ðξ; ηÞ. In this
example we chose Nk;ξ ¼ 3 and Nk;η ¼ 4 Legendre-Gauss-
Lobatto collocation points along ξ and η, respectively. Each grid
point is labeled with its index ðpξ; pηÞ. The dotted line connects
points in the order they are enumerated in by the index p.

1See Eq. (2.3) in Ref. [12].
2Reference [12] underpins the hyperbolic DG formulations in

the SpECTRE code. Formulating elliptic and hyperbolic DG
schemes in a similar way allows us to share some of the DG
implementation details.
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within each element are not uniformly spaced in logical
coordinates. Instead, we choose Legendre-Gauss-Lobatto
(LGL) collocation points, i.e., the points ξpi

fall at the roots
of the ðNk;i − 1Þth Legendre polynomial plus a point on
each side of the element, at −1 and 1.3 It is equally possible
to choose Legendre-Gauss (LG) collocation points, i.e., the
roots of the Nk;ith Legendre polynomial.4 Figure 1(b)
illustrates the geometry of an element.
Fields are represented numerically by their values at the

grid points. To facilitate this we construct the one-
dimensional Lagrange polynomials

lpi
ðξÞ ≔

YNk;i

qi¼1
qi≠pi

ξ − ξqi
ξpi

− ξqi
with ξ ∈ ½−1; 1� ð9Þ

and employ their product to define the d-dimensional basis
functions

ψpðξÞ ≔
Yd
i¼1

lpi
ðξiÞ with ξ ∈ ½−1; 1�d: ð10Þ

The choice of Lagrange polynomials makes Eq. (10) a
nodal basis with the useful property ψpðξqÞ ¼ δpq. We use
the nodal basis (10) to approximate any field uðxÞwithin an
element Ωk by its discretization

uðkÞðxÞ ≔
XNk

p¼1

upψpðξðxÞÞ with x ∈ Ωk; ð11Þ

where the coefficients up ¼ uðxðξpÞÞ are the field values at
the grid points. We denote the set of discrete field values
within an element Ωk as

uðkÞ ¼ ðu1;…; uNk
Þ; ð12Þ

and the collection of discrete field values over all
elements as u. The discretization (11) approximates fields
with polynomials of degree ðNk;i − 1Þ in dimension i.
Although rarely needed, field values at other points within
an element can be obtained by Lagrange interpolation (11).
The field values at element boundaries are double valued
because the Lagrange interpolation from neighboring
elements to their shared boundary is double valued.
Therefore, field approximations will in general be discon-
tinuous at element boundaries.
The test problems in Sec. IV illustrate a few examples of

domain decompositions. We refer the reader to, e.g.,
Ref. [2] for further details on the choice of collocation
points, basis functions and their relation to spectral proper-
ties of DG schemes.

B. DG residuals

The DG residuals represent the set of equations to be
solved for the discrete primal field values uA. The deriva-
tion in this section follows the standard procedure, e.g., laid
out in Ref. [2], applied to the generic elliptic flux
formulation (1), and taking details such as a curved
manifold into account.
In the spirit of a Galerkin scheme we project our target

PDEs (1) onto the same set of basis functions ψpðξÞ that is
used to approximate fields within an element Ωk,

−ðψp; ∂iF iÞΩk
þ ðψp;SÞΩk

¼ ðψp; fÞΩk
: ð13Þ

Here we dropped the index α that enumerates the equations,
and we define the inner product on Ωk,

ðϕ; πÞΩk
≔

Z
Ωk

ϕðxÞπðxÞ ffiffiffi
g

p
ddx; ð14aÞ

¼
Z
½−1;1�d

ϕðxðξÞÞπðxðξÞÞ ffiffiffi
g

p
Jddξ: ð14bÞ

These integrals are defined with respect to proper volume
dV ¼ ffiffiffi

g
p

ddx ¼ ffiffiffi
g

p
Jddξ, where g denotes the metric

determinant in the coordinates x in which Eq. (1) is
formulated. It refers to the metric that covariant derivatives
in the equations are compatible with. Since the basis
polynomials, Eq. (10), are functions of logical coordinates,
we abbreviate ψpðξðxÞÞ with ψpðxÞ here.
The terms without derivatives in Eq. (13) are straightfor-

ward to discretize. We approximate the field f, or similarly
S, using the expansion in basis functions (11) to find

ðψp; fÞΩk
≈ ðψp;ψqÞΩk

fq ¼ Mpqfq; ð15Þ

using the symmetric mass matrix on the element Ωk,

Mpq ≔ ðψp;ψqÞΩk
; ð16aÞ

¼
Z
½−1;1�d

ψpðξÞψqðξÞ
ffiffiffi
g

p
Jddξ: ð16bÞ

Wewill discuss strategies to evaluate the mass matrix on the
elements of the computational domain in Sec. III F.
The divergence term in Eq. (13) encodes the principal

part of the elliptic PDEs and requires more care in its
discretization. The derivatives in this term will help us
couple grid points across element boundaries. To this end
we integrate by parts to obtain a boundary term

ðψp; ∂iF iÞΩk
¼ −ð∂iψp;F iÞΩk

þ ðψp; niF iÞ∂Ωk
; ð17Þ

where ni is the outward-pointing unit normal one form on
the element boundary ∂Ωk. The unnormalized face normal

3See, e.g., Algorithm 25 in Ref. [29].
4See, e.g., Algorithm 23 in Ref. [29].
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is computed from the Jacobian as ñi ¼ sgnðξjÞðJ−1Þji ,
where ξj is the logical coordinate that is constant on the
particular face and no sum over j is implied. The face
normal is normalized as ni ¼ ñi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ñkñlgkl

p
using the

inverse metric gijðxÞ. The surface integral in Eq. (17) is
defined just like Eq. (14),

ðϕ; πÞ∂Ωk
≔

Z
∂Ωk

ϕðxÞπðxÞ
ffiffiffiffiffi
gΣ

p
dd−1x; ð18aÞ

¼
Z
½−1;1�d−1

ϕðxðξÞÞπðxðξÞÞ
ffiffiffiffiffi
gΣ

p
JΣdd−1ξ; ð18bÞ

using the element boundary’s (d − 1)-dimensional proper
volume dΣ ¼

ffiffiffiffiffi
gΣ

p
dd−1x ¼

ffiffiffiffiffi
gΣ

p
JΣdd−1ξ, where gΣ is the

surface metric determinant induced by the metric gij and JΣ

is the surface Jacobian.
The crucial step that couples grid points across element

boundaries follows from the field niF i being double valued
on any section of the boundary that an element shares with a
neighbor, with one value arising from either side. We must
make a choice how to combine the two values from either
side of a shared element boundary. This choice is often
referred to as a numerical flux. For now we will denote the
function that combines values from both sides of a boundary
as ðniF iÞ� and refer to Sec. III D for details on our particular
choice of numerical flux. Substituting the numerical flux in
Eq. (17) yields the weak form of the equations,

ðψp; ∂iF iÞΩk
¼ −ð∂iψp;F iÞΩk

þ ðψp; ðniF iÞ�Þ∂Ωk
: ð19Þ

The numerical flux in Eq. (19) introduces a coupling
between neighboring elements that allows us to obtain
numerical solutions spanning the full computational
domain. Another integration by parts of Eq. (19) yields
the strong form of the equations,

ðψp; ∂iF iÞΩk
¼ ðψp; ∂iF iÞΩk

þ ðψp; ðniF iÞ� − niF iÞ∂Ωk
:

ð20Þ

We will make use of both the strong and the weak form
to obtain symmetric DG operators (see Sec. III I).
Approximating F i using its expansion in basis functions
(11) we find

ðψp; ∂iF iÞΩk
≈ ðψp; ∂iψqÞΩk

F i
q ¼ MDi;pqF i

q; ð21Þ

where the stiffness matrix on the element Ωk is

MDi;pq ≔ ðψp; ∂iψqÞΩk
; ð22aÞ

¼
Z
½−1;1�d

ψpðξÞ
∂ψq

∂ξj ðξÞðJ
−1Þji

ffiffiffi
g

p
Jddξ: ð22bÞ

The divergence term in its weak form can be expressed in
terms of the stiffness-matrix transpose MDT

i;pq ¼ MDi;qp,

−ð∂iψp;F iÞΩk
≈ −ð∂iψp;ψqÞΩk

F i
q ¼ −MDT

i;pqF
i
q: ð23Þ

Evaluation of the stiffness matrix and its transpose is
discussed in Sec. III F.
We now turn towards discretizing the last remaining

piece of the DG residuals, the boundary integrals in
Eqs. (19) and (20). It involves a “lifting” operation: the
integral only depends on field values on the element
boundary but it may contribute to every component p of
the DG residual, hence it is “lifted” to the volume.
However, on an LGL grid all components p that correspond
to grid points away from the boundary evaluate to zero
because they contain at least one Lagrange polynomial that
vanishes at the boundary collocation point. This is not the
case on an LG grid, where evaluating the Lagrange
polynomials on the boundary produces an interpolation
into the volume. Expanding the boundary fluxes in basis
functions (11) we find

