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We revisit Wyman’s “other” scalar field solution of the Einstein equations and its Sultana generalization
to positive cosmological constant, which has a finite 3-space and corresponds to a special case of a stiff
fluid solution proposed by Buchdahl and Land and, later, by Ibañez and Sanz to model relativistic stars.
However, there is a hidden cosmological constant and the peculiar geometry prevents the use of this
spacetime to model relativistic stars.
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I. INTRODUCTION

An analytical solution of the Einstein field equations
of general relativity (GR) that is static and spherically
symmetric appears in two different contexts that are
apparently unrelated. In the first context, it is a non-
asymptotically flat solution of the Einstein equations with
a free scalar field as a source and with zero cosmological
constant Λ, and it was discovered by Wyman in 1981 [1].
This is sometimes called Wyman’s “other” solution to
distinguish it from the more well known solution found by
Fisher [2] and rediscovered many times, which in the
literature goes by the names Fisher-Bergmann-Leipnik-
Janis-Newman-Winicour-Buchdahl-Wyman [1,3–5] (see
also Ref. [6]) and is the general solution of the Λ ¼ 0
Einstein equations which is static, spherically symmetric,
asymptotically flat, and is sourced by a free scalar field
[2–5], see [7] for a recent review.
In the second context, Wyman’s “other” solution is a

special case of geometries proposed to describe the interior
of a relativistic star by Ibañez and Sanz [8] and corre-
sponding to the stiff equation of state. Sultana generalized
Wyman’s other solution by including a positive cosmo-
logical constant [9], obtaining a special case of another
class of perfect fluid solutions found by Ibañez and Sanz.
More precisely, Wyman’s other metric is a special case of a
perfect fluid geometry found in 1982 by Ibañez and Sanz
[8] and in 1968 by Buchdahl and Land [10], which is itself
a special case of the Tolman IV class of GR solutions
introduced in 1939 [11–13]. We summarize below the

rather convoluted history of the GR solution that is the
subject of this work and that we call Buchdahl-Land-
Sultana-Wyman-Ibañez-Sanz (in short, BLSWIS) solution.
The BLSWIS metric is contained as a special limit in the

Buchdahl and Land’s [10] 1968 stiff fluid solution of the
Einstein equations with vanishing cosmological constant
but pressure

P ¼ ρ − ρ0 ð1:1Þ

where ρ is the fluid energy density and ρ0 is a constant. This
equation of state was meant [10] to generalize the
Schwarzschild interior solution for an incompressible fluid
[14] but, apparently unbeknownst to these authors, in
practice it reintroduces Λ into the scenario. The general
Buchdahl-Land solution is itself a special case of the 1939
Tolman IV class of solutions [11] describing the interior of
a perfect fluid ball with Λ [12]. As most authors solving for
relativistic stellar interiors, Buchdahl and Land [10] did not
match the fluid solution to an exterior, the implicit
assumption in this literature being that the interior is
matched with a Schwarzschild exterior at the star boundary,
where the pressure vanishes [12,13].
Wyman’s other solution was found in 1981 [1] as a free

scalar field solution of the Λ ¼ 0 Einstein equations
extending to infinite radius and nonasymptotically flat1

(this work [1] by Wyman is better known because it
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1The Wyman geometry, but with a different scalar field, is a
special case of the spacetime reported as a solution of a scalar-
tensor gravity with power-law potential in Ref. [15] without
making the connection with [1,8,10]. However, the geometry and
scalar field proposed in [15] fail to satisfy the corresponding field
equations.
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rediscovered the different Fisher-Janis-Newman-Winicour-
Buchdahl-Wyman solution and gave it in its most general
form [7]). This is a very different context from stellarmodels.
In 2015, Sultana [9] generalized Wyman’s other scalar field
solution [1] to the case in which a cosmological constant
Λ > 0 appears in the Einstein equations. Sultana was well
aware of the fact that the geometry thus obtained is a special
case of the Ibañez and Sanz solution.2 We will refer to the
scalar field solution of [9] as the Sultana-Wyman solution
(this is the same as the BLSWIS one, but the name “Sultana-
Wyman” is a reminder of the fact that the spacetime is
sourced by Λ and by a homogeneous scalar field).
The BLSWIS geometry is contained, as a special case, in

the more general perfect fluid solution of the Einstein
equations with equation of state P ¼ wρ, w ¼ const, and
0 < w ≤ 1 found by Ibañez and Sanz in 1982 [8]. These
authors remark that this special case had been previously
found by Buchdahl and Land [10]3 but they were unaware
of Wyman’s (then recent) paper and they did not realize
that, in their special case w ¼ 1, they were introducing the
cosmological constant even though their field equations are
initially declared to have Λ ¼ 0 [8].
As is common in the history of analytical solutions of the

Einstein equations [13], the same spacetime has been
discovered and reinterpreted more than once and it is time
to introduce some order in the relevant literature spanning
many decades. This is the purpose of the present work,
where we revisit the BLSWIS spacetime and compare, as
much as possible, the two different points of view, i.e.,
perfect fluid without scalar field versus scalar field solution
with Λ > 0. In particular, the boundary conditions for the
Einstein equations need to be discussed and make stellar
models based on the BLSWIS geometry unappealing from
the physical point of view, or even impossible.
We follow the notation of Ref. [14]: the metric signature

is −þþþ and we use units in which Newton’s constant G
and the speed of light c are unity, but we occasionally
restoreG to compare with previous literature. Λ denotes the
cosmological constant and κ ≡ 8πG.

