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We consider necessary and sufficient conditions for photons emitted from an arbitrary spacetime
position of the extremal Kerr black hole to escape to infinity. The radial equation of motion determines the
necessary conditions for photons emitted from r ¼ r� to escape to infinity, and the polar angle equation of
motion further restricts the allowed region of photon motion. From these two conditions, we provide a
method to visualize a two-dimensional photon impact parameter space that allows photons to escape to
infinity, i.e., the escapable region. Finally, we completely identify the escapable region for the extremal
Kerr black hole spacetime. This study has generalized our previous result [K. Ogasawara and T. Igata, Phys.
Rev. D 103, 044029 (2021)], which focused only on light sources near the horizon, to the classification
covering light sources in the entire region.
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I. INTRODUCTION

In recent years, the observation of the vicinity of a black
hole has made great progress. A bright ring structure
and associated shadow of the M87 galactic center were
discovered in 2019 by the Event Horizon Telescope
Collaboration [1]. This result suggests that the central
object is a supermassive black hole. However, the pos-
sibility that the central object is a horizonless compact
object has not yet been dismissed [2]. In general, the
difference between a black hole and a black hole candidate
will be noticeable in phenomena near the horizon.
Therefore, it is important to detect signals, i.e., photons,
coming from the vicinity of the horizon radius of a central
object and identify them uniquely and accurately. As the
observation progresses in the future, we will be able to
clarify various properties of central objects. The black hole
observations, including the shadow observations, require
capturing photons that have passed near the horizon radius,
shaken off the strong gravitational field, and finally escaped
to infinity. Therefore, how often photons can escape from
the light source to infinity, that is, the escape probability, is
an important issue.
The escape of photons was first revealed by Synge, who

estimated photon escape cones in the Schwarzschild black
hole [3]. He found that 50% of photons emitted from the
photon sphere could escape to infinity, while the remaining
50% were trapped by the black hole. Furthermore, the
opening angle of the escape cone becomes smaller as the

photon emission point approaches the horizon, and even-
tually, it becomes zero in the horizon limit. This implies
that the observability of the vicinity of the horizon is
extremely low, and it seems quite natural considering the
nature of the black hole, from which nothing can escape.
However, it has recently been reported that photons emitted
from the vicinity of a rapidly rotating black hole can have a
large escape probability. In our previous work, we showed
that 29.1% of photons could escape to infinity, even when a
uniform emitter at rest in a locally nonrotating frame
arbitrarily approaches the extremal Kerr horizon [4]. For
the subextremal case, the escape probability becomes zero
in the same limit, but for the near-extremal case, it is
maintained at about 30% until just before the horizon.
These results imply that the vicinity of a rapidly rotating
black hole is more visible than that of a slowly rotating one.
The escapes of photons in other black hole spacetimes were
discussed in Refs. [5–7], and the ratio of photons trapped
by a black hole was discussed in Ref. [8].
More recently, the escape probability of photons emitted

from an emitter in a stable circular orbit of a Kerr black
hole was shown to be more than 50% for an arbitrary
spin parameter and an arbitrary orbital radius [9–11].
Furthermore, the Doppler blueshift overcomes the gravi-
tational redshift according to the direction of photon
emission with respect to the direction of source motion,
so that photons can reach a distant observer with an
observable frequency band. These two effects are due to
the relativistic boost or beaming caused by the proper
motion of the emitter, and in recent years, such relativistic
effects have been actively discussed [12–15]. The analytic
value of the escape probability and Doppler blueshift of

*kota@tap.scphys.kyoto-u.ac.jp
†igata@post.kek.jp

PHYSICAL REVIEW D 105, 024031 (2022)

2470-0010=2022=105(2)=024031(17) 024031-1 © 2022 American Physical Society

https://orcid.org/0000-0002-2999-3611
https://orcid.org/0000-0002-3344-9045
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.024031&domain=pdf&date_stamp=2022-01-10
https://doi.org/10.1103/PhysRevD.103.044029
https://doi.org/10.1103/PhysRevD.103.044029
https://doi.org/10.1103/PhysRevD.105.024031
https://doi.org/10.1103/PhysRevD.105.024031
https://doi.org/10.1103/PhysRevD.105.024031
https://doi.org/10.1103/PhysRevD.105.024031


various emitters were recently found by using the near-
horizon geometry of the extremal Kerr black hole [11,16,17].
The previous works of photon escape have considered

the source confined to the equatorial plane. However, if a
small perturbation is applied to the source orbiting around a
Kerr black hole, it will no longer be confined to the
equatorial plane and will fall into the black hole. A
thorough analysis of such a nonequatorial plane emission
of photons will be necessary for black hole observations
which are expected to develop further in the future.
The purpose of this paper is to completely classify the

necessary and sufficient parameter region for photons
emitted from an arbitrary spacetime position of the
extremal Kerr black hole to escape to infinity. This study
generalizes the previous result [18], which focused only on
light sources near the horizon, to a classification that covers
light sources in the entire region.
This paper is organized as follows. In Sec. II, we

consider the equations of a photon, i.e., the null geodesic
equations, in the Kerr black hole spacetime. In Sec. III, we
clarify the necessary and sufficient conditions for photons
to escape from an arbitrary spacetime position to infinity
by using the allowed region of motion and the spherical
photon orbits (SPOs). In addition, we develop a method to
visualize a two-dimensional photon impact parameter
space that allows photons to escape to infinity. In
Sec. IV, we introduce critical polar angles and critical
values of an impact parameter to specify the escapable
region explicitly. Using the visualization method and
critical values, we completely evaluate the escapable region
in Sec. V. Section VI is devoted to discussion. In this paper,
we use units in which c ¼ 1 and G ¼ 1.

II. GENERAL NULL GEODESIC IN THE KERR
BLACK HOLE SPACETIME

We review the general null geodesic in the Kerr black
hole spacetime. The Kerr metric in the Boyer-Lindquist
coordinates is given by

gμνdxμdxν ¼ −
ΣΔ
A

dt2 þ Σ
Δ
dr2 þ Σdθ2

þ A
Σ
sin2 θ

�
dφ −

2Mar
A

dt

�
2

; ð1Þ

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2;

A ¼ ðr2 þ a2Þ2 − a2Δ2sin2θ; ð2Þ

where M and a denote the mass and spin parameters,
respectively. The spacetime is stationary and axisymmetric
with two corresponding Killing vectors ξa∂a ¼ ∂t and
ψa∂a ¼ ∂φ, respectively. Furthermore, the spacetime has
the Killing tensor Kab defined by [19]

Kab ¼ Σ2ðdθÞaðdθÞb þ sin2 θ½ðr2 þ a2ÞðdφÞa − aðdtÞa�
× ½ðr2 þ a2ÞðdφÞb − aðdtÞb� − a2 cos2 θgab: ð3Þ

We adopt units in which M ¼ 1 in what follows.
Let us consider null geodesics with 4-momentum ka.

