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We consider a class of stationary and axisymmetric wormhole spacetimes that is closely related to, but
not identical with, the class of Teo wormholes. We fix a point p (observation event) and a timelike curve γ
(worldline of a light source), and we characterize the set of all past-oriented lightlike geodesics from p to γ.
As any such geodesic corresponds to an image of the light source on the observer’s sky, this allows us to
investigate the lensing properties of the wormhole. As a main result, we prove with the help of Morse theory
that, under very mild conditions on γ, the observer always sees infinitely many images of γ. Moreover, we
study some qualitative features of the lightlike geodesics with the help of two potentials that determine the
sum of centrifugal and Coriolis forces of observers in circular motion for the case that the observers’
velocity approaches the velocity of light. We exemplify the general results with two specific wormhole
spacetimes.
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I. INTRODUCTION

Wormholes are spacetime models where two asymptoti-
cally flat ends are connected by a throat. Historically, the
first wormhole that was found was the so-called Einstein-
Rosen bridge [1] that occurs in the maximal analytical
extension of the Schwarzschild metric. However, the
Einstein-Rosen bridge is nontraversable; i.e., an observer
cannot travel at subluminal velocity from one side of the
throat to the other. A class of traversable wormholes, which
permit the two-way travel of objects such as human beings
through the throat, was introduced and discussed by Morris
and Thorne [2]. The Morris-Thorne wormhole metrics are
spherically symmetric and static, and they require the
existence of exotic matter in the following sense: Morris
and Thorne have shown that, if such a wormhole metric is
inserted into the left-hand side of Einstein’s field equation,
the energy-momentum tensor on the right-hand side nec-
essarily violates the weak energy condition near the throat;
i.e., the energy density becomes negative for some observ-
ers. Teo [3] extended the class of Morris-Thorne worm-
holes to a class of stationary and axisymmetric, i.e.,
rotating, wormholes. Unsurprisingly, also these more gen-
eral wormhole metrics need some exotic matter if they are
considered as solutions to Einstein’s field equation; more
precisely, they violate the null energy condition, as was
demonstrated in the Teo paper. However, readers who are
not willing to accept such exotic matter may view at least
some traversable wormhole metrics as solutions to alter-
native gravity theories without violating any of the energy

conditions; see, e.g., Bronnikov and Kim [4] or Kanti et al.
[5]. Moreover, we mention the possibility of constructing
dynamical wormholes that satisfy the energy conditions on
the basis of Einstein’s field equation; see Maeda et al. [6].
Although until now there is no observational evidence

for the existence of wormholes in nature, and although
time-independent traversable wormholes are allowed by
Einstein’s field equation only in the presence of exotic
matter, these spacetime models have found considerable
theoretical interest. If traversable wormholes do exist in
nature, one could use them for traveling from one asymp-
totic end to the other or, if the two asymptotic ends are
“glued together,” for traveling from one point in the
asymptotic region to another one by taking a shortcut
through the throat.
One way in which wormholes could be detected by

observation is via their influence on light rays, i.e., via their
lensing properties. In this paper, we want to prove some
generic lensing features of wormholes. To that end, we
consider a class of stationary and axisymmetric metrics that
is closely related to, but not identical with, the Teo class of
wormhole metrics. We will use Morse theory for demon-
strating that, under very general conditions, in such a
spacetime, there are infinitely many past-oriented lightlike
geodesics from an event p to a timelike curve γ, i.e., that an
observer at p sees infinitely many images of a light source
with worldline γ. Moreover, we will show that this property
is related to centrifugal-plus-Coriolis force reversal in these
spacetimes. Here, it should be emphasized that the geodesic
equation in the considered class of wormhole spacetimes is
not in general completely integrable, i.e., that we cannot
determine the light rays by analytically calculating them.
Even in the special cases where the geodesic equation is
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completely integrable, it would be quite awkward to
analytically determine the lightlike geodesics from an
observation event p to a worldline γ that is in wild motion.
Morse theory provides us with a method of determining the
number of such lightlike geodesics without actually solving
the geodesic equation. Quite generally, Morse theory
relates the number of critical points (i.e., minima, maxima
or saddles) of a function to the topology of the manifold on
which this function is defined; see, e.g., Milnor [7]. This
can be applied, in particular, to variational problems where
the function is the variational action, the manifold is the
space of trial maps and the critical points are the solutions
to the variational problem. In our case, the trial maps are the
lightlike curves joining a point p and a timelike curve γ in
the spacetime M, and the solutions are the lightlike geo-
desics. There are many versions of how Morse theory can
be used for determining geodesics. In this paper, we want to
use a theorem by Uhlenbeck [8], which characterizes the
lightlike geodesics in a globally hyperbolic spacetime with
the help of Morse theory. The same approach has been
applied already by Hasse and Perlick [9] to the spacetime
of a Kerr-Newman black hole, and we will show here
that, with a few modifications, the same methodology also
applies to wormhole spacetimes. Uhlenbeck’s theorem may
be viewed as a general-relativistic version of Fermat’s
principle. For background material on Fermat’s principle in
general relativity, we refer to Perlick [10,11].
The paper is organized as follows. In Sec. II, we briefly

summarize the Morse-theoretical result by Uhlenbeck [8]
that we want to apply later. In Sec. III, we introduce the
class of rotating traversable wormhole spacetimes that will
be considered in the rest of the paper. Section IV is
concentrated on the notions of centrifugal and Coriolis
forces in the rotating traversable wormhole spacetime; in
particular, we introduce the potentialΨþ (respectively,Ψ−),
which determines the sum of centrifugal and Coriolis force
with respect to corotating (respectively, counterrotating)
observers whose velocity approaches the velocity of light.
In Sec. V, we discuss multiple imaging in the rotating
traversable wormhole spacetime with the help of Morse
theory and the potentials Ψ�. We exemplify the general
results with two specific wormhole spacetimes in Secs. VI
and VII. In the last section, we give concluding remarks
about our results.
Throughout this paper, we use Greek letters μ; ν… ¼

0;…; 3 for spacetime indices, and we use Latin letters
i; j; k… ¼ 1;…; 3 for spatial components. The metric
signature is ð−þþþÞ. We set the vacuum speed of light,
c, equal to unity.