II. THE WYMAN AND SULTANA-WYMAN
SCALAR FIELD SOLUTIONS

OF THE EINSTEIN EQUATIONS

The Einstein equations sourced by a minimally coupled,
free and massless scalar field ϕ are

Rab −
1

2
gabRþ Λgab ¼ κ

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�
;

ð2:1Þ

□ϕ ¼ 0; ð2:2Þ

where Rab, R, and gab are the Ricci tensor, Ricci scalar,
and metric tensor, respectively, while ∇a is the covariant
derivative associated with gab and □≡ gab∇a∇b is the
curved space d’Alembertian.
The general static, spherically symmetric, and asymp-

totically flat solution of these equations for Λ ¼ 0 is the
well known Fisher solution [1–6] (see the recent review [7]
for a discussion of this and other spherical solutions).
Under the assumption that the matter field ϕ depends only
on the radial coordinate, the unique static, spherical, and
asymptotically flat solution was found by Fisher [2] and
later rediscovered, in other coordinates or in other forms, by
Bergmann and Leipnik [3], Janis, Newman and Winicour
[4], Buchdahl [5], and finally byWyman [1], who wrote the
most general form of this solution. Wyman proposed
another family of solutions for Λ ¼ 0 (generalized by
Varela [18] to the case Λ ≠ 0) corresponding to spherically
symmetric and static geometry and with scalar field
depending only on time, ϕ ¼ ϕðtÞ. In general, this class
of solutions is expressed by power series and is not useful
for practical calculations, but one of them (again, for
Λ ¼ 0) is particularly simple [1]:

ds2 ¼ −κr2dt2 þ 2dr2 þ r2dΩ2
ð2Þ; ð2:3Þ

ϕðtÞ ¼ ϕ0t; ð2:4Þ

where dΩ2
ð2Þ ¼ dϑ2 þ sin2 ϑdφ2 is the line element on the

unit 2-sphere and ϕ0 is a dimensionless constant. We refer
to this solution as Wyman’s other solution. It is a special
case (for w ¼ 1) of the “scaling solution” published a year
later by Ibañez and Sanz [8] for a perfect fluid with
equation of state4 P ¼ wρ

ds2 ¼ −r 4w
1þwdt2 þ w2 þ 6wþ 1

ðwþ 1Þ2 dr2 þ r2dΩ2
ð2Þ: ð2:5Þ

In spite of the fact that the energy density [8]

ρðrÞ ¼ w
2πðw2 þ 6wþ 1Þr2 ð2:6Þ

and the pressure PðrÞ ¼ wρðrÞ are singular at r ¼ 0, this
solution is usually regarded as possessing regions that are
realistic approximations to the bulk of a star on the verge of
collapsing [13,19–21].
Sultana [9] has generalized Wyman’s other solution to

include a positive cosmological constant Λ. The scalar field
remains linear in time as in Eq. (2.4) (see Appendix for a
discussion), while the line element becomes2Sultana’s generalization was later used to generate an

exact solution of Brans-Dicke theory [16] and of fðRÞ ¼ R2

gravity [17].
3Ibañez and Sanz [8] also do not match this interior solution to

an exterior one.

4Ibañez and Sanz use units in which κ ¼ 1. Therefore, their
Eqs. (15) for the energy density and pressure differ from our
Eqs. (2.11), (2.12) by a factor 8π in the denominator.
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ds2 ¼ −κr2dt2 þ 2dr2

1 − 2Λr2
3

þ r2dΩ2
ð2Þ ð2:7Þ

(we will refer to this, in conjunction with Eq. (2.4) for the
scalar, as the “Sultana-Wyman solution”). The limit Λ → 0
reproduces Wyman’s other solution (2.3) and (2.4). Again,
the Sultana-Wyman solution is a special case of a family
found by Ibañez and Sanz [8] with the Heintzmann method
[22], which generalizes the scaling solution (2.5):

ds2 ¼ −r 4w
1þwdt2 þ a

1 − Car2þb dr
2 þ r2dΩ2

ð2Þ; ð2:8Þ

where

a ¼ w2 þ 6wþ 1

ðwþ 1Þ2 ; ð2:9Þ

b ¼ 4wð1 − wÞ
ðwþ 1Þð3wþ 1Þ ; ð2:10Þ

and where C is an arbitrary constant. The corresponding
energy density and pressure are [8]

ρwðrÞ ¼
1

8π

�
4w

ð1þ wÞ2ar2 þ Cð3þ bÞrb
�
; ð2:11Þ

PwðrÞ ¼
1

8π

�
4w2

ð1þ wÞ2ar2 −
Cð1þ 5wÞ
ð1þ wÞ rb

�
; ð2:12Þ

which are singular at r ¼ 0 (Ibañez and Sanz consider the
range of equation of state parameters 0 < w ≤ 1 and find
no solutions for dust w ¼ 0, which would eliminate the
divergence in ρw and Pw [8]). For w ¼ 1, which corre-
sponds to the stiff equation of state of a free scalar field, it is
a ¼ 2, b ¼ 0 and the energy density and pressure become

ρ1ðrÞ ¼
1

8π

�
1

2r2
þ 3C

�
; ð2:13Þ

P1ðrÞ ¼
1

8π

�
1

2r2
− 3C

�
: ð2:14Þ

It is interesting that Ibañez and Sanz [8] do not relate
their constant C to the cosmological constant in the w ¼ 1,
b ¼ 0 case, although it is clear that the last term in the right-
hand side of Eq. (2.13) and of Eq. (2.14) can be regarded as
the contribution of a cosmological constant Λ ¼ 3C to the
total energy density and pressure, added to those of the free
scalar field. Moreover, for w ¼ 1 the line element (2.8)
generalizes the Wyman solution also to the case Λ < 0 (this
solution is implicit in Sultana’s paper [9]).
The physical nature of Wyman’s other solution was

studied in previous papers [8,10,17,21] and its Sultana

generalization was used in [17] to generate a new solution
of Brans-Dicke theory with a massive scalar by means
of a conformal transformation to the Jordan frame (the
same geometry is a solution of fðRÞ ¼ R2 gravity [17]).
Using the same method, Ref. [9] generated new solutions
of conformally coupled scalar field theory with a Higgs
potential.
Let us analyze the physical properties of the Sultana-

Wyman solution (2.7) and (2.4) for Λ > 0. The time and
radial coordinates vary in the range