According to the existence of ξa, ψa, and Kab, a photon has
three constants of motion [20]

E ¼ −ξaka ¼ −kt; L ¼ ψaka ¼ kφ;

Q ¼ Kabkakb − ðL − aEÞ2; ð4Þ

where E, L, and Q are the conserved energy, angular
momentum, and Carter constant, respectively. Since we
consider only a photon escaping to infinity, we assume that
E > 0. Introducing impact parameters

b ¼ L
E
; q ¼ Q

E2
; ð5Þ

and rescaling ka as ka=E → ka, we obtain the null geodesic
equations parametrized by ðb; qÞ:

Σ_t ¼ aðb − a sin2 θÞ þ r2 þ a2

Δ
ðr2 þ a2 − abÞ; ð6Þ

Σ _φ ¼ b − a sin2 θ
sin2 θ

þ a
Δ
ðr2 þ a2 − abÞ; ð7Þ

Σ_r ¼ σr
ffiffiffiffi
R

p
; ð8Þ

Σ_θ ¼ σθ
ffiffiffiffi
Θ

p
; ð9Þ

where the dots denote derivatives with respect to an affine
parameter, σr ¼ sgnð_rÞ, σθ ¼ sgnð_θÞ, and

R ¼ ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�; ð10Þ

Θ ¼ q − cot2 θðb2 − a2 sin2 θÞ: ð11Þ

The allowed region for photon motion is R ≥ 0 and Θ ≥ 0.
From now on, we focus on the extremal Kerr black hole
spacetime, i.e., a ¼ 1. Thus, the event horizon is located
at r ¼ rH ¼ 1.
Let us clarify the allowed parameter region restricted by

R ≥ 0. The function is factored as

R ¼ rð2 − rÞðb − b1Þðb − b2Þ; ð12Þ

where

b1ðr; qÞ ¼
−2rþ ðr − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − rðr − 2Þq

p
rðr − 2Þ ; ð13Þ
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b2ðr; qÞ ¼
−2r − ðr − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − rðr − 2Þq

p
rðr − 2Þ ; ð14Þ

which denote the values of b at the radial turning point. The
allowed range of b derived from R ≥ 0 is given by

b ≤ b1; b ≥ b2 for 1 < r < 2;

b1 < b < b2 for r > 2: ð15Þ

Note that b2 is singular at r ¼ 2, but R is finite there. We
will not consider b ≥ b2 for 1 < r < 2 because this range is
for a negative energy photon, and such a photon cannot
escape to infinity.
We also clarify the allowed parameter region restricted

by Θ ≥ 0. It reads

q ≥ cot2 θðb2 − sin2 θÞ; ð16Þ
so that the allowed range of b derived from Θ ≥ 0 is
given by

−B ≤ b ≤ B; ð17Þ
where

Bðθ; qÞ ¼ tan θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ cos2 θ

q
: ð18Þ

Thus, the allowed region for photon motion is given by the
common region of Eqs. (15) and (17).
Next, we consider the extremum points of bi (i ¼ 1, 2),

which characterize the photon escape conditions. The
photon orbits staying at the extrema, i.e., the orbits with
_r ¼ 0 and ̈r ¼ 0, are known as the SPOs [21]. Solving the
equivalent conditions, R ¼ 0 and dR=dr ¼ 0, we obtain b
and q as functions of the SPO radius:

b ¼ bSPOðrÞ ¼ −r2 þ 2rþ 1; ð19Þ
q ¼ qSPOðrÞ ¼ r3ð4 − rÞ: ð20Þ

Outside the horizon, qSPOðrÞ has a unique local maximum
with the value 27 at r ¼ 3. Eliminating r from Eqs. (19)
and (20), we obtain the extremum values as

b ¼ bsiðqÞ ¼ bSPOðriðqÞÞ; ð21Þ
where r ¼ riðqÞ (r1 ≤ r2) are the radii of SPOs and are the
real solutions of q ¼ qSPOðrÞ. Note that r1(r2) increases
(decreases) monotonically with q in the range

r1ð0Þ ¼ 0 ≤ r1ðqÞ ≤ 3 ≤ r2ðqÞ ≤ 4 ¼ rc2; ð22Þ
where rc2 ¼ r2ð0Þ ¼ 4 is the radius of the unstable photon
circular orbit. The number of real roots of q ¼ qSPOðrÞ
outside the horizon depends on q. There exists a single root
r2 for 0 ≤ q ≤ 3, while there exist two roots r1 and r2 for

3 < q < 27. For q ¼ 27, ri coincide with each other at
r1 ¼ r2 ¼ 3, so that bsi coincide with bs1 ¼ bs2 ¼ −2.
Figure 1 shows a relation between q and the radii ri.

III. PHOTON ESCAPE CONDITION

We consider the escape condition of a photon emitted
from an arbitrary spacetime position ðr; θÞ ¼ ðr�; θ�Þ.
Since the Kerr black hole spacetime is reflection symmetric
with respect to the equatorial plane θ ¼ π=2, we consider
only the range 0 < θ� < π=2 in what follows. The cases of
θ� ¼ 0 and θ� ¼ π=2 will be considered in Appendix A.
The necessary and sufficient conditions for photons to

escape are that they have appropriate parameters to reach
infinity from r ¼ r� (necessary condition) and are in the
allowed region determined by the variable θ�. In the
following subsections, we consider the photon escape
conditions for q ≥ 0 and q < 0 separately.

A. Necessary condition for photon escape, q ≥ 0

Let us consider the behavior of biðr; qÞ to determine
the range of b in which photons with q ≥ 0 satisfy the
necessary condition to escape from r ¼ r� to infinity. We
can see the typical shape of bi as gray curves in Figs. 2(a)
and 2(b) for 0 ≤ q < 3, in Figs. 2(c)–2(e) for 3 ≤ q < 27,
and in Fig. 2(f) for q ≥ 27. Gray regions denote forbidden
regions of photon motion. Orange and blue regions
represent the parameter range of b where photons satisfy
a necessary condition for escape with σr ¼ þ and σr ¼ −,
respectively.
In the case r1 < rH < r� ≤ r2, photons initially emitted

outward (i.e., σr ¼ þ) with bs2 < b ≤ b�1 can escape [see
orange region in Fig. 2(a)], and photons initially emitted
inward (i.e., σr ¼ −) with 2 < b < b�1 also can escape [see
blue region in Fig. 2(a)], where

b�i ≡ biðr�; qÞ; b1ðrH; qÞ ¼ 2: ð23Þ

FIG. 1. Relation between q and the radii ri. The function
qSPOðrÞ is shown by a black curve, which is solid outside the
horizon and dashed inside it. The intersections of the blue solid
line q and the black solid curve qSPOðrÞ give the radii of SPOs, r1
and r2.
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In the case r1 < rH < r2 < r�, photons initially emitted
outward (i.e., σr ¼ þ) with b�2 ≤ b ≤ b�1 can escape [see
orange region in Fig. 2(b)], and photons initially emitted
inward (i.e., σr ¼ −) with b�2 < b < bs2 or 2 < b < b�1 also
can escape [see blue region in Fig. 2(b)].
In the case rH < r� ≤ r1, only photons initially emitted

outward (i.e., σr ¼ þ) with bs2 < b < bs1 can escape [see
orange region in Fig. 2(c)].
In the case rH ≤ r1 < r� ≤ r2, photons initially emitted

outward (i.e., σr ¼ þ) with bs2 < b ≤ b�1 can escape [see
orange region in Fig. 2(d)], and photons initially emitted
inward (i.e., σr ¼ −) with bs1 < b < b�1 also can escape [see
blue region in Fig. 2(d)].
In the case rH ≤ r1 < r2 < r�, photons initially emitted

outward (i.e., σr ¼ þ) with b�2 ≤ b ≤ b�1 can escape [see
orange region in Fig. 2(e)], and photons initially emitted
inward (i.e., σr ¼ −) with b�2 < b < bs2 or bs1 < b < b�1
also can escape [see blue region in Fig. 2(e)].
For q ≥ 27, the allowed region is disconnected.

Therefore, if r� is in the outer allowed region, photons
must have b�2 ≤ b ≤ b�1 and always can escape [see orange
and blue region in Fig. 2(f)].
Let us summarize the necessary condition for photon

escape in the (b, q) parameter region for a fixed r�. To
perform it, we introduce four ranges of r�:

ðiÞ rH < r� < 3; ð24Þ

ðiiÞ 3 ≤ r� < r̃; ð25Þ

ðiiiÞ r̃ ≤ r� < 4; ð26Þ

ðivÞ r� ≥ 4; ð27Þ

where r̃≡ r2ð3Þ ¼ 3.95137… is the largest solution of
qSPOðrÞ ¼ 3. In addition, we introduce two specific values
of q,

q�ðr�Þ≡ qSPOðr�Þ; ð28Þ

qmaxðr�Þ≡ r3�
r� − 2

: ð29Þ

When q ¼ qmax, the functions b�i coincide with each other,
and their value is

bm ≡ biðr�; qmaxÞ ¼
2

2 − r�
: ð30Þ

When q > qmax, the position r� enters the forbidden region.
Therefore, the maximum value of q is limited by qmax. The
necessary conditions for photon escape are summarized in
Table I.1 It is useful to visualize the necessary condition for
photon escape in the b − q plane; see Fig. 3. The blue, red,
purple, and brown curves denote b ¼ b�1ðr�; qÞ, b�2ðr�; qÞ,

FIG. 2. Range of b in which a photon satisfies a necessary condition for escape. Gray solid curves denote biðr; qÞ as a function of r
with a fixed q, and black dashed vertical lines denote the emission point r ¼ r�. Gray regions denote forbidden regions, while the other
regions denote allowed regions. Orange and blue regions represent the parameter ranges of b where photons satisfy a necessary
condition for escape with σr ¼ þ and σr ¼ −, respectively. (a) and (b) (0 ≤ q < 3): the function b2 has an extremum bs2 at r ¼ r2, but b1
has no extremum. (c)–(e) (3 ≤ q < 27): the functions bi have extrema bsi at r ¼ ri, respectively. (f) (q ≥ 27): the allowed region is
disconnected, and the functions bi no longer have extrema.

