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We study the asymptotically flat spacetime in Chern-Simons modified gravity and then gravitational
memory effects are considered in this work. If the Chern-Simons scalar does not directly couple with the
ordinary matter fields, there are also displacement, spin, and center-of-mass memory effects as in general
relativity. This is because the term of the action that violates the parity invariance is linear in the scalar field
but quadratic in the curvature tensor. This results in the parity violation occurring at the higher orders in the
inverse luminosity radius. Although there exists the Chern-Simons scalar field, interferometers, pulsar
timing arrays, and the Gaia mission are incapable of detecting its polarization, so the scalar field does not
induce any new memory effects that can be detected by interferometers or pulsar timing arrays. The
asymptotic symmetry group is also the extended Bondi-Metzner-Sachs group. The constraints on the
memory effects excited by the tensor modes are obtained as well.
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I. INTRODUCTION

The gravitational memory effect is an intriguing phe-
nomenon, which often refers to the lasting change in the
relative distance between test particles after the gravita-
tional wave disappears. This effect, sometimes named
displacement memory, was first discovered in general
relativity nearly 50 years ago [1–4]. Recently, new memory
effects were identified, such as spin memory [5,6] and
center-of-mass (CM) memory [7]. They contribute to the
so-called subleading displacement memory, the permanent
change in the relative distance when the initial relative
velocity is nonzero. The spin memory effect also leads to
the difference in the periods of two counterorbiting mass-
less particles in a circular orbit [5]. Finally, there also exists
the velocity memory effect, which is just the lasting change
in the relative velocity between test particles [8–12]. All of
the above effects are characterized by the permanent
change in certain physical quantities, and similar phenom-
ena also occur in electromagnetism and Yang-Mills theory,
and more [13–15]. In this work, we will focus on the
memories in gravitation.
Memory effects are deeply related to the asymptotic

symmetries of the spacetime. In the case of the asymp-
totically flat spacetime, the memory effects usually

considered take place near the (future) null infinity [16],
at which null geodesics eventually arrive. The asymptotic
symmetries are diffeomorphisms that, roughly speaking,
preserve the geometry of the null infinity [17]. Studies have
shown that the asymptotic symmetries include the super-
translation symmetries and the Lorentz symmetries [18,19].
They together form the so-called Bondi-Metzner-Sachs
(BMS) group, which is an infinite dimensional group,
generalizing the Poincaré group. Supertranslations are
certain generalizations of the usual translations, while
Lorentz transformations are actually the conformal trans-
formations on a unit two-sphere generated by the global
conformal Killing vector fields. New works have extended
the BMS group by allowing the conformal Killing vectors
to have isolated singularities on the two-sphere [20,21], or
by replacing Lorentz transformations by all of the diffeo-
morphisms on the two-sphere [22,23]. The former gives
rises to the extended BMS group, and the latter might suffer
from the diverging symplectic current [24], so it will not be
considered in this work.
Because of the supertranslation symmetry, there are

infinitely many degenerate vacuum states in the gravity
sector that can be transformed into each other via the
supertranslation transformations. The vacuum transition
explains the displacement memory effect [25]. The
displacement memory is also constrained by the flux-
balance laws associated with the supertranslations.
Similar constraints can be found for spin and CMmemories.
In particular, flux-balance laws associated with the
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superrotations [26] constrain the spin memory effect, while
flux-balance laws with the superboosts [27] constrain the
CMmemory effect. These flux-balance laws play important
roles in the determination of the strength of the memory
effect and thus its observation. The detection of gravitational
waves [28–31] not only proved the existence of gravitational
waves, but also made it possible to observe the memory
effect. Indeed, ground-based interferometers such as aLIGO
could detect memories [32–37]. They can also be measured
by pulsar timing arrays [38,39] and the Gaia mission [40].
The spin memory effect is observable by LISA [5], but the
CMmemory is more difficult to be detected with the current
and even the planed detectors [7].
This is roughly what has happened in general relativity.

Although general relativity is a very successful theory [41],
it still suffers from some problems, such as its breakdown at
the singularity, the nonrenormalizability, dark matter and
dark energy, etc. To resolve at least some of these problems,
there have been a plethora of modified theories proposed.
Among them, Brans-Dicke theory [42] is the simplest,
which contains one extra gravitational degree of freedom,
the Brans-Dicke scalar field. Memory effects of this theory
have been studied in Refs. [43–47]. It was found out that in
addition to the memories already discovered in general
relativity, there also exits the one excited by the Brans-
Dicke scalar, dubbed S memory [48]. These memories
are also related to the asymptotic symmetries, and con-
strained by the corresponding flux-balance laws, although
S memory is more subtle [46]. Very interestingly, the
S memory effect can also be used to distinguish general
relativity from Brans-Dicke theory [48,49]. One thus
speculates that the study of the memory effect in modified
theories of gravity may help probe the nature of gravity.
In this work, memory effects in a different modified

gravity theory, Chern-Simons modified gravity [50,51],
will be studied. This theory also includes one extra
gravitational degree of freedom, called the Chern-Simons
scalar field, but it is a pseudoscalar. Thus the effects of
parity violation might take place. For example, in the
cosmological background, the gravitational wave might
experience the amplitude and the velocity birefringences
as predicted in a generic parity violating theory which
incorporates Chern-Simons gravity as a special case
[52–54]. Indeed, Chern-Simons gravity predicts that the
left-handed and the right-handed (tensor) gravitational
waves propagate at different damping rates—the amplitude
birefringence—but they both travel at the speed of light.
With the Bondi-Sachs formalism [18,55,56], one can

