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The superradiant instability of Kerr-anti–de Sitter black holes is studied by numerically solving the full
3þ 1 dimensional Einstein equations. We find that the superradiant instability results in a two stage process
with distinct initial and secondary instabilities. At the end of the secondary instability the geometry
oscillates at several distinct fundamental frequencies—a multioscillating black hole. The multioscillating
black hole is remarkably close to a black resonator, albeit with a bit of gravitational hair. During the hairy
black resonator epoch, the evolution of the horizon area is consistent with the exponential approach to a
constant. By employing different seed perturbations in the initial Kerr-anti–de Sitter geometry, we also
demonstrate that the black resonator’s hair is not unique. In the dual quantum field theory description,
rotation invariance is spontaneously broken and the energy density is negative in some regions, signaling an
exotic state of matter which does not relax to a stationary configuration.
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I. INTRODUCTION

Waves with suitably tuned frequency ω and azimuthal
quantum number m scattering off rotating objects can be
amplified via superradiance [1,2]. Of particular interest are
rotating black holes, which contain ergoregions from which
it is possible to extract energy and angular momentum [3,4].
Half a century ago it was pointed out that if waves can be
confinedwith something akin to amirror, so outgoingwaves
are reflected back inwards, then repeated interactions with a
black hole can lead to exponential growth of the wave
amplitude, potentially converting a significant fraction of the
black hole’s mass into radiation [5]. The dynamics of
superradiant instabilities—also known as black hole
bombs—and their final state are of considerable of interest
to a variety of fields including earlyUniverse cosmology [6],
particle physics and gravitational wave astrophysics [7–10],
astrophysical jets [11], and phase transitions in holographic
duality [12,13]. For a detailed review of superradiance and
black hole bombs see Ref. [11].
Perhaps the purest manifestation of a black hole bomb is

that of the AdS4 superradiant instability. The dynamics of
the system are governed by the (3þ 1)-dimensional vac-
uum Einstein’s equations with a negative cosmological
constant and asymptotically global anti–de Sitter (AdS)
boundary conditions. The geometry contains a timelike
boundary (conformally equivalent to sphere), which serves
as a mirror from which gravitational waves are reflected
inwards. Via holographic duality [14], this system has a
dual interpretation as a (2þ 1)-dimensional strongly
coupled quantum field theory living on the boundary.
For two decades it has been known that sufficiently

rapidly spinning Kerr-AdS black holes are susceptible to
superradiant instabilities [15,16]. The spectrum of unstable

modes in the Kerr-AdS spacetime was studied in [17]. It
was subsequently shown that any black hole in asymptoti-
cally AdS spacetime with an ergoregion—meaning a region
where a Killing vector becomes spacelike—must be unsta-
ble [18]. It has been suggested that the AdS4 instability may
have no end state and can result in violations of cosmic
censorship [19]. Despite the long history of the AdS4
superradiant instability, the question of what the final state
is has thus far remained elusive. Our goal in this paper is to
study this longstanding problem with numerical relativity
simulations.
Suppose the dominant unstable mode in the Kerr-AdS

spacetime has (complex) frequency ω and azimuthal
quantum number m. At a linear level the mode’s time
and azimuthal angle dependence is then given by the
exponential e−iωtþimφ. Hence the associated gravitational
wave rotates in φ at angular velocity Re ω

m while slowly
growing in amplitude like eImωt. If the superradiant
instability was a one stage process, with this mode and
its harmonics merely plateauing after some time, then the
final state geometry would have a single Killing vector,

K ¼ ∂t þ Ω∂φ; ð1Þ

with Ω ≈ Re ω
m. Black holes with single Killing vector—

coined black resonators—were first constructed in
Ref. [20]. Their geometry rigidly rotates with angular
velocity Ω, meaning they oscillate with a single funda-
mental frequency, and they are thermodynamically pre-
ferred over the Kerr-AdS solution with the same mass and
angular momentum. However, they are also unstable [18].
Their angular velocities satisfy
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Ω >
1

L
; ð2Þ

which means that K is always spacelike near the AdS
boundary, signaling the presence of an ergoregion. It is
therefore reasonable to expect that additional instabilities
occur at some stage of the evolution. A natural guess is that
the superradiant instability results in the Kerr-AdS geo-
metry transitioning to a black resonator, which then
experiences its own distinct superradiant instabilities,
thereby transitioning to another state.
Previously we numerically simulated the AdS4 super-