1Note that in Refs. [4,18], the photon escape regions were
considered only for the case (i), i.e., rH < r� < 3. Here, we
identify them for the entire range of r�.
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bs1ðqÞ, and bs2ðqÞ, respectively. The black segment denotes
b ¼ b1ðrH; qÞ ¼ 2 and q ∈ ½0; 3�. The orange regions show
the parameter regions where photons initially emitted
outward (i.e., σr ¼ þ) satisfy the necessary condition
for escape. The cyan regions show the parameter regions
where photons initially emitted both outward and inward
(i.e., σr ¼ �) satisfy the necessary condition for escape.
Figures 3(i)–3(iv) correspond to Tables I(i)–I(iv),
respectively.

B. Necessary and sufficient condition
for photon escape, q ≥ 0

Let us further restrict the above necessary condition
for photon escape by the non-negativity of Θ, i.e., Eq. (17).
The common region of these conditions provides the
necessary and sufficient parameter region in which a
photon can escape from ðr; θÞ ¼ ðr�; θ�Þ to infinity. We
call it the escapable region. An example of the escapable
region is seen in Fig. 4. The green curve denotes Θ ¼ 0,
and the other curves and colored regions are the same
as in Fig. 3. We can find that the escapable region
corresponds to the regions in Fig. 3 further restricted by
the condition (17).

C. Necessary and sufficient condition
for photon escape, q < 0

We identify the escapable region for q < 0. The negative
q together with the non-negativity of Θ at θ ¼ θ� leads to

cot2 θ�ðb2 − sin2 θ�Þ ≤ q < 0: ð31Þ

This implies that jbj < 1 for q < 0, and the minimum value
of q is given at b ¼ 0 as

qmin ¼ − cos2 θ�: ð32Þ

For q < 0, the SPOs are not relevant to photon escape
because they do not exist. Therefore, we only focus on
R ≥ 0, or equivalently,

q ≤
r

ðr − 1Þ2 ½r
3 þ ð1 − b2Þrþ 2ð1 − bÞ2�: ð33Þ

FIG. 3. Typical parameter region in the b − q plane satisfying
the necessary condition for photon escape from r ¼ r� to infinity.
The blue, red, purple, and brown curves denote b ¼ b�1ðr�; qÞ,
b�2ðr�; qÞ, bs1ðqÞ, and bs2ðqÞ, respectively. The black segment
denotes b ¼ b1ðrH; qÞ ¼ 2 and q ∈ ½0; 3�. The orange regions
represent the parameter regions where only photons initially
emitted outward (i.e., σr ¼ þ) satisfy the necessary condition for
escape. The cyan regions represent the parameter regions where
photons initially emitted both outward and inward (i.e., σr ¼ �)
satisfy the necessary condition for escape. The labels (a)–(f) in
the figure represent the part labels in Fig. 2.

TABLE I. Necessary conditions for photon escape from r ¼ r� to infinity.

Radial position of an emitter q b (σr ¼ þ) b (σr ¼ −) Shape of bi

(i) rH < r� < 3 0 ≤ q < 3 bs2 < b ≤ b�1 2 < b < b�1 Figure 2(a)
3 ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1 Figure 2(d)
q� ≤ q ≤ 27 bs2 < b < bs1 Not applicable Figure 2(c)

(ii) 3 ≤ r� < r̃ 0 ≤ q < 3 bs2 < b ≤ b�1 2 < b < b�1 Figure 2(a)
3 ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1 Figure 2(d)
q� ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2, b

s
1 < b < b�1 Figure 2(e)

27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1 Figure 2(f)

(iii) r̃ ≤ r� < 4 0 ≤ q < q� bs2 < b ≤ b�1 2 < b < b�1 Figure 2(a)
q� ≤ q < 3 b�2 ≤ b ≤ b�1 b�2 < b < bs2, 2 < b < b�1 Figure 2(b)
3 ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2, b

s
1 < b < b�1 Figure 2(e)

27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1 Figure 2(f)

(iv) r� ≥ 4 0 ≤ q < 3 b�2 ≤ b ≤ b�1 b�2 < b < bs2, 2 < b < b�1 Figure 2(b)
3 ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2, b

s
1 < b < b�1 Figure 2(e)

27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1 Figure 2(f)
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The right-hand side is positive for all jbj < 1 and r > 1.
Hence, the allowed region (33) contains the entire param-
eter region (31). This means that any radial turning point no
longer appears for q < 0. Finally, we conclude that photons
with q < 0 can escape to infinity if they are initially emitted
outward (i.e., σr ¼ þ) and take the range (31). Figure 4
shows an example of the escapable region (see the orange
region of q < 0).

IV. CRITICAL VALUES FOR CLASSIFYING
PHOTON ESCAPE

In order to classify the escapable region completely,
we introduce the critical polar angles and the critical
values of q.

A. Critical angles

We introduce four critical polar angles θ1, θ2, θ3, and θm,
at which the classification of the escapable region varies
qualitatively. Solving Θ ¼ 0 for θ, we obtain a solution

θ ¼ θ̃ðb; qÞ ¼ arcsin

�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 1Þ2 þ q

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb − 1Þ2 þ q

p
j

2

�
;

ð34Þ

see Appendix B.
The first special point is ðb; qÞ ¼ ð−2; 27Þ, where bs1 and

bs2 coincide with each other. We define θ1 as θ� at which
−Bðθ�; qÞ passes through ð−2; 27Þ, i.e., Bðθ1; 27Þ ¼ 2 [see
the black dot in Fig. 5(i)]. Then, θ1 is given by

θ1 ¼ θ̃ð−2; 27Þ ¼ arcsin ð3 −
ffiffiffi
7

p
Þ ≃ 20.7°: ð35Þ

When θ� < θ1, bs2 < −B holds in the range q ≤ 27. This
implies that the minimum value of b in the escapable region
for q ∈ ½qmin; 27� is always −B.
The second special point is ðb; qÞ ¼ ð2; 3Þ, where r1 ¼

rH ¼ 1 and bs1 ¼ b1ðrH; qÞ ¼ 2. We define θ2 as θ� at
which Bðθ�; qÞ passes through (2,3), i.e., Bðθ2; 3Þ ¼ 2 [see
the black dot in Fig. 5(ii)]. Then, θ2 is given by

θ2 ¼ θ̃ð2; 3Þ ¼ arcsin ð
ffiffiffi
3

p
− 1Þ ≃ 47.1°: ð36Þ

When θ� < θ2, B < 2 holds in the range q ≤ 3. This
implies that the maximum value of b in the escapable
region for q ∈ ½qmin; 3� is always B.
The third special point is ðb; qÞ ¼ ðbs2ð3Þ; 3Þ, where

bs2ð3Þ ≃ −6.71. We define θ3 as θ� at which −Bðθ�; qÞ
passes through ðbs2ð3Þ; 3Þ, i.e., −Bðθ3; 3Þ ¼ bs2ð3Þ [see the
black dot in Fig. 5(iii)]. Then, θ3 is given by