obtain the metric and the scalar fields in the asymptotically
flat spacetime in this theory. We show that the metric
resembles the one in general relativity with a canonical
scalar field at the lower orders in the inverse of the
luminosity radius. The parity violating terms explicitly
appear at the higher orders. The asymptotic symmetries are
thus expected to be the same as the extended BMS

symmetries in general relativity [57]. There are also the
same memories induced by the tensor degrees of freedom.
Since the Chern-Simons scalar field is assumed not to
couple with the matter fields, interferometers, pulsar timing
arrays, and the Gaia mission are not capable of detecting its
memory effects even if they exist. Although in this work,
the conserved charges and fluxes will not be determined,
the constraints on memory effects can still be obtained
with the equations of motion.
This work is organized in the following way. Section II

briefly reviews Chern-Simons modified gravity. Section III
focuses on the asymptotically flat spacetime of this
theory. In particular, one first discusses the boundary
conditions that the metric and the scalar fields should
satisfy in Sec. III A, so that the asymptotic solutions can be
determined in Sec. III B. After that, the asymptotic sym-
metries are obtained in Sec. III C. Then, memory effects are
discussed in Sec. IV. These effects can be introduced via
solving the geodesic deviation equations in Sec. IVA. Then
memories are related to the vacuum transition in Sec. IV B.
Section IV C presents the constraints on memory effects
by integrating the equations of motion. Finally, a brief
summary in Sec. V concludes this work. Throughout this
paper, c ¼ 1. Most of the calculation was done with the
help of xAct [58].

II. CHERN-SIMONS MODIFIED GRAVITY

The action of Chern-Simons modified gravity is [51]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κRþ a

4
ϑRabcd

�Rbacd

−
b
2
∇aϑ∇aϑ − bVðϑÞ

�
þ Sm; ð1Þ

where κ ¼ 1=16πG, and a and b are all coupling constants.
Sm is the action for matter fields and does not depend
on ϑ:VðϑÞ is the potential for the Chern-Simons scalar ϑ.
Here, we consider the special case with VðϑÞ ¼ 0 so
that ϑ is massless. Then, the action acquires the shift
symmetry under the addition of a constant to ϑ. �Rbacd ¼
ϵcdefRba

ef=2 is the Hodge dual. The second term in the
action probably arises due to the gravitational anomaly of
the standard model of elementary particles [59,60], the
Green-Schwarz anomaly canceling mechanism in string
theory [61], or the scalarization of the Barbero-Immirzi
parameter in loop quantum gravity [62,63]. Because of the
presence of ϵabcd, ϑ is a pseudoscalar in order that the
action S is invariant under the parity transformation. If one
ignores the second term in the action, one obtains general
relativity with a canonical scalar field

ffiffiffi
b

p
ϑ. In this work,

we will not consider the matter action for simplicity.
This also causes us to assume that the matter fields
decay sufficiently fast as the distance to the source is
approaching infinity.
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The equations of motion are [51]

Rab −
1

2
gabRþ a

κ
Cab ¼

1

2κ
TðϑÞ
ab ; ð2Þ

∇a∇aϑ ¼ −
a
4b

Rabcd
�Rbacd: ð3Þ

Here, Cab is called the C-tensor, given by

Cab ¼ ð∇cϑÞϵcdeða∇eRbÞ
d þ ð∇c∇dϑÞ�RcðabÞd; ð4Þ

where ∇aϑ and ∇a∇bϑ are also called the Chern-Simons

velocity and acceleration, respectively [64]. TðϑÞ
ab is the

stress energy tensor of the Chern-Simons scalar,

TðϑÞ
ab ¼ b

�
∇aϑ∇bϑ −

1

2
gab∇cϑ∇cϑ

�
: ð5Þ

Since a and b are free, one may set a ≠ 0 and b ¼ 0. Then ϑ
should be prescribed by hand, and one is now in the
nondynamical framework. When neither a nor b is zero, ϑ
has its own dynamics. This framework is called dynamical.
In this paper, we work in the dynamical framework.
Chern-Simons gravity has many applications in astro-

physics, cosmology, and so on. Therefore, it is constrained
by astrophysical tests, solar system tests, and cosmological
observations. For example, the energy scale above which
the parity is violated arising from the Chern-Simons gravity
is at least 10−3 km−1 from the observation of the torque-
induced precession in the solar system [65]. The energy
scale beyond which the parity violation effect is strong was
found to be at least 33 meV from the binary pulsar
observation [66]. For more phenomenology and con-
straints, please refer to Ref. [51].

III. ASYMPTOTICALLY FLAT SPACETIMES

Roughly speaking, the asymptotically flat spacetime is
the one approaching the Minkowski spacetime at distances
very far away from the source of the gravity. In the
relativistic theory, there are three types of ways to approach
the infinity: along timelike, spacelike, or null directions.
For problems involving (massless) radiation, it is useful to
consider the spacetime region near the null infinity
approached by null geodesics. In general relativity, one
can define the so-called asymptotically flat spacetime at the
null infinity using the conformal completion technique
[16,67,68]. Or, one may also be able to impose certain
asymptotic behaviors of the metric or other fields near the
null infinity in a suitable coordinate system usually, Bondi-
Sachs coordinates ðu; r; x2 ¼ θ; x3 ¼ ϕÞ [18,21,55],

ds2 ¼ e2β
V
r
du2 − 2e2βdudr

þ hABðdxA −UAduÞðdxB −UBduÞ; ð6Þ

where β; V; UA, and hAB (A; B ¼ 2; 3) are six metric
functions. One can similarly define the asymptotically flat
spacetime in modified theories of gravity, for example,
Brans-Dicke theory [42], as done in Refs. [43–45]. Here,
for simplicity, we will assign suitable asymptotic behaviors
to the metric gab and the Chern-Simons scalar ϑ in Bondi-
Sachs coordinates in order to define the asymptotic flatness
in Chern-Simons gravity.