radiant instability and found evolution consistent with the
transition of the Kerr-AdS geometry to an approximate
black resonator geometry [21]. While secondary instabil-
ities were also observed, numerical evolution was not
carried out long enough to ascertain their end state, leaving
the final fate of the system uncertain. Nevertheless,
Ref. [21] found several unstable modes during the black
resonator epoch. These modes oscillated at different fun-
damental frequencies and rotated with different angular
velocities. This suggests that the final state has no con-
tinuous symmetries. In other words, it is reasonable to
expect that the final state of the superradiant instability is a
black hole geometry oscillating with several fundamental
frequencies, and without a Killing vector or ergoregion.
Following the nomenclature of Ref. [22], we will refer to
black holes oscillating with multiple fundamental frequen-
cies as multioscillating black holes. Multioscillating black
hole solutions to an Einstein-scalar system in AdS5 were
recently studied in Ref. [23].
One of the primary challenges in numerically simulating

superradiant instabilities is the slow growth rates associated
with unstable modes. Compounding this, the AdS4 super-
radiant instability has no symmetries to exploit, meaning
one must numerically solve the full (3þ 1)-dimensional
Einstein equations. This is a common feature of super-
radiant instabilities with real fields, and consequently there
are few simulations which reach the final state [9]. In
contrast, with complex fields it is possible to study super-
radiant instabilities in cylindrical symmetry [8] or charged
superradiance with spherical symmetry [24–26], thereby
allowing much faster simulations.
To study the AdS4 superradiant instability one

must employ fast and stable numerical algorithms. To this
end, we use a characteristic evolution scheme we previ-
ously developed for asymptotically AdS spacetimes. This
scheme—which has seen use in a wide variety of problems
[21,27–41] and is reviewed in detail in Ref. [42]—is
remarkably efficient, allowing even five-dimensional prob-
lems to be solved on a single CPU [38]. This efficiency is
largely due to the fact that, within the scheme, the apparent
horizon can naturally be chosen to lie at some fixed radial
coordinate. That is, the entire computation domain exterior
to the apparent horizon and interior to the AdS boundary

can be chosen to be a static spherical shell. This means the
angular and radial directions can be discretized with tensor
product grids, allowing efficient numerical integration and
differentiation operations. Additionally, with tensor prod-
uct grids it is easy to employ spectral and pseudospectral
discretizations, which converge much faster than finite
difference schemes [43]. This allows far coarser grids to be
used and ameliorates CFL instabilities, meaning one can
also use a larger time step compared to a finite difference
scheme. We also judiciously choose our initial conditions
so that the instabilities are reasonably fast, but that the
Kerr-AdS black hole is not too close to extremality. We do
this because near-extremal black holes can develop struc-
ture near the horizon, requiring finer grids there and longer
run times. For reference, each of our simulations runs in
approximately five weeks on a 2020 MacBook Air.
We simulate the Kerr-AdS superradiant instability with

two sets of seed perturbations, both with the same mass and
spin. In both cases we find that the AdS4 superradiant
instability results in a two stage process with distinct initial
and secondary instabilities. At the end of the secondary
instability the geometry is that of a multioscillating black
hole with several distinct fundamental frequencies. The
multioscillating black hole is remarkably close to a black
resonator geometry, albeit with a bit of gravitational
hair localized far from the horizon. We see no obvious
signs of additional instabilities in the multioscillating
epoch. Indeed, at late times the apparent horizon area is
consistent with the exponential approach to a constant.
Multioscillating black holes are therefore a plausible
candidate for the endpoint of the superradiant instability.
We also demonstrate that hairy black resonators are not
unique and depend on initial conditions.
An outline of our paper is as follows. In Sec. II we

outline the setup of our problem, including initial con-
ditions and our numerical evolution scheme. In Sec. III we
presents the results of our numerical simulations. Finally, in
Sec. IV we discuss our results.

II. SETUP

We numerically solve the vacuum Einstein’s equations
with negative cosmological constant Λ ¼ −3=L2. We set
the AdS radius L to unity. Our characteristic evolution
scheme is reviewed in detail in Ref. [42]. Here we outline
the details salient for characteristic evolution with spherical
coordinates and an appropriate choice of basis functions.
Our metric ansatz takes the form

ds2 ¼ λ2gμνðxα; λÞdxμdxν þ 2dvdλ; ð3Þ

with Greek indices ðμ; νÞ running over the AdS boundary
spacetime coordinates xμ ¼ fv; θ;φg, where v is time and
θ and φ are the usual polar and azimuthal angles in
spherical coordinates. The coordinate λ is the AdS radial
coordinate, with the AdS boundary located at λ ¼ ∞. Note
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lines of constant xμ are infalling radial null geodesics
affinely parametrized by λ. Correspondingly, the metric
ansatz (3) is invariant under shifts in λ,