θ3 ¼ θ̃ðbs2ð3ÞÞ; 3Þ ≃ 75.4°: ð37Þ

When θ� < θ3, bs2 < −B holds in the range q ≤ 3. This
implies that the minimum value of b in the escapable region
for q ∈ ½qmin; 3� is always −B.
The fourth special point is ðb; qÞ ¼ ðbm; qmaxÞ, where b�1

and b�2 coincide with each other. We define θm as θ�
at which −Bðθ�; qÞ passes through ðbm; qmaxÞ, i.e.,
−Bðθm; qmaxÞ ¼ bmðr�Þ [see the black dot in Fig. 5(iv)].
Then, θm is given by

θmðr�Þ ¼ θ̃ðbmðr�Þ; qmaxðr�ÞÞ

¼ arcsin

�
r�ðr� − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�ðr� − 1Þ2 − 8ðr� − 2Þ

p
2ðr� − 2Þ

�
:

ð38Þ

Note that we only need to consider θm for r� ≥ 3 because it
does not contribute to specifying the escapable region when
r� < 3. The critical angle θm depends on r� and mono-
tonically decreases with r� in the range

FIG. 4. Typical shape of the escapable region. The green curve
denotes Θ ¼ 0, or equivalently, b ¼ �Bðθ�; qÞ. The other curves
and colored regions are the same as in Fig. 3.

FIG. 5. Escapable region for θ� being the critical angles
(i) θ� ¼ θ1, (ii) θ� ¼ θ2, (iii) θ� ¼ θ3, and (iv) θ� ¼ θmðr�Þ.
Four black dots denote ðb; qÞ ¼ ð−2; 27Þ, (2,3), ðbs2ð3Þ; 3Þ, and
ðbmðr�Þ; qmaxðr�ÞÞ. Each curve and colored region is the same
as Fig. 4.
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θmð∞Þ ¼ 0 < θmðr�Þ ≤ θ1 ¼ θmð3Þ: ð39Þ

When θ� < θm, b�2 < −B holds in the range q ≤ qmax. This
implies that the minimum value of b in the escapable region
for q ∈ ½qmin; qmax� is always −B.

B. Critical values of q

We introduce five critical values q̄, qt�, and qs�, as the
values of q at the intersections of b ¼ 2, b�i ðr�; qÞ, bsiðqÞ,
and �Bðθ�; qÞ, at which the classification of the parameter
ranges varies qualitatively.
We define q̄ as the value of q at the intersection of b ¼ 2

and b ¼ Bðθ�; qÞ in the range 0 ≤ q ≤ 3, and we denote the
intersection as Pðq̄Þ (see the black dot in Fig. 6). Then, q̄ is
given by2

q̄ðθ�Þ ¼
3þ cos2 θ�
tan2 θ�

; ð40Þ

which only appears for θ� ∈ ½θ2; π=2Þ and monotonically
decreases with θ� in the range

q̄ðπ=2Þ ¼ 0 < q̄ðθ�Þ ≤ 3 ¼ q̄ðθ2Þ: ð41Þ

When q < q̄, B < b�1 holds. This implies that the maximum
value of b in the escapable region for q < q̄ is always B.
We define qtþ as the value of q at the intersection of

b ¼ b�1ðr�; qÞ and b ¼ Bðθ�; qÞ, and we denote the inter-
section as PðqtþÞ (see the blue dot in Fig. 6). On the other
hand, we define qt− as the value of q at the intersection
of b ¼ b�2ðr�; qÞ and b ¼ −Bðθ�; qÞ for θ� ≥ θm and b ¼
b�1ðr�; qÞ and b ¼ −Bðθ�; qÞ for θ� ≤ θm, and we denote
the intersection as Pðqt−Þ (see the red dot in Fig. 6). Then,
qt� are given by3

qt�ðr�; θ�Þ

¼ cos2θ�

��ðr� − 1Þðr2� þ cos2θ�Þ ∓ 2r� sin θ�
ðr� − 1Þ2 − sin2θ�

�
2

− 1

�
;

ð42Þ

where qt− only appears for r� > 2. For θ� ¼ θm, b ¼ b�i ,
and b ¼ −B coincide with each other at q ¼ qmax. Note
that qtþ < qt− holds for all r� and θ�. Figures 7(i) and 7(ii)
how the values of qtþ and qt− in the r� − θ� parameter space,
respectively.
We define qsþ as the value of q at the intersection of b ¼

bs1ðqÞ and b ¼ Bðθ�; qÞ, and we denote the intersection as
PnðqsþÞ (see the purple dot in Fig. 6). On the other hand,
we defineqs− as thevalue ofq at the intersection ofb ¼ bs2ðqÞ
and b ¼ −Bðθ�; qÞ for θ� ≥ θ1 and b ¼ bs1ðqÞ and b ¼
−Bðθ�; qÞ for θ� ≤ θ1, and we denote the intersection as
Pðqs−Þ (see the brown dot in Fig. 6). Then, qs� are given by4

FIG. 6. Five critical values of q. Each curve and colored region is the same as Fig. 4.

FIG. 7. Values of qt�ðr�; θ�Þ in the r� − θ� parameter space.
Blue and red curves denote qtþ ¼ q� and qt− ¼ q�, respectively.
Gray regions in (i) and (ii) represent the parameter regions where
the points PðqtþÞ and Pðqt−Þ do not contribute to specifying the
escapable region, respectively.

2This q̄ðθ�Þ is expressed as q1ðθ�Þ in Ref. [18].

3These qtþðr�; θ�Þ and qt−ðr�; θ�Þ are expressed as q2ðr�; θ�Þ
and q6ðr�; θ�Þ, respectively, in Ref. [18].

4This qsþðθ�Þ is expressed as q3ðθ�Þ, and qs−ðθ�Þ is expressed
as q4ðθ�Þ for θ� ≥ θ1 and as q5ðθ�Þ for θ� < θ1, respectively, in
Ref. [18].
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qs�ðθ�Þ ¼ qSPOðx�Þ ¼ −ðx�Þ4 þ 4x�; ð43Þ

x� ≡ 1 ∓ sin θ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 ∓ sin θ�Þ

p
; ð44Þ

where qsþ only appears for θ� ∈ ð0; θ2Þ and monotonically
decreases with θ� in the range

qsþðθ2Þ ¼ 3 < qsþðθ�Þ < 11þ 8
ffiffiffi
2

p
¼ qsþð0Þ: ð45Þ

As θ� increases from 0 to π=2, qs− begins with
qs−ð0Þ ¼ 11þ 8

ffiffiffi
2

p
, monotonically increases to the maxi-

mum value 27 at θ� ¼ θ1, and monotonically decreases to
qs−ðπ=2Þ ¼ 0. For θ� ¼ θ1, b ¼ bsi and b ¼ −B coincide
with each other at q ¼ 27.
In addition, we define Pðq�Þ as a point in the b − q

plane that represents ðb�1ðr�; q�Þ; q�Þ for r� < 3 and
ðb�2ðr�; q�Þ; q�Þ for 3 ≤ r� ≤ 4 (see the gray dot in Fig. 6).
These are summarized in Table II.

C. Conditions for critical values of q
involved in classification

It is worth noting that qt� and q� are not always involved
in classification; i.e., the intersections PðqtþÞ, Pðqt−Þ, and
Pðq�Þ are not always involved in classification.
When qtþ > q� for r� < 3, the intersection PðqtþÞ does

not contribute to specifying the escapable region [see the
gray region in Fig. 7(i)]. On the other hand, when qtþ ≤ q�
for r� < 3, the intersection PðqtþÞ is a special point, which
contributes to specifying the escapable region. For r� ≥ 3,
the intersection PðqtþÞ always contributes to it. The colored
region in Fig. 7(i) represents the parameter region where qtþ
contributes to specifying the escapable region.
For the same reason as for qtþ, the relative values of qt−

and q� determine whether qt− contributes to specifying the
escapable region. In the case of r� < 3, only when qt− ≤ q�
for θ� < θ1, the intersection Pðqt−Þ is included in the
escapable region. In the case of r� ≥ 3, when qt− ≤ q�
for θ� < θ1 and when qt− ≥ q�, the intersection Pðqt−Þ is
included. The colored region in Fig. 7(ii) represents the
parameter region where qt− contributes to specifying the
escapable region.