−∞ < t < þ∞; 0 ≤ r <

ffiffiffiffiffiffi
3

2Λ

r
: ð2:15Þ

A. Geometry and radial geodesics

The Sultana-Wyman geometry described by the line
element (2.7) is static and spherically symmetric. By taking
the limit Λ → 0, one recovers Wyman’s other solution
(2.3), (2.4) extending to 0 ≤ r < þ∞.
In general, if (apparent) horizons are present in a

spherically symmetric geometry, they are located by the
roots of the equation

gab∇ar∇br ¼ grr ¼ 0; ð2:16Þ

where r is the areal radius (e.g., [23]), which is
always defined in the presence of spherical symmetry.
(Furthermore, a single root denotes a black hole or white
hole apparent horizon, while a double root denotes a
wormhole horizon throat [23].) In the Sultana-Wyman
case (2.7), this equation has the unique single root

r� ¼
ffiffiffiffiffiffi
3

2Λ

r
ð2:17Þ

which, however, does not correspond to a horizon. To
understand this situation note that, in spite of the fact that
the time direction ta ¼ ð∂=∂tÞa is a timelike Killing vector
of the geometry (2.7), its norm

tata ¼ −kr2 ð2:18Þ

does not change sign anywhere and, unlike what happens
for the Schwarzschild metric or the de Sitter metric, there is
no Killing horizon here. The 3-dimensional space t ¼ const

is finite and is covered by the range 0 < r ≤
ffiffiffiffiffi
3
2Λ

q
of the

radial coordinate. The scalar field and the cosmological
constant satisfy the weak and null energy conditions and
generic strong rigidity arguments lead one to exclude event
horizons [24–28] given the absence of Killing horizons.
To confirm this property, consider the congruences of

outgoing (þ) and ingoing (−) radial null geodesics
with tangents lcð�Þ and components lμð�Þ ¼ ðl0; l1; 0; 0Þ.
The normalization lð�Þ

a lað�Þ ¼ 0 yields
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l1ð�Þ ¼ �
ffiffiffi
κ

2

r
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Λr2

3

r
l0ð�Þ ð2:19Þ

and, since a null vector can be rescaled by a function, we
can choose l0 ¼ 1 obtaining

lμð�Þ ¼
 
1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

2

�
1 −

2Λr2

3

�s
r; 0; 0

!
: ð2:20Þ

The equation of radial null geodesics can be integrated
remembering that lμ ≡ dxμðλÞ=dλ, where λ is an affine
parameter along the null geodesics. Then we have

dt
dλ

¼ 1; ð2:21Þ

1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Λr2=3

p dr
dλ

¼ �
ffiffiffi
κ

2

r
; ð2:22Þ

and then

tðλÞ ¼ λ − λ0; ð2:23Þ

−arctanh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2Λr2

3

r �
¼ �

ffiffiffi
κ

2

r
ðλ − λ0Þ: ð2:24Þ

Simple manipulations of Eq. (2.24) yield

rðλÞ ¼
ffiffiffiffiffiffi
3

2Λ

r
1

cosh ½ ffiffi
κ
2

p ðλ − λ0Þ�
; ð2:25Þ

see Fig. 1, which shows that radial null geodesics can never

reach radii larger than
ffiffiffiffiffi
3
2Λ

q
since cosh x ≥ 1. A photon at

r ¼ 0 is an infinite value of the affine parameter λ away

from the turning point r ¼
ffiffiffiffiffi
3
2Λ

q
. It takes an arbitrarily long

time t ∼ λ for a photon arbitrarily close to r ¼ 0 to arrive to

the turning point r ¼
ffiffiffiffiffi
3
2Λ

q
. Similarly, a photon traveling

radially and starting at r ¼
ffiffiffiffiffi
3
2Λ

q
at λ ¼ λ0 (or at any finite

radius) takes an infinite λ-time to reach the origin (Fig. 1).
This dynamics can be understood by rewriting the l1

component of the four-tangent to radial null geodesics as

dr
dλ

¼ �
ffiffiffi
κ

2

r
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Λr2

3

r
; ð2:26Þ

squaring, and dividing by 2, which yields

1

2

�
dr
dλ

�
2

þ VðrÞ ¼ 0; VðrÞ ¼ κr2

2

�
2Λr2

3
− 1

�
;

ð2:27Þ

a formal energy conservation equation for a fictitious
particle of unit mass and zero total energy in the effective

potential VðrÞ. The latter intersects the r-axis at r ¼ 0,
ffiffiffiffiffi
3
2Λ

q
and has a negative minimum Vmin ¼ − 3κ

32Λ at r ¼
ffiffiffiffiffi
3
4Λ

q
(Fig. 2). (VðrÞ is an even function, but we are only
interested in the region r ≥ 0.)
Since the energy of the fictitious particle representing the

radial photon is always zero, the motion is confined

between r ¼ 0 and the turning point
ffiffiffiffiffi
3
2Λ

q
. If the radial

photon starts near r ¼ 0, it must do so with nearly zero
kinetic energy and it takes an infinite amount of λ-time to

reach the turning point r ¼
ffiffiffiffiffi
3
2Λ

q
at the end of 3-space. The

point r ¼ 0 is an unstable equilibrium point and a particle
located there has zero energy and remains there. Once the

radial photon is at the boundary r ¼
ffiffiffiffiffi
3
2Λ

q
of the finite

space, it circles it toward the origin r ¼ 0, but it takes an
infinite λ-time to reach it as this photon slows down
approaching it. The radial photon completes a single cycle

of “oscillation” between r ¼ 0 and r ¼
ffiffiffiffiffi
3
2Λ

q
in an infinite

time, in a manner analogous to an overdamped oscillator.
It might appear that there is a stable circular photon orbit

at r ¼
ffiffiffiffiffi
3
4Λ

q
, where the potential is minimum, but photons

cannot stay there because the total energy must be zero and,

FIG. 1. The radial coordinate rðλÞ of a radial photon (vertical
axis) versus the affine parameter λ (equivalently, the time t, on the
horizontal axis) for the parameter values κ ¼ 1, λ0 ¼ 1. The
region λ < λ0 to the left of the peak describes outgoing photons
with dr=dλ > 0, while λ > λ0 describes radial ingoing photons.
A photon starting near λ ¼ −∞ and r ≃ 0 takes a very long time