λ → λþ ξðxμÞ; ð4Þ

for any function ξðxμÞ. We exploit this residual diffeo-
morphism invariance to fix the location of the apparent
horizon to be at λ ¼ 1. This means horizon excision is
performed by restricting the computational domain
to λ ≥ 1.
Near the AdS boundary Einstein’s equations can be

solved with the power series expansion,

gμνðxα; λÞ ¼ gð0Þμν ðxαÞ þ � � � þ gð3Þμν ðxαÞ=λ3 þOð1=λ4Þ: ð5Þ

The expansion coefficient gð0Þμν is the AdS boundary metric
(i.e., the metric the dual quantum field theory lives in). As a
boundary condition we fix

gð0Þμν ¼ ημν; ð6Þ

where

ημν ¼ diagð−1; 1; sin2 θÞ; ð7Þ

is the metric on the unit sphere. This boundary condition
meansgravitationalwaves are reflected off theAdSboundary.
A convenient diffeomorphism invariant observable is the

stress tensor Tμν in the dual quantum field theory, which is

determined by gð3Þμν via [44],

Tμν ¼ gð3Þμν þ 1

3
ημνg

ð3Þ
00 : ð8Þ

Note that Einstein’s equations imply Tμν is traceless,
ημνTμν ¼ 0, and covariantly conserved,

∇μTμν ¼ 0; ð9Þ

where ∇μ is the covariant derivative under the boundary
metric ημν.
Within our characteristic evolution scheme, evolution

variables consist of the conserved densities T0μ, a gauge
parameter ξ used to shift the horizon to be at λ ¼ 1 via
Eq. (4), and the rescaled angular metric,

ĝab ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det ηcd
det gcd

s
gab; ð10Þ

with lowercase latin indices running over the angular
directions fθ;φg. All other components of the metric are
determined by nondynamical equations, which are solved
on each slice of constant v. The rescaled metric satisfies

det ĝab ¼ det ηab ¼ sin2θ; ð11Þ

which means ĝab contains two independent degrees of
freedom. These two degrees of freedom encode the two
propagating degrees of freedom in gravitational waves. In
our numerical simulations we decompose ĝab as follows:

ĝab ¼
�
1þ 1

2
habhab

�
1=2

ηab þ hab; ð12Þ

where indices are raised with ηab and hab is traceless,
meaning haa ¼ ηabhab ¼ 0. Note that the expansion (5)
and boundary condition (6) imply that near the boun-
dary hab ∼ 1=λ3.

A. Discretization

We expand the angular dependence of all functions in a
basis of scalar, vector, and tensor harmonics. These are
eigenfunctions of the covariant Laplacian on the unit
sphere. The scalar eigenfunctions are just spherical har-
monics ylm.1 There are two vector harmonics, Vslm

a , which
read [45]

V1lm
a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ∇aylm; ð13aÞ

V2lm
a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ϵa
b∇bylm; ð13bÞ

where ϵa
b has nonzero components ϵθ

φ ¼ csc θ and
ϵφ

θ ¼ − sin θ. V1lm
a is longitudinal, meaning it points in

the direction of ∇a, and V2lm
a is transverse, meaning

∇aV2lm
a ¼ 0. There are three symmetric tensor harmonics

T slm
ab . However, since hab is traceless, we only need the two

traceless tensor harmonics, which read [45]

T 1lm
ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þðlðlþ1Þ
2

− 1Þ
q ϵðac∇bÞ∇cylm; ð14aÞ

T 2lm
ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þðlðlþ1Þ
2

−1Þ
q

�
∇a∇bþ

lðlþ1Þ
2

ηab

�
ylm:

ð14bÞ

The scalar, vector, and tensor harmonics are orthonormal
and complete. Upon expanding SO(3) scalar, vector, and
tensor components of the metric and boundary stress in
terms of these basis functions, angular derivatives can be
computed by differentiating the basis functions themselves.
In order to efficiently transform between real space and
mode space, we employ a Gauss-Legendre grid in θ with

1Note we employ the convention yl−m ¼ ylm�.
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lmax þ 1 points and a Fourier grid in φ with 2lmax þ 1
points. For details see Ref. [43]. The grid points θi are the
zeros of the lmax þ 1 order Legendre polynomial,

Plmaxþ1ðcos θiÞ ¼ 0; ð15Þ

and the associated integration weights read

wθ
i ¼

2

ðdPlmaxþ1=dθÞ2
����
θ¼θi

: ð16Þ

Likewise, the φ grid points are

φj ¼
2πj

2lmax þ 1
; j ¼ 0; 1;…; 2lmax; ð17Þ

with associated integration weights wφ
j ¼ 2π

2lmaxþ1
.