In the case of r� < 3, when qtþ ≤ q� ≤ qt− and when
qt− ≤ q� for θ� ≥ θ1, the point P(q�) contributes to speci-
fying the escapable region. In the case of r� ≥ 3, the point
Pðq�Þ contributes to it only when qt− ≤ q� for θ� ≥ θ1. The
blue region in Fig. 8 represents the parameter region where
q� contributes to specifying the escapable region.
Other intersections Pðq̄Þ and PðqsþÞ contribute to speci-

fying the escapable region when θ� ≥ θ2 and θ� < θ2,
respectively, and Pðqs−Þ always contributes to it.
In the following section, we will perform a complete

classification of photon escape.

V. COMPLETE CLASSIFICATION OF PHOTON
ESCAPE IN THE EXTREMAL KERR

BLACK HOLE

In this section, we make a complete classification of
photon escape. We define eight classes according to a
spacetime position of an emitter ðr�; θ�Þ (see Table III):

Class I∶ r� < 3 and 0 < θ� < θ1; ð46Þ

Class II∶ r� < 3 and θ1 ≤ θ� < θ2; ð47Þ

Class III∶ r� < 3 and θ2 ≤ θ� < θ3; ð48Þ

Class IV∶ r� < 3 and θ3 ≤ θ� < π=2; ð49Þ

Class V∶ r� ≥ 3 and 0 < θ� < θ1; ð50Þ

TABLE II. Definition of special points P on the b-q plane and
the values of q and b at these points.

P Intersection q b

Pðq̄Þ b ¼ 2 and b ¼ B q̄ðθ�Þ 2 ¼ Bðθ�; q̄Þ
PðqtþÞ b ¼ b�1 and b ¼ B qtþðr�; θ�Þ b�1ðr�; qtþÞ ¼ Bðθ�; qtþÞ
Pðqt−Þ b ¼ b�i and b ¼ −B qt−ðr�; θ�Þ b�i ðr�; qt−Þ ¼ −Bðθ�; qt−Þ
PðqsþÞ b ¼ bs1 and b ¼ B qsþðθ�Þ bs1ðqsþÞ ¼ Bðθ�; qsþÞ
Pðqs−Þ b ¼ bsi and b ¼ −B qs−ðθ�Þ bsiðqs−Þ ¼ −Bðθ�; qs−Þ
Pðq�Þ … q�ðr�Þ b�1ðr�; q�Þ for r� < 3

b�2ðr�; q�Þ for 3 ≤ r� ≤ 4

FIG. 8. Relationship of the characteristic q’s in the r� − θ�
parameter space. In the gray region, qt� and q� do not contribute
to specifying the escapable region. In the blue region, qtþ and q�
contribute to specifying the escapable region, while qt− does not.
In the red region, qt� contribute to specifying the escapable
region, while q� does not. Note that curves representing qtþ ¼ q�
for r� ≥ 3 and qt− ¼ q� for r� < 3 and θ� ≥ θ1, and for r� ≥ 3
and θ� < θ1 are not plotted. This is because these curves do not
contribute to the classification of photon escape.
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Class VI∶ r� ≥ 3 and θ1 ≤ θ� < θ2; ð51Þ

Class VII∶ r� ≥ 3 and θ2 ≤ θ� < θ3; ð52Þ

Class VIII∶ r� ≥ 3 and θ3 ≤ θ� < π=2: ð53Þ

For r� < 3 (i.e., classes I–IV), q� monotonically increases
with r� in the range

qSPOð1Þ ¼ 3 < q�ðr�Þ < 27 ¼ qSPOð3Þ; ð54Þ

and we only need to consider the range of qmin ≤ q ≤ 27
because there is no escapable region in q > 27. For r� ≥ 3
(i.e., classes V–VIII), as r� increases from 3 to∞, q� begins
at qSPOð3Þ ¼ 27 and monotonically decreases to −∞. We
only need to consider the range of qmin ≤ q ≤ qmax because
there is no escapable region in q > qmax.
Figure 8 shows the relationship of the characteristic q’s

in the r� − θ� parameter space. In the gray region, qt� and
q� do not contribute to specifying the escapable region.
In the blue region, qtþ and q� contribute to specifying the
escapable region, while qt− does not. In the red region, qt�
contribute to specifying the escapable region, while q� does
not. For each class, the regions separated by these curves
give different escapable parameter regions. For example,
since the region r� < 3 and 0 < θ� < θ1 (i.e., class I) is
divided into four by three curves, there are four different
cases of the escapable regions. Note that the curve
representing qtþ ¼ q� for r� ≥ 3 is not plotted because it
does not contribute to the classification of photon escape.
Also, for the same reason, the curve representing qt− ¼ q�
for r� < 3 and θ� ≥ θ1, and for r� ≥ 3 and θ� < θ1 is not
plotted.
In the following subsections, we consider the escapable

region separately for each class.

A. Class I: r� < 3 and 0 < θ� < θ1
There exist four cases according to the relative values of

q�, qt�, and qs− (see Fig. 9):

ðiÞ qtþ > q�; ð55Þ

ðiiÞ qtþ ≤ q� < qt−; ð56Þ

ðiiiÞ qt− ≤ q� and qs− > qtþ; ð57Þ

ðivÞ qs− ≤ qtþ; ð58Þ

where case (iv) appears only when θ� < 2.543°. The equal
signs of Eqs. (56) and (57) hold only when qsþ ¼ qtþ ¼ q�
and qs− ¼ qt− ¼ q�, respectively. Note that q� contributes to
specifying the escapable region only for case (ii), qtþ
contributes to that for cases (ii)–(iv), and qt− contributes
to that for cases (iii) and (iv). The escapable regions in the
above cases are summarized in Table IV and Fig. 10.

B. Class II: r� < 3 and θ1 ≤ θ� < θ2
There exist three cases according to the relative values of

q�, qtþ, and qs− (see Fig. 11):

ðiÞ qtþ > q�; ð59Þ
ðiiÞ qtþ ≤ q� < qs−; ð60Þ

ðiiiÞ qs− ≤ q�; ð61Þ

where the equal sign of Eq. (60) holds only when qsþ ¼
qtþ ¼ q�. For case (i), q� and qtþ do not contribute to
specifying the escapable region. The escapable regions in
the above cases are summarized in Table V and Fig. 12.

C. Class III: r� < 3 and θ2 ≤ θ� < θ3
There are four cases according to the relative values of

qtþ and 3, and qs− and q� (see Fig. 13):

ðiÞ qtþ > 3 and qs− > q�; ð62Þ

ðiiÞ qtþ > 3 and qs− ≤ q�; ð63Þ

ðiiiÞ qtþ ≤ 3 and qs− > q�; ð64Þ

TABLE III. Definition of each class and the characteristic
values of q that appear in the classification in each class.

Class Range of ðr�; θ�Þ Characteristic q’s

I r� < 3 and θ� ∈ ð0; θ1Þ q�, qt�, and qs�
II r� < 3 and θ� ∈ ½θ1; θ2Þ q�, qtþ, and qs�
III r� < 3 and θ� ∈ ½θ2; θ3Þ q�, q̄, qtþ, qs−, and 3
IV r� < 3 and θ� ∈ ½θ3; π=2Þ q�, q̄, qtþ, qs−, and 3
V r� ≥ 3 and θ� ∈ ð0; θ1Þ qt� and qs�
VI r� ≥ 3 and θ� ∈ ½θ1; θ2Þ q�, qt�, q

s
�, and 27

VII r� ≥ 3 and θ� ∈ ½θ2; θ3Þ q�, q̄, qt�, q
s
−, 3, and 27

VIII r� ≥ 3 and θ� ∈ ½θ3; π=2Þ q�, q̄, qt�, q
s
−, 3, and 27

FIG. 9. (Class I) Relationship of the characteristic q’s.
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ðivÞ qtþ ≤ 3 and qs− ≤ q�: ð65Þ

The escapable regions in the above cases are summarized in
Table VI and Fig. 14.