to reach the turning point [represented by the peak rmax ¼
ffiffiffiffiffi
3
2Λ

q
of

rðλÞ]. From there, the radial photon returns toward the origin
r ¼ 0 circling the finite 3-space, while approaching r ¼ 0 in an
infinite λ-time.
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since Vmin < 0, the positive kinetic energy ðdr=dλÞ2=2 ¼
−Vmin moves it away from this radius.
We can calculate the expansions of the congruences of

outgoing and ingoing radial null geodesics,

θð�Þ ¼ ∇clcð�Þ
¼ ∂μl

μ
ð�Þ þ Γμ

μαlαð�Þ
¼ ∂tl0ð�Þ þ ∂rl1ð�Þ þ Γμ

μ0l
0
ð�Þ þ Γμ

μ1l
1
ð�Þ; ð2:28Þ

where Γμ
αβ denote the Christoffel symbols. Using

Γμ
μ0 ¼ 0; Γμ

μ1 ¼
3 − 4Λr2=3

rð1 − 2Λr2=3Þ ; ð2:29Þ

one obtains

θð�Þ ¼ �2
ffiffiffiffiffi
2κ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Λr2

3

r
: ð2:30Þ

In the limit r →
ffiffiffiffiffi
3
2Λ

q
both expansions vanish. This anoma-

lous behavior does not characterize a horizon (at which one
of the expansions vanishes and the other does not), but

signals the fact that 3-space ends at r ¼
ffiffiffiffiffi
3
2Λ

q
(more on

this below).
Consider now outgoing/ingoing radial timelike geode-

sics with four-tangents

pμ
ð�Þ ¼ muμð�Þ ¼ m

dxμ

dτ

����
ð�Þ

¼ ðp0; p1
ð�Þ; 0; 0Þ; ð2:31Þ

where m is the mass of a test particle of four-velocity uað�Þ
and τ is the proper time along the timelike geodesic. The
timelike Killing vector ta guarantees conservation of
energy along each geodesic:

pð�Þ
a ta ¼ −E ¼ const: ð2:32Þ

yielding

u0 ¼ Ē
κr2

; ð2:33Þ

where Ē≡ E=m is the (constant) energy per unit mass.
Then the normalization uaua ¼ −1 gives

uμð�Þ ¼
�

Ē
κr2

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
Ē2

κr2
−1

��
1−

2Λr2

3

�s
;0;0

�
: ð2:34Þ

The particle is at rest if either r ¼ Ē=
ffiffiffi
κ

p
(in which case

u0 ¼ 1 and u1 ¼ 0), or if r ¼
ffiffiffiffiffi
3
2Λ

q
(in which case the

particle is as far from the origin as possible).
The coordinate radial velocities of outgoing/ingoing

massive test particles are

dr
dt

¼ dr
dτ

dτ
dt

¼
u1ð�Þ
u0

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĒ2− κr2Þ

2Ē

�
1−

2Λr2

3

�s
; ð2:35Þ

which vanish in the limit r →
ffiffiffiffiffi
3
2Λ

q
(while u0 ≠ 0, of

course): at this radius, particles do not move either outward
or inward, which would not happen at a horizon where only
motion in one direction is forbidden (outward for a black
hole horizon, inward for a cosmological or white hole
horizon).
It is useful to compare the Sultana-Wyman geometry

with the Einstein static universe, which has line element

ds2 ¼ −dt2 þ dr2

1 − Kr2
þ r2dΩ2

ð2Þ; ð2:36Þ

with constant curvature index K > 0 and finite 3-spaces of
constant time and radial coordinate spanning the finite
range 0 ≤ r ≤ 1=

ffiffiffiffi
K

p
. Naively, since this metric is spheri-

cally symmetric and r is the areal radius, a search for
horizons with the equation

FIG. 2. The potential VðrÞ (only the region r ≥ 0 is physical
and κ and Λ are set to unity for illustration). The motion is

confined between r ¼ 0 and the turning point
ffiffiffiffiffi
3
2Λ

q
because the

total energy is zero. A radial outgoing photon (dr=dλ > 0)
starting out arbitrarily close to r ¼ 0 in the far past takes an

arbitrarily long time (until λ0) to reach the turning point r ¼
ffiffiffiffiffi
3
2Λ

q
and then heads again for r ¼ 0, approaching in an infinite time
and circling the finite 3-space. dr=dλ vanishes as the photon

approaches r ¼ 0 or r ¼
ffiffiffiffiffi
3
2Λ

q
. The photon cannot sit in the

minimum of the potential Vmin < 0 because the total energy is
forced to be zero.

CURIOUS CASE OF THE … PHYS. REV. D 105, 024030 (2022)

024030-5



∇cr∇cr ¼ grr ¼ 1 − Kr2 ¼ 0 ð2:37Þ

would yield the unique positive single root r ¼ 1=
ffiffiffiffi
K

p
, but

we know better. This is not a horizon, the norm of the
timelike Killing vector ð∂=∂tÞa is always −1 and does not
change sign anywhere, and we expect the expansions θð�Þ
of radial null geodesics to exhibit pathological behavior at
r ¼ 1=

ffiffiffiffi
K

p
. This is indeed the case. Let these geodesics

have tangents lað�Þ, then the normalization lað�Þl
ð�Þ
a ¼ 0

yields l1ð�Þ ¼ �l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
and, choosing again l0 ¼ 1,

one has

lμð�Þ ¼ ð1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
; 0; 0Þ: ð2:38Þ

The geodesic equations

dt
dλ

¼ 1;
dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
; ð2:39Þ

are easily integrated to tðλÞ ¼ λ − λ0 (where λ0 is an
integration constant) and

arcsin ð ffiffiffiffi
K

p
rÞffiffiffiffi

K
p ¼ �ðλ − λ0Þ: ð2:40Þ

The last equation gives

rðλÞ ¼ � 1ffiffiffiffi
K

p sin ½
ffiffiffiffi
K

p
ðλ − λ0Þ�; ð2:41Þ

where the sign of the right-hand side is chosen so that rðλÞ
remains non-negative. The periodicity shows that a radial
photon keeps circling the finite 3-space along the same
spatial curve on the 3-sphere. We can rewrite the equation
l1ð�Þ ¼ dr=dλ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
as

1

2

�
dr
dλ

�
2

þWðrÞ ¼ 0; WðrÞ ¼ 1

2
ðKr2 − 1Þ: ð2:42Þ

The potential WðrÞ is that of a simple harmonic oscillator
with the origin of the energy shifted (Fig. 3), which
intersects the r-axis at r ¼ 1=

ffiffiffiffi
K

p
, a turning point where

the kinetic energy vanishes.
Since the total effective energy is zero, the motion is

confined between r ¼ 0 and the turning point r ¼ 1=
ffiffiffiffi
K

p
.