The transformation between real space and mode space
can then be performed using Gaussian quadrature.2 Using
Gaussian quadrature, the orthonormality of the scalar,
vector, and tensor harmonics is exact up to angular
momentum l ¼ lmax. We choose lmax ¼ 40.
We note that the mode expansions contain approximately

half as many degrees of freedom as that which live on the
real space grid. Because of this, we choose to use mode
amplitudes as our evolution variables. When computing
nonlinear products, we simply transform the mode ampli-
tudes to real space first.
For the radial dependence of the metric, we employ an

inverse radial coordinate u≡ 1
λ ∈ ð0; 1Þ and expand the u

dependence in a pseudospectral basis of Chebyshev poly-
nomials. We employ domain decomposition in the u
direction with seven domains. The first domain interface
lies at u ¼ 0.05 and the remaining interfaces are equally
spaced between u ¼ 0.05 and u ¼ 1. We use seven points
in the domain closest to the boundary and 14 points in all
other domains. Note that using fewer points in the domain
closest to the boundary helps ameliorate CFL instabilities,
thereby allowing larger time steps.
We evolve forward in time 3060 units using a fourth

order Runge-Kutta method with constant time step
dv ¼ 0.008. To test convergence of our numerics we have
also ran simulations with approximately 15% more grid
points in each direction, and with 20% smaller time step.
Likewise, we also increased the filter parameters l0 and σ0
(discussed below) by approximately 15%. Reassuringly,
these simulations, which were run until time v ¼ 1500,
which encompasses the times during which the most
structure exists, produced results indistinguishable from

those presented in this paper. In particular, the differences
in Fig. 4 were far smaller than the widths of each line.

B. Filtering

An important practical matter is filtering short wave-
length excitations artificially generated during numerical
evolution. We apply a short wavelength filter directly to the
time derivatives of the fields. Following [42], to filter the
radial direction, we simply interpolate the real space radial
grid to a coarser grid, and then reinterpolate back to the
original grid. For the coarse grid we use the same domain
interface locations, but just with fewer points. Specifically,
we use one fewer point in the domain closest to the
boundary, and two fewer points in all other domains.
To filter in the angular directions, at each time step we

multiply the time derivatives of the mode amplitudes by the
filter function

FðlÞ≡ 1

2

�
1þ erf

�
−
ðl − l0Þffiffiffi

2
p

σ

��
; ð18Þ

where

l0 ¼ 28; σ ¼ 2.5: ð19Þ

This function, plotted in Fig. 1, is ostensibly a regularized
step function. Note that at l ¼ 15 we have 1 − F ≈ 10−7

and at l ¼ 20 we have 1 − F ≈ 7 × 10−4. Hence this filter
does not appreciably modify low angular momentum
modes (e.g., those with l≲ 20).
We note that our decomposition of the angular metric

(12) and use of only traceless tensor harmonics is different
from our previous study of the AdS4 superradiant insta-
bility [21]. In particular, in Ref. [21] we expanded ĝab in a
basis of three tensor harmonics, with the additional one
being proportional to ηab, and imposed the constraint (11)
numerically during each time step. However, imposing the
constraint (11) involves nonlinear operations which can
themselves numerically excite high angular momentum

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

FIG. 1. The angular filter function, Eq. (18). Modes with
l≲ 20 are not appreciably modified by the filter.

2Note that integration over φ can also be performed via fast
Fourier transforms. However, with the small values of lmax we
employ in this paper, we have found Gaussian quadrature to be
faster.
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modes. While this can be ameliorated by employing a
stronger filter than that used in this paper, the cost of doing
so is reducing the effective angular resolution for a given
value of lmax. Hence, while our value of lmax is essentially
the same as that used in Ref. [21], our effective angular
resolution is superior.

C. Initial data

The Kerr-AdS solution is parametrized by mass and spin
parameters M and a, and the AdS radius L, which we have
set to unity. For initial data we choose

hab ¼ hKerrab ; ð20aÞ

T0μ ¼ TKerr
0μ þ ΔT0μ; ð20bÞ

where the superscript “Kerr” refers to the metric and
boundary stress of the Kerr-AdS solution. If ΔT0μ ¼ 0,
then the resulting geometry is exactly that of the Kerr-AdS
solution. Hence, with these initial conditions the super-
radiant instability is seeded by nonvanishing ΔT0μ. We
choose

ΔT00 ¼ −
4

3
Re

X4
l¼2

αlyll; ð21aÞ

ΔT0a ¼ −Re
X4
l¼2

αlðV1ll
a þ V2ll

a Þ: ð21bÞ

Therefore, our initial conditions are determined by the
mass parameter M, spin parameter a, and the mode
amplitudes αl. Note that our choice of ΔT0μ yields
vanishing contribution to the total mass and angular
momentum of the system. Hence the mass and angular
momentum are identical to that of the Kerr-AdS solution
with mass parameter M and spin parameter a.
We employ mass and spin parameters

M ¼ 0.2375; a ¼ 0.2177; ð22Þ

and two sets of mode amplitudes αl given in Table I, which
we will refer to as initial condition (IC) A and B. Note our
chosen masses and spins differ from those used in our
previous work [21] by ∼5%.