D. Class IV: r� < 3 and θ3 ≤ θ� < π=2

In this case, there is no case classification according to
the relative values of q. The escapable region in this class is
summarized in Table VII and Fig. 15.

E. Class V: r� ≥ 3 and 0 < θ� < θ1
There are four cases according to the relative values of

qtþ and qs−, and θ� and θm (see Fig. 16):

ðiÞ qs− ≤ qtþ and θ� ≤ θm; ð66Þ

ðiiÞ qs− ≤ qtþ and θ� > θm; ð67Þ

ðiiiÞ qs− > qtþ and θ� ≤ θm; ð68Þ

ðivÞ qs− > qtþ and θ� > θm: ð69Þ

The escapable regions in the above cases are summarized in
Table VIII and Fig. 17. Note that the shape of the escapable

FIG. 10. (Class I) Typical shape of the escapable region for
r� < 3 and 0 < θ� < θ1. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, blue, red, purple, and brown dashed lines
denote q ¼ q�ðr�Þ, qtþðr�; θ�Þ, qt−ðr�; θ�Þ, qsþðθ�Þ, and qs−ðθ�Þ,
respectively.

TABLE IV. (Class I) Escapable region ðb; qÞ for r� < 3 and
0 < θ� < θ1.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(iv) qmin ≤ q < qsþ −B ≤ b ≤ B Not applicable

(ii) and (iii) qsþ ≤ q < qtþ −B ≤ b ≤ B bs1 < b ≤ B
(iv) qsþ ≤ q < qs−

(ii) qtþ ≤ q < q� −B ≤ b ≤ b�1 bs1 < b < b�1
(iii) qtþ ≤ q < qs−

(i) qsþ ≤ q < qs− −B ≤ b < bs1 Not applicable
(ii) q� ≤ q < qs−

(iv) qs− ≤ q < qtþ −B ≤ b ≤ B −B ≤ b ≤ B

(iii) qs− ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < b�1
(iv) qtþ ≤ q < qt−

(i) and (ii) qs− ≤ q ≤ 27 Not applicable Not applicable
(iii) and (iv) qt− ≤ q ≤ 27 Not applicable Not applicable

FIG. 11. (Class II) Relationship of the characteristic q’s.

TABLE V. (Class II) Escapable region ðb; qÞ for r� < 3 and
θ1 ≤ θ� < θ2.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(iii) qmin ≤ q < qsþ −B ≤ b ≤ B Not applicable

(ii) and (iii) qsþ ≤ q < qtþ −B ≤ b ≤ B bs1 < b ≤ B

(ii) qtþ ≤ q < q� −B ≤ b ≤ b�1 bs1 < b < b�1
(iii) qtþ ≤ q < qs−

(i) qsþ ≤ q < qs− −B ≤ b < bs1 Not applicable
(ii) q� ≤ q < qs−

(iii) qs− ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1

(i) and (ii) qs− ≤ q ≤ 27 bs2 < b < bs1 Not applicable
(iii) q� ≤ q ≤ 27
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region of class V(i) is the same as that of class I(iv), and the
shape of the escapable region of class V(iii) is the same as
that of class I(iii).

F. Class VI: r� ≥ 3 and θ1 ≤ θ� < θ2
There are six cases according to the relative values of q�,

qt�, q
s
−, and 27 (see Fig. 18):

ðiÞ qt− ≤ q�; ð70Þ

ðiiÞ q� < qt− ≤ 27 and qs− ≥ qtþ; ð71Þ

ðiiiÞ qt− ≤ 27 and qs− < qtþ; ð72Þ

ðivÞ qt− > 27 and qs− ≥ qtþ; ð73Þ

ðvÞ qt− > 27 and qs− < qtþ ≤ 27; ð74Þ

ðviÞ qtþ > 27; ð75Þ

FIG. 12. (Class II) Typical shape of the escapable region for
r� < 3 and θ1 ≤ θ� < θ2. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, blue, purple, and brown dashed lines
denote q ¼ q�ðr�Þ, qtþðr�; θ�Þ, qsþðθ�Þ, and qs−ðθ�Þ, respectively.

FIG. 13. (Class III) Relationship of the characteristic q’s.

FIG. 14. (Class III) Typical shape of the escapable region for
r� < 3 and θ2 ≤ θ� < θ3. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, black, blue, and brown dashed lines
denote q ¼ q�ðr�Þ, q̄ðθ�Þ, qtþðr�; θ�Þ, and qs−ðθ�Þ, respectively.

TABLE VI. (Class III) Escapable region ðb; qÞ for r� < 3 and
θ2 ≤ θ� < θ3.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(iv) qmin ≤ q < q̄ −B ≤ b ≤ B Not applicable

(i) and (ii) q̄ ≤ q < 3 −B ≤ b ≤ B 2 < b ≤ B
3 ≤ q < qtþ −B ≤ b ≤ B bs1 < b ≤ B

(iii) and (iv) q̄ ≤ q < qtþ −B ≤ b ≤ B 2 < b ≤ B
qtþ ≤ q < 3 −B ≤ b ≤ b�1 2 < b < b�1

(i) qtþ ≤ q < q� −B ≤ b ≤ b�1 bs1 < b < b�1
(ii) qtþ ≤ q < qs−
(iii) 3 ≤ q < q�
(iv) 3 ≤ q < qs−

(i) and (iii) q� ≤ q < qs− −B ≤ b < bs1 Not applicable
qs− ≤ q ≤ 27 bs2 < b < bs1 Not applicable

(ii) and (iv) qs− ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1
q� ≤ q ≤ 27 bs2 < b < bs1 Not applicable

TABLE VII. (Class IV) Escapable region ðb; qÞ for r� < 3 and
θ3 ≤ θ� < π=2.

q b (σr ¼ þ) b (σr ¼ −)

qmin ≤ q < q̄ −B ≤ b ≤ B Not applicable
q̄ ≤ q < qtþ −B ≤ b ≤ B 2 < b ≤ B
qtþ ≤ q < qs− −B ≤ b ≤ b�1 2 < b < b�1
qs− ≤ q < 3 bs2 < b ≤ b�1 2 < b < b�1
3 ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1
q� ≤ q ≤ 27 bs2 < b < bs1 Not applicable
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where q� contributes to specifying the escapable region
only for case (i), and qt− contributes to that for cases (ii)–
(vi). The escapable regions in the above cases are sum-
marized in Table IX and Fig. 19.

G. Class VII: r� ≥ 3 and θ2 ≤ θ� < θ3
There are seven cases according to the relative values of

q�, qt�, q
s
−, 3, and 27 (see Fig. 20):

ðiÞ qt− ≤ q� and qtþ > 3; ð76Þ

ðiiÞ qt− ≤ q� and qtþ ≤ 3; ð77Þ

ðiiiÞ qt− > q� and 3 < qtþ ≤ qs−; ð78Þ

ðivÞ qt− > q� and qtþ ≤ 3; ð79Þ

ðvÞ qt− ≤ 27 and qs− < qtþ; ð80Þ

ðviÞ qtþ ≤ 27 < qt−; ð81Þ

ðviiÞ qtþ > 27; ð82Þ

where q� contributes to specifying the escapable
region for cases (i) and (ii), and qt− contributes to that

FIG. 15. (Class IV) Typical shape of the escapable region for
r� < 3 and θ3 ≤ θ� < π=2. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, black, blue, and brown dashed lines
denote q ¼ q�ðr�Þ, q̄ðθ�Þ, qtþðr�; θ�Þ, and qs−ðθ�Þ, respectively.

FIG. 16. (Class V) Relationship between the critical q’s and
θmðr�Þ.