Radial photons in this finite spacetime “oscillate” between

r ¼ 0 and r ¼
ffiffiffiffiffi
3
2Λ

q
, which physically means that they keep

going around the spherical 3-space, as described by the
periodic solution (2.41). There are no stable or unstable
circular orbits, except for the degenerate one at r ¼ 0.
The expansions of the radial null geodesic congruences

are

θð�Þ ¼ ∇alað�Þ ¼ ∂μl
μ
ð�Þ þ Γμ

μαlαð�Þ

¼ �∂r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
þ Γμ

μ0 þ Γμ
μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
: ð2:43Þ

Using

Γμ
μ0 ¼ 0; Γμ

μ1 ¼
2

r
− Krð1 − Kr2Þ; ð2:44Þ

one obtains

θð�Þ ¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Kr2

p

×

�
−Krþð1−Kr2Þ

�
2

r
−Krð1−Kr2Þ

�	
; ð2:45Þ

which correctly reduce to �2=r in the degenerate
Minkowski case K ¼ 0. In the limit r → 1=

ffiffiffiffi
K

p
, we have

θð�Þ → ∓∞, signaling the fact that there is no horizon at
this radius, but the 3-space is finite instead.
One can consider also radial timelike geodesics para-

metrized by the proper time τ. The timelike Killing vector
ta ¼ ð∂=∂tÞa with unit norm gives energy conservation
along each such geodesic: pctc ¼ −E ¼ const yields

u0 ¼ Ē≡ E
m

ð2:46Þ

and the normalization ucuc ¼ −1 then gives

uμð�Þ ¼
�
Ē;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĒ2 − 1Þð1 − Kr2Þ

q
; 0; 0

�
: ð2:47Þ

FIG. 3. The harmonic oscillator potentialWðrÞ (only the region
r ≥ 0 is physical and K ¼ 1 for illustration). A radial photon
oscillates between r ¼ 0 and r ¼ 1=

ffiffiffiffi
K

p
, going around the finite

hyperspherical 3-space again and again, each “oscillation” taking
a finite λ-time.
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Radial motion stops either if Ē ¼ 1 (in which case u0 ¼ 1)
or if r ¼ 1=

ffiffiffiffi
K

p
, where the particle is as far away from the

origin as possible in the Einstein static universe. It is easy to
integrate the timelike geodesic equation, obtaining

tðτÞ ¼ Ēτ þ t0; ð2:48Þ

rðτÞ ¼ � 1ffiffiffiffi
K

p sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðĒ2 − 1Þ

q
ðτ − τ0Þ

�
; ð2:49Þ

(where t0 and τ0 are integration constants) or, eliminating
the parameter τ,

rðtÞ ¼ � 1ffiffiffiffi
K

p sin

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

�
1 −

1

Ē2

�s
ðt − t0Þ

#
: ð2:50Þ

The radial position of the particle cannot exceed the
maximum value 1=

ffiffiffiffi
K

p
.

To conclude, the 3-space of the Sultana-Wyman geom-
etry is finite. Denoting with gð3Þ the determinant of the

restriction gð3Þab of the spacetime metric gab to this subspace,
its volume is given by

V ¼
Z

d3x⃗
ffiffiffiffiffiffiffi
gð3Þ

q
¼
Z ffiffiffi

2
p

r2 sin ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Λr2=3

p drdϑdφ

¼ 4π
ffiffiffi
2

p Z ffiffiffi
3
2Λ

p

0

dr
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Λr2=3
p

¼ 4π
ffiffiffi
2

p

8

�
3
ffiffiffi
6

p

Λ3=2 arcsin

� ffiffiffiffiffiffi
2Λ
3

r
r

�
− 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Λr2

3

r � ffiffiffi
3
2Λ

p

0

¼ 3
ffiffiffi
3

p
π2

2Λ3=2 ≃ 25.64Λ−3=2: ð2:51Þ

B. Central singularity

By computing the Ricci scalar from the Sultana-Wyman
line element (2.7) one obtains R ¼ 4Λ − 1=r2, while
contracting the field equations (2.1) and using Eq. (2.4)
yields

R ¼ 4Λþ κgab∇aϕ∇bϕ ¼ 4Λ −
ϕ2
0

r2
; ð2:52Þ

which fixes the dimensionless integration constant to
ϕ0 ¼ �1. The Ricci scalar diverges as r → 0þ in both
cases Λ ¼ 0 (Wyman’s other solution) and Λ > 0 (Sultana-
Wyman solution). The total (i.e., including scalar field
and cosmological constant) energy density and pressure
obtained from Eqs. (2.9)–(2.12) for w ¼ 1,

ρðrÞ ¼ 1

8π

�
1

2r2
þ Λ

�
; ð2:53Þ

PðrÞ ¼ 1

8π

�
1

2r2
− Λ

�
; ð2:54Þ

are also singular but the spatially homogeneous scalar field
is regular everywhere. The Sultana-Wyman solution is
interpreted as a scalar field naked central singularity
embedded in a “background” due to the cosmological
constant.5

The equation of a sphere of constant radius r0 is fðrÞ ¼
r − r0 ¼ 0 and the normal to this surface has direction

Nμ ¼ ∇μf ¼ δμ1; ð2:55Þ

its norm

NcNc ¼ gμνδμ1δν1 ¼ grr ¼ 1

2

�
1 −

2Λr2

3

�
ð2:56Þ

is positive for any r < r� ¼
ffiffiffiffiffi
3
2Λ

q
. Taking the limit r → 0þ

in this equation, one obtains NcNcjr¼0 ¼ 1=2, hence Nc is
spacelike and the central singularity at r ¼ 0 is timelike.
In the Λ → 0 limit to Wyman’s other solution, 3-spaces

of constant time are infinite, the coordinate r extends to
infinity, and the geometry describes a naked singularity
embedded in a spacetime which is not asymptotically flat
because the corresponding Ricci tensor

Rab ¼ κ∇aϕ∇bϕ ¼ κϕ2
0δa0δb0 ð2:57Þ

does not vanish as r → þ∞ and the energy density ρ ∼
1=r2 diverges when integrated between a finite radius and
infinity (see below).