III. RESULTS

We begin by showcasing results for IC(A). In the top
panel of Fig. 2 we plot snapshots of boundary energy
density T00 at eight times between v ¼ 110 and v ¼ 3000.
Note that the color scaling is different at each time. By
v ¼ 110 a small amplitude m ¼ 2 excitation is visible. At
subsequent times more structure develops via the excitation
of higher m modes, with different modes rotating in φ at
different angular velocities. Nevertheless, by v ¼ 1650
most of this structure has relaxed and the energy density
approximately rotates rigidly at constant angular velocity.
As we elaborate on further below, there are also tiny
excitations with m ¼ 2, 4, 6 rotating at different angular
velocities. These tiny excitations are responsible for
small differences seen in the energy density peaks at times
v ¼ 1650 and v ¼ 3000.
To quantify the growth of different modes, including

their frequency content, we define the mode amplitudes

F slmðv;ωÞ≡
Z

d2xdv0eiωv0V�slm
a ðxÞWðv − v0ÞT0aðv0; xÞ;

ð23Þ

whereWðvÞ is a Gaussian window function with width 15,
and the vector spherical harmonics Vslm

a are given by
Eq. (13). F 1lm and F 2lm are essentially the Fourier space
amplitudes of the longitudinal and transverse components
of the momentum density, respectively. More precisely,
F slm is the short-time Fourier transform of the vector
spherical harmonic transform of the momentum density.
In all of our simulations we see no significant growth in

F slm with m ¼ 0 or odd m. We therefore focus on even m.
Plotted in Fig. 3 are spectrograms showing jF slmj as
a function of v and ω=m for m ¼ 2, 4, 6 and
l ¼ m;mþ 1; mþ 2. All plots are on the same scale.
Note ω=m is the angular velocity of a mode with frequency
ω and azimuthal quantum number m. At sufficiently late
times the mode amplitudes jF slmj decay everywhere
except in the vicinity of a few fundamental frequencies.
The four yellow dashed lines in Fig. 3 lie at frequencies
Ωslm, where jF slmðv;ΩslmÞj is approximately constant at
late times. These angular velocities are

Ω122¼1.29; Ω176¼1.41; Ω154¼1.47; Ω242¼1.65:

ð24Þ

Additionally, the red dashed line shows

Ω222 ¼ 1.68: ð25Þ

The mode amplitudes jF slmðv;ΩslmÞj evaluated along the
dashed curves are shown below in Fig. 4. Note that the left
and right columns in Fig. 4 show identical data, with the left

TABLE I. Mode amplitudes for our two sets of initial
conditions.

IC α2 α3 α4

A 2.745 × 10−2 −6.863 × 10−3 0
B 5.490 × 10−2eiπ=3 −1.373 × 10−2e−iπ=3 3.768 × 10−4e2πi=3
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column employing a logarithmic scale while the right
column uses a linear scale.
From Figs. 3 and 4 it is evident there are two distinct

epochs of growth in jF slmj, which we shall refer to as
initial and secondary instabilities [21]. The initial instability
is due to superradiant instabilities in the Kerr-AdS geom-
etry. Our numerics are consistent with an initial instability
in the ðslmÞ ¼ ð222Þ channel with complex frequency

ω222 ¼ 3.41þ 0.020i: ð26Þ

The growth of jF 222j begins to slow at v ∼ 300, while also
slightly shifting in frequency, and reaches its peak ampli-
tude around v ∼ 500. During the subsequent interval,
500≲ v≲ 1200, there is a plateaulike structure in
jF 222ðv;Ω222Þj. It is also during this time interval that
the secondary instability kicks in, with

jF 122j∼e0.0022v; jF 154j∼e0.0021v; jF 176j∼e0.0041v:

ð27Þ

Note that the exponential growth of jF 154j and jF 176j is not
as crisp as that of jF 122j.
The fact that jF 222j is the largest amplitude mode at the

early stages of the secondary instability suggests that the
intermediate state is an excited black resonator. However, it

is noteworthy that near v ∼ 500 there are additional modes
excited with amplitudes comparable to jF 222j, but with
fundamental frequencies different fromΩ222. See Fig. 3.We
comment on this further below in the Discussion section.
As seen in both Figs. 3 and 4, after v ∼ 1200, jF 222j

begins to precipitously decay while jF 242j, jF 122j, jF 154j,
and jF 176j approach constants shortly thereafter. Actually,
all three of thesemodes are decaying extremely slowly at late
times, with ∂v log jF slmj ∼ −1.9 × 10−5, although this is
nearly impossible to see in Fig. 4. We are unsure if this tiny
decay rate is real or a numerical artifact.We comment on this
below in the Discussion section. At v ¼ 3000 we have

jF 122j ≈ 0.70; jF 154j ≈ 0.024; ð28aÞ

jF 172j ≈ 1.9 × 10−3; jF 242j ≈ 4 × 10−4: ð28bÞ

It is noteworthy that jF 122j is nearly 30 times larger than the
next largest mode, jF 154j. If Ω122 was the only angular
velocity excited, then the geometry would be a black
resonator. Evidently, the final state of our numerical evo-
lution is a black resonator with a small amount of gravita-
tional hair.
A natural question is where in the bulk is the black

resonator’s hair localized? Is it localized near the boundary
or is it spread throughout the bulk, including near the
horizon? To answer this question we consider the