TABLE VIII. (Class V) Escapable region (b, q) for r� ≥ 3 and
0 < θ� < θ1.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(iv) qmin ≤ q < qsþ −B ≤ b ≤ B Not applicable

(i) and (ii) qsþ ≤ q < qs− −B ≤ b ≤ B bs1 < b ≤ B
(iii) and (iv) qsþ ≤ q < qtþ

(i) and (ii) qs− ≤ q < qtþ −B ≤ b ≤ B −B ≤ b ≤ B

(iii) and (iv) qtþ ≤ q < qs− −B ≤ b ≤ b�1 bs1 < b < b�1

(i) and (ii) qtþ ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < b�1
(iii) and (iv) qs− ≤ q < qt−

(i) and (iii) qt− ≤ q ≤ qmax Not applicable Not applicable

(ii) and (iv) qt− ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1

FIG. 17. (Class V) Typical shape of the escapable region for
r� ≥ 3 and 0 < θ� < θ1. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The blue, red, purple, and brown dashed lines
denote q ¼ qtþðr�; θ�Þ, qt−ðr�; θ�Þ, qsþðθ�Þ, and qs−ðθ�Þ, respec-
tively.

FIG. 18. (Class VI) Relationship between the critical q’s and q�.
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for cases (ii)–(vii). The escapable regions in the above cases
are summarized in Table X and Fig. 21.
Note that solving qt−ðr�; θ3Þ ¼ 27 and qtþðr�; θ3Þ ¼ 27

for r�, we obtain r� ≃ 19.39 and r� ≃ 19.61, respectively.

TABLE IX. (Class VI) Escapable region (b, q) for r� ≥ 3 and
θ1 ≤ θ� < θ2.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(vi) qmin ≤ q < qsþ −B ≤ b ≤ B Not applicable

(i), (ii), (iv) qsþ ≤ q < qtþ −B ≤ b ≤ B bs1 < b ≤ B
qtþ ≤ q < qs− −B ≤ b ≤ b�1 bs1 < b < b�1

(iii), (v), (vi) qsþ ≤ q < qs− −B ≤ b ≤ B bs1 < b ≤ B

(iii) and (v) qs− ≤ q < qtþ −B ≤ b ≤ B −B ≤ b < bs2
(vi) qs− ≤ q < 27 and bs1 < b ≤ B

(i) qs− ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1
(ii) qs− ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < bs2
(iii) qtþ ≤ q < qt− and bs1 < b < b�1
(iv) qs− ≤ q < 27
(v) qtþ ≤ q < 27

(vi) 27 ≤ q < qtþ −B ≤ b ≤ B −B ≤ b ≤ B

(i) q� ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2
(ii) and (iii) qt− ≤ q < 27 and bs1 < b < b�1
(iv) and (v) 27 ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < b�1
(vi) qtþ ≤ q < qt−
(i)–(iii) 27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1
(iv)–(vi) qt− ≤ q ≤ qmax

FIG. 19. (Class VI) Typical shape of the escapable region for
r� ≥ 3 and θ1 ≤ θ� < θ2. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, blue, red, purple, and brown dashed lines
denote q ¼ q�ðr�Þ, qtþðr�; θ�Þ, qt−ðr�; θ�Þ, qsþðθ�Þ, and qs−ðθ�Þ,
respectively.

FIG. 20. (Class VII) Relationship between the critical q’s
and q�.

TABLE X. (Class VII) Escapable region (b, q) for r� ≥ 3 and
θ2 ≤ θ� < θ3.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(vii) qmin ≤ q < q̄ −B ≤ b ≤ B Not applicable

(i), (iii), (v)–(vii) q̄ ≤ q < 3 −B ≤ b ≤ B 2 < b ≤ B
(ii) and (iv) q̄ ≤ q < qtþ

(i) and (iii) 3 ≤ q < qtþ −B ≤ b ≤ B bs1 < b ≤ B
(v)–(vii) 3 ≤ q < qs−

(ii) and (iv) qtþ ≤ q < 3 −B ≤ b ≤ b�1 2 < b < b�1

(i) and (iii) qtþ ≤ q < qs− −B ≤ b ≤ b�1 bs1 < b < b�1
(ii) and (iv) 3 ≤ q < qs−

(i) and (ii) qs− ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1

(v) and (vi) qs− ≤ q < qtþ −B ≤ b ≤ B −B ≤ b < bs2
(vii) qs− ≤ q < 27 and bs1 < b ≤ B

(iii) and (iv) qs− ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < bs2
(v) qtþ ≤ q < qt− and bs1 < b < b�1
(vi) qtþ ≤ q < 27

(i) and (ii) q� ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2
(iii)–(v) qt− ≤ q < 27 and bs1 < b < b�1

(vii) 27 ≤ q < qtþ −B ≤ b ≤ B −B ≤ b ≤ B

(vi) 27 ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < b�1
(vii) qtþ ≤ q < qt−

(i)–(v) 27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1
(vi) and (vii) qt− ≤ q ≤ qmax
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H. Class VIII: r� ≥ 3 and θ3 ≤ θ� < π=2

There are eight cases according to the relative values of
q�, qt�, q

s
−, 3, and 27 (see Fig. 22):

ðiÞ qt− ≤ q�; ð83Þ

ðiiÞ q� < qt− ≤ 3 and qs− ≥ qtþ; ð84Þ

ðiiiÞ qt− > 3 and qs− ≥ qtþ; ð85Þ

ðivÞ qt− ≤ 3 and qs− < qtþ; ð86Þ

ðvÞ qs− < qtþ ≤ 3 < qt−; ð87Þ

ðviÞ qtþ > 3 and qt− ≤ 27; ð88Þ

FIG. 21. (Class VII) Typical shape of the escapable region for
r� ≥ 3 and θ2 ≤ θ� < θ3. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, black, blue, red, and brown dashed lines
denote q ¼ q�ðr�Þ, q̄ðθ�Þ, qtþðr�; θ�Þ, qt−ðr�; θ�Þ, and qs−ðθ�Þ,
respectively.

FIG. 22. (Class VIII) Relationship between the critical
q’s and q�.

TABLE XI. (Class VIII) Escapable region (b, q) for r� ≥ 3 and
θ3 ≤ θ� < π=2.

Case q b (σr ¼ þ) b (σr ¼ −)

(i)–(viii) qmin ≤ q < q̄ −B ≤ b ≤ B Not applicable

(i)–(iii) q̄ ≤ q < qtþ −B ≤ b ≤ B 2 < b ≤ B
(iv) and (v) q̄ ≤ q < qs−
(vi)–(viii) q̄ ≤ q < qs−

(i)–(iii) qtþ ≤ q < qs− −B ≤ b ≤ b�1 2 < b < b�1

(iv) and (v) qs− ≤ q < qtþ −B ≤ b ≤ B −B ≤ b < bs2
(vi)–(viii) qs− ≤ q < 3 and 2 < b ≤ B

(i) qs− ≤ q < 3 bs2 < b ≤ b�1 2 < b < b�1
3 ≤ q < q� bs2 < b ≤ b�1 bs1 < b < b�1

(ii) qs− ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < bs2
(iii) qs− ≤ q < 3 and 2 < b < b�1
(iv) qtþ ≤ q < qt−
(v) qtþ ≤ q < 3

(ii) and (iv) qt− ≤ q < 3 b�2 ≤ b ≤ b�1 b�2 < b < bs2
and 2 < b < b�1

(vi) and (vii) 3 ≤ q < qtþ −B ≤ b ≤ B −B ≤ b < bs2
(viii) 3 ≤ q < 27 and bs1 < b ≤ B

(iii) and (v) 3 ≤ q < qt− −B ≤ b ≤ b�1 −B ≤ b < bs2
(vi) qtþ ≤ q < qt− and bs1 < b < b�1
(vii) qtþ ≤ q < 27

(i) q� ≤ q < 27 b�2 ≤ b ≤ b�1 b�2 < b < bs2
(ii) and (iv) 3 ≤ q < 27 and bs1 < b < b�1
(iii), (v), (vi) qt− ≤ q < 27

(viii) 27 ≤ q < qtþ −B ≤ b ≤ B −B ≤ b ≤ B

(vii) 27 ≤ q < qt− −B ≤ b ≤ b�1 −B < b < b�1
(viii) qtþ ≤ q < qt−

(i)–(vi) 27 ≤ q ≤ qmax b�2 ≤ b ≤ b�1 b�2 < b < b�1
(vii) and (viii) qt− ≤ q ≤ qmax
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ðviiÞ qtþ ≤ 27 < qt−; ð89Þ

ðviiiÞ qtþ > 27; ð90Þ

where q� contributes to specifying the escapable region
only for case (i), and qt− contributes to that for cases
(i)–(viii). The escapable regions in the above cases are
summarized in Table XI and Fig. 23.