II. A RESULT FROM MORSE THEORY IN
GLOBALLY HYPERBOLIC SPACETIMES

In this section, we summarize a result fromMorse theory
by Uhlenbeck [8] that will then be applied to investigating
the multiple imaging properties of a rotating traversable

wormhole. By multiple imaging, we mean the question of
how many past-pointing lightlike geodesics from an event
p (observation event) to a timelike curve γ (worldline of a
light source) in a four-dimensional Lorentzian manifold
ðM; gÞ exist.
Uhlenbeck’s result presupposes a globally hyperbolic

spacetime. Proving a long-standing conjecture, Bernal and
Sánchez [12] have shown that a spacetime is globally
hyperbolic if and only if it is diffeomorphic to a product
manifold,

M ¼ R × Σ; ð1Þ

where Σ is a three-dimensional manifold, and each ftg × Σ
is a Cauchy hypersurface. With respect to this product
structure, the metric orthogonally splits into a spatial and a
temporal part,

g ¼ −fðx; tÞdt2 þHijðx; tÞdxidxj; ð2Þ

where t is the time coordinate given by projecting from
M ¼ R × Σ onto the first factor, and x ¼ ðx1; x2; x3Þ are
coordinates on Σ.
For the following, we have to assume that we have a

globally hyperbolic spacetime with an orthogonal splitting
that satisfies the so-called metric growth condition, which
was introduced by Uhlenbeck [8]. By definition, this
condition is fulfilled if and only if for every compact
subset of Σ, there is a function F that satisfies

Z
0

−∞

dt
FðtÞ ¼ ∞; ð3Þ

such that for t ≤ 0, the inequality

Hijðx; tÞvivj ≤ fðx; tÞFðtÞ2GijðxÞvivj ð4Þ

holds for all x in the compact subset, and for all
ðv1; v2; v3Þ ∈ R3, with a time-independent Riemannian
metric Gij on Σ.
Note that we have given here Uhlenbeck’s metric growth

condition in a time-reversed way; the reason is that
Uhlenbeck wanted to determine future-oriented lightlike
geodesics from a point p to a timelike curve γ, whereas for
applications to lensing, we are interested in past-oriented
lightlike geodesics from p to γ. In this time-reversed
version, the metric growth condition prohibits the existence
of particle horizons; i.e., it guarantees that from each point
p inM, one can find a past-pointing lightlike curve to every
timelike curve that is vertical with respect to the orthogonal
splitting chosen.
For the following, we also need the notions of conjugate

points and of Betti numbers.
Recall that a point q is said to be conjugate to a point p

along a geodesic λ if there exists a nonzero Jacobi field
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(i.e., a nontrivial geodesic variation) along λ, which
vanishes at p and q. Such Jacobi fields form a vector
space, and the dimension of this vector space is called the
multiplicity of the conjugate point. For lightlike geodesics,
multiples of the tangent field have to be factored out of the
space of Jacobi fields. The (Morse) index of a given
geodesic that starts at p is the number of points q conjugate
to p, counting multiplicities. The set of all points that are
conjugate to a given point p, along any (past-pointing)
lightlike geodesic, is called the (past) caustic of p.
Given a topological manifold M, the κth Betti number

Bκ ofM is the dimension of the κth homology space ofM
with coefficients in R. Descriptively, B0 counts the con-
nected components of M, and Bκ, for κ > 0, counts those
holes inM that prevent a κ-dimensional sphere from being
a boundary. In the case we are interested in, M will be the
loop space LðMÞ of the spacetime manifold M, i.e., the set
of all continuous maps from the circle S1 to M that go
through a fixed point p inM. We assume, of course, that the
spacetime manifold M is connected; then LðMÞ is inde-
pendent of which point p we have chosen.
We are now ready for stating Uhlenbeck’s theorem.
Theorem 1.—Let ðM; gÞ be a globally hyperbolic space-

time that admits an orthogonal splitting (1) and (2), which
satisfies the metric growth condition. Fix a point p ∈ M
and a smooth timelike curve γ∶R → M that takes the form
γðτÞ ¼ ðβðτÞ; τÞ with respect to the chosen splitting.
Assume that γ does not meet the caustic of the past light
cone of p and that for some sequence ðτiÞi∈N with
τi → −∞, the sequence ðβðτiÞÞi∈N converges in Σ. Then
the Morse inequalities,

Nκ ≥ Bκ for all κ ∈ N0; ð5Þ

and the Morse relation,

X∞
κ¼0

ð−1ÞκNκ ¼
X∞
κ¼0

ð−1ÞκBκ; ð6Þ

hold, where Nκ denotes the number of past-pointing
lightlike geodesics with index κ from p to γ, and Bκ

denotes the κth Betti number of the loop space of M.
Proof.—See Uhlenbeck [8], Sec. IV and

Proposition 5.2. ▪
We should point out that the convergence condition on

ðβðτiÞÞi∈N is certainly satisfied if β is confined to a compact
subset of Σ, i.e., if γ stays in a spatially compact set.
The rotating traversable wormhole spacetime that we

will consider below has topology S2 × R2 where S2 is the
two-sphere. As this space is simply connected but not
contractible to a point, a theorem by Serre [13] implies that
for all but finitely many κ ∈ N0, we have Bκ > 0. With this
condition, (5) says that Nκ > 0 for all but finitely many κ;
i.e., for almost every positive integer κ, we can find a past-
pointing lightlike geodesic from p to γ with κ conjugate

points in its interior. Hence, there must be infinitely many
past-pointing lightlike geodesics from p to γ.

III. ROTATING TRAVERSABLE WORMHOLES

According to Teo [3], a stationary and axisymmetric
metric suitable for describing a rotating traversable worm-
hole is given by

g ¼ −Ñðr;ϑÞ2dt2 þ
�
1 −

bðr; ϑÞ
r

�
−1
dr2

þ R̃ðr; ϑÞ2½dϑ2 þ sin2ϑðdφ − ωðr;ϑÞdtÞ2�: ð7Þ

Here, the time coordinate t runs over all of R, the radial
coordinate r is restricted by the condition bðr; ϑÞ < r < ∞
and ϑ and φ have their usual range as spherical coordinates.
On this domain, the metric functions Ñ, R̃ and b
are assumed to be strictly positive, and the condition
of asymptotic flatness is assumed to hold, Ñðr; ϑÞ → 1,
R̃ðr; ϑÞ=r → 1, bðr;ϑÞ=r → 0 and rωðr; ϑÞ → 0 for
r → ∞. The metric functions have the following meaning.
Ñ is the so-called lapse function that relates the time
coordinate t to proper time along the t lines. R̃ determines
the proper circumference, 2πR̃ðr; ϑÞ sinϑ, of the circle
located at the coordinate values ðr; ϑÞ, with φ ranging
from 0 to 2π:ω determines the twist of the t lines, i.e., the
rotation of the wormhole, and b determines the location of
the throat. For the latter to be well-defined and regular, one
has to require that ∂ϑb → 0 and b − r∂rb → 0 for b=r → 1.
The first condition makes sure that the equation bðr; ϑÞ ¼ r
determines a unique radius value, r0, that is independent of
ϑ; if this condition is violated, the Ricci scalar of the metric
diverges to infinity at the throat; see Teo [3]; i.e., it is not
possible to analytically extend the metric beyond the throat.
The second condition is known as the “flare-out condition”;
it makes sure that, if the first condition is satisfied, the area
of the sphere at r ¼ constant approaches a local minimum
for r → r0. If both conditions are satisfied, we may join two
copies of the metric, each with the coordinate r running
from r0 to ∞, at the throat, thereby getting a wormhole
spacetime with two asymptotically flat ends. If the metric
functions Ñ, R̃, and b are independent of ϑ and if ω ¼ 0,
one gets the spherically symmetric and static class of
wormholes discussed by Morris and Thorne [2].
Teo’s representation (7) of rotating wormholes is con-

venient for considerations restricted to the region between
one asymptotic end and the throat. Here, however, we want
to use methods for which the global topology of the
manifold is relevant. For such considerations, it is desirable
to introduce a radial coordinate that covers the entire
spacetime. As pointed out already by Teo [3], this is
possible if b ¼ bðrÞ is independent of ϑ. Then we may
define a new radial coordinate, l, by
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dl
dr