ðψp; niF iÞ∂Ωk
≈ ðψp;ψqÞ∂Ωk

ðniF iÞq ¼ MLpqðniF iÞq;
ð24Þ

where we have defined the lifting operator on the
element Ωk,

MLpq ≔ ðψp;ψqÞ∂Ωk
; ð25aÞ

¼
Z
½−1;1�d−1

ψpðξÞψqðξÞ
ffiffiffiffiffi
gΣ

p
JΣdd−1ξ: ð25bÞ

Section III F provides details on evaluating the lifting
operator.
Assembling the pieces of the discretization and restoring

the index α that enumerates the equations, the DG residuals
on the element Ωk in strong form are

−MDi ·F α
i−ML · ððniF α

iÞ�−niF α
iÞþM ·Sα ¼M ·fα;

ð26aÞ

where · denotes a matrix multiplication with the field values
over the computational grid of an element. The DG
residuals in the weak form are

MDT
i · F α

i −ML · ðniF α
iÞ� þM · Sα ¼ M · fα: ð26bÞ

We can choose either the strong or the weak form for each
variable α.
Since the fluxes and sources are computed from the

primal and auxiliary variables, the DG residuals (26) are
algebraic equations for the discrete values uA and vA on all
elements and grid points in the computational domain.
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The left-hand side of Eq. (26) is an operator AðuA; vAÞ and
the right-hand side of Eq. (26) is a fixed value at every grid
point, so Eq. (26) has the structure

AðuA; vAÞ ¼ b: ð27Þ

If the fluxes and sources are linear, the DG operator
AðuA; vAÞ can be represented as a square matrix, and
Eq. (27) is a matrix equation. The size of the DG operator
AðuA; vAÞ is the product of Npoints with the number of both
primal and auxiliary variables.
Figure 2 presents a visualization of the DG operator

AðuA; vAÞ for a Poisson equation on a regular grid. The
axes annotate entries of the operator that correspond to the
“input” variables vi and u, and to the corresponding
“output” DG residuals. The mass matrix applied to vi
appears as a diagonal line (see Sec. III F) and the stiffness
matrices applied to both vi and u appear as block-diagonal
and shaded regions for derivatives in x and y, respectively.
The remaining entries represent the coupling between
neighboring elements through the numerical flux (see
Sec. III D). Note that the elements Ω1 and Ω4 as well as
Ω2 and Ω3 decouple, because they share no boundaries as
they are placed diagonally across the 2 × 2 grid of
elements. Solving the Poisson equation amounts to
inverting the matrix pictured in Fig. 2. However, it is
significantly cheaper to invert the equivalent compact

operator pictured in Fig. 3, which we derive in the
following section.

C. Eliminating auxiliary degrees of freedom

So far we have treated the primal and the auxiliary
equations of the first-order formulation on the same foot-
ing, which means the discretized DG operator applies to the
primal variables as well as to the auxiliary variables.
However, the auxiliary equations inflate the size of the
operator significantly, increasing both its memory usage
and the computational cost for solving it. In this section we
eliminate the auxiliary degrees of freedom from the DG
operator, demoting them to quantities that are only com-
puted temporarily.
Many publications on DG formulations adopt a “primal

formulation” to eliminate auxiliary degrees of freedom
from the DG operator.5 However, in practice we have found
a simpler approach taking a Schur complement of the
discretized equations in flux form, e.g., applied in Ref. [28],
more suited to the generic implementation of DG schemes.
The resulting DG operator remains equivalent to the
original operator; i.e., it has the same solutions up to
numerical precision. This strategy is facilitated by the
auxiliary equations defining the auxiliary variables vA,
such as Eqs. (3a) and (5a). We assume here that the

FIG. 2. Matrix representation of the noncompact DG operator
in strong form (26a) for a two-dimensional Poisson equation (3).
The computational domain is partitioned into 2 × 2 elements with
6 × 6 LGL grid points each. The image shows the nonzero entries
of the operator matrix, i.e., its sparsity pattern, in the order laid
out in Fig. 1(b).

FIG. 3. Matrix representation of the compact DG operator in
strong form (30a) for the two-dimensional Poisson problem
detailed in Fig. 2. No auxiliary degrees of freedom inflate the
size of the operator. This matrix is the Schur complement to the
matrix pictured in Fig. 2.

5See, e.g., Sec. 7. 2. 2 in Ref. [2] or Sec. III in Ref. [6] for
derivations of primal formulations for the Poisson equation.
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auxiliary fluxes depend only on the primal variables,
F vA

i ¼ F vA
i½uA; x�, and the auxiliary sources have the form

SvA ¼ vA þ S̃vA ½uA; x�; ð28Þ
where S̃vA depends only on the primal variables. We further
assume fvA ¼ 0 for convenience. All elliptic systems that
we consider in this article fulfill these assumptions. We
insert Eq. (28) into the strong DG residuals (26a) and solve
for vA by inverting the mass matrix to find

vA ¼ Di · F vA
i þ L · ððniF vA

iÞ� − niF vA
iÞ − S̃vA ; ð29Þ

where we define Di ≔ M−1MDi and L ≔ M−1ML. Note
that the right-hand side of Eq. (29) depends only on the
primal variables uA. Evaluating the DG residuals now
amounts to first computing the auxiliary variables vA by
Eq. (29), and then using them to evaluate the primal
equations. This approach preserves the freedom to use
either the strong form (26a) for the primal equations,

−MDi ·F uA
i−ML ·ððniF uA

iÞ�−niF uA
iÞþM ·SuA ¼M ·fuA;

ð30aÞ

or the weak form (26b),

MDT
i ·F uA

i−ML · ðniF uA
iÞ� þM ·SuA ¼M ·fuA : ð30bÞ

The strong scheme is slightly easier to implement because
the primal and auxiliary equations involve the same set of
operators. The strong-weak scheme, i.e., selecting the
strong form for the auxiliary equations (29) and the weak
form for the primal equations (30b), has the advantage that
the DG operator can be symmetric as discussed in Sec. III I.
For linear equations the strategy employed in Eq. (29) of

eliminating the auxiliary variables is equivalent to taking a
Schur complement of the DG operator with respect to the
(invertible) mass matrix, but the strategy works for non-
linear equations as well. The result is an operator AðuAÞ of
only the discrete primal variables on all elements and grid
points in the computational domain, so the DG residuals
(30) have the form

AðuAÞ ¼ b: ð31Þ

The size of the DG operator AðuAÞ is the product of Npoints

with the number of primal variables. No auxiliary degrees
of freedom from the first-order formulation inflate the size
of the operator. We refer to such DG operators AðuAÞ of
only the primal degrees of freedom as compact if they also
only involve couplings between nearest-neighbor elements
[30]. The coupling between elements is related to the
choice of numerical flux ðniF α

iÞ� and the subject of
Sec. III D. If the fluxes and sources are linear, AðuAÞ
can be represented as a square matrix.

Figures 3 and 4 present visualizations of A for a Poisson
equation and an elasticity equation, respectively. The block-
diagonal structure in Fig. 3 represents the DG-discretized
two-dimensional Laplacian on the four elements of the
computational domain. The entries that break the block-
diagonal structure represent the coupling between nearest-
neighbor elements through the numerical flux (Sec. III D).

D. A generalized internal-penalty numerical flux

Up to this point we have not made a choice for the
numerical flux ðniF iÞ� that combines double-valued field
values on element boundaries. The numerical flux is a
function of the field values on both sides of the boundary.
From the perspective of one of the two adjacent elements we
refer to the field values on itself as interior and to the field
values the neighboring element as exterior. Contrary tomuch
of the DG literature we formulate the numerical flux entirely
in terms of the primal and auxiliary boundary flux quantities
niF uA

i and niF vA
i on either side of the boundary instead of

the primal and auxiliary variables uA and vA. This choice
keeps our scheme applicable to the wide range of elliptic
problems defined in Sec. II. The numerical flux presented
here is a generalization of the symmetric internal penalty
(SIP) scheme that is widely used in the literature [2,6,8,31].
Our generalized internal-penalty numerical flux is

ðniF vA
iÞ� ¼ 1

2
½ninti F vA

iðuintA Þ − nexti F vA
iðuextA Þ�; ð32aÞ

FIG. 4. Matrix representation of the compact DG operator in
strong form (30a) for a two-dimensional elasticity problem (5)
with an isotropic-homogeneous constitutive relation Yijkl. The
computational domain is again partitioned into 2 × 2 elements
with 6 × 6 LGL grid points each.
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ðniF uA
iÞ� ¼ 1