A. Boundary conditions

In general relativity, the boundary conditions for the
metric field in the asymptotically flat spacetime at null
infinity are given by [18,21,55]

guu ¼ −1þOðr−1Þ; ð7Þ

gur ¼ −1þOðr−2Þ; ð8Þ

guA ¼ Oð1Þ; ð9Þ

grr ¼ grA ¼ 0; ð10Þ

hAB ¼ r2γAB þOðrÞ; ð11Þ

where γAB is the round metric on a unit two-sphere,

γABdxAdxB ¼ dθ2 þ sin2 θdϕ2: ð12Þ

In addition, the determinant of hAB is required to be

detðhABÞ ¼ r4 sin2 θ; ð13Þ

so r is the luminosity radius [18,55]. In terms of the metric
functions, one can find out that [21]

β ¼ Oðr−1Þ; V ¼ −rþOðr0Þ; UA ¼ Oðr−2Þ:

For Chern-Simons gravity, one may propose different
boundary conditions. However, by examining Einstein’s
equations (2), one realizes that if one ignores the C-tensor
term, one knows that the equations describe a spacetime
sourced by a canonical scalar field, just as in general
relativity. Since near the null infinity, the spacetime resem-
bles the flat one, any deviation from the Minkowski metric
can be treated as the small perturbation. Then for the purpose
of determining the boundary conditions, it might be rea-
sonable to ignore the C-tensor term as it represents a higher
order term. Therefore, we just impose the same boundary
conditions on gab as in general relativity. In addition, one
also requires that ϑ ¼ ϑ0 þOð1Þ. The chosen boundary
conditions also imply that the parity violating effects would
be of the higher orders, as shown below.
Now, the asymptotic behaviors can be written down. One

expands the metric functions in the following way [57]:
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β ¼ β1
r
þ β2

r2
þ β3

r3
þO

�
1

r4

�
; ð14Þ

UA ¼ UA

r2
þ 1

r3

�
−
2

3
NA þ 1

16
DAðcBCcBCÞ

þ 1

2
cABDCcBC

�
þU A

r4
þO

�
1

r5

�
; ð15Þ

V ¼ −rþ 2mþ 2M
r

þO
�
1

r2

�
; ð16Þ

hAB ¼ r2γAB þ rcAB þ dAB þ eAB
r

þO
�
1

r2

�
: ð17Þ

Similarly, one has

ϑ ¼ ϑ0 þ
ϑ1
r
þ ϑ2

r2
þO

�
1

r3

�
: ð18Þ

In the above expansions, all the expansion coefficients are
functions of u and xA, and their indices are raised and
lowered by γAB and its inverse γAB, respectively. The
covariant derivative DA is the one compatible with γAB.
Among these coefficients, m and NA are called the Bondi
mass and angular momentum aspects as in general relativity,
respectively [18,55]. cAB is the shear tensor associated with
the outgoing null geodesic congruence. Because of the
determinant condition (13), one finds that [57]

cAB ¼ ĉAB; dAB ¼ d̂AB þ 1

4
γABcDCc

C
D; ð19Þ

eAB ¼ êAB þ 1

2
γABcDCd̂

C
D; ð20Þ

with the hatted tenors being traceless with respect to γAB.
Since the volume ϵabcd is present in the equations of

motion, its component form should be discussed. So first,
let ϵ̂AB be the volume element compatible with γAB, so then
one has

ϵ̂θϕ ¼ ffiffiffi
γ

p ¼ sin θ; ð21Þ

where γ is the determinant of γAB. Thus,

ϵurθϕ ¼ ffiffiffiffiffiffi
−g

p ¼ e2βr2
ffiffiffi
γ

p
: ð22Þ

So, both ϵabcd and ϵ̂AB have simple asymptotic behaviors.
With these boundary conditions (14)–(18) and (22), one

can check that C-tensor has the following asymptotic
behavior:

Cuu ¼Oðr−3Þ; Crr ¼Oðr−5Þ; CuA ¼Oðr−2Þ;
CrA¼Oðr−3Þ; CAB ¼Oðr−2Þ:

Therefore, the boundary condition of Cab is consistent
with the one in Ref. [57], which justifies the use of
Eqs. (14)–(18).

B. Asymptotic solutions

Given the chosen asymptotic behaviors, one can solve
the equations of motion by directly substituting asymptotic
expansions into the equations of motion to determine the
relations among the expansion coefficients. After some
complicated algebraic manipulations, one finds that ϑ0 is
constant, which can be set to zero due to the shift symmetry.
Furthermore, one obtains the following results:

β1 ¼ 0; ð23Þ

β2 ¼ −
1

32
cABcAB −

b
16κ

ϑ21; ð24Þ

β3 ¼ −
b
6κ

ϑ1ϑ2; ð25Þ

UA ¼ −
1

2
DBcAB; ð26Þ

6Mþ 3

16
cABcAB þDANA þ 3

4
DAcABDCcBC

þ 3b
8κ

ðϑ21 þDAϑ1D
Aϑ1 − ϑ1D

2ϑ1Þ ¼ 0; ð27Þ

d̂AB ¼ 0; ð28Þ

where D2 ¼ DAD
A. One also obtains the following evo-

lution equations:

_ϑ2 ¼ −
1

2
D2ϑ1; ð29Þ

_m ¼ 1

4
DADBNAB −

1

8
NABNAB −

b
4κ

N2; ð30Þ

_NA ¼ DAmþ 1

4
ðDBDADCcBC −DBD

BDCcCAÞ

þ 1

4
DCðNBCcABÞ þ

1

2
cABDCNBC

þ b
8κ

ðϑ1DAN − 3NDAϑ1Þ; ð31Þ

where the dot means to take the derivative ∂=∂u, and
NAB ¼ _cAB; N ¼ _ϑ1: ð32Þ

The equations for êAB and U A are way more complicated
and are relegated into the Appendix.
One can find out that cAB and ϑ1 have no evolution

equations, and all of the above equations are written in
terms of them and their derivatives. In fact, they represent
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the physical degrees of freedom of the theory as in Brans-
Dicke theory [43,44]. Since cAB is a symmetric and
traceless rank-2 tensor on the unit two-sphere, there are
three degrees of freedom in this theory. Like in general
relativity and Brans-Dicke theory [18,43,44,55], the van-
ishing of NAB and N means the absence of gravita-
tional waves.
From the above expressions, one also finds out that up to

the orders considered in Eqs. (14)–(18) and ignoring the
equations in the Appendix, the asymptotically flat space-
time at the null infinity looks just like the one in general
relativity with a canonical scalar field

ffiffiffi
b

p
ϑ, which couples

with the metric gab minimally [57]. The nonminimal
coupling between ϑ and gab occurs in those equations in
the Appendix, and, of course, terms at even higher orders.
Because of the complicated forms of the higher order
equations, none of them will be presented here. Note the
appearance of ϵ̂AB in Eqs. (A1)–(A3), which represents the
parity violation effect.
In the end, for the purpose of reference, we present the

remaining metric components,

guu ¼−1þ2m
r
−
1

r2

�
DANA

3
þ b
8κ

ðDAϑ1D
Aϑ1−ϑ1D

2ϑ1Þ
�

þO
�
1

r3

�
; ð33Þ

gur ¼−1þ 1

r2

�
cABcAB

16
þ b
8κ

ϑ21

�
þ b
3κr3

ϑ1ϑ2þO
�
1

r4

�
;

ð34Þ

guA ¼ DBcBA
2

þ 1

r

�
2

3
NA −

1

8
cBCDAcBC

�

−
1

r2

�
U A −

2

3
cABNB þ 1

8
ðcDCcCDDBcBA

þ 1

2
cBAc

D
CDBcCDÞ

�
þO

�
1

r3

�
: ð35Þ

In these expressions, the parity violating terms explicitly
appear at the 1=r2 order in guA due to the presence of U A
which is given by Eq. (A1) and contains ϵ̂AB.

C. Asymptotic symmetries

Due to the similarity mentioned previously, many con-
clusions valid in general relativity also hold in Chern-
Simons gravity. In particular, the asymptotic symmetries
are actually the same. This is due to the fact that the
asymptotic symmetries are diffeomorphisms that preserve
the boundary conditions Eqs. (7)–(11) and the determinant
condition (13), and these conditions take exactly the same
forms as in general relativity [21]. So, let the vector field ξa

generate an infinitesimal asymptotic symmetry such that

Lξgrr ¼ LξgrA ¼ 0; ð36Þ

gABLξgAB ¼ 0; ð37Þ

Lξgur ¼ Oðr−1Þ; LξguA ¼ Oð1Þ; ð38Þ

LξgAB ¼ OðrÞ; ð39Þ

Lξguu ¼ Oðr−1Þ; ð40Þ

Lξϑ ¼ Oðr−1Þ: ð41Þ

Like in general relativity and Brans-Dicke theory [21,43],
ξa has the following components:

ξu ¼ fðu; xAÞ; ð42Þ

ξA ¼ YAðu; xAÞ − ðDBfÞ
Z

∞

r
e2βgABdr0; ð43Þ

ξr ¼ r
2
ðUADAf −DAξ

AÞ; ð44Þ

where f and YA are arbitrary integration functions inde-
pendent of r. These components are obtained by evaluating
Eqs. (36) and (37). Using the asymptotic expansions of the
metric functions and the scalar field, one knows that

ξA ¼ YA −
DAf
r

þ cABDBf
2r2

−
1

r3

�
cCBc

B
C

16
−

b
24κ

ϑ21

�
DAf þO

�
1

r4

�
; ð45Þ

ξr ¼ −
r
2
ψ þ 1

2
D2f −

1

2r

�
ðDAfÞDBcAB þ 1

2
cABDADBf

�

þO
�
1

r2

�
: ð46Þ

Again, the parity violating terms are of the higher
orders. The remaining conditions imply that YA is actually
independent of u and is a conformal Killing vector field for
γAB, i.e.,

L YγAB ¼ ψγAB; ψ ¼ DAYA: ð47Þ

Finally, one also finds out that there exists an arbitrary
function αðxAÞ independent of u such that

f ¼ αþ u
2
ψ : ð48Þ

These two equations take the same forms as in general
relativity and Brans-Dicke theory. Therefore, one calls the
diffeomorphisms generated by α supertranslations, general-
izing the familiar translations in Minkowski spacetime.