¼ �
�
1 −

bðrÞ
r

�
−1=2

: ð8Þ

The metric (7) then becomes

g ¼ −Ñðl;ϑÞ2dt2 þ dl2

þ R̃ðl; ϑÞ2½dϑ2 þ sin2ϑðdφ − ωðl;ϑÞdtÞ2�: ð9Þ

Here, Ñ, R̃ and ω are the same quantities as before, but now
with r replaced by the new coordinate l and analytically
extended to the range l ∈� −∞;þ∞½. In this way, the
entire wormhole spacetime, from one asymptotic end at
l ¼ −∞ to the other one at l ¼ þ∞, is covered by a single
coordinate system (which features the usual coordinate
singularities of the angular coordinates). As we read from
the metric, l gives proper length along each radial line.
Note that it is possible to generalize the component

gll ¼ 1 in the metric (9) to gll ¼ hðl; ϑÞ2. If hðl; ϑÞ is
strictly positive on the entire spacetime and approaches 1
for l → �∞, this modification does not violate the
regularity or the asymptotic flatness. The metric (9) then
becomes

g ¼ −Ñðl; ϑÞ2dt2 þ hðl; ϑÞ2dl2

þ R̃ðl; ϑÞ2½dϑ2 þ sin2ϑðdφ − ωðl; ϑÞdtÞ2�: ð10Þ

This metric describes a class of spacetimes that contains all
Teo wormholes with b ¼ bðrÞ. On the other hand, it also
includes metrics which are not of the Teo type: If we
require, as the only conditions on the metric coefficients in
(10), that Ñ, R̃ and h are strictly positive and that the
condition of asymptotic flatness is satisfied for both l →
−∞ and l → þ∞, we get a class of mathematical models
that describe wormholes in the sense that we have a
spacetime without singularities or horizons that connects
two asymptotically flat ends. For each ϑ, we can determine
the circumference of the circle at ðl; ϑÞ as a function of l.
As this circumference goes to infinity for l → −∞ and for
l → þ∞, this function must have at least one local
minimum. However, in contrast to the Teo wormholes,
the location of this minimum may depend on ϑ, and there
may be several local minima (“throats”) with local maxima
(“bellies”) in between. In general, there is no symmetry
with respect to reflections l ↦ −l and also not with
respect to reflections ϑ ↦ π − ϑ. It is the class of worm-
holes given by (10) to which we want to apply Morse
theory in this paper.
As the lightlike geodesics and the conformal structure of

a spacetime remain unchanged if we perform a conformal
transformation with the conformal factor hðl; ϑÞ2, we may
switch from the metric (10) to the conformally equivalent
metric,

g ¼ −
Ñðl; ϑÞ2
hðl; ϑÞ2 dt

2 þ dl2

þ R̃ðl; ϑÞ2
hðl; ϑÞ2 ½dϑ

2 þ sin2ϑðdφ − ωðl; ϑÞdtÞ2�: ð11Þ

If we define

N ≔
Ñ
h
; R ≔

R̃
h
; ð12Þ

we get the metric

g ¼ −Nðl; ϑÞ2dt2 þ dl2

þ Rðl; ϑÞ2½dϑ2 þ sin2ϑðdφ − ωðl; ϑÞdtÞ2�; ð13Þ

which is the same as (9). Note that with (12), the regularity
and the asymptotic flatness of the metric (10) guarantees
the regularity and the asymptotic flatness of the metric (13).
Therefore, for the rest of this paper, we consider a
spacetime ðM; gÞ, where g is the metric (13), with the
requirement that N and R are strictly positive and that for
l → �∞,

N¼1þOð1=jljÞ; R¼jljð1þOð1=jljÞ; ω¼Oð1=jlj2Þ:
ð14Þ

Notice that in spacetimes with the metric (11) or (13), the
Hamilton-Jacobi equation for lightlike geodesics is not in
general separable. There are of course special cases where a
generalized Carter constant exists, which allows one to
separate the Hamilton-Jacobi equation. This is true, in
particular, if in the metric (13) the functionsN, R, and ω are
independent of ϑ. However, for the purpose of this paper, it
is not necessary to restrict to such cases. It is one of the
major advantages of the methods to be applied in this paper
that they do not require the existence of a generalized
Carter constant.
Finally, we mention that, in general, there exists an

ergoregion in our wormhole spacetimes, i.e., a region
where gtt ¼ R2ω2 − N2 > 0. However, because of the
asymptotic flatness, the ergoregion cannot extend to
infinity; i.e., it is restricted to a spatially compact domain
jlj < lmax. The ergoregion, if it exists, will be of no
particular relevance for the following discussion.

A. Global Hyperbolicity and Metric Growth Condition
of the Wormhole Metric

For applying Uhlenbeck’s theorem to our wormhole
spacetimes, we first have to demonstrate that the latter are
globally hyperbolic and satisfy the metric growth condi-
tion. To that end, we use some known results on stationary
spacetimes, i.e., on spacetimes ðM; gÞ, where M is a
product manifold, M ¼ R × Σ, of the real line R and a
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three-dimensional manifold Σ, and the metric is of the
form,

g ¼ −NðxÞ2dt2 þ gijðxÞðdxi þ βiðxÞdtÞðdxj þ βjðxÞdtÞ;
ð15Þ

where x ¼ ðx1; x2; x3Þ are coordinates on Σ. Clearly, our
wormhole spacetimes are of this form, where Σ ¼ R × S2

with ðx1; x2; x3Þ ¼ ðl; ϑ;φÞ. From (13), we read the “lapse
function” NðxÞ ¼ Nðl; ϑÞ, the “shift vector” βiðxÞ∂i ¼
−ωðl; ϑÞ∂φ and the spatial metric gijðxÞdxidxj ¼
dl2 þ Rðl; ϑÞ2ðdϑ2 þ sin2 ϑdφ2Þ.
The asymptotic properties (14) of the wormhole metric

are crucial for proving the following.
Proposition 1.—The wormhole spacetime ðM; gÞ is