2

h
ninti F uA

ið∂jF vA
jðuintA Þ − S̃vAðuintA ÞÞ

− nexti F uA
ið∂jF vA

jðuextA Þ − S̃vAðuextA ÞÞ
i

− σ
h
ninti F uA

iðnintj F vA
jðuintA ÞÞ

− nexti F uA
iðnextj F vA

jðuextA ÞÞ
i
: ð32bÞ

The numerical flux for the auxiliary equations, Eq. (32a),
averages the boundary fluxes of the two adjacent elements.
The numerical flux for the primal equations, Eq. (32b), is an
average augmented with a penalty contribution with param-
eter σ.
Note that the numerical flux (32) involves only the primal

fields and their derivatives, and thus is independent of the
auxiliary fields altogether, as is typical for internal-penalty
schemes. This has the practical advantage that the contri-
bution from either side of the boundary to both the primal
and the auxiliary numerical flux in Eqs. (29) and (30) can be
computed early in the algorithm and communicated
together, coupling only nearest-neighbor elements and thus
making the DG operator compact. If the primal numerical
flux (32b) depended on the auxiliary fields, evaluating the
DG operator (30) would require a separate communication
once the boundary corrections have been added to the
auxiliary equation (29), effectively coupling nearest-neigh-
bor elements as well as next-to-nearest-neighbor elements.6

DG literature usually assumes that the face normals on
either side of the boundary are exactly opposite, nexti ¼−ninti .
This assumption breaks when the background geometry
responsible for the normalization of face normals depends
on the dynamic variables, since those are discontinuous
across the boundary. All of the elliptic problems that we are
expecting to solve in the near future are formulated on a fixed
background geometry, but it is useful to distinguish between
the interior and exterior face normals nonetheless because
the quantity niF i is cheaper to communicate than F i.
Therefore, we always project an element’s boundary fluxes
onto the face normal before communicating the quantity.
For a simple flat-space Poisson system (3) our general-

ized internal-penalty numerical flux (32) reduces to the
canonical SIP,7

ðniF vj
iÞ� ¼ nintj u� ¼ 1

2
nintj ðuint þ uextÞ; ð33aÞ

ðniF u
iÞ� ¼ ninti vi� ¼ 1

2
ninti ð∂iuintþ∂iuextÞ−σðuint−uextÞ:

ð33bÞ

As is well studied for the canonical SIP numerical flux,
the penalty factor σ is responsible for removing zero
eigenmodes and impacts the conditioning of the linear
operator to be solved [2,32]. It scales inversely with the
element size h and quadratically with the polynomial
degree p, both orthogonal to the element face.8 Both h
and p can be different on either side of the element
boundary, so we choose

σ ¼ C
ðmaxðpint; pextÞ þ 1Þ2

minðhint; hextÞ ; ð34Þ

where we follow Ref. [33] in choosing the scaling with
the polynomial degree p on hexahedral meshes, and we
follow Ref. [8] in our definition of the element size

h ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ñiñjgij

q
.9 Note that h generally varies over the

element face on curved meshes or on a curved manifold,
and that the min operation in Eq. (34) is taken pointwise, so
σ also varies over the element face. The remaining penalty
parameter C ≥ 1 remains freely specifiable. Note also that
we do not need to include a problem-specific scale in the
penalty factor, as is done in Refs. [25–27], because the
generic numerical flux (32b) already includes such scales in
the fluxes F i.

E. Imposing boundary conditions

The flux formulation allows imposing a wide range of
boundary conditions relatively easily “through the fluxes”
without the need to treat external boundaries any differently
than internal boundaries between neighboring elements.
Imposing boundary conditions amounts to specifying the
exterior quantities in the numerical flux, Eq. (32).
This strategy is often referred to as imposing boundary
conditions through “ghost” elements. As suggested in,
e.g., Ref. [2], we impose boundary conditions on the
average of the boundary fluxes to obtain faster conver-
gence. Therefore, on external boundaries, we choose for the
exterior quantities in the numerical flux (32)

ðniF α
iÞext ¼ ðniF α

iÞint − 2ðniF α
iÞb; ð35Þ

where we set the quantities ðniF α
iÞb according to the

boundary conditions at hand. Here we define nbi ¼ ninti , i.e.,
we choose to compute external boundary fluxes with the
face normal pointing out of the computational domain. The
symmetry between the primal and the auxiliary equations in
the first-order flux formulation (1) that we employ through-
out this article makes this approach of imposing boundary

6Couplings to next-to-nearest-neighbor elements is a well-
known disadvantage of LDG-type (local discontinuous Galerkin)
numerical fluxes and has led to the development of compact
schemes such as Ref. [30].

7See Eq. (3.21) in Ref. [6] or Sec. 7. 2 in Ref. [2].

8See Ref. [32] for sharp results for the optimal penalty factor
on triangular and tetrahedral meshes, and Table 3.1 in Ref. [33]
for a generalization to hexahedral meshes.

9Note that Ref. [8] omits the factor of 2 in the definition of h,
which we include so the definition reduces to the canonical
element size on rectilinear meshes.
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conditions particularly straightforward: a choice of aux-
iliary boundary fluxes ðniF vA

iÞb imposes Dirichlet-type
boundary conditions and a choice of primal boundary
fluxes ðniF uA

iÞb imposes Neumann-type boundary con-
ditions. The choice between Dirichlet-type and Neumann-
type boundary conditions can be made separately for every
primal variable uA and every external boundary face,
simply by setting either ðniF uA

iÞb or ðniF vA
iÞb and setting

the remaining boundary fluxes to their interior values
ðniF iÞb ¼ ðniF iÞint. Note that we neither need to distin-
guish between primal and auxiliary variables in Eq. (35),
nor take the choice of Dirichlet-type or Neumann-type
boundary conditions into account, but we require only that
ðniF iÞb be chosen appropriately for every variable. Then,
the Neumann-type boundary conditions enter the DG
residuals directly through the numerical flux in Eq. (30),
and the Dirichlet-type boundary conditions enter the DG
residuals through the numerical flux in Eq. (29), which is
substituted in Eq. (30).
In practice, this setup means we can initialize ðniF α

iÞb ¼
ðniF α

iÞint for all variables on a particular external boundary
face when preparing to apply the numerical flux,
decide which boundary fluxes to modify based on the
boundary conditions we wish to impose on the particular
face, and then evaluate Eq. (35) to compute the exterior
quantities in the numerical flux (32). To impose Neumann-
type boundary conditions we set the primal boundary
fluxes ðniF uA

iÞb directly, but to impose Dirichlet-type
boundary conditions we typically choose the primal field
values ubA and compute the auxiliary boundary fluxes
as ðniF vA

iÞb ¼ ninti F vA
iðubAÞ.

The auxiliary (Dirichlet-type) external boundary fluxes
may depend on the interior primal fields uintA , and the primal
(Neumann-type) external boundary fluxes may depend on
both the interior primal fields uintA as well as the interior
auxiliary fields vintA . This means we can impose a wide
range of boundary conditions that may depend linearly or
nonlinearly on the dynamic fields. For example, a Robin
boundary condition for the Poisson equation (2) or (6),

auþ bni∂iu ¼ gðxÞ on ∂Ω; ð36Þ
where a and b are constants and gðxÞ is a function defined
on the boundary, can be implemented as Neumann-type for
b ≠ 0,

ðniF u
iÞb ¼ 1

b
ðgðxÞ − auintÞ; ð37Þ

and as Dirichlet-type for b ¼ 0,

ðniF v
iÞb ¼ ninti F v

iðubÞ with ub ¼ 1

a
gðxÞ: ð38Þ

An important consideration is that boundary conditions
are generally nonlinear. Even for linear PDEs, such as the

Poisson equation, a simple inhomogeneous Dirichlet boun-
dary condition ub ≠ 0 introduces a nonlinearity in the DG
operator because Að0Þ ≠ 0. Therefore, we always linearize
boundary conditions. For nonlinear equations the boundary
conditions linearize along with the DG operator and require
no special attention (see Sec. III J). However, for linear
equations the inhomogeneity in the boundary conditions is
the only nonlinearity present in the DG operator, so we skip
the full linearization procedure. Instead, we contribute the
inhomogeneous boundary conditions Að0Þ to the fixed
sources, leaving only the linearized boundary conditions in
the DG operator,

δA
δu

u ¼ b −Að0Þ; ð39Þ

where δA
δu is just A with linearized boundary conditions.

Note that this strategy is equivalent to the full linearization
procedure described in Sec. III J at u ¼ 0. In practice,
evaluatingAð0Þ simplifies significantly for linear equations
because only the lifted external boundary corrections
contribute to it.