ASYMPTOTIC ANALYSIS OF CHERN-SIMONS MODIFIED … PHYS. REV. D 105, 024025 (2022)

024025-5



In fact, if α is a linear combination of l ¼ 0, 1 spherical
harmonics, it generates the usual space and time translation.
A generic supertranslation is given by a linear combination
of all spherical harmonics. The transformations generated
by the global conformal Killing vector fields YA form a
group isomorphic to the Lorentz group. One can rewrite YA

in the following way:

YA ¼ DAχ þ ϵ̂ABDBσ; ð49Þ
with χ and σ linear combinations of l ¼ 1 spherical
harmonics, and then χ generates boost and σ generates
(spatial) rotation [57]. The semidirect sum of the super-
translation group and the Lorentz group is the celebrated
BMS group [18,19]. One can also choose to work in
complex stereographic coordinates ðζ; ζ̄Þ, where ζ ¼
eiϕ cotðθ=2Þ and bar means to take the complex conjuga-
tion. Then, Eq. (47) becomes ∂ζY ζ̄ ¼ ∂ ζ̄Y

ζ ¼ 0, so Yζ ¼
YζðζÞ and Y ζ̄ ¼ Y ζ̄ðζ̄Þ. One usually chooses the following
bases for YA [69]:

ln ¼ −ζnþ1∂ζ; l̄n ¼ −ζ̄nþ1∂ ζ̄; ð50Þ

where n are integers, in general. A global conformal Killing
vector field is a linear combination of l−1; l0; l1 and
l̄−1; l̄0; l̄1. If one allows all conformal Killing vectors,
i.e., n takes all integral values, the Lorentz algebra is
extended to the Virasoro algebra, and the resultant sym-
metry group is called the extended BMS group [57].
Superboosts and superrotations, generalizations of boosts
and rotations, are just the linear combinations of ln and l̄n
for any integers n. For completeness, the supertranslation
generator α is a linear combination of 2ζnζ̄n̄=ð1þ ζζ̄Þ
where n; n̄ are both integers [21]. When n; n̄ ¼ 0, 1, one
obtains the generators for the usual translations.
Therefore, the extended BMS transformation takes the

Bondi-Sachs coordinate system into a new Bondi-Sachs
coordinate system. A particular Bondi-Sachs coordinate
system is called a BMS frame. Under the asymptotic
symmetry transformation generated by ξa, a BMS frame
is transformed to a new one, and the metric gab and the
scalar field ϑ transform according to δξgab ¼ L ξgab and
δξϑ ¼ L ξϑ, respectively. Therefore, one obtains following
transformation laws:

δξϑ1 ¼ fN þ ψ

2
ϑ1 þL Yϑ1; ð51Þ

δξcAB¼ fNAB−2DADBfþ γABD
2fþL YcAB−

ψ

2
cAB;

ð52Þ

δξm ¼ f _mþL Ymþ 3

2
ψmþ 1

8
cABDADBψ

þ 1

4
NABDADBf þ 1

2
ðDAfÞDBNAB; ð53Þ

δξNA ¼ f _NA þL YNA þ ψNA þ 3mDAf

þ 3

4
ðDADCcCB −DBDCcCAÞDBf

þ 3

4
cACNBCDBf þ b

8κ

�
ϑ1NDAf −

1

2
ϑ21DAψ

�
;

ð54Þ

where the symbol L Y is to take the Lie derivative on the
unit two-sphere. Then, the news tensor NAB and the scalar
N transform according to

δξNAB ¼ f _NAB þL YNAB; ð55Þ

δξN ¼ f _N þ ψN þL YN: ð56Þ

From the last two equations, one knows that if there are no
gravitational waves in a certain region of the future null
infinity in one BMS frame, i.e., NAB ¼ 0 ¼ N, these two
quantities still vanish in a different BMS frame.

IV. MEMORY EFFECTS

Memory effects generally refer to the permanent change
in the relative distance between two test particles after the
passage of gravitational waves [1–4]. This particular
phenomenon is also called the displacement memory, as
there were new memory effects discovered more recently.
Among them, spin memory effect and CM memory effect
[5,7] will also be considered in this work. In the following,
these effects will be presented by considering the relative
motion between test particles due to the presence of
gravitational waves.

A. Geodesic deviation

Since in Sec. II one assumes there is no direct interaction
between ϑ and the ordinary matter fields, the relative
acceleration of two test particles is simply due to the
spacetime curvature [16],

Tc∇cðTb∇bSaÞ ¼ −Rcbd
aTcSbTd; ð57Þ

where Ta ¼ ðd=dτÞ is the four-velocity of a freely falling
test particle with τ being the proper time, and where Sa is
the deviation vector between adjacent test particles. This is
just the geodesic deviation equation, and it is used to detect
gravitational waves by interferometers [70]. Applying this
equation to the test particles near the null infinity of the
spacetime considered in the previous section, one obtains
the following relative acceleration [71]:

S̈Â ≈ −RuB̂u
ÂSB̂ ¼ c̈Â

B̂

2r
SB̂ þO

�
1

r2

�
: ð58Þ
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Here, in writing down this equation, one actually sets up an
orthonormal tetrad basis which contains basic vectors

Ta ¼ ð∂uÞa þOð1=rÞ;
ðer̂Þa ¼ −ð∂uÞa þ ð∂rÞa þOð1=rÞ;
ðeθ̂Þa ¼ r−1ð∂=∂θÞa þOð1=r2Þ;
ðeϕ̂Þa ¼ ðr sin θÞ−1ð∂=∂ϕÞa þOð1=r2Þ;

so that the indices Â; B̂ ¼ θ̂; ϕ̂. Also, the proper time τ
approaches the retarded u as the test particles are close to
the null infinity [25]. From Eq. (58), one can find that
although there are three gravitational degrees of freedom in
Chern-Simons gravity, the interferometer can detect only
two of them, i.e., the plus and cross polarizations. This is
drastically different from the situations in other modified
gravities, where each gravitational degree of freedom
would excite its own polarizations that can be detected
by interferometers, pulsar timing arrays, and the Gaia
mission [72–76]. For example, in scalar-tensor theories,
there exists an extra polarization named breathing mode if
the scalar field is massless [41,77,78].
Using the geodesic deviation equation, one can introduce

memory effects. Let us assume that there is no gravitational
wave before u0 and after uf, during which NÂ B̂ ¼ 0 and
N ¼ 0. These spacetime regions are said to be nonradiative.
Then, integrating this equation twice, one obtains