globally hyperbolic.
Proof.—We establish three properties. (i) There are

positive constants N1 and N2 such that the lapse function
Nðl; ϑÞ satisfies 0 < N1 < Nðl; ϑÞ < N2 on the entire
spacetime. This follows immediately from the facts that
the lapse function is everywhere strictly positive and that,
by (14), it goes to 1 for l → �∞. (ii) The spatial part of the
wormhole spacetime, ðΣ; gijðxÞdxidxjÞ, is a complete
Riemannian manifold. To prove this, we observe that the
coordinate function l can be viewed as a function
l∶Σ ¼ R × S2 → R, defined just by projecting onto the
first factor. Obviously, this function is proper; i.e., for every
compact subset I ⊂ R the preimage l−1ðIÞ is compact.
Moreover, the gradient of this function has constant norm 1
with respect to the metric gijðxÞdxidxj. We have thus
proven that the Riemannian manifold ðΣ; gijðxÞdxidxjÞ
admits a proper function with bounded norm.
According to a general result by Gordon [14], this implies
that this Riemannian manifold is complete. (iii) There is a
positive constant B that bounds the norm of the shift
vector βiðxÞ∂i ¼ −ωðl; ϑÞ∂φ; i.e., gijðxÞβiðxÞβjðxÞ ¼
Rðl; ϑÞ2 sin2 ϑωðl; ϑÞ2 ≤ B2. This follows from the facts
that, by (14), the function Rðl; ϑÞ2 sin2 ϑωðl;ϑÞ2 goes to
zero for l → �∞ and that this function has no singular-
ities. Having established the three properties (i), (ii) and
(iii), we can now refer to a result by Choquet-Bruhat and
Cotsakis [15] who have shown that these three properties
imply that the spacetime metric is globally hyperbolic.
Note that Choquet-Bruhat and Cotsakis allow the spatial
metric to be time dependent. Then one also has to establish
that it is bounded below by a time-independent metric. As
our spatial metric is time independent, this condition is
trivially satisfied. ▪
Proposition 2.—The wormhole spacetime admits an

orthogonal splitting that satisfies the metric growth
condition.

Proof.—In the metric (13), the t lines are not orthogonal
to the surfaces t ¼ constant. Therefore, we change to new
spatial coordinates,

x1 ¼ l; x2 ¼ ϑ; x3 ¼ φ − ωðl; ϑÞt: ð16Þ

Then the metric (13) of the rotating traversable wormhole
takes the orthogonal splitting form (2), with

Hijðx; tÞdxidxj ¼ dl2 þ Rðl; ϑÞ2dϑ2

þ Rðl; ϑÞ2 sin ϑ2
�
t

�∂ωðl;ϑÞ
∂l dl

þ ∂ωðl; ϑÞ
∂ϑ dϑ

�
þ dx3

�
2

; ð17Þ

and

fðx; tÞ ¼ Nðl; ϑÞ2: ð18Þ

If we restrict the range of the coordinates x ¼ ðx1; x2; x3Þ to
a compact set in Σ ¼ R × S2, we read from (17) and (18)
that there are positive constants A and B, such that

Hijðx; tÞvivj
fðx; tÞ ≤ ðAþ BjtjÞ2δijvivj; ð19Þ

for all ðv1; v2; v3Þ ∈ R3. This demonstrates that the metric
growth condition (4) holds, with FðtÞ ¼ Aþ Bjtj and
Gij ¼ δij. ▪

IV. INERTIAL FORCES IN THE
WORMHOLE SPACETIME

We derive now the inertial forces for observers on
circular orbits around the axis of rotational symmetry in
the wormhole spacetime ðM; gÞ with the metric (13). This
will allow us to define two potentials Ψ� that give us
important information on lightlike geodesics. For our
discussion, it will be helpful to introduce the following
orthonormal basis on the spacetime ðM; gÞ:

E0 ¼
1

N
ð∂t þ ω∂φÞ; E1 ¼ ∂l;

E2 ¼
1

R
∂ϑ; E3 ¼

1

R sin ϑ
∂ϕ; ð20Þ

whose dual basis is given by the covector fields,

−gðE0; :Þ ¼ Ndt; gðE1; :Þ ¼ dl; gðE2; :Þ ¼ Rdϑ;

gðE3; :Þ ¼ R sin ϑðdφ − ωdtÞ: ð21Þ

For later calculations, we list all nonvanishing Lie brackets
of the Eμ,
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½E0; E1� ¼
∂lN
N

E0 −
R∂lω sinϑ

N
E3; ð22Þ

½E0; E2� ¼
∂ϑN
RN

E0 −
∂ϑω sin ϑ

N
E3; ð23Þ

½E1; E2� ¼ −
∂lR
R

E2; ð24Þ

½E1; E3� ¼ −
∂lR
R

E3; ð25Þ

½E2; E3� ¼ −
sin ϑ∂ϑRþ cosϑR

R2 sinϑ
E3: ð26Þ

The four-velocities of observers who circle along the
φ-lines are given by

U ¼ γðE0 � vE3Þ with γ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; ð27Þ

where the number v ∈ ½0; 1� gives the velocity (in units of
the velocity of light) of these observers with respect to the
observers with four-velocity E0. Note that the integral
curves of U are parametrised by proper time; i.e.,
gðU;UÞ ¼ −1. For the upper sign in (27), the motion
relative to the stationary observers is in the positive φ-
direction, and for the negative sign, it is in the negative φ-
direction. Clearly, U is nongeodesic, ∇UU ≠ 0; i.e., one
needs a thrust to stay on an integral curve of U.
With gð∇UU; EμÞ ¼ −gðU; ½U;Eμ�Þ, the tetrad compo-

nents of ∇UU are determined by the Lie brackets that we
have calculated above. Thereupon the acceleration of a
freely falling particle relative to the U-observer can be
decomposed into three parts,

−gð∇UU; :Þ ¼ Agrav þ Acor þ Acent; ð28Þ

according to the rule that the gravitational acceleration is
independent of v,

Agrav ¼ −
∂lN
N

dl −
∂ϑN
N

dϑ; ð29Þ

the Coriolis acceleration is odd with respect to v,

Acor¼� v
ð1−v2Þ

�
−
R∂lωsinϑ

N
dl−

R∂ϑωsinϑ
N

dϑ

�
; ð30Þ

and the centrifugal acceleration is even with respect to v,

Acent ¼
v2

ð1 − v2Þ
��

−
∂lN
N

þ ∂lR
R

�
dl

þ
�
−
∂ϑN
N

þ sinϑ∂ϑRþ R cos ϑ
R sin ϑ

�
dϑ

�
: ð31Þ

Multiplying the inertial acceleration with the rest mass of
the freely falling particle gives the corresponding iner-
tial force.
Quite generally, the gravitational, Coriolis and centrifu-

gal accelerations are unambiguously defined whenever a
timelike two-surface with a timelike vector field has been
specified; see Foertsch et al. [16]. Here, we apply this
procedure to each two-surface ðl;ϑÞ ¼ constant with the
timelike vector field E0.
We want to investigate the behavior of the inertial

accelerations if v approaches the velocity of light. If we
take the sum of Coriolis and centrifugal acceleration up to
the positive factor v=ð1 − v2Þ, we find