F. Evaluating the mass, stiffness, and lifting matrices

The mass matrix (16), the stiffness matrix (22), and the
lifting operator (25) are integrals that must be evaluated on
every element of the computational domain. We evaluate
these integrals on the same grid on which we expand the
dynamic fields, which amounts to a Gauss-Lobatto quad-
rature of an order set by the number of collocation points in
the element. This strategy is commonly known as mass
lumping.10 Employing mass lumping and our choice of
nodal basis (10), the mass matrix (16) evaluates to

Mpq ≈ δpq
ffiffiffi
g

p jpJjp
Yd
i¼1

wpi
: ð40Þ

Here the coefficients wpi
denote the Legendre-Gauss-

Lobatto quadrature weights associated with the collocation
points ξpi

, and the geometric quantities
ffiffiffi
g

p
and J are

evaluated directly on the collocation points.11 Recall
from Sec. III A that the index p enumerates grid points
in the regular d-dimensional grid and that pi denotes the
grid point’s index along the ith dimension. The diagonal
mass-lumping approximation (40) has the advantage that
it is computationally efficient to apply, invert, and store
since it amounts to a pointwise multiplication over the

10This is the approach taken in Ref. [12]. See Eq. (3.7) in
Ref. [12] for details on the mass-lumped mass matrix on
d-dimensional hexahedral elements. Note that Ref. [12] absorbs
the metric determinant in the dynamic variables.

11See, e.g., Algorithm 25 in Ref. [29] for details on computing
Legendre-Gauss-Lobatto quadrature weights, and Algorithm 23
for Legendre-Gauss quadrature weights.
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computational grid. Note that Eq. (40) is exact on a
rectilinear LG grid with a flat background geometry, and
can be made exact on rectilinear LGL grids by including a
correction term without increasing the computational cost
for applying or inverting it [34]. The quadrature weights
wpi

can be cached and reused by all elements with the same
number of collocation points in a dimension.
The strong stiffness matrix (22) evaluates to

MDi;pq ≈MprDi;rq; ð41aÞ

with

Di;rq ¼
Xd
j¼1

ðJ−1Þji jrl0
qjðξrjÞ

Yd
k¼1
k≠j

δqkrk : ð41bÞ

Here l0
qjðξrjÞ are the one-dimensional “logical” differ-

entiation matrices obtained by differentiating the
Lagrange polynomials (9) and evaluating them at the
collocation points.12 The stiffness matrix is essentially a
“massive” differentiation operator that decomposes into
one-dimensional differentiation matrices due to the product
structure of the basis functions (10) on our hexahedral
meshes. The one-dimensional logical differentiation matri-
ces can be cached and reused by all elements with the same
number of collocation points in a dimension, keeping the
memory cost associated with the stiffness operator to a
minimum. The weak stiffness matrix can be computed
analogously from the transpose of the logical differentia-
tion matrices.
The lifting operator (25) evaluates to

MLpq ≈MprLrq; ð42aÞ

with

Lrq¼ δrq
Xd
i¼1

ðδqi1þδqiNk;i
Þ 1

wqi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjkðJ−1ÞijðJ−1Þik

q ���
q
: ð42bÞ

It is diagonal and has a contribution from every face of the
element. Note that each face only contributes to the LGL
grid points on the respective face. On LG grids additional
interpolation matrices from the face into the volume appear
in this expression. Also note that the root in Eq. (42b) is
simply the magnitude of the unnormalized face normal
ñj [12].
Recall that the objective of these matrices is to evaluate

the compact DG operator (30) along with Eq. (29) on every
element of the computational domain. In practice, neither
matrix must be assembled explicitly and stored on the

elements: the mass matrix (40) reduces to a multiplication
over the computational grid, the stiffness matrix (41)
involves logical one-dimensional differentiation matrices
that are shared between elements, and the lifting operation
(42) reduces to a multiplication over the grid points on the
element face. Since both the stiffness and the lifting
operation decompose into a mass matrix and a “massless”
operation, the same set of operations can be used to
evaluate both Eqs. (29) and (30), and the mass matrix
factors out of the DG operator entirely. Nevertheless, we
will see in Sec. III I that it is advantageous to keep the mass
matrix in the operator (30).

G. A note on dealiasing

The integral expressions discussed in Sec. III F involve
geometric quantities that are typically known analytically,
namely the Jacobian and the background metric. Limiting
the resolution of the integrals to the quadrature order of the
elements can make the scheme susceptible to geometric
aliasing because these quantities are resolved with limited
precision, potentially reducing the accuracy of the scheme
on curved meshes or on a curved manifold. To combat
geometric aliasing we can, in principle, precompute the
matrices on every element at high accuracy, but at a
significant memory cost. Precomputing the matrices is
possible in elliptic problems because the geometric quan-
tities remain constant. This is different to time-evolution
systems that often involve time-dependent Jacobians
(“moving meshes”). Alternatively, a number of dealiasing
techniques are available to combat geometric aliasing, and
also to combat aliasing arising from evaluating other
background quantities on the collocation points, i.e.,
quantities in the PDEs that are independent of the dynamic
variables and known analytically [35]. For example,
Ref. [8] interpolates data from the primary LGL grid to
an auxiliary LG grid, on which the Jacobian is evaluated, to
take advantage of the higher-order quadrature. However,
these dealiasing techniques can significantly increase the
computational cost for applying the DG operator. We have
chosen to employ the simple mass-lumping scheme
detailed in Sec. III F to minimize the complexity, computa-
tional cost, and memory consumption of the DG operator.
Detailed studies of cost-efficient dealiasing techniques are a
possible subject of future work.

H. Mesh refinement

The domain decomposition into elements, each with
their own set of basis functions, allows for two avenues to
control the resolution: we can split the domain into
more and smaller elements (h refinement) or increase
the number of basis functions within an element (p
refinement). We can perform h and p refinement in each
dimension independently.
Both h refinement and p refinement can lead to non-

conforming boundaries between elements, meaning that

12See, e.g., Ref. [2] and Algorithm 37 in Ref. [29] for details on
computing the one-dimensional logical differentiation matrix
l0
qjðξrjÞ from properties of Legendre polynomials.
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grid points on the two sides of the boundary do not
coincide. Since we need to work with data from both sides
of an element boundary when considering numerical fluxes
(see Sec. III D) we place mortars between elements. A
mortar is a (d − 1)-dimensional mesh that has sufficient
resolution to exactly represent discretized fields from both
adjacent element faces. Specifically, a mortar ∂Ωkk̄
between the elements Ωk and Ωk̄ that share a boundary
orthogonal to dimension j has maxðNk;i; Nk̄;iÞ grid points
in dimension i ≠ j. We limit the h refinement of our
computational domains such that an element shares its
boundary with at most two neighbors per dimension in
every direction (“two-to-one balance”). This means a
mortar covers either the full element face or a logical half
of it in every dimension. Figure 5 illustrates an hp-refined
scenario with nonconforming element boundaries.
To project field values from an element face to a mortar

we employ the (d − 1)-dimensional prolongation operator

Pp̃p ¼
Yd−1
i¼1

lpi
ðξ̃p̃i

Þ; ð43Þ

where p enumerates grid points on the coarser (element
face) mesh, p̃ enumerates grid points on the finer (mortar)
mesh, and ξ̃p̃i

are the coarse-mesh logical coordinates of the
fine-mesh collocation points. For mortars that cover the full
element face in dimension i the coarse-mesh logical
coordinates are just the fine-mesh collocation points,
ξ̃p̃i

¼ ξp̃i
. For mortars that cover the lower or upper logical

half of the element face in dimension i they are ξ̃p̃i
¼

ðξp̃i
− 1Þ=2 or ξ̃p̃i

¼ ðξp̃i
þ 1Þ=2, respectively. Note that

the prolongation operator (43) is just a Lagrange interpo-
lation from the coarser (element face) mesh to the finer
(mortar) mesh. The interpolation retains the accuracy of the
polynomial approximation because the mortar has suffi-
cient resolution. The prolongation operator is also an L2

projection (or Galerkin projection) because it minimizes the
L2 norm

R
∂Ωkk̄

ðuðkÞ − uðk̃ÞÞ2 ffiffiffi
g

p
dd−1x, where uðk̃Þ denotes

the prolongated field values on the finer (mortar) mesh.
To project field values from a mortar back to an element

face we employ an adjoint R of the prolongation operator
such that RP ¼ 1. We also refer to this operation as a
restriction because it truncates higher modes from the
mortar down to the resolution of the element face.
Specifically, we employ the mass-conservative adjoint

Z
∂Ωkk̃

Rðuðk̃ÞÞuðkÞ ffiffiffi
g

p
dd−1x

¼
Z
∂Ωkk̃

uðk̃ÞPðuðkÞÞ ffiffiffi
g

p
dd−1x ∀ uðkÞ; uðk̃Þ: ð44Þ

In matrix notation the restriction operator reduces to

R ¼ M−1PTM̃; ð45Þ

where M−1 is the inverse mass matrix on the coarser
(element face) mesh, M̃ is the mass matrix on the finer
(mortar) mesh, and PT is the transpose of the prolongation
operator (43).
Note that the d-dimensional restriction and prolongation

operators can serve not only to project field values to and
from mortars, but also to project field values to and from
elements that cover the computational domain at different
h- and p-refinement levels. We make no use of projections
across refinement levels in this article but will do so in
upcoming work for the purpose of adaptive mesh-refine-
ment strategies and for multigrid solvers.13

I. A note on symmetry

For practical applications it is often advantageous to
work with a symmetric operator. For example, some
iterative linear solvers such as conjugate gradients take
advantage of the symmetry to invert the operator more
efficiently. One can also often show stronger convergence
bounds for iterative linear solvers applicable to nonsym-
metric matrices, such as GMRES, if the matrix is sym-
metric [36].