FIG. 2. The boundary energy density T00 at eight different times for IC(A). By v ¼ 110 a small amplitude m ¼ 2 mode is excited. At
subsequent times more structure develops via the excitation of higher m modes. These modes rotate at different angular velocities.
However, by time v ¼ 1650 much of this structure has relaxed. At late times the energy density is approximately that of a black
resonator, rigidly rotating in φ at constant angular velocity. Indeed, the energy density at v ¼ 1650 and v ¼ 3000 mostly differs by a
rotation in φ. Additionally, at late times there are also small amplitude m ¼ 2, 4, and 6 modes rotating at different angular velocities.
These modes are responsible for the small differences seen in the structure of the energy density peaks at v ¼ 1650 and v ¼ 3000. Note
the appearance of negative energy density v ≥ 1650.
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Kretschmann scalar K ≡ RμναβRμναβ. Near the boundary
K → 24, indicating thatK itself is not a good probe of near-
boundary excitations. We wish to construct a quantity from
K which has a nontrivial limit near the boundary and which
can discriminate contributions from different frequencies,
including those with small mode amplitudes. To this end we
take the short-time Fourier transform of the difference
ΔK ≡ K − 24,3

ΔK̃ðv;ω; λ; xÞ≡
Z

dv0eiωv0Wðv − v0ÞΔKðv; λ; xÞ; ð29Þ

and then average jΔK̃j over the angular directions,

hjΔK̃ðv;ω; λÞji≡
Z

d2xjΔK̃ðv;ω; λ; xÞj: ð30Þ

hjΔK̃ðv;ω; λÞji vanishes near the boundary and is insensi-
tive to the precise value of v (at sufficiently late times). The
dimensionless ratio

R≡ hjΔK̃ji
hjΔK̃jijω¼0

; ð31Þ

has a nontrivial boundary limit and measures the amplitude
of a bulk mode relative to the zero frequency limit.

FIG. 3. Spectrograms showing jF slmj as a function of v and ω=m for IC(A). All plots are on the same scale. At sufficiently late times
the mode amplitudes jF slmj decay everywhere except in the vicinity of a few fundamental frequencies, which are denoted by the yellow
dashed lines. The dashed red line shows a fundamental frequency of the intermediate state. This mode is excited by the initial instability,
which occurs in the ðslmÞ ¼ ð222Þ channel.

3Due to memory constraints relevant for the calculation of K,
here we use a Gaussian window function WðvÞ with width 10.
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In Fig. 5 we plotR at time v ¼ 2750 as a function of the
radial coordinate λ and frequency ω. The four yellow lines
superimposed on the figure correspond to the four angular

velocities ω=m ¼ Ωslm shown in Fig. 3 and listed in
Eq. (24). The black lines show harmonics of the black
resonator fundamental frequency, ω ¼ 2Ω122 ¼ 2.59. Note

FIG. 4. The mode amplitudes jF slmðv;ΩslmÞj evaluated along the dashed yellow and red lines shown in Fig. 3. The blue curves
correspond to IC(A) while the red curves correspond to IC(B). The left and right columns show identical data, with the left column
employing a logarithmic scale and the right column using a linear scale. Evolution arising from both sets of initial conditions exhibits
both initial and secondary instabilities. The initial instability has jF 222j ∼ e0.02v. After jF 222j plateaus, the secondary instability kicks in
with jF 122j ∼ e0.0022v, jF 154j ∼ e0.0021v, and jF 176j ∼ e0.0041v. After the secondary instability terminates, the mode amplitudes approach
constants, which are the same for both sets of initial conditions.
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that the color scaling is on a logarithmic scale. As is evident
from the figure,R is peaked at several discrete frequencies,
with the largest peaks at ω ¼ 0 and the black resonator’s
fundamental frequency. The peaks corresponding to the
black resonator’s hair are largest at large radii and smallest
at the horizon (λ ¼ 1). In particular, at the horizon R <
0.4 × 10−4 everywhere except near ω ¼ 0 and the black
resonator’s fundamental frequency and harmonics. In con-
trast, at λ ¼ 5, the peak at ω ¼ 4Ω154 has amplitude 0.02.
This signals that the black resonator’s hair is concentrated
away from the horizon. Similar behavior was seen in
Ref. [25], where the final state of the (spherically sym-
metric) charged AdS superradiant instability was studied.
Plotted in Fig. 6 is the apparent horizon area A (left

panel) and its time derivative _A≡ ∂vA (right panel), both
normalized by the area of the associated Kerr-AdS black
hole. To increase the fidelity of the plots of _A, as well as
smooth out the short time structure in _A due to individual