Z�ðvÞ ¼ �
�
−
R∂lω sin ϑ

N
dl −

R∂ϑω sin ϑ
N

dϑ

�

þ v

��
−
∂lN
N

þ ∂lR
R

�
dl

þ
�
−
∂ϑN
N

þ sin ϑ∂ϑRþ R cos ϑ
R sin ϑ

�
dϑ

�
: ð32Þ

To consider the behavior for v close to the velocity of light,
we take the limit v → 1,

lim
v→1

Z�¼
�
−
∂lN
N

þ∂lR
R

∓R∂lωsinϑ
N

�
dl

þ
�
−
∂ϑN
N

þ∂ϑR
R

þcosϑ
sinϑ

∓R∂ϑωsinϑ
N

�
dϑ: ð33Þ

This can be rewritten as

lim
v→1

Z� ¼ R sin ϑ
N

dΨ�; ð34Þ

where

dΨ�¼
�
−

∂lN
Rsinϑ

þ N∂lR
R2 sinϑ

∓∂lω

�
dl

þ
�
−

∂ϑN
Rsinϑ

þ N∂ϑR
R2 sinϑ

þN cosϑ
Rsin2ϑ

∓∂ϑω

�
dϑ ð35Þ

is the differential of the function,

Ψ� ¼ −
N

R sinϑ
∓ ω: ð36Þ

As in (36), there is a factor of sinϑ in the denominator, both
Ψþ and Ψ− are singular along the axis. Outside the
ergoregion, Ψþ is negative and Ψ− is positive, and inside
the ergoregion (if there is any), one of the two potentials
changes sign.
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From the asymptotic flatness, it follows that

Ψ� ¼ −
1

l sin ϑ
ð1þOð1=jljÞÞ for l → ∞; ð37Þ

Ψ� ¼ 1

l sinϑ
ð1þOð1=jljÞÞ for l → −∞; ð38Þ

and

∂lΨ� ¼ 1

l2 sin ϑ
ð1þOð1=jljÞÞ for l → ∞; ð39Þ

∂lΨ� ¼ −
1

l2 sin ϑ
ð1þOð1=jljÞÞ for l → −∞: ð40Þ

Equation (34) tells us that, in the limit v → 1, the sum of
Coriolis and centrifugal force is perpendicular to the
surfaces Ψ� ¼ constant and points in the direction of
increasing Ψ�. In this limit, we may thus view the function
Ψþ (or Ψ−, respectively) as a Coriolis-plus-centrifugal
potential for corotating (or counterrotating, respectively)
observers. The surfaces Ψ� ¼ constant are shown for
example spacetimes in Figures 1 and 3.
The potentials Ψ� are quite analogous to the potentials

that were introduced by Hasse and Perlick [9] for the Kerr-
Newman metric. We will see that these potentials are
relevant for lensing because they tell us where the radius
coordinate l has minima or maxima along a lightlike
geodesic.
With the help of the potentials Ψ�, we decompose the

wormhole spacetime in the following way:
Definition 1.—We define the regions Mout, Min, Kþ and

K− by the following properties:

∂lΨþ < 0 and ∂lΨ− < 0 on Min; ð41Þ

∂lΨþ < 0 and ∂lΨ− > 0 on K−; ð42Þ

∂lΨþ > 0 and ∂lΨ− < 0 on Kþ; ð43Þ

∂lΨþ > 0 and ∂lΨ− > 0 on Mout: ð44Þ

We also define the closed set K ¼ MnðMin ∪ MoutÞ.
The following proposition follows from this definition.
Proposition 3.—(a) Mout is the set of all events where

−
∂lN
N

þ ∂lR
R

>

����R sin ϑ
N

∂lω

����; ð45Þ

and Min is the set of all events where

−
∂lN
N

þ ∂lR
R

< −
����R sinϑ

N
∂lω

����: ð46Þ

(b) There are l1 and l2 such that the region −∞ < l < l1

is completely contained inMin and the region l2 < l < ∞
is completely contained in Mout.
Proof.—From (35), we read that

∂lΨ� ¼ N
R sin ϑ

�
−
∂lN
N

þ ∂lR
R

∓ R sin ϑ
N

∂lω

�
; ð47Þ

which implies part (a). Part (b) follows immediately from
(39) and (40). ▪
It can be read from the definitions that, for v sufficiently

close to 1, in Min, the direction of centrifugal-plus-Coriolis
force is always pointing in the direction of decreasing l, and
inMout, it is always pointing in the direction of increasing l.
This means that in these regions, the centrifugal-plus-
Coriolis force is always pointing away from the center,
for corotating and counterrotating observers, which is the
situation one is used to from Newtonian physics. By
contrast, in the interior of the regions K, the centrifugal-
plus-Coriolis force points in the reverse direction, either for
corotating or for counterrotating observers. Therefore, the
boundary of the region K determines the points where
centrifugal-plus-Coriolis force reversal takes place.
Moreover, the regions K, Min, and Mout are helpful

because they tell us where the radius coordinate l has
minima and maxima along a lightlike geodesic. We present
these properties in the following proposition.
Proposition 4.—(a) In the region Mout, the radius

coordinate l cannot have other extrema than strict local
minima along a lightlike geodesic. (b) In the regionMin, the
radius coordinate l cannot have other extrema than strict
local maxima along a lightlike geodesic. (c) Through each
point of K, there is a lightlike geodesic such that the first
and second derivatives of l with respect to the affine
parameter vanish at this point.
Proof.—Let X be a lightlike and geodesic vector field on

ðM; gÞ; i.e., gðX;XÞ ¼ 0 and∇XX ¼ 0. For proving (a) and
(b), we have to demonstrate that the implication,

Xl ¼ 0 ⇒ XXl > 0; ð48Þ

is true at all points of Mout, and that the implication,

Xl ¼ 0 ⇒ XXl < 0; ð49Þ

is true at all points of Min. The equation ∇XX ¼ 0 implies

XXl ¼ XdlðXÞ ¼ XðgðE1; :ÞÞ ¼ gð∇XE1; :Þ; ð50Þ

where

X ¼ E0 þ cos αE3 þ sin αE2; ð51Þ

and then
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XXl ¼ gð∇E0
E1; E0Þ þ sin αðgð∇E2

E1; E0Þ þ gð∇E0
E1; E2ÞÞ þ cos αðgð∇E3

E1; E0Þ
þ gð∇E0

E1; E3ÞÞ þ sin2αgð∇E2
E1; E2Þ þ cos2αgð∇E3

E1; E3Þ
¼ gð½E0; E1�; E0Þ þ sin αðgð½E2; E1�; E0Þ þ gð½E0; E1�; E2ÞÞ þ cos αðgð½E3; E1�; E0Þ
þ gð½E0; E1�; E3ÞÞ þ sin2αgð½E2; E1�; E2Þ þ cos2αgð½E3; E1�; E3Þ: ð52Þ