FIG. 5. A representation of nonconforming element boundaries
with mortars in two dimensions. The left element Ω1 faces two
elementsΩ2 andΩ3 towards the right. Since bothΩ1 andΩ2 have
four vertical grid points, their shared mortar ∂Ω12 also has four
grid points, but covers only a logical half of Ω1 (h nonconform-
ing). The element Ω3 has five vertical grid points, so the mortar
∂Ω13 has maxð4; 5Þ ¼ 5 grid points and also covers only a logical
half of Ω1 (hp nonconforming). Elements Ω2 and Ω3 are h
conforming but differ in their number of horizontal grid points, so
their shared mortar ∂Ω23 has maxð4; 5Þ ¼ 5 grid points (p
nonconforming). Note that the empty space between the elements
in this visualization is not part of the computational domain.

13See also Secs. 3.2 and 3.3 in Ref. [28] for details on the
restriction and prolongation operators in the context of multigrid
solvers.
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The compact strong-weak scheme presented in Eq. (30b)
with the generalized SIP numerical flux (32) is symmetric
unless the elliptic equations break the symmetry, e.g., with
an asymmetric coupling between equations. Note that a
curved manifold will typically break the symmetry because
it involves first derivatives in Christoffel-symbol contribu-
tions to the primal sources [see, e.g., Eq. (7)]. It is
straightforward to see how the strong-weak scheme can
make the DG operator symmetric if the elliptic equations
allow it: the strong-weak operator involves a symmetric
stiffness term of the schematic form ðMDÞTD ¼ DTMD,
whereas the strong scheme has a nonsymmetric expression
of the formMDD instead. Note that the “massless” variant
of the strong-weak scheme, schematically M−1DTMD, is
not generally symmetric, and neither is the “massless”
strong scheme DD.

J. Linearizing the operator

To solve nonlinear elliptic equations AðuÞ ¼ b we
typically employ a correction scheme, repeatedly solving
the linearized equations for a correction quantity Δu. For
example, a simple Newton-Raphson correction scheme
solves the linearized problem δA

δu ðuÞΔu ¼ b −AðuÞ at
fixed u and then iteratively corrects u → uþ Δu. Since
the fluxes F α

i are already linear for all elliptic systems we
consider, the linearization δA

δu ðuÞ involves only linearizing
the sources Sα and the boundary conditions.

K. Variations of the scheme

We have made a number of choices to formulate the DG
discretization in the preceding sections. This section
summarizes some of the choices and presents possible
variations to explore in future work.
(1) Massive vs massless scheme: we can eliminate the

mass matrix in Eq. (30) to obtain a “massless” DG
operator. However, we have found evidence that
iterative linear solvers converge faster when solving
the “massive” DG operator. We attribute this behav-
iour to the symmetry considerations discussed in
Sec. III I.

(2) Mass lumping: we diagonally approximate the mass
matrix to reduce the computational cost to apply,
invert, and store it, and to simplify the scheme (see
Sec. III F). Dealiasing techniques can potentially
increase the accuracy of the scheme on curved
meshes as discussed in Sec. III G.

(3) LGL vs LG mesh: we chose to discretize the DG
operator on LGL meshes to take advantage of the
collocation points on element boundaries, which
simplify computations of boundary corrections.
Switching to LG meshes can have the advantage
that quadratures are one degree more precise, mak-
ing the mass-lumping exact on rectilinear grids (see
Sec. III F).

(4) Numerical flux: the generalized internal-penalty
numerical flux presented in Sec. III D has proven
a viable choice for a wide range of problems so far.
However, the ability to switch out the numerical flux
is a notable strength of DG methods, and aug-
menting the numerical flux in the elliptic DG
scheme may improve its convergence properties
or accuracy. In particular, the choice of penalty,
Eq. (34), on curved meshes remains a subject of
further study.

(5) Strong vs weak formulation: we have chosen the
strong formulation (30a) over the strong-weak for-
mulation (30b) because it is slightly simpler and we
have, so far, found no evidence that the strong-weak
formulation converges faster than the strong formu-
lation, despite the symmetry considerations dis-
cussed in Sec. III I. However, the strong-weak
formulation can be of interest if a symmetric DG
operator is necessary, e.g., to take advantage of
specialized iterative solvers.

(6) Flux vs primal formulation: we have eliminated
auxiliary degrees of freedom in the DG operator with
a Schur-complement strategy. An alternative strat-
egy is to derive a “primal formulation” of the DG
operator (see Sec. III C). We have found the flux
formulation easier to implement due to its similarity
to hyperbolic DG schemes. Furthermore, Ref. [28]
suggests that the flux formulation can be advanta-
geous in conjunction with a multigrid solver.

IV. TEST PROBLEMS

The following numerical tests confirm the DG scheme
presented in this article can solve a variety of elliptic
problems. The test problems involve linear and nonlinear
systems of PDEs with nonlinear boundary conditions on
curved manifolds, discretized on hp-refined domains with
curved meshes and nonconforming element boundaries.
For test problems that have an analytic solution we

quantify the accuracy of the numerical solutions by
computing an L2 error over all primal variables,

ku−uanalytick≔
�P

A;k

R
Ωk
ðuA−uA;analyticÞ2dVP

k

R
Ωk
dV

�1=2

; ð46Þ

where the integrals are evaluated with Gauss-Lobatto
quadrature on the elements of the computational domain.
To assess the DG operator is functional for our test

problems we study the convergence of the discretization
error (46) under uniformhp refinement of the computational
domain (see Sec. III H). We compute the h-convergence
order under pure uniform h refinement

τh ≔
Δh lnðku − uanalytickÞ

Δh lnðhÞ
; ð47Þ
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where Δh denotes the difference between successive
h-refinement levels and h is the size of an element. Since
we always split elements in half along all logical axes we use
Δh lnðhÞ ¼ lnð2Þ. We also compute the exponential con-
vergence scale under pure uniform p refinement

τp ≔ Δplog10ðku − uanalytickÞ; ð48Þ

where Δp denotes the difference between successive
p-refinement levels.

A. A Poisson solution

With this first test problem we establish a simple baseline
that the following tests build upon. It is reduced to the
absolute essentials to illustrate the basic concepts of the
scheme. We solve a flat-space Poisson equation (2) in two
dimensions for the analytic solution

uanalyticðxÞ ¼ sin ðπxÞ sin ðπyÞ ð49Þ

on a rectilinear domain Ω ¼ ½0; 1�2. The domain is illus-
trated in Fig. 6. To obtain the solution (49) numerically we
choose the fixed source fðxÞ ¼ 2π2 sin ðπxÞ sin ðπyÞ, select
homogeneous Dirichlet boundary conditions ub ¼ 0, and
solve the strong compact DG-discretized problem (30a)
with C ¼ 1. This essentially means we invert the matrix
depicted in Fig. 3 and apply it to the discretization of the
fixed source fðxÞ. Instead of inverting the matrix directly
we employ the iterative elliptic solver of the SpECTRE code
[22] presented in Ref. [23]. However, note that the
technology we use to solve the DG-discretized problem
is not relevant for the purpose of this article, since the
matrix equation has a unique solution. Assuming the matrix

equation is solved to sufficient precision, Eq. (46) quan-
tifies the discretization error of the DG scheme.
We solve the problem on a series of uniformly and

isotropically refined domains and present the convergence
of the discretization error in Fig. 7. Under h refinement the
scheme recovers optimal OðhPþ1Þ convergence, where P
denotes the polynomial degree of the elements. It also
recovers the odd-order superconvergence feature expected
for the antisymmetric problem (49).14 Under p refinement
the scheme recovers exponential convergence. The expo-
nential convergence scale τp is modulated by the super-
convergence feature and its mean increases linearly with
the h-refinement level.