_SÂðuÞ ≈ _SÂ0 þ 1

2r

Z
u

u0

du0c̈Â
B̂
SB̂ðu0Þ; ð59Þ

SÂðuÞ ≈ SÂ0 þ ðu − u0Þ _SÂ0
þ 1

2r

Z
u

u0

du0
Z

u0

u0

du00c̈Â
B̂
SB̂ðu00Þ; ð60Þ

where _SÂ0 and SÂ0 are the initial relative velocity and the
initial relative displacement, respectively. Substituting
Eq. (60) back into itself and Eq. (59), one finds the
following total changes at the time u > uf:

Δ _SÂ ≈ −
ΔcÂ B̂

2r
_SB̂0 ; ð61Þ

ΔSÂ ≈ _S0ÂΔuþ ΔcÂ B̂

2r
SB̂0

þ 1

r

�
cÂ B̂ðufÞ þ cÂ B̂ðu0Þ

2
Δu − ΔCÂ B̂

�
_SB̂0 ; ð62Þ

where Δu ¼ uf − u0, ΔcÂ B̂ ¼ cÂ B̂ðufÞ − cÂ B̂ðu0Þ, and

ΔCÂ B̂ ¼
Z

uf

u0

cÂ B̂ðuÞdu: ð63Þ

Equation (62) takes a different form from (4.17) in [44] and
(2.23) in [46] with the effect of the Brans-Dicke scalar field
ignored, but they are all equivalent.
From the above equations, one realizes that as long as

there exists the relative velocity and displacement initially,
the final relative velocity and displacement will change
permanently even after the gravitational wave disappears.
This phenomenon is the memory effect. More specifically,
Eq. (61) describes the velocity kick memory [79], and
Eq. (62) is the displacement memory. In particular, the
second term on the right-hand side of Eq. (62) is the leading
displacement memory effect, the first memory effect
discovered a long time ago [1–4]. Both the velocity kick
and the leading displacement memories are due to the
change in cÂ B̂. The second line of Eq. (62) is the
subleading displacement memory, which also depends
on ΔCÂ B̂, the time integral of cÂ B̂. In fact, the electric
and magnetic parts of ΔCÂ B̂ are related to the spin and CM
memory effects, as discussed below [44,45,57]. The sub-
leading displacement memory was also studied in
Refs. [80,81] within the framework of general relativity.
As revealed in Eq. (58), the interferometer cannot detect

the scalar gravitational wave polarization caused by ϑ, so it
cannot measure the memory due to ϑ even if it exists. In
fact, one cannot use pulsar timing arrays or the Gaia
mission to detect the scalar memories, either. In addition,
the proper description of the scalar memory effect might
rely on the dual formalism of scalar fields [46,82–84],
which is beyond the scope of this work. So here, the scalar
memory effect will not be discussed.

B. Vacuum transitions

Using the transformation law (53), one can relate
the velocity kick and the leading displacement memory
effects to vacuum transitions of the gravitational system at
the null infinity [25,43], as they both depend on ΔcAB. The
definition of the vacuum state in gravitational systems
is not trivial. Although it is easy to understand that
in a vacuum state, N ¼ 0, i.e., there is no scalar gravita-
tional wave, it is a little more involved to determine the
correct conditions for cAB. Here, one would impose
the same conditions as in general relativity [25,43]. So
one first needs the following Newman-Penrose tetrad basis
fla; na;ma; m̄ag [85]:

la ¼ ð∂rÞa þOðr−1Þ; ð64Þ

na ¼ −ð∂uÞa þ
1

2
ð∂rÞa þOðr−1Þ; ð65Þ

ma ¼ 1ffiffiffi
2

p
r
½ð∂θÞa − i csc θð∂ϕÞa� þO

�
1

r2

�
; ð66Þ

and m̄a is the complex conjugate of ma. Then one requires
that the following Newman-Penrose variables vanish at the
leading order:
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Ψ4 ¼ Cabcdnam̄bncm̄d ¼ −
r
2
∂uNABm̄Am̄B þ � � � ; ð67Þ

Ψ3 ¼ Cabcdm̄anblcnd ¼ −
1

2r
m̄ADBNB

A þ � � � ; ð68Þ

ℑΨ2 ¼ ℑðCabcdm̄anblcmdÞ

¼ 1

i8r
ðNC

AĉBC −DADCĉCB þDBDCĉCAÞ
× ðm̄AmB −mAm̄BÞ þ � � � ; ð69Þ

where dots represent higher order terms, and ℑ is to take the
imaginary part. Therefore, one knows that NAB ¼ 0 and

c̃AB ¼
�
DADB −

1

2
γABD

2

�
ΦðxCÞ; ð70Þ

for some arbitrary function Φ on the unit two-sphere. Here,
a tilde means to evaluate cAB in the vacuum state.
To find the relation between the memory effect and

the vacuum transition, it is sufficient to rewrite Eq. (53) in
the nonradiative region, and in particular, to consider the
supertranslation transformation generated by α as

δαc̃AB ¼ −2DADBαþ γABD
2α: ð71Þ

This implies that the transformed cAB still describes a
vacuum state c̃0AB with Φ0 ¼ Φ − 2α. Just like in general
relativity and Brans-Dicke theory [25,43], there are also
infinitely many degenerate vacuum states that can be
transformed to each other via supertranslations. The vac-
uum transition causes the change in cAB,

ΔcAB ¼
�
DADB −

1

2
γABD

2

�
ΔΦ ¼ δαc̃AB; ð72Þ

which explains the velocity kick and the leading order
displacement memories.