superradiant amplification cycles, we compute _A by con-
volving A with the time derivative of a normalized
Gaussian with width 8. The two dashed lines in the right
panel are simply the squares of the exponential curves seen
in the ðslmÞ ¼ ð222Þ and ðslmÞ ¼ ð122Þ panels of Fig. 4.
Evidently, during both the initial and secondary instabil-
ities, the horizon area grows roughly as the square of the
these modes. Note that _A decreases exponentially at late
times. At v ¼ 3000 the horizon area is 11% larger than that
of the Kerr-AdS black hole with the same mass and spin.
Finally, we turn to evolution generated by our second

initial condition. IC(B) has the same energy and angular
momentum as IC(A) but different initial seed perturbations.
It turns out that many of the features of the resulting
solutions are identical, both qualitatively and quantitatively.
The resulting spectrogram for IC(B) looks strikingly
similar to that shown in Fig. 3, with angular velocities
Ωslm identical to those found with IC(A). Also included in

FIG. 5. R as a function of inverse radius 1=λ and frequency ω for IC(A). The four yellow lines superimposed on the figure correspond
to the four angular velocities ω=m ¼ Ωslm shown in Fig. 3. The black lines show harmonics of the black resonator fundamental
frequency, ω ¼ 2Ω122 ¼ 2.59. Note that the color scaling is on a logarithmic scale.R is peaked at several discrete frequencies, with the
largest peaks at ω ¼ 0 and the black resonator’s fundamental frequency. Modes corresponding to the black resonator’s hair are largest at
large radii.

FIG. 6. The apparent horizon area A (left) and the rate of area growth _A≡ ∂vA (right) for IC(A) (blue) and IC(B) (red). The areas are
normalized by the Kerr-AdS horizon area. The dashed black lines in the right panel are the squares of the two exponential curves seen in
the ðslmÞ ¼ ð222Þ and ðslmÞ ¼ ð122Þ panels of Fig. 4. For both sets of initial conditions, two distinct epochs of horizon area growth
are clearly visible. At late times _A decreases exponentially. At v ¼ 3000 the two apparent horizon areas agree at order 1 part in 106.
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Fig. 4 are the amplitudes jF slmðv;ΩslmÞj obtained with IC
(B). During the initial and secondary instabilities the
exponential growth rates are the same for both sets of
initial conditions. Likewise, as shown in Fig. 6, A and _A
also have similar structure for both sets of initial conditions.
Remarkably, the final values of jF 122j, jF 242j, jF 154j, and
jF 176j are also nearly identical for both set of initial
conditions. Moreover, the final apparent horizon areas
agree at order 1 part in 106.
Despite these similarities, the final state obtained with IC

(B) is in fact distinct from that obtained with IC(A). One
difference lies in relative phase shifts between different
modes. Define the phases

δslm ¼ argðF slmÞ; with δslm ∈ ½−π; π�: ð32Þ

In order the exclude the possibility that the phases δslm of
our two solutions are merely related by a shift in v and/or φ,
we define the weighted phase differences

Δ1 ¼ 8ðΩ154 −Ω242Þδ122 þ 4ðΩ242 − Ω122Þδ154
þ 8ðΩ122 − Ω154Þδ242; ð33Þ

Δ2 ¼ 24ðΩ154 −Ω176Þδ122 þ 12ðΩ176 −Ω122Þδ154
þ 8ðΩ122 − Ω154Þδ176: ð34Þ

It is easy to check that Δ1 and Δ2 are invariant under shifts
in v and φ. If the late-time solutions generated by different
initial conditions are identical, then they must have iden-
tical Δ1 and Δ2 at late times.
In Fig. 7 we plotΔ1 andΔ2. The saw-tooth-like structure

seen in both plots is due to the fact that the phases δslm are
not continuous functions of time. For both sets of initial
conditions Δ1 and Δ2 approach constants at late times.
However, these constants are different for each initial
condition. This demonstrates that the gravitational hair
obtained with IC(A) is distinct from that generated with

IC(B). Simply put, the final state of our evolution is
sensitive to seed perturbation in the Kerr-AdS geometry.

IV. DISCUSSION

It is remarkable that after starting in the Kerr-AdS
geometry, and then having many large m modes
excited—as is evident from the plots of the energy density
seen in Fig. 2—that the geometry finds its way to a hairy
black resonator state. Is a hairy black resonator, or more
generally a multioscillating black hole, the final state of the
superradiant instability? While our numerics are certainly
consistent with this—mode amplitudes and the horizon
area appear to plateau—we cannot exclude other possibil-
ities. For example, it is always possible that there are
additional instabilities which are too small to be observed
with our current numerical simulations. Likewise, it is
always possible that there are instabilities in other channels
not probed by our limited set of initial conditions.
Even if the final state is a hairy black resonator, it is