B. Thermal noise in a cylindrical mirror

In this second test problem we solve the equations of
linear elasticity (4) on a curved mesh with nonconforming
element boundaries. The test problem represents a cylin-
drical mirror that is deformed by pressure from a laser beam
incident on one of the sides. This problem arises in studies
of Brownian thermal noise in interferometric gravitational-
wave detectors [37,38].15 Here we consider an analytic
solution to this problem that applies in the limit of an
isotropic and homogeneous mirror material with constitu-
tive relation

Yijkl ¼ λδijδkl þ μðδikδjl þ δilδjkÞ; ð50Þ

characterized by the Lamé parameter λ and the shear
modulus μ, or equivalently by the Poisson ratio

ν ¼ λ
2ðλþμÞ, Young’s modulus E ¼ μð3λþ2μÞ

λþμ , or the bulk

modulus K ¼ λþ 2
3
μ. We assume the material fills the

infinite half-space z ≥ 0, choose a vanishing force density
fjðxÞ ¼ 0, and a Gaussian profile of the laser beam incident
at z ¼ 0,

niTij ¼ nj
1

πr20
e−r

2=r2
0 : ð51Þ

Here Tij ¼ −YijklSkl is the stress, ni is the unit normal
pointing away from the mirror, i.e., in negative z direction,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial coordinate distance from the

axis of symmetry, and r0 is the beam width. Under these
assumptions the displacement field ξiðxÞ has the analytic
solution [39–41]

ξr¼ 1

2μ

Z
∞

0

dkJ1ðkrÞe−kz
�
1−

λþ2μ

λþμ
þkz

�
p̃ðkÞ; ð52aÞ

FIG. 6. The two-dimensional rectilinear domain used in the
Poisson problem (Sec. IVA). Black lines illustrate element
boundaries and gray lines represent the LGL grid within each
element. This domain is isotropically h refined once, i.e., split
once in both dimensions, resulting in four elements. Each element
has six grid points per dimension, so fields are represented as
polynomials of degree five. This is the domain that Figs. 2 and 3
are based on, and that is circled in Fig. 7.

14See also Fig. 7.9 in Ref. [2].
15See also Sec. 11.9.2 in Ref. [39] for an introduction to the

thermal noise problem.
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ξz ¼ 1

2μ

Z
∞

0

dkJ0ðkrÞe−kz
�
1þ μ

λþ μ
þ kz

�
p̃ðkÞ; ð52bÞ

and ξϕ ¼ 0 in cylindrical coordinates fr;ϕ; zg. Here J0 and
J1 are Bessel functions of the first kind, and p̃ðkÞ ¼
1
2π e

−ðkr0=2Þ2 is the Hankel transform of the laser-beam
profile. We evaluate these integrals numerically at every
collocation point in the computational domain to determine
the analytic solution.
To obtain numerical solutions to the thermal noise

problem we DG discretize the equations of linear elasticity
(5) on a cylindrical domain with height and radius R,
employing the strong compact DG operator (30a). Since
the stress Tij ¼ −F ξ

ij is the negative primal flux in the
elasticity equations (5) we impose Eq. (51) as a Neumann-
type boundary condition on the base of the cylinder at
z ¼ 0. We impose the analytic solution (52) as Dirichlet-
type boundary conditions on the remaining external boun-
daries of the domain, i.e., on the base at z ¼ R and on the
mantle at r ¼ R. These boundary conditions mean that we
solve for a finite cylindrical section of the infinite half-
space analytic solution (52). We choose a penalty parameter
of C ¼ 100 for this problem to eliminate variations in
the discretization error arising from curved-mesh contri-
butions to the penalty (34) at high resolutions. Table I
summarizes the remaining parameters we use in the
numerical solutions.

Figure 8 illustrates the cylindrical domain. It is refined
more strongly toward the origin x ¼ 0 where the Gaussian
laser beam applies pressure. The refinement is both
anisotropic and inhomogeneous, leading to nonconforming
element boundaries with different polynomial degrees on
either side of the boundary, multiple neighbors adjacent to
an element face, or both. Specifically, elements facing the
top-layer cuboid or the interface between top and bottom
layer are matched two-to-one, and wedge-shaped elements
have two additional angular grid points. Therefore, the
elements facing the cuboid are both p nonconforming and
h nonconforming in the top layer, and p nonconforming in
the bottom layer. The elements facing the layer interface are
h nonconforming.
Figure 9 presents the convergence of the discretization

error under uniform hp refinement. Specifically, we split

TABLE I. Parameters used in the thermal-noise problem
(Sec. IV B). The beam width and the material properties
correspond to Table 1 in Ref. [37]. These material properties
characterize a fused-silica mirror, which is a material used in the
LIGO gravitational-wave detectors.

Beam width r0 177 μm
Outer radius R 600 μm

Poisson ratio ν 0.17
Young’s modulus E 72 GPa

FIG. 7. Convergence of the two-dimensional Poisson problem detailed in Sec. IVAwith uniform hp refinement. Solid lines connect
numerical solutions where the domain is split into an increasing number of elements (isotropic h refinement), and dotted lines connect
numerical solutions with increasing polynomial order (isotropic p refinement). The DG scheme recovers optimalOðhPþ1Þ convergence
with odd-order superconvergence under h refinement (right panel) and exponential convergence under p refinement (bottom panels).
For reference, the circled configuration is pictured in Fig. 6.

NILS L. FISCHER and HARALD P. PFEIFFER PHYS. REV. D 105, 024034 (2022)

024034-14



every element in two along all three dimensions to
construct additional h-refinement levels, and increment
every polynomial degree by one to construct additional
p-refinement levels, retaining the nonconforming element
boundaries. Note that the wedge-shaped elements retain a
higher polynomial degree of Pþ 2 along their angular
direction throughout the refinement procedure, where P is

the polynomial degree of all other elements and dimen-
sions. The DG scheme recovers optimal OðhPþ1Þ con-
vergence under h refinement and exponential convergence
under p refinement. Note that the exponential convergence
scale τp depends on the domain geometry, the structure of
the solution, the placement of grid points and the refine-
ment strategy. We have chosen to refine the domain as
uniformly as possible here to reliably measure convergence
properties of the DG scheme. Optimizing the distribution of
elements and grid points with adaptive mesh-refinement
(AMR) strategies to increase the rate of convergence is the
subject of ongoing work.

C. A black hole in general relativity

Now we apply the DG scheme to solve the Einstein
constraint equations of general relativity in the XCTS
formulations, which is a set of coupled, nonlinear, elliptic
PDEs on a curved manifold (see the Appendix, Sec. 2).
Solutions to the XCTS equations describe admissible
configurations of general-relativistic spacetime and provide
initial data for general-relativistic time evolutions.
In this test problem we solve the XCTS equations (A6)

for a Schwarzschild black hole in Kerr-Schild coordinates,

ψ ¼ 1; ð53aÞ

α ¼
�
1þ 2M

r

�
−1=2

; ð53bÞ

FIG. 8. A cut through the cylindrical domain used in the
elasticity problem (Sec. IV B). The domain consists of four
wedges enveloping a cuboid and two vertical layers. The layers
are partitioned vertically at z ¼ r0 and the cuboid lies radially
within r ¼ r0. In the top layer, the wedges are h refined radially
once and the cuboid is h refined in the x and y directions once,
resulting in 12 elements in the top layer and 5 elements in the
bottom layer. Elements in this example have six grid points per
dimension, and the wedge-shaped elements have two additional
grid points in their angular direction.

FIG. 9. Convergence of the three-dimensional elasticity problem detailed in Sec. IV B under uniform hp refinement. Plotted is the L2

error (46) over the three components of the displacement field ξiðxÞ. The refinement is based on the domain pictured in Fig. 8 (circled
configuration) with curved meshes and nonconforming element boundaries. The DG scheme recovers optimal OðhPþ1Þ convergence
under h refinement (right panel) and exponential convergence under p refinement (bottom panels).
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βi ¼ 2M
r

α2li; ð53cÞ

with the background quantities

γ̄ij ¼ δij þ
2M
r

lilj ð53dÞ

and

K ¼ 2Mα3

r2

�
1þ 3M

r

�
; ð53eÞ

where M is the mass parameter, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is

the Euclidean coordinate distance and li ¼ li ¼ xi=r.16

The time-derivative quantities ūij and ∂tK in the XCTS
equations (A6) vanish, as do the matter sources ρ, S, and Si.
Note that we have chosen a conformal decomposition with
ψ ¼ 1 here, but other choices of ψ and γ̄ij that keep the
spatial metric γij ¼ ψ4γ̄ij invariant are equally admissible.
We solve the XCTS equations numerically for the

conformal factor ψ, the product αψ , and the shift βi.
The conformal metric γ̄ij and the trace of the extrinsic
curvature K are background quantities that are chosen in
advance and remain fixed throughout the solve. They are a
source of aliasing when evaluated on the computational
grid (see Sec. III G). Importantly for this test problem the
conformal metric γ̄ij is not flat, resulting in a problem
formulated on a curved manifold. For example, unit-normal
one forms in the DG scheme are normalized with respect to
the conformal metric γ̄ij and the metric determinant appears
in the mass matrix and in the L2 error (46).
To solve the black hole problem numerically we employ

the strong compact DG scheme (30a) with C ¼ 1 to
discretize the XCTS equations (A6) on a three-dimensional
spherical shell, as illustrated in Fig. 10. The domain envelops
an excised sphere that represents the black hole, so it has an
outer and an inner external boundary that require boundary
conditions. To obtain the Schwarzschild solution in Kerr-
Schild coordinates we impose Eqs. (53a) to (53c) as
Dirichlet-type boundary conditions at the outer boundary
of the spherical shell at r ¼ 10M. We place the inner radius
of the spherical shell at r ¼ 2M and impose nonspinning
apparent-horizon boundary conditions at the inner boundary,