C. Constraints on memory effects

From the above discussion, one knows that memory
effects are related to ΔcAB and CAB. These two quantities
are constrained by conservation laws associated with the
extended BMS symmetries [44,45,57,71]. To determine the
constraints requires us to calculate the conserved charges
and the fluxes using certain formalisms such as the one in
Ref. [86], which is very involved and will be done in a
subsequent paper. In fact, there is a second method to
constraining memory effects by properly integrating the
evolution equations (30) and (31) [43].
First, substituting cAB ¼ ðDADB − 1

2
γABD

2ÞΦþ
ϵ̂CðADBÞDCΨ into the first NAB in Eq. (30), multiplying
both sides by an arbitrary supertranslation generator α,
and integrating the resulting equation over the null infinity,
one obtains

I
d2ΩαD2ðD2þ2ÞΔΦ

¼
I

d2Ω
�
αΔmþ

Z
uf

u0

duα

�
NABNABþ2b

κ
N2

��
; ð73Þ

where d2Ω ¼ sin θdθdϕ. This gives the constraint on the
velocity kick and leading displacement memory effects. In
fact, one could guess from the form of the equation that the
terms in the square brackets are proportional to the energy
density of the tensor and the scalar gravitational waves. In
literature, these terms are said to cause the null memory,
and the one with Δm causes the ordinary memory [87].
Second, to obtain the constraints on the subleading

displacement memory, or on the spin and CM memories,
one might want to modify Eq. (31) in the following way:

∂uN̂A ¼ DAmþ 1

4
ϵ̂ABD

Bηþ 1

4
DAðcDCNC

DÞ

−
1

4
NC

DDAcDC −
1

4
ϵ̂ABD

Bρ

þ b
8κ

ðϑ1DAN − 3NDAϑ1Þ; ð74Þ

with N̂A ¼ NA − 3
32
DAðcCBcBCÞ − 1

4
cABDCcBC and ρ¼

ϵ̂ABNC
AcBC. Now, the equation is similar to Eq. (4.49) in

Ref. [21] in general relativity, neglecting the last line here
and setting l ¼ 0 and R̄ ¼ 2 there. Then it is easy to
determine the constraint on the spin memory which is
measured by [57]

ΔS ¼
Z

uf

u0

duΨ: ð75Þ

That is, one can contract both sides by ϵ̂ABDBσ, which is
the magnetic parity of YA [refer to Eq. (49)], then perform
the integral over the null infinity to arrive at

I
d2ΩσD2D2ðD2 þ 2ÞΔS

¼ −
I

d2Ω
�
σϵ̂ABDAΔN̂B

þ
Z

uf

u0

duσ
�
1

4
D2ρ − ϵ̂ABDAJB

��
; ð76Þ

where ΔN̂A ¼ N̂AðufÞ − N̂Aðu0Þ and

JA ¼ 1

4
NC

DDAcDC þ b
2κ

NDAϑ1: ð77Þ

Formally, JA is proportional to the angular momentum flux
density of the tensor and the scalar gravitational waves. In
the end, one tries to obtain the constraint on the CM
memory [7]. This is a bit more complicated. One should
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notice that the operatorD2ðD2 þ 2Þ on the left-hand side of
Eq. (73) is linear, so one can split Φ into two parts, Φ ¼
Φo þΦn so that ΔΦo is caused by Δm, and ΔΦn is caused
by the remaining parts on the right-hand side of Eq. (73).
Since Eq. (73) comes from the evolution equation (30), one
may identify the following relation:

_m ¼ 1

8
D2ðD2 þ 2Þ _Φo; ð78Þ

because DADBNAB ¼ D2ðD2 þ 2Þ _Φ=2. Now, choose
YA ¼ DAχ, i.e., the electric parity part. The infinitesimal
extended BMS transformation generated by this YA has
f ¼ uψ=2 ¼ uD2χ=2, according to Eq. (48). Multiplying
Eq. (78) by f, contracting Eq. (74) by DAχ, and combining
the results properly, one obtainsI

d2ΩχD2D2ðD2þ2ÞΔK

¼
I

d2Ωχ
�
8Δ½uD2m−DAN̂A�

þ
Z

uf

u0

du

�
D2

�
2cBAN

A
Bþ

b
κ
ϑ1N

�
−8DAJA

��
; ð79Þ

where the CM memory is quantified by

ΔK ¼
Z

uf

u0

u _Φodu: ð80Þ

Note that in Eqs. (76) and (79), both σ and χ are arbitrary
functions on the unit two-sphere, not just linear combina-
tions of l ¼ 1 spherical harmonics. As a final remark, one
notices that

ΔCAB ¼
�
DADB −

1

2
γABD

2

�
½ufΔΦþΦðu0ÞΔu

− ΔL − ΔK� þ ϵ̂CðADBÞDCΔS; ð81Þ

where ΔL ¼ R uf
u0 u _Φndu. By putting Eq. (78) into Eq. (79),

multiplying the resultant equation by uωðxAÞ with ω being
any function on the two-sphere, and performing the
integral, one gets

I
d2ΩωD2ðD2 þ 2ÞΔL

¼
Z

uf

u0

du
I

d2Ωω
�
NB

AN
A
B þ 2b

κ
N2

�
: ð82Þ

Therefore, in a certain sense, the constraints on the spin and
the CMmemories also give the constraint on the subleading
displacement memory.
To summarize, here, one properly integrates the evolu-

tion equations (30) and (31) multiplied by generators of the
extended BMS transformations, then the constraints on
various memory effects are determined. Usually, these

constraints are expressed as fluxes and charges associated
with the extended BMS symmetry [44,45,71,88]. So in
principle, one can identify those charges and fluxes in the
above constraint equations. However, we will not do that
here. Instead, the conserved charges and fluxes will be
computed in a future work.