VI. DISCUSSION

We have completely classified the necessary and suffi-
cient range of the impact parameters ðb; qÞ for photons
emitted from an arbitrary spacetime position of the
extremal Kerr black hole to escape to infinity, i.e., the
escapable regions. The radial equation of motion deter-
mines the necessary conditions for photons emitted from
r ¼ r� to escape to infinity, and the polar angle equation of
motion further restricts the allowed region of photon
motion. In the process of classifying photon escape, we
have defined four critical angles at which the classification
of the escapable region varies qualitatively and five critical
values of q at which the classification of the impact
parameter range varies qualitatively. We have divided the
entire spacetime into eight regions by three critical angles
and r ¼ 3, classes I–VIII. Furthermore, we have appropri-
ately selected the critical values of q contributing to
specifying the escapable region and have completely
classified the difference in the shape of the escapable
region, that is, the difference in the escapable parameter
range, according to the relative values of critical q’s. Our
main results are summarized in the tables of Sec. V.
This study has generalized our previous result [18],

which focused only on light sources near the horizon, to the
classification that covers light sources in the entire region.
We have considered the extremal Kerr black hole here, but
our classification method can be directly applied to non-
extremal Kerr black holes. Furthermore, since this method
also can be applied to timelike particles, it will be possible
to discuss the neutrino radiation [22], the escape of high-
energy particles in high-energy astrophysics, e.g., the
collisional Penrose process [23,24], and high-energy par-
ticle collision [25,26].
As we have mentioned in the Introduction, evaluating a

photon escape probability is essential to reveal the observ-
ability of phenomena around a black hole. In the calculation
of the escape probability, it is necessary to specify not only an
emitter’s position but also its proper motion. However, since
our complete set of the escapable regions is independent of the
proper motion, the set provides a basis for evaluating the
escape probability. Based on the classification in the present
paper, we will report the escape cone and probability for
various states of an emitter in a forthcoming paper [27].

FIG. 23. (Class VIII) Typical shape of the escapable region for
r� ≥ 3 and θ3 ≤ θ� < π=2. The blue, purple, brown, and green
curves denote b ¼ b�1ðr�; qÞ, bs1ðqÞ, bs2ðqÞ, and �Bðθ�; qÞ,
respectively. The gray, black, blue, red, and brown dashed lines
denote q ¼ q�ðr�Þ, q̄ðθ�Þ, qtþðr�; θ�Þ, qt−ðr�; θ�Þ, and qs−ðθ�Þ,
respectively.
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APPENDIX A: PHOTON ESCAPE
FOR θ� = 0 AND θ� = π=2

1. θ� = 0

We consider photon escape in the case θ� ¼ 0. When
θ� ¼ 0, the regularity of the function Θ [Eq. (11)] requires
b ¼ 0. Substituting it into Θ ≥ 0, we have q ≥ −1.
We focus on the negative range −1 ≤ q < 0. As shown

in Sec. III C, the non-negativity of the function R gives the
allowed parameter range of q. Combining the inequality
(33) with b ¼ 0 and −1 ≤ q < 0, we have

−1 ≤ q < 0 <
rðr3 þ rþ 2Þ

ðr − 1Þ2 : ðA1Þ

Since this inequality always holds outside the horizon, all
of the photons emitted outwardly with −1 ≤ q < 0 can
escape to infinity.
Next, we focus on the non-negative range of q. In this

case, qt� coincide with each other and also qs� coincide with
each other, and their values are given by

qt�ðr�; 0Þ ¼ qt0 ≡ r�ðr3� þ r� þ 2Þ
ðr� − 1Þ2 ; ðA2Þ

qs�ð0Þ ¼ qs0 ≡ 11þ 8
ffiffiffi
2

p
: ðA3Þ

Note that qt0 ≥ qs0 holds outside the horizon, and the
equal sign holds only when r� ¼ 1þ ffiffiffi

2
p

. There are two
cases depending on the radial position of the emitter:

ðiÞ r� ≤ 1þ
ffiffiffi
2

p
; ðA4Þ

ðiiÞ r� > 1þ
ffiffiffi
2

p
: ðA5Þ

The escapable regions in the above cases are summarized
in Table XII.

2. θ� = π=2

In the case of θ� ¼ π=2, the non-negativity of Θ reads
q ≥ 0. Therefore, the necessary parameter regions for
photon escape in Table I are identified with the escapable
region. The corresponding figures, i.e., the escapable
region for θ� ¼ π=2, are found in Fig. 3.

APPENDIX B: EQUATION FOR THE POLAR
ANGLE OF KERR GEODESICS

We focus on the function Θ, which appears in the
geodesic equation for the polar angle direction of the
Kerr spacetime. We consider the following equation:

Θ ¼ q − b2 cot2 θ þ a2 cos2 θ ¼ 0; ðB1Þ

where að> 0Þ, b, q are constants, and 0 ≤ θ ≤ π. For
θ ¼ 0; π, the constant b must vanish, and q ¼ −a2 must
hold. We assume 0 < θ < π in what follows. Equation (B1)
is rewritten as an equivalent equation in terms of sin θ,

a2 sin4 θ − ða2 þ b2 þ qÞ sin2 θ þ b2 ¼ 0: ðB2Þ

Solving Eq. (B2) for sin2 θ, we obtain

sin2θ ¼ 1

2a2

�
a2 þ b2 þ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 þ qÞ2 − 4a2b2

q �
:

ðB3Þ

In order for sin2 θ to be real, the parameters must satisfy the
inequality

qþ ðjbj − aÞ2 ≥ 0; ðB4Þ

which also guarantees sin2 θ positive. On the other hand,
the condition sin2 θ ≤ 1 is written as

a2 − b2 − q ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − b2 − qÞ2 þ 4a2q

q
≥ 0; ðB5Þ

where the double sign corresponds to that in Eq. (B3). For
the upper case, the parameters must satisfy q ≤ 0 and
jbj ≤ a. For the lower case, if a2 − b2 − q ≥ 0 together
with Eq. (B4), then the inequality (B5) holds; if
a2 − b2 − q < 0, then q ≥ 0 must hold.
Now we introduce new combinations of the parameters

ζ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ2 þ q

q
; ðB6Þ

which satisfy the following relations:

ζþζ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 þ qÞ2 − 4a2b2

q
; ðB7Þ

ζ2þ þ ζ2− ¼ 2ða2 þ b2 þ qÞ; ðB8Þ

TABLE XII. Escapable region (b, q) for θ� ¼ 0.

Case q b (σr ¼ þ) b (σr ¼ −)

(i) −1 ≤ q < qs0 b ¼ 0 Not applicable
q ≥ qs0 Not applicable Not applicable

(ii) −1 ≤ q ≤ qs0 b ¼ 0 Not applicable
qs0 < q < qt0 b ¼ 0 b ¼ 0

q ¼ qt0 b ¼ 0 Not applicable
q > qt0 Not applicable Not applicable
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ζ2þ − ζ2− ¼ 4ab: ðB9Þ

Using these, we can rewrite Eq. (B3) in terms of ζ� as

sin2 θ ¼ ðζþ � ζ−Þ2
4a2

: ðB10Þ

Because of the range of θ, we can take the positive branch

sin θ ¼ jζþ � ζ−j
2a

: ðB11Þ

Finally, we obtain

sin θ ¼

8>>><
>>>:

ζþþζ−
2a for jbj ≤ a;−ðjbj − aÞ2 ≤ q ≤ 0;

ζþ−ζ−
2a for ½0 ≤ b < a; q ≥ −ðb − aÞ2� or ½b ≥ a; q ≥ 0�;

ζ−−ζþ
2a for ½−a < b < 0; q ≥ −ðbþ aÞ2� or ½b ≤ −a; q > 0�:

ðB12Þ
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