nk∂kψ ¼ ψ3

8α
ninjððL̄βÞij − ūijÞ

−
ψ

4
m̄ij∇̄inj −

1

6
Kψ3; ð54aÞ

βi ¼ −
α

ψ2
ni; ð54bÞ

where m̄ij ¼ γ̄ij − ninj. These boundary conditions are not
specific to the Schwarzschild solution but ensure the
excision surface is an apparent horizon [16].17 Since the
Schwarzschild solution in Kerr-Schild coordinates has an
apparent horizon at r ¼ 2M we recover the solution (53)
when we place the inner radius of the spherical shell at that
radius. The apparent-horizon boundary conditions (54) do
not constrain the lapse α, so we impose Eq. (53b) at the inner
boundary. The apparent-horizon boundary conditions are of
Neumann-type for the variable ψ , of Dirichlet-type for αψ
and βi, and nonlinear.
Since the XCTS equations (A4) and the apparent-

horizon boundary conditions (54) are nonlinear, the initial
guess for the iterative nonlinear solver becomes relevant.
We choose an initial guess close to the analytic solution to
ensure fast convergence of the iterative solver to the
numerical solution. Note that the initial guess and other
details of the iterative solve do not affect the discretization
error of the numerical solution once the solve has con-
verged to sufficient precision.
We present the convergence of the discretization error

under uniform hp refinement in Fig. 11. The DG scheme
for the nonlinear black hole problem recovers OðhPÞ
convergence under h refinement, which is an order lower
than that obtained for the two preceding linear test
problems. We find higher-order convergence for pure

FIG. 10. A cut through the uniformly refined spherical-shell
domain used in the black hole problem (Sec. IV C). The domain
consists of six wedges with a logarithmic radial coordinate map
enveloping an excised sphere. In this example each wedge is
isotropically h refined once, i.e., split once in all three dimen-
sions, resulting in a total of 48 elements. Note the elements are
split in half along their logical axes, so the element size
scales logarithmically in radial direction just like the distribution
of grid points within the elements. Each element has six grid
point per dimension, so fields are represented as polynomials of
degree five.

16See Table 2.1 in Ref. [17].

17See, e.g., Sec. 12.3.2 in Ref. [17] for an introduction to the
apparent-horizon boundary conditions.
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Dirichlet boundary conditions for this problem, suggesting
the apparent-horizon boundary conditions (54) are respon-
sible for the reduction of the convergence order. For a
Poisson problem with nonlinear boundary conditions
the authors of Ref. [24] also find a loss of convergence
under h refinement. Under p refinement the scheme
recovers exponential convergence and the mean exponen-
tial convergence scale τp increases linearly with the
h-refinement level.

D. A black hole binary

Finally, we solve the Einstein constraint equations in the
XCTS formulation as in Sec. IV C, but now we choose
background quantities and boundary conditions that re-
present two black holes in orbit. This binary black hole
problem is of significant relevance in numerical relativity
to procure initial data for simulations of merging black
holes [15,17–19].
Following the formalism for superposed Kerr-Schild

initial data, e.g., laid out in Refs. [18,19], we set the
conformal metric and the trace of the extrinsic curvature to
the superpositions

γ̄ij ¼ δij þ
X2
n¼1

e−r
2
n=w2

nðγðnÞij − δijÞ ð55aÞ

and

K ¼
X2
n¼1

e−r
2
n=w2

nKðnÞ; ð55bÞ

where γðnÞij and KðnÞ are the conformal metric and extrinsic-
curvature trace of two isolated Schwarzschild black holes
in Kerr-Schild coordinates as given in Eqs. (53). They have
mass parameters Mn and are centered at coordinates Cn,
with rn being the Euclidean coordinate distance from either
center. The superpositions are modulated by two Gaussians
with widths wn. The time-derivative quantities ūij and ∂tK
in the XCTS equations (A.4) vanish, as do the matter
sources ρ, S, and Si.
To handle orbital motion we split the shift in a back-

ground and an excess contribution [42],

βi ¼ βibackground þ βiexcess; ð56Þ

and choose the background shift

βibackground ¼ ðΩ0 × xÞi; ð57Þ

where Ω0 is the orbital angular velocity. We insert Eq. (56)
in the XCTS equations (A.4) and henceforth solve them for
βiexcess, instead of βi.
We solve the XCTS equations on the domain depicted in

Fig. 12. It has two excised spheres with radius 2Mn that are
centered at Cn, and correspond to the two black holes, and
an outer spherical boundary at finite radius R. We impose
boundary conditions on these three boundaries as follows.

FIG. 11. Convergence of the three-dimensional black-hole solution with uniform hp refinement. Plotted is the L2 error (46) over all
variables of the XCTS equations fψ ; αψ ; βig. The circled configuration is pictured in Fig. 10. The DG scheme recovers OðhPÞ
convergence under h refinement (right panel) and exponential convergence under p refinement (bottom panels).

UNIFIED DISCONTINUOUS GALERKIN SCHEME FOR A LARGE … PHYS. REV. D 105, 024034 (2022)

024034-17



At the outer spherical boundary we impose asymptotic
flatness,

ψ ¼ 1; αψ ¼ 1; βiexcess ¼ 0: ð58Þ
Since the outer boundary is at a finite radius, the solution
will only be approximately asymptotically flat. On the two
excision boundaries we impose nonspinning apparent-
horizon boundary conditions, Eq. (54). For the lapse we
choose to impose the isolated solution (53b) as Dirichlet
conditions at both excision surfaces. Note that this choice
differs slightly from Ref. [19], where the superposed
isolated solutions are imposed on the lapse at both excision
surfaces.
Since the binary black hole problem has no analytic

solution we assess the precision of numerical solutions by
comparing them to a high-resolution reference configura-
tion. Specifically, we interpolate all five fields uA ¼
fψ ; αψ ; βiexcessg to a set of sample points xm. Then, we
compute the discretization error as an L2 norm of the
difference to the high-resolution reference run over all
fields and sample points,

ku − urefk ≔
�X

A;m
ðuAðxmÞ − uA;refðxmÞÞ2

�
1=2

: ð59Þ

Figure 13 presents the convergence of the discretization
error under uniform hp refinement for our strong compact

DG scheme (30a) with C ¼ 1. Specifically, we obtain
h-refinement levels from the domain depicted in Fig. 12 by
splitting all elements in two along their three logical axes.
We obtain p-refinement levels by incrementing the number
of grid points by one in all elements and dimensions. The
DG scheme recovers exponential convergence under p
refinement, and suggests the same OðhPÞ convergence
under h refinement that we have found for the single black
hole problem in Sec. IV C. We have chosen Mn ¼ 0.4229,
Cn ¼ ð�8; 0; 0Þ, Ω0 ¼ 0.0144, wn ¼ 4.8, R ¼ 300, and
sample points along the x axis at x1 ¼ 8.846 (near horizon),
x2 ¼ 0 (origin), and x3 ¼ 100 (far field) here. For the high-
resolution reference configuration in Eq. (59) we use a run
that is h refined twice, and has one grid point more per
element and dimension than the highest-resolution con-
figuration included in Fig. 13. The reference values at the
interpolation points are listed in Table II. We have verified
that these values are consistent with the same problem

FIG. 12. A cut through the three-dimensional black-hole binary
domain used in Sec. IV D. It involves two excised spheres
centered at Cn along the x axis and extends to a spherical outer
surface at radius R. The domain is h refined such that spherical
wedges have equal angular size, so the cube-to-sphere boundary
is nonconforming. All elements in this picture have eight angular
grid points, and f7; 8; 8; 9; 11; 11g radial grid points in the layers
ordered from outermost to innermost.

FIG. 13. Exponential convergence of the three-dimensional
black-hole binary problem under uniform p refinement (solid
lines) for three uniform h-refinement levels. The circled con-
figuration is pictured in Fig. 12. Plotted here is the L2 error (59)
over all variables fψ ; αψ ; βiexcessg and all three interpolation
points xm.

TABLE II. Sample points xm used in (59) and the value of the
reference solution at the sample points.

x1 ¼ ð8.846; 0; 0Þ x2 ¼ ð0; 0; 0Þ x3 ¼ ð100; 0; 0Þ
ψ 1.0919141 1.0602545 1.0033643
αψ 0.7072066 0.9381658 0.9966282
βxexcess 0.3870172 0 0.0008802
βyexcess −0.1273493 0 −0.0003467
βzexcess 0 0 0
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solved with the SpEC [43,44] code up to an absolute error of
at most 10−7, which is the precision we report in Table II.
In forthcoming work we intend to employ the DG

scheme that we have presented here to develop a scalable
initial-data solver for binaries involving black holes and
neutron stars in the SpECTRE numerical-relativity code [23].