With the use of the Lie brackets, we find

XXl ¼ ∂lR
R

−
∂lN
N

− cos α

�
R∂lω sinϑ

N

�
: ð53Þ

If cos α runs through all possible values from −1 to 1, the
right-hand side of (53) stays positive on Mout and negative
on Min, by Proposition 3. This proves part (a) and part (b).
At every point of K, there is a value of cos α such that the
right-hand side of (53) vanishes. This proves part (c) of the
proposition. ▪
We have already emphasized that in our wormhole

spacetimes, the Hamilton-Jacobi equation for lightlike
geodesics is not in general separable. In the special case
that it is separable, i.e., in the case that a generalized Carter
constant exists, part (c) of Proposition 4 implies that
through each point of the region K, there is a spherical
lightlike geodesic, i.e., a lightlike geodesic that stays on a
sphere l ¼ constant. In this case, one would call K the
photon region. However, we do not restrict to this special
case in the following.

V. MULTIPLE IMAGING IN THE WORMHOLE
SPACETIME

In this part, we want to apply Morse theory to get some
information about the past-pointing lightlike geodesics
from a point p to a timelike curve γ in the wormhole
spacetime ðM; gÞ. We first prove a proposition that char-
acterizes a region to which all lightlike geodesics between
p and γ are confined.
Proposition 5.—Let p be an event and γ a past-

inextendible timelike curve on which jlj remains bounded
if the time coordinate t goes to −∞ along γ. Let Λ be the
smallest shell l1 ≤ l ≤ l2 that contains p, γ and the region
K defined in Definition 1. Then every past-oriented light-
like geodesic from p to γ is contained within Λ.
Proof.—By Proposition 3, along a lightlike geodesic that

leaves and reenters Λ, the radius coordinate l must have
either a maximum in the region Mout or a minimum in the
region Min. Proposition 4 makes sure that this cannot
happen. ▪
We now use Uhlenbeck’s theorem for determining the

number of lightlike geodesics between p and γ. As Morse
theory applies only to functions for which the Hessian is
nondegenerate at all critical points, we have to require that γ
does not meet the caustic of the past light cone of p, i.e.,

that there is no past-pointing lightlike geodesic from p
which meets γ in a point conjugate to p.
Proposition 6.—Consider, in the wormhole spacetime

ðM; gÞ, a point p and a smooth future-pointing timelike
curve γ∶� −∞; τa½→ M, with −∞ < τa ≤ ∞, which is
parametrized such that the t coordinate of the point γðτÞ
is equal to τ. Assume

(i) That γ does not meet the caustic of the past light
cone of p, and

(ii) That for τ → −∞, the radius coordinate l of the
point γðτÞ does not go to −∞ or þ∞.

Then there is an infinite sequence ðλnÞn∈N of mutually
different past-pointing lightlike geodesics from p to γ. For
n → ∞, the index of λn goes to infinity. Moreover, if we
denote the point where λn meets the curve γ by γðτnÞ, then
τn → −∞ for n → ∞.
Proof.—In Proposition 1, we have proven that the

wormhole spacetime ðM; gÞ is globally hyperbolic, and
in Proposition 2, we have shown that there is an orthogonal
splitting,M ¼ Σ ×R with Σ ≃ S2 × R, such that the metric
growth condition is satisfied. We now extend γ to a curve
that is defined for all time. More precisely, we choose a
timelike curve γ0∶R → M, which takes the form γ0ðτÞ ¼
ðβ0ðτÞ; τÞ with respect to the orthogonal splitting such that
γ0ðτÞ ¼ γðτÞ for −∞ < τ < τb with some τb ≤ τa. Our
assumptions on γ make sure that we can choose γ0 such that
it does not meet the caustic of the past light cone of p and
that fβ0ðτÞj −∞ < τ < τbg is confined to a compact subset
of Σ. The latter property implies that for every sequence
ðτiÞi∈N, the sequence ðβ0ðτiÞÞi∈N has a convergent sub-
sequence. As a consequence, Uhlenbeck’s theorem gives us
the Morse inequalities N0

k ≥ Bk, where N0
k is the number of

past-pointing lightlike geodesics from p to γ0 with index k,
and Bk is the kth Betti number of the loop space of M. As
M ≃ S2 × R2 is simply connected but not contractible to a
point, a theorem by Serre [13] implies that Bk > 0 for all
but finitely many k. We have thus proven that there is a
past-pointing lightlike geodesic from p to γ0 with index k
for all but finitely many k. In other words, there is an
infinite sequence of mutually different past-pointing light-
like geodesics ðλnÞn∈N from p to γ0 such that the index of λn
goes to infinity for n → ∞. Wewill now show that the τn, as
defined in the proposition, cannot be bounded below, i.e.,
that there is a subsequence such that τn → −∞. This will
also imply that τn < τb for almost all n, i.e., that almost all
λn arrive at γ. By contradiction, let us assume that there is a
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lower bound for the τn. As there is obviously an upper
bound for the τn, given by the time coordinate of the event
p, this would imply that the τn are confined to a compact
interval, so there would be a subsequence of the sequence
ðγ0ðτnÞÞ that converges to a point q on γ0. This would give
us a converging sequence of points that lie on the timelike
curve γ0 and also on the past light cone of p, which is an
immersed lightlike submanifold near q by assumption. This
is possible only if this is a constant sequence. This would
give us infinitely many mutually different lightlike geo-
desics λn from p to q. As there is a unique lightlike
direction tangent to the light cone at p, and as there are no
periodic lightlike geodesics in a globally hyperbolic space-
time, this is impossible. ▪
Proposition 6 makes sure that in the wormhole space-

time, an observer at p sees infinitely many images of a
light source with worldline γ, under very mild restrictions
on γ. Moreover, it implies that the past light cone of every
point p must have a nonempty and rather complicated
caustic because otherwise, it would not be possible to
find a sequence of past-pointing lightlike geodesics λn from
p that intersect this caustic arbitrarily often for n suffi-
ciently large.
The fact that τn → −∞means that the travel time of light

goes to infinity; therefore, the images become fainter and
fainter with increasing n. For such infinite sequences of
light rays in the Schwarzschild spacetime, Ohanian [17] has
shown that the intensity decreases exponentially. The
situation in wormhole spacetimes is quite similar.
Typically, the two images with the shortest travel time
are brighter than all the infinitely many other ones
combined. So, there is no significant accumulation of
photon energy at the observer. The situation is a bit
different if γ passes through the caustic of the past light
cone of p. (This situation had to be excluded for applica-
tions of Morse theory.) Then the gravitational field focuses
the light toward the observer, and the energy density of the
light at the observer may be quite high. In the ray optical
approximation, it is even infinite, whereas a wave-optical
treatment shows that it is always finite. This was quanti-
tatively worked out, again for the Schwarzschild spacetime,
in another paper by Ohanian [18].
In the next proposition, we show that all past-pointing