possible the hair could undergo nontrivial slow dynamics.
For example, the hair could decay or different modes could
interact via nonlinear couplings, resulting in slow changes
to the hairy mode amplitudes. We do see some evidence of
slow mode amplitude dynamics in our simulations.
The hairy modes seen in Fig. 4 all are decaying very
slowly at late times, with ∂v log jF slmj ∼ −1.9 × 10−5.
Additionally, we do see a tiny amount of late time
growth in jF 133j ∼ 3 × 10−3, which roughly grows like
∂v log jF 133j ∼þ7 × 10−6. This mode has angular velocity
Ω133 ¼ 1.27, which only differs from Ω122 by 1.5%.
However, while these tiny rates could indicate interesting
hairy dynamics (or even instabilities of the black resonator
itself), they lie at the threshold of fidelity of our current
numerical simulations. Indeed, we have also ran short
duration simulations of our final state at 15% reduced
resolution and found these rates to change significantly.
To help assess whether the time dependence of these
mode amplitudes is physical, it would be useful to run

0 1000 2000 3000
-5

0

5

0 1000 2000 3000
-20

-10

0

10

20

FIG. 7. Weighted phase differences Δ1 and Δ2 for both sets of initial conditions. The saw-tooth-like structure seen in both plots is due
to the fact that the phases δslm are not continuous functions of time. For both sets of initial conditions Δ1 and Δ2 approach constants at
late times. However, these constants are different for IC(A) and IC(B). This demonstrates that the gravitational hair obtained with IC(A)
is distinct from that generated with IC(B).
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simulations with different discretization and filtering
schemes (e.g., cubing the sphere as opposed to using
spherical harmonics), as well as long duration high reso-
lution simulations.
We have also ran short duration simulations of a variety

of perturbations of our final state. In doing so we found that
after initial transients decay, the hairy mode amplitudes
become approximately constant, just as seen in Fig. 4.
However, we have found that the associated constants are
sensitive to the perturbations and can differ by O(1) factors
from those seen in Fig. 4. Notably however, these solutions
have virtually identical horizon areas: all simulations
resulted in the same horizon area at order 1 part in 106.
This presumably reflects the fact that, as highlighted in
Fig. 5, the hair is localized near the boundary, meaning it
does not affect the near-horizon geometry.
It would clearly be of considerable value to study the

mode spectrum of black resonators. First, it would be
interesting to see how instabilities and decay rates of the
black resonator associated with our final state compare with
our numerical simulations. Second, it would be interesting
to compare our intermediate state to a black resonator.
While the spectrograms in Fig. 3 demonstrate that the
intermediate state is initially dominated by a single angular
velocity, Ω222, there are other modes appreciably excited
with different angular velocities. This observation alone
does not exclude the possibility that the intermediate state is
an excited black resonator. Indeed, far-from-equilibrium
black branes in AdS5 are well approximated by large
amplitude linear perturbations on top of a stationary
background [30]. To solidify the intuition that the inter-
mediate state is an approximate black resonator, it would be
useful to compare the black resonator spectrum to the
spectrum of decaying and growing modes seen during the
intermediate stage of our evolution. Finally, it would also
be interesting to understand why instabilities associated
with the intermediate state are strong, while none are visible
in our final state. At the boundary our intermediate state is
dominated by transverse modes whereas our final state is
dominated by longitudinal modes. It is possible that

instabilities associated with these two different types of
black resonators could be qualitatively different.
We have only studied evolution with a single set of

masses and spins. A natural question then is how generic
are our results? Is the resulting multioscillating black hole
always close to a black resonator? It is noteworthy that our
previous work, Ref. [21], which studied evolution with a
different mass and spin, resulted in jF 154j ∼ jF 122j during
the intermediate stage of the evolution. This suggests that it
is possible that the final state can be a multioscillating black
hole which is significantly different from a black resonator.
Simulating such a scenario likely requires higher resolution
and longer runtimes than the simulations presented in
this paper.
Finally, via AdS=CFT duality our results also have

interesting consequences for quantum field theory. First,
the existence of the AdS superradiant instability implies
that rotation invariance is spontaneously broken in the dual
field theory. This behavior evidently only occurs in small
systems, where there is are dual superradiant instabilities.
From field theory arguments alone, we do not know why
one should have expected this. Second, both sets initial
conditions studied in this paper yield evolution with
negative energy density. This was also found in
Ref. [21]. This indicates that the dual quantum field theory
state has exotic properties. Regions of negative energy
density have also been seen in the holographic models
studied in [34,39,46,47]. Finally, it is remarkable that the
system does not appear to approach a stationary configu-
ration despite having a large entropy. It would be interest-
ing to explore to what extent, if any, hairy black resonators
correspond to thermal states in the dual quantum field
theory. This should be possible using the methods devel-
oped in Refs. [48,49]. We leave this and many other
interesting question for future work.
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