C. Quasilocal mass

In spherical symmetry, the Misner-Sharp-Hernandez
mass MMSH contained in a ball of radius r is defined by
[29,30]

1 −
2GMMSH

r
≡∇cr∇cr; ð2:58Þ

where r is the areal radius. The Hawking-Hayward
quasilocal mass [31,32] reduces to the Misner-Sharp-
Hernandez mass in spherical symmetry and is the
Noether charge associated with the conservation of the

5The quotation marks are mandatory because, due to the
nonlinearity of the Einstein equations, a metric cannot be split
into a “background” plus a “deviation” from it in a covariant way,
except for (generalized) Kerr-Schild metrics.
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Kodama current [33]. For the Sultana-Wyman solution with
Λ > 0, the Misner-Sharp-Hernandez mass is [17]

MMSHðrÞ ¼
r
4G

�
1þ 2Λr2

3

�
: ð2:59Þ

By comparison, the Misner-Sharp-Hernandez mass of a
ball in de Sitter space is MdSðrÞ ¼ Λr3

6G , so the scalar field ϕ
in the Sultana-Wyman geometry contributes an amount
r=ð4GÞ added to the mass of de Sitter space. More
precisely, the mass in Eq. (2.59) splits as

MMSHðrÞ ¼
4πr3

3

Λ
κ
þ 4πr3

3

1

2κr2
¼ 4πr3

3
ðρðϕÞ þ ρΛÞ;

ð2:60Þ

where we used Eq. (2.13).
For Λ ¼ 0 (in which case 0 ≤ r < þ∞), the mass

MMSHðrÞ of the Wyman solution diverges linearly as the
areal radius r → þ∞, showing again that this geometry is
not asymptotically flat (in which case MMSH would be
finite [34]).
For Λ > 0, the total Misner-Sharp-Hernandez mass

contained in the finite Sultana-Wyman slices of constant
time is

MMSH

�
r ¼

ffiffiffiffiffiffi
3

2Λ

r �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3

8ΛG2

r
: ð2:61Þ

III. THE SULTANA-WYMAN GEOMETRY
AS A FINITE FLUID BALL: BUCHDAHL-LAND

AND IBAÑEZ-SANZ

It is well known that a minimally coupled scalar field is
equivalent to a perfect fluid and that a free scalar corre-
sponds to a stiff fluid with equation of state P ¼ ρ.
Therefore, the Sultana-Wyman solution can be interpreted
as describing a spacetime filled with a stiff fluid and a
cosmological constant. Indeed, it corresponds to a special
case of a previous stiff fluid solution. This fact was
apparently unknown to Wyman in the case Λ ¼ 0, but
Sultana identifies his generalization of Wyman’s solution to
Λ > 0 with a solution generated by Ibañez and Sanz [8]
using the Heintzmann technique [22]. Ibañez and Sanz
correctly identify it with the previous Buchdahl-Land
solution [10] which is, in turn, a special case of the
Tolman IV class of solutions of the Einstein equations
with Λ [11]. The Buchdahl-Land solution was recently
used by Jowsey and Visser [21] as an example in an
unrelated context, the question of the existence of a
maximum force in general relativity.
The Tolman IV solution of the Einstein equations with Λ

and a perfect fluid is [11]

ds2 ¼ −
�
1þ r2

A2

�
dt2 þ 1þ 2r2=A2

ð1 − r2

R2Þð1þ r2

A2Þ
dr2 þ r2dΩ2

ð2Þ;

ð3:1Þ

where A and R are constants. By using the dimensionless
time τ≡ t=A, this line element is rewritten as

ds2 ¼ −ðA2 þ r2Þdτ2 þ A2 þ 2r2

ð1 − r2=R2ÞðA2 þ r2Þ dr
2

þ r2dΩ2
ð2Þ: ð3:2Þ

Taking the limit in which the parameter A → 0 yields

ds2 ¼ −r2dτ2 þ 2

1 − r2=R2
dr2 þ r2dΩ2

ð2Þ: ð3:3Þ

Redefining the time coordinate as τ≡ ffiffiffi
κ

p
t̄ and identifying

2Λ=3≡ 1=r2H with 1=R2, one obtains the Buchdahl-Land
line element [10]

ds2 ¼ −κr2dt̄2 þ 2

1 − 2Λr2=3
dr2 þ r2dΩ2

ð2Þ; ð3:4Þ

which coincides with the Sultana-Wyman solution (2.7).
In this notation, the latter has its boundary at radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2ΛÞp ¼ R.
The scalar field is redefined according to

ϕ ¼ ϕ0t ¼ ϕ0Aτ ¼ ϕ0

ffiffiffi
κ

p
t̄≡ ϕ̄0 t̄: ð3:5Þ

Let us relate the “standard” view in the literature (the
Buchdahl-Land/Ibañez-Sanz [8,10] geometry as a stiff fluid
GR solution) and the Sultana-Wyman view of the same
geometry as a scalar field solution with Λ > 0. Starting
from the latter, the expression of the scalar field stress-
energy tensor [14]

TðϕÞ
ab ¼ ∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ − Vgab ð3:6Þ

gives the well-known energy density and pressure

ρðϕÞ ¼ −
1

2
∇cϕ∇cϕþ VðϕÞ; ð3:7Þ

PðϕÞ ¼ −
1

2
∇cϕ∇cϕ − VðϕÞ; ð3:8Þ

which make it clear that a free scalar field corresponds to a
stiff fluid with equation of state PðϕÞ ¼ ρðϕÞ.
If one regards the Sultana-Wyman solution as a free

scalar field solution of the Einstein equations with cosmo-
logical constant Λ > 0, then using ϕ ¼ ϕ̄0 t̄, one has
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ρðϕÞ ¼ PðϕÞ ¼
ϕ̄2
0