lightlike geodesics from p to γ come actually arbitrarily
close to K.
Proposition 7.—Let W be any open subset in M that

contains the region K. Then all but finitely many past-
pointing lightlike geodesics from p to γ intersect W.
Proof.—We choose the same orthogonal splitting as in

the proof of Proposition 6 and denote the projection onto
the time axis by t. Then the sequence ðλnÞn∈N of lightlike
geodesics from Proposition 6 gives us a sequence of
lightlike vectors ðwnÞn∈N with dtðwnÞ ¼ −1 at p and a
sequence of parameter values ðsnÞn∈N such that expðsnwnÞ
is on γ for all n ∈ N. The set of all lightlike vectors w at p

with dtðwÞ ¼ −1 form a two-sphere; by compactness, a
subsequence of ðwnÞn∈N converges toward a lightlike vector
w∞. Along the lightlike geodesic s ↦ expðsw∞Þ, the time
coordinate t must go to −∞ by Proposition 6, and the
modulus of the radius coordinate jlj must be bounded by
Proposition 5. This implies that along this geodesic, the
function l either has a minimum and a maximum or
converges toward a limit value l∞. In the first case, by
Proposition 4, the minimummust lie inMout or inK and the
maximum must lie in Min or in K. This implies that
the geodesic intersectsK and, thus,W because if neither the
minimum nor the maximum is in K then, by continuity,
the geodesic must intersect K between these two points. In
the second case, both the first and the second derivative of l
with respect to the parameter s must go to 0. As we know
from the proof of Proposition 4 that the implication (48)
holds on Min and the implication (49) holds on Mout, the
geodesic must come arbitrarily close to K; i.e., it must
intersect W. ▪
In the domain of outer communication of a Kerr-

Newman black hole, a statement analogous to Proposition 7
is true but it can actually be strengthened; see Hasse and
Perlick [9]. As the Hamilton-Jacobi equation is separable in
the Kerr-Newman case, there is a spherical lightlike
geodesic through each point ofK, and the limiting geodesic
λ∞ that is constructed in the proof of Proposition 7 must
actually asymptotically spiral toward one of these spherical
lightlike geodesics. In the wormhole spacetime, it is not in
general true that there are spherical lightlike geodesics and
the limiting geodesic may oscillate between regions that are
far apart from each other forever; see Example 2 below.

VI. EXAMPLE 1

As the first example, we consider the metric (13) with

N ¼ 1þ ð4a cos ϑÞ2
r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

p ;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

q
þ ð4a cosϑÞ2

r30
;

ω ¼ 2a

ðl2 þ r20Þ3=2
; ð54Þ

where r0 is a positive parameter with the dimension of a
length, and a is a parameter with the dimension of a length
squared. As we use units with c ¼ 1, both our time
coordinate t and our radial coordinate l have the dimension
of a length.
This wormhole is symmetric with respect to a throat at

l ¼ 0, with r0 determining the radius of the throat in the
equatorial plane. The parameter a determines the angular
momentum of the wormhole; for a ¼ 0, one gets the
spherically symmetric and static Ellis wormhole [19].
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Then

Ψ� ¼ −
l2 þ r20 � 2a sin ϑ

ðl2 þ r20Þ3=2 sin ϑ
; ð55Þ

hence,

dΨ� ¼ lðl2 þ r20 � 6a sin ϑÞ
ðl2 þ r20Þ5=2 sin ϑ

dlþ cos ϑ

sin2 ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

p dϑ:

ð56Þ

By (56), photon circles are located where dΨ� vanishes.
We assume a > 0, and we distinguish two cases.
(1) 6a ≤ r20: Then dΨ� vanishes if and only if

ϑ ¼ π

2
and l ¼ 0; ð57Þ

i.e., we have in this case one corotating circular lightlike
geodesic at lph

þ ¼ 0 and one counterrotating circular light-
like geodesic at lph

− ¼ 0, both of which are in the
equatorial plane.
(2) 6a > r20: In this case, dΨ� vanishes if and only if

ϑ ¼ π

2
and lðl2 þ r20 � 6a sinϑÞ ¼ 0; ð58Þ

i.e., we have one corotating circular lightlike geodesic at
lph
þ ¼ 0 and three counterrotating circular lightlike geo-

desics at lph
− ∈ f0;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6a − r20
p g all of which are in the

equatorial plane.
For plotting the equipotential surfaces, Ψ� ¼ const: and

the regions Min, Mout, Kþ and K−, we take el=r0 as the
radial coordinate such that l ¼ −∞ corresponds to the
origin. Admittedly, this has the slight disadvantage
that the symmetry with respect to the throat, l ↦ −l, is
not shown in the diagrams; however, much more impor-
tantly, it has the great advantage that the entire range
l ∈� −∞;þ∞½ is covered in one plot.
In Fig. 1, we show the equipotential surfaces Ψ� ¼

constant for the case that 6a2 > r20. As already mentioned
above, in this case, we find one corotating photon circle and
three counterrotating photon circles, all of which are in the
equatorial plane. Whereas all four photon circles are stable
with respect to latitudinal perturbations, only one of them,
namely a counterrotating photon circle, is stable with
respect to radial perturbations. This particular photon circle
corresponds to a maximum of the potential Ψ− in the ðl; ϑÞ
plane, whereas the other three photon circles are saddle
points. For each of the saddle points, we have drawn in
Fig. 1 the equipotential surface that passes through this
photon surface as a dashed (red) curve. The equipotential
surface passing through the stable photon circle degener-
ates, of course, in this picture, to a single point; neighboring

equipotential surfaces are (topological) circles in this
picture, i.e., tori in three-dimensional space.
Figure 2 shows the region K, which is the closure of the

region Kþ ∪ K−, for this first example. The crucial feature
of the region K is in the fact that each infinite sequence of
past-oriented lightlike geodesics from any point p to any
generic worldline γ in M converges to a lightlike geodesic
that comes arbitrarily close to K. As we read from the
picture, in this first example, the region K is not very much
different from the photon region in the Kerr-Newman
spacetime; see Hasse and Perlick [9]. The only difference
is in the fact that in the wormhole case, the region K is
separated from the axis. We will see now in a second
example that, quite generally, the region K may be much
more different from the Kerr-Newman case.