V. CONCLUSION

This work discusses the asymptotically flat spacetime
using Bondi-Sachs formalism and reveals memory effects
predicted by the dynamical Chern-Simons gravity. Like in
general relativity and Brans-Dicke theory, the tensor
gravitational degrees of freedom induce exactly the same
kinds of memory effects. That is, there are displacement,
spin and CM memories. The asymptotic symmetries of the
spacetime are also the extended BMS symmetries, and they
are related to these memories just like what happens in
general relativity and Brans-Dicke theory. So the displace-
ment memory is related to the supertranslation transforma-
tion and the vacuum transition can be used to explain this
effect. It is constrained by Eq. (73), where there are terms
proportional to the energy densities of the tensor and scalar
radiation, one of the conserved charges associated with
supertranslations. The spin memory is constrained by
Eq. (76) and the CM memory by Eq. (79). Both equations
contain derivatives of JA which is proportional to the
angular momentum density and associated with the super-
boosts and superrotations in the extended BMS group.
Although there is one more gravitational degree of

freedom—the Chern-Simons scalar field—it does not excite
memory effects that can bedetected by interferometers, pulsar
timing arrays or the Gaia mission, due to the nonminimal
interaction between it and the metric, and the absence of the
direct coupling with the ordinary matter fields. A similar
situation would happen in more general parity violating
theories, whose additional corrections are also of higher
orders [52–54]. However, it should have its own memory
effects, the analysis ofwhich should rely on some proper dual
formalism that will be proposed in the future.
Besides Brans-Dicke theory and Chern-Simons gravity,

there are more interesting modified theories of gravity, such
as Einstein-æ ther theory [89,90], Hořava-Lifshitz gravity
[91], and so on. The local Lorentz invariance is broken in
these theories, and gravitational waves might have super-
luminal speeds [74,75]. Moreover, each degree of freedom
excites its polarization that might be detected. Whether
there exist memories in these theories is to be answered.
Hopefully, the memory effect can be a new tool to tell the
nature of gravity.
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APPENDIX: SOME EXPANSION
COEFFICIENTS

In this Appendix, we will write down the equations for
the remaining expansion coefficients of the metric func-
tions. First, one has the equation for U A appearing in
Eq. (16) [92],

U A ¼ 1

2
cABNB þ 3

4
DBêBA −

7

64
DBðcBAcDCcCDÞ −

cDCc
C
D

16
DBcBA þ b

6κ

�
3ϑ1
16

DBcBA þ ϑ1DAϑ2−
1

2
ϑ2DAϑ1

�

þ a
4κ

½ϵ̂ABDCðϑ1NC
BÞ − ϵ̂A

BNDCcCB − ϵ̂BC∂uðϑ1DBcACÞ þ ϵ̂BCNACDBϑ1�: ðA1Þ

The evolution equation for êAB is [7,92]

_̂eAB¼
1

2
mcABþ

1

4
cABcCDNCDþ1

6
ð2D ðANBÞ−γABDCNCÞþ a

2κ
ϑ1ϵ̂ðAC _NBÞC−

1

8

�
DADB−

1

2
γABD

2

�
ðcCDcCDÞ

−
1

8

�
DAcDCDBcCD−

1

2
γABDCcEDD

CcDE

�
−
3

8
DCð2cCDD ðAcBÞD−γABcCDDEcEDÞ−

1

4
ðcCðADCDDcBÞD−cCDDDD ðAcBÞCÞ

−
3

8
cABDCDDcCDþ

1

4
DCDDðcABcCDÞ−

1

4
ðDCcCADDcDB þDCcDADDcCB−DCcDAD

CcBDÞ

−
b
8κ

�
DAϑ1DBϑ1−ϑ1DADBϑ1−

1

2
γABðDCϑ1D

Cϑ1−ϑ1D
2ϑ1Þ

�
; ðA2Þ

and the evolution equation for U A is

_U A ¼
NA

3
þ1

6
ðD2NA−DBDANBÞþ∂uðcABNBÞ

2
þDBðmcBAÞ

2
−
DB

_̂eBA
4

−DAM−
cBCDAcBC

16
þcABDCcBC

2

þ1

4
cBCDCDDD ½AcDB�−

1

4
DBcCADDD ½BcDC�−

1

4
DBcBCDDDCcDA þ 1

64
∂u½cBADBðcDCcCDÞ�−

1

8
DBðNB

Ac
D
Cc

C
DÞ

−
3

64
∂uðcDCcCDDBcBAÞþ

b
6κ

�
ϑ1DAD

2ϑ1
4

−
DAϑ1
2

D2ϑ1þNDAϑ2−
ϑ2DAN

2
þ3∂uðϑ21DBcBAÞ

16

�

−
a
4κ

�
ϵ̂A

C

�
NDBNB

Cþ
NB

CDBN
2

− _NB
CDBϑ1−

_NDBcBC
2

�
− ϵ̂BC

�
NDBNAC−

1

2
NACDBN− _NACDBϑ1þ

_NDBcAC
2

��
;

ðA3Þ

where Eqs. (A2) and (23) have not been substituted into the above one, otherwise the expression would be much more
complicated.
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