2κr2
; ð3:9Þ

but the total effective energy density and pressure are
obtained by viewing the Λ-term as an effective fluid with

stress-energy tensor TðΛÞ
ab ¼ − Λ

κ gab in the right-hand side of
the Einstein equations,

ρtot ¼
ϕ̄2
0

2κr2
þ Λ

κ
¼ 1

16π

�
ϕ̄2
0

r2
þ 3

R2

�
; ð3:10Þ

Ptot ¼
ϕ̄2
0

2κr2
−
Λ
κ
¼ 1

16π

�
ϕ̄2
0

r2
−

3

R2

�
; ð3:11Þ

where we used the fact that Λ ¼ 3
2R2. Alternatively, one can

regard the Sultana-Wyman spacetime as a solution of the
Einstein equations without cosmological constant but with
a scalar field in the constant potential VðϕÞ ¼ Λ=κ, with the
same result. If we set ϕ̄0 ¼ 1, Eqs. (3.10) and (3.11) match
Eqs. (3.60) of Jowsey and Visser [21], who do not
contemplate scalar fields and view the Buchdahl-Land
solution as a stiff fluid ball.
The energy density and pressure are singular as r → 0þ

and the pressure PðϕÞ vanishes at the radius

jϕ̄0jRffiffiffi
3

p ¼ jϕ̄0jrHffiffiffi
3

p ð3:12Þ

the radius that is usually taken as the boundary of the star in
the literature (this corresponds to Rs ≡ R=

ffiffiffi
3

p
in [21]).

Keeping ϕ̄0 general, we encounter two possible
situations:

(i) If jϕ̄0j <
ffiffiffi
3

p
, the boundary r� of the star is below the

Sultana-Wyman maximum radius, r� < rH;
(ii) If jϕ̄0j ¼

ffiffiffi
3

p
the fluid configuration fills the entire

Sultana-Wyman 3-space, i.e., it is not a star.
These scenarios are discussed in the following.

A. Star boundary below
ffiffiffiffiffi
3
2Λ

q
Assuming that the star extends from the origin r ¼ 0

(where, however, there is spacetime singularity—see the
discussion below) to a boundary r0, one has to match
the interior Sultana-Wyman scalar field solution with an
exterior in order to build a stellar model. In spherical
stellar models, the standard practice consists of matching an
interior fluid solution with a Schwarzschild exterior (e.g.,
[7,12]). However, having established that the BLSWIS
geometry solves the Einstein equations with Λ > 0, the
interior must be matched with a Schwarzschild-de Sitter/
Kottler exterior, which is the unique solution in this
case, according to a straightforward generalization of the
Birkhoff theorem [35,36].

There are two possibilities: either one regards the interior
as a stiff fluid solution of the Einstein equations (with
Λ > 0), or as a free scalar field solution of the Einstein
equations (with Λ > 0). In the first case, since the pressure

goes to zero at the star boundary r0 <
ffiffiffiffiffi
3
2Λ

q
, one would be

tempted to match with a Schwarzschild exterior, as done for
all fluid models of stars6 (e.g., [12]), but Schwarzschild is
not a solution of the Einstein equations in a Λ > 0 vacuum.
Therefore, the interior should be matched smoothly with a
Schwarzschild-de Sitter exterior, but this is impossible
because the interior pressure Ptot given by Eq. (3.11) is
always larger than the exterior pressure PΛ ¼ −Λ=κ < 0.
One could allow for a discontinuity of matter on the star
boundary, but this implies the presence of a layer of
material on that surface, which is not a physical model
of a star.
Let us consider the second possibility. Since the scalar

field ϕðtÞ does not depend on the spatial coordinates, it
cannot be set to zero at the star boundary, or to a constant
(with respect to time) in the star exterior, therefore the
exterior solution must also be a scalar field solution of
the Einstein equations with Λ ≠ 0. The fluid ball is not
surrounded by vacuum and its exterior geometry cannot be
Schwarzschild-de Sitter/Kottler [35,36]. The homogeneous
scalar field is linear in time, a feature that persists in the
exterior by continuity. Therefore, the interior Sultana-
Wyman solution does not match to the Fisher geometry
[2] either, for which ϕ ¼ ϕðrÞ.
This situation is rather curious: in the two cases above,

the field equations are different, and it happens that a
certain geometry solves both.7 In the present problem with
the stiff fluid solution of the Λ > 0 Einstein equations, one
wants to cut the solution at the specific value r� of radius
where P vanishes and join it smoothly with an exterior
solution. However, in the other interpretation in which the
geometry is a scalar field solution of the Einstein equations
with cosmological constant Λ > 0, the field equations are
different and one should not expect a priori that joining
smoothly the same interior geometry with an exterior one is
possible, or physically meaningful, or that it gives the same
result. The interior solution solves two different sets of field
equations, but continuing it smoothly to an exterior is an
issue. The two different points of view contemplating
different sources with a (hidden) Λ behave differently with
respect to the continuation to an exterior. In one case, a
discontinuous matching with a Schwarschild-de Sitter

6Buchdahl and Land [10], Ibañez and Sanz [8], and Jowsey
and Visser [21] do not discuss this matching nor refer to it, but it
is implicit in the large literature on stellar models that a stellar
interior must be matched with an exterior Schwarschild [13].