VII. EXAMPLE 2

We give now an example where the regions Kþ and K−
are not connected. Let

N ¼ 1

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

q
;

ω ¼ 1

r0
sin

�
r40s

ðl2 þ r20Þ2
�
; ð59Þ

FIG. 1. The equipotential surfaces Ψ− ¼ constant (left) and
Ψþ ¼ constant (right) are drawn here for the case that a ¼ 0.2r20;
i.e., 6a > r20. The picture shows the plane ðφ; tÞ ¼ constant,
el=r0 sin ϑ on the horizontal and el=r0 cos ϑ on the vertical axis.
The photon circles are indicated by black dots. The special
equipotential surface which goes through a photon circle that is
unstable with respect to radial perturbations is drawn as a dashed
(red) curve.
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where r0 is a positive constant with the dimension of a
length, and s is a dimensionless number. Then

Ψ� ¼ ∓ 1

r0
sin

�
r40s

ðl2 þ r20Þ2
�
−

1

sin ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

p ; ð60Þ

hence,

dΨ� ¼
�
� 4r30sl
ðl2 þ r20Þ3

cos

�
r40s

ðl2 þ r20Þ2
�

þ l
sin ϑðl2 þ r20Þ3=2

�
dl

þ cotϑ

sin ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

p dϑ: ð61Þ

From this expression, we read that photon circles are
located at

ϑ¼π

2
and lð�4r30scos

�
r40s

ðl2þr20Þ2
�
þðl2þr20Þ3=2Þ¼0:

ð62Þ

So, there is always one corotating and one counterrotating
photon circle at l ¼ 0 in the equatorial plane and,

FIG. 2. The regions Min, Kþ, K− and Mout defined in Defi-
nition 1 are shown here for the case a ¼ 0.2r20, hence 6a > r20.
Again, we plot el=r0 sin ϑ on the horizontal and el=r0 cos ϑ on the
vertical axis. The boundaries of Kþ and K− meet the equatorial
plane in the photon circles, which are indicated by black points.

FIG. 3. The surfaces Ψ− ¼ constant are drawn here for the case
s ¼ 2. The picture on the right shows an enlarged version of the
interior part. The photon circles are indicated by black dots, and the
equipotential surface that goes through a photon circle that is unstable
with respect to radial perturbations is drawn as a dashed (red) curve.

FIG. 4. The surfaces Ψþ ¼ constant are drawn here for the case
s ¼ 2, in analogy to Fig. 3.
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depending on s, a certain number of additional photon
circles, both corotating and counterrotating, in the equa-
torial plane whose radius coordinates l are given by a
transcendental equation.
In the following plots, we use el=r0 as the radial

coordinate, as in Example 1. In Figs. 3 and 4, we show
the potentialsΨ� for the second example with s ¼ 2. In this
case, we have three corotating and five counterrotating
photon circles. Again, all photon circles are stable with
respect to latitudinal perturbations. Two of the corotating
and three of the counterrotating ones are unstable with
respect to radial perturbations (saddle points of the respec-
tive potential); the other ones are stable with respect to
radial perturbations (maxima of the respective potential).
As before, photon circles that are unstable with respect to
radial perturbations correspond to self-intersections of
equipotential surfaces, which are indicated by dashed
(red) curves. By choosing larger values of s, we may have
as many photon circles as we like.
In Fig. 5, we show the regions Kþ and K− for the second

example with s ¼ 2. In this case, Kþ and K− have two
connected components each. By choosing a bigger value
for s, the regions Kþ and K− may have as many connected
components as we like. We have proven in the preceding
section that any infinite sequence of past-oriented lightlike

geodesics from an event p to a timelike curve γ converges
to a limiting lightlike geodesic that comes arbitrarily close
to the region K, which is the closure of the union of Kþ and
K−. What this example demonstrates is the fact that this
region need not be connected and may actually have
arbitrarily many connected components that may be far
apart from each other. Therefore, our general result does not
exclude the case that the limiting lightlike geodesic
oscillates forever between two regions that are far apart
from each other. This is a major difference in comparison to
the spacetime of a Kerr-Newman black hole where the
limiting lightlike geodesic necessarily spirals toward a
spherical lightlike geodesic.

VIII. CONCLUDING REMARKS

In this paper, we have considered a class of rotating
traversable wormholes, and we have proven, with the help
of Morse theory, that in these wormhole spacetimes, an
observer sees infinitely many images of a light source,
under very mild restrictions on the motion of the light
source. In this respect, wormholes are similar to Kerr-
Newman black holes (and other black holes). As our
Morse-theoretical approach demonstrates, this similarity
has its origin in the fact that both the wormhole spacetime
and the domain of outer communication of a Kerr-Newman
black hole is a globally hyperbolic spacetime with topology
S2 ×R2 that satisfies the metric growth condition.
Moreover, both in the wormhole spacetime and in the
domain of outer communication of a Kerr-Newman black
hole, there are potentials Ψþ and Ψ−, which tell us where
the radial coordinate may have turning points along a
lightlike geodesic. However, there are also important
differences. In the case of a Kerr-Newman black hole,
there is a photon region filled with lightlike geodesics, each
of which stays on a sphere r ¼ constant. If we consider an
infinite sequence of lightlike geodesics from an event p to a
generic timelike curve γ, they converge toward a lightlike
geodesic λ∞ that asymptotically spirals toward one of these
“spherical” lightlike geodesics that fill the photon region.
As shown by our examples, the situation can be much more
complicated in the wormhole spacetimes. In general, there
are no spherical lightlike geodesics in the wormhole
spacetime. The natural generalization of the photon region,
denoted K in this paper, is the closure of two open sets, K−
and Kþ, each of which may consist of arbitrarily many
connected components. The above-mentioned lightlike
geodesics λ∞ have to come close to the region K, as we
have proven, but they need not spiral toward a certain limit
curve; e.g., they may oscillate between different connected
components of K forever.
As Uhlenbeck’s theorem does not require stationarity or

axisymmetry, we expect that the existence of infinitely
many images will hold true also for wormholes without any
symmetry, as long as global hyperbolicity and the metric
growth condition are still satisfied. Other future

FIG. 5. The regions Min, Kþ, K− and Mout defined in
Definition 1 are shown here for the case s ¼ 2. Again, we plot
el=r0 sin ϑ on the horizontal and el=r0 cos ϑ on the vertical axis.
The photon circles are located where the boundaries of Kþ and
K− meet the equatorial plane. By choosing s bigger, Kþ and K−
may have arbitrarily many connected components; correspond-
ingly, one may have arbitrarily many photon circles.
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applications of Uhlenbeck’s theorem could be to globally
hyperbolic spacetimes with topologies other than S2 ×R2.
Also, we mention that Giannoni et al. [20] have proven a
theorem similar to Uhlenbeck’s for lightlike geodesics in
spacetimes that need not be globally hyperbolic. Although
rather sophisticated, using infinite-dimensional Hilbert
manifolds, we believe that the work of Giannoni et al.
has the potential of giving very strong and interesting new
results on lensing. In a slightly different vein, it should also
be possible to establish theorems similar to the ones by
Uhlenbeck or Giannoni et al. for light rays other than

lightlike geodesics in a general-relativistic spacetime. For
example, one could consider the case of light rays in a
plasma on a general-relativistic spacetime or of lightlike
geodesics in a Finsler spacetime. Quite generally, we
believe that the potential applications of Morse theory to
gravitational lensing are still in the fledgling stages.
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