V. CONCLUSION AND FUTURE WORK

We have presented a unified discontinuous Galerkin
(DG) internal-penalty scheme that is applicable to a wide
range of elliptic equations. Our scheme applies to linear and
nonlinear second-order elliptic PDEs of one or more
variables, where the variables can be scalars, vectors, or
tensors of higher rank. It does not require problem-specific
modifications of the DG discretization or of the numerical
fluxes that couple neighboring elements. The scheme
supports a wide range of linear and nonlinear boundary
conditions, and applies to equations formulated on curved
manifolds. We demonstrate its versatility by solving a
simple Poisson problem, a linear elasticity problem on a
curved mesh with nonconforming element boundaries, and
two nonlinear problems in general relativity involving
black holes. The unified DG scheme is capable of solving
these problems with no structural changes. It recovers
optimal OðhPþ1Þ convergence for the linear test problems
and OðhPÞ convergence for the nonlinear test problems,
where P is the polynomial degree of the elements. The
scheme is implemented in the open-source SpECTRE code
[22] and the results presented in this article are reproducible
with the supplemental input-file configurations [45].
The DG scheme developed here can potentially be

improved in multiple ways in future work. Dealiasing
techniques have the potential to increase the accuracy of
the scheme on curved meshes and for equations with
background quantities. The choice of penalty on curved
meshes remains a subject of ongoing study. Furthermore,
detailed studies of the symmetry of the DG operator and
related adjustments to the scheme, such as switching to the
strong-weak formulation, can potentially make the DG
operator faster to solve.
Since the convergence properties of the DG scheme are

sensitive to the specifics of the computational domain, we
have chosen to refine the domains as uniformly as possible
while retaining some important features, such as curved
meshes and nonconforming element boundaries. For prac-
tical applications it is typically more important to obtain
steep rather than uniform convergence, in order to conserve
computational resources and thus achieve faster or more
precise solves. Therefore, a focus of future work will be to
develop adaptive mesh-refinement strategies for the elliptic
DG scheme that place grid points in regions and dimen-
sions of the domain that dominate the discretization error.
Once the DG discretization of the elliptic equations is

at hand, numerical techniques for solving the resulting
matrix equation become important. Sophisticated linear and

nonlinear iterative algorithms are necessary to solve high-
resolution elliptic problems in parallel on large computing
clusters. Many of the choices we have made in the
development of the DG scheme are motivated by such
large-scale applications. For this purpose we are developing
a scalable multigrid-Schwarz preconditioned Newton-
Krylov iterative solver with task-based parallelism that
will be presented in [23].
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APPENDIX: PHYSICAL SYSTEMS

1. Puncture equation

A popular approach to produce initial data for general-
relativistic time evolutions involving black holes is to
reduce the Einstein constraint equations to a single non-
linear elliptic PDE, the puncture equation18

−∂i∂iu ¼ βðαð1þ uÞ þ 1Þ−7; ðA1Þ

written here in Cartesian coordinates. The puncture
equation (A1) is solved for the field uðxÞ from which an
admissible spacetime metric can be constructed [17]. The
quantities

1

α
¼

X
I

MI

rI
; ðA2aÞ

β ¼ 1

8
α7ĀijĀij; ðA2bÞ

Āij ¼ 3

2

X
I

1

r2I

�
2Pði

I n
jÞ
I − ðδij − niIn

j
IÞPk

In
k
I

þ 4

rI
nðiI ϵ

jÞklSIkn
I
l

�
ðA2cÞ

are background fields that define a configuration of
multiple black holes. The black holes are parametri-
zed by their puncture masses MI , positions CI, linear
momenta PI and spins SI . In Eq. (A2), rI ¼ kx − CIk is the

18See, e.g., Sec. 12.2 in Ref. [17] for an introduction to
puncture initial data.
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Euclidean coordinate distance to the Ith black hole and
nI ¼ ðx − CIÞ=rI is the radial unit normal to the Ith
black hole.
To formulate the puncture equation (A1) in first-order

flux form (1) we can choose the auxiliary variable vi ¼ ∂iu
and the fluxes and sources

F v
i
j ¼ uδij; Svj ¼ vj; ðA3aÞ

F u
i ¼ vi; Su ¼ −βðαð1þ uÞ þ 1Þ−7; ðA3bÞ

along with both fα ¼ 0. Other Poisson-type equations with
nonlinear sources can be formulated analogously.

2. The XCTS equations of general relativity

The XCTS equations

∇̄2ψ ¼ 1

8
ψR̄þ 1

12
ψ5K2−

1

8
ψ−7ĀijĀij−2πψ5ρ; ðA4aÞ

∇̄2ðαψÞ¼ αψ

�
7

8
ψ−8ĀijĀijþ 5

12
ψ4K2þ1

8
R̄

þ2πψ4ðρþ2SÞ
�
−ψ5∂tKþψ5βi∇̄iK; ðA4bÞ

∇̄iðL̄βÞij ¼ ðL̄βÞij∇̄i lnðᾱÞ þ ᾱ∇̄iðᾱ−1ūijÞ

þ 4

3
ᾱψ6∇̄jK þ 16πᾱψ10Sj; ðA4cÞ

with Āij ¼ 1
2ᾱ ððL̄βÞij − ūijÞ and ᾱ ¼ αψ−6 are a set of

nonlinear elliptic equations that the spacetime metric of
general relativity must satisfy at all times [15].19 They are
solved for the conformal factor ψ, the product of lapse and
conformal factor αψ, and the shift vector βj. The remain-
ing quantities in the equations, i.e., the conformal metric
γ̄ij, the trace of the extrinsic curvature K, their respective
time derivatives ūij and ∂tK, the energy density ρ, the
stress-energy trace S and the momentum density Si, are
freely specifiable fields that define the scenario at hand.
Of particular importance is the conformal metric γ̄ij,
which defines the background geometry, the covariant
derivative ∇̄, the Ricci scalar R̄ and the longitudinal
operator

ðL̄βÞij ¼ ∇̄iβj þ ∇̄jβi −
2

3
γ̄ij∇̄kβ

k: ðA5Þ

Note that the XCTS equations are essentially two Poisson
equations and one elasticity equation with coupled,
nonlinear sources on a curved manifold. In this
analogy, the longitudinal operator plays the role of the

elastic constitutive relation that connects the symmetric
“shift strain” ∇̄ðiβjÞ with the “stress” ðL̄βÞij of which we
take the divergence in the momentum constraint (A4c).
This particular constitutive relation is equivalent to an
isotropic and homogeneous material (50) with bulk
modulus K ¼ 0 (not to be confused with the extrinsic
curvature trace K in this context) and shear modulus
μ ¼ 1.
To formulate the XCTS equations in first-order flux form

(1) we choose for auxiliary variables the gradient of the
conformal factor, vi ¼ ∂iψ , the gradient of the lapse times
the conformal factor, wi ¼ ∂iðαψÞ, and the symmetric shift
strain Bij ¼ ∇̄ðiβjÞ. Then, the XCTS equations (A4) can be
formulated with the fluxes and sources

F v
i
j ¼ δijψ ; Svj ¼ vj; ðA6aÞ

F ψ
i ¼ γ̄ijvj;

Sψ ¼ −Γ̄i
ijF ψ

j þ 1

8
ψR̄þ 1

12
ψ5K2

−
1

8
ψ−7ĀijĀij − 2πψ5ρ ðA6bÞ

for Eq. (A4a),

Fw
i
j ¼ δijαψ ; Swj ¼ wj; ðA6cÞ

F ðαψÞi ¼ γ̄ijwj;

SðαψÞ ¼ −Γ̄i
ijF ðαψÞj þ αψ

�
7

8
ψ−8ĀijĀij þ 5

12
ψ4K2

þ 1

8
R̄þ 2πψ4ðρþ 2SÞ

�

− ψ5∂tK þ ψ5βi∇̄iK ðA6dÞ

for Eq. (A4b), and

FB
i
jk ¼ δiðjγ̄kÞlβ

l; SBjk ¼ Bjk þ Γ̄ijkβ
i; ðA6eÞ

F β
ij¼ 2

�
γ̄ikγ̄jl−

1

3
γ̄ijγ̄kl

�
Bkl;

Sβ
i ¼−Γ̄j

jkF β
ik− Γ̄i

jkF β
jk

þðF β
ij− ūijÞγ̄jk

�
F ðαψÞk

αψ
−7

F ψ
k

ψ

�

þ ∇̄jūijþ
4

3
α∇̄iKþ16παψ4Si ðA6fÞ

for Eq. (A4c). All fixed sources fαðxÞ vanish. Note that
in Eq. (A6f), F β

ij ¼ ðL̄βÞij, expressed in the auxiliary
variables.

19See, e.g., Ref. [17] for an introduction to the XCTS
equations, in particular Box 3.3.
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