7This situation is quite common: for example, any physically
reasonable theory of gravity admits the Friedmann-Lemaître-
Robertson-Walker solution. In these situations, although the field
equations are very different [37,38], the same geometry solves
both.
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exterior is the only possibility, which entails a layer of
material at the star surface. In the other situation, one must
match the same interior geometry with an exterior that
has homogeneous scalar field and Λ > 0 and is not
Schwarzschild-de Sitter, or else one must impose the
additional unphysical requirement that the scalar field is
discontinuous. None of these two situations is interesting
to build a physical model of a relativistic star (with or
without Λ).
In any case, because of the central singularity, there is

another potentially very serious issue in interpreting the
BLSWIS solution as describing a fluid ball. In the
literature, various authors seem to content themselves with
assuming that only regions with r > 0 of this Buchdahl-
Land solution describe realistic star geometries (see the
comments by Buchdahl and Land [10], Ibañez and Sanz [8]
and Jowsey and Visser [21] to this regard). In their
monumental review of exact GR solutions, Stephani,
Kramer, MacCallum, Hoenselaers and Herlt also suggest
using solutions with a central singularity to model the outer
layers of composite spheres [13], and using regions with
different equations of state is common in the modeling of
Newtonian stars, when their interiors are not well mixed.
However, selecting certain limited spacetime regions as
realistic solutions ultimately involves further matching with
other nonsingular solutions extending down to r ¼ 0. To
the best of our knowledge, this possibility is not actively
explored in the literature.

B. Star boundary at r=
ffiffiffiffiffi
3
2Λ

q
This potential possibility corresponds to a very strange

situation. The pressure becomes negative in the region
jϕ̄0jRffiffi

3
p < r < r� (while ρðϕÞ remains positive), which is

unphysical for a stellar interior. An exterior must neces-
sarily have the same value of the cosmological con-
stant Λ > 0 and the same scalar field ϕ ¼ ϕ0t—that is,
the solution is again Sultana-Wyman, but we know that its
3-spaces of constant time have finite extension, therefore
one cannot consider an “exterior”. Attempts to describe a

stellar configuration with boundary at r ¼
ffiffiffiffiffi
3
2Λ

q
seem

doomed.

IV. CONCLUSIONS

The history of the BLSWIS solution of the Einstein
equations is a bit convoluted: it is derived either as a
solution with a free homogeneous scalar field ϕðtÞ and
cosmological constant Λ > 0 [9], or as special limits of
interior solutions for a relativistic star with a perfect fluid
and, superficially, Λ ¼ 0 [8,10,11]. However, when it is
obtained through these special limits, there is a positive
cosmological constant hidden in this solution that was not
evident in the more general fluid solutions. The crucial
difference between a real fluid and a cosmological constant,

even when the latter is treated as an effective fluid, is that
the former can be confined to a limited region of spacetime
and vanish outside of it, but the latter permeates all of
spacetime.
While the spacetime geometry is the same in the

Sultana-Wyman and the perfect (stiff) fluid solutions, the
boundary conditions at the surface of the would-be star
differ in the two contexts. Matching smoothly the BLSWIS
“interior” to an “exterior” in order to build a stellar model
(necessarily, for Λ > 0 and with a homogeneous scalar
field) does not make much sense physically, as discussed
above. In particular, the constant time slices of the BLSWIS
geometry are finite. In the Oppenheimer-Snyder model of
gravitational collapse [39,40], a finite Friedmann-Lemaître-
Robertson-Walker universe with positively curved spatial
sections and filled with dust is matched smoothly with a
Schwarschild exterior, and this case bears some resem-
blance to the BLSWIS case. However, in order to match to
the Schwarzschild exterior, the fluid in the interior must
necessarily have zero pressure. In the BLSWIS case, an
exterior must necessarily have the same value of the
cosmological constant Λ > 0 and the same scalar field
ϕ ¼ ϕ0t—that is, the solution is again Sultana-Wyman, but
we know that its 3-spaces of constant time have finite
extension, therefore one cannot consider an “exterior”.
When examining the other boundary at the star’s center

r ¼ 0, the central singularity of the BLSWIS geometry
does not bode well for using the Wyman geometry or its
Sultana generalization to describe the interior of stars.
Ibañez and Sanz [8] and also Jowsey and Visser [21] join
the existing literature [13] in regarding this geometry as
capable of describing certain regions of relativistic stars.
While this may be the case, extra caution must be exerted
when applying this GR solution to realistic situations.
Overall, the BLSWIS solution of the Einstein equations
does not lend itself to model physically meaningful
relativistic stars and joins the graveyard of exact solutions
of the Einstein equations originally meant to model fluid
balls which fail to do so for one reason or another [12]. The
lesson learned from the BLSWIS case is that, in order to
build realistic models of relativistic stars (or of regions of
them), it is not sufficient to solve analytically the Einstein
equations with a perfect fluid source, but attention must be
paid to the exterior and to the star boundary, since a
cosmological constant or a inhomogeneous matter source
cannot be eliminated when passing from the interior to the
exterior.
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APPENDIX: KLEIN-GORDON EQUATION FOR
THE SULTANA-WYMAN SPACETIME

It is straightforward to show that ϕ ¼ ϕ0t solves the
Klein-Gordon equation (2.2), which reads

□ϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0 ðA1Þ

for both the Wyman solution (for which Λ ¼ 0) and for its
Sultana generalization with Λ > 0.

Using
ffiffiffiffiffiffi−gp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

1−2Λr2=3

q
r3 sinϑ and ∂μϕ ¼ ϕ0δμ0, this

equation reduces to

∂t

�
ϕ0ffiffiffi
κ

p
ffiffiffi
2

p
r sin ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2κr2=3
p �

¼ 0; ðA2Þ

which is trivially satisfied since the argument of the round
bracket depends only on r.

When the cosmological constant Λ > 0 is included by
Sultana in the picture, it is equivalent to regard the total
matter content of spacetime as (1) a free scalar field ϕ with
Λ in the Einstein equations, or (2) as a scalar field with the
constant potential V ¼ Λ=κ and no cosmological constant
in the Einstein equations. In the first case, the Klein-
Gordon equation does not change in form. By making the
second choice, the Klein-Gordon equation for ϕ would be
modified by the potential VðϕÞ according to

□ϕ −
dV
dϕ

¼ 0; ðA3Þ

but since dV=dϕ≡ 0 for V ¼ Λ=κ, the form of this
equation is unchanged (however, the cosmological constant
Λ or, alternatively, the potential V changes the field
equations (2.1) for the metric and, accordingly, the solution
changes from the Wyman to the Sultana-Wyman one).
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