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We study gravitational lensing by a generic extended mass distribution. For that, we consider the
diffraction of electromagnetic waves by an extended, weakly aspherical, gravitating object. We account for
the static gravitational field of such a lens by representing its exterior potential in the most generic form,
expressed via an infinite set of symmetric trace free (STF) tensor multipole mass moments. This yields the
most general form of the gravitational phase shift, which allows for a comprehensive description of the
optical properties of a generic gravitational lens. We found that at each order of the STF moments,
the gravitational phase shift is characterized by only two parameters: a magnitude and a rotation angle that
characterize the corresponding caustics, which form in the point spread function of the lens. Both of these
parameters are uniquely expressed in terms of the transverse-trace free (TT) projections of the multipole
moments on the lens plane. Not only does this result simplify the development of physically consistent
models of realistic lenses, it also drastically reduces the number of required parameters in the ultimate
model. To help with the interpretation of the results, we established the correspondence of the gravitational
phase shift expressed via the TT-projected STF multipole mass moments and its representation via
spherical harmonics. For axisymmetric mass distributions, the new results are consistent with those that we
obtained in previous studies. For arbitrary mass distributions, our results are novel and offer new insight
into gravitational lensing by realistic astrophysical systems. These findings are discussed in the context of
ongoing astrophysical gravitational lensing investigations as well as observations that are planned with the
solar gravitational lens.
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I. INTRODUCTION

Efforts to describe gravitational lensing are often limited
to spherically symmetric gravitational fields, where the
source of the field is a pointlike, structureless monopole.
While this approximation works well in cases of lensing
that involve compact lenses and large impact parameters,
realistic astrophysical lenses are extended objects with
complex structures that are not well approximated by a
point-mass representation. Despite the importance of going
beyond the point-mass approximation (or that of a
Schwarzschild lens), attempts to describe extended gravi-
tational lenses are few in number. They often utilize the
geometric optics approximation, which yields divergent
light amplification at the caustics of the lens. The presence
of caustics, which is a distinguishing feature of extended
lenses, requires a wave-optical treatment. Until recently,
such a treatment was not readily available in the literature.
To address this need, while investigating the solar

gravitational lens (SGL) [1], we developed an approach
to study the optical properties of a generic extended
gravitational lens [2]. We considered the propagation of
a high-frequency electromagnetic (EM) wave in the vicinity
of an extended gravitating body. Using the Mie theory,

together with the eikonal approximation, we solved the
Maxwell equations on the background of a static gravita-
tional field, while working within the first post-Newtonian
approximation of the general theory of relativity. We
developed a new approach, called the angular eikonal
method, that allows us to study the diffraction pattern
formed in the image plane by EM radiation that passed
through the gravitational field in proximity to an extended
gravitating object.
Our solution is valid for a generic gravitational field. The

field is characterized by an infinite set of multipole
moments. Aiming at the potential practical applications
of the SGL for resolved imaging of faint distant objects
(such as distant exoplanets), we considered, in particular,
axisymmetric gravitational fields, such as the gravitational
field of the Sun. In this case, the Newtonian gravitational
potential is characterized by an infinite set of zonal
harmonics. We observed how these harmonics contribute
to the diffraction pattern of the EM field, modifying the
optical properties of the lens. The presence of gravitational
multipoles results in the formation of caustics in the point-
spread function (PSF) [2,3]. It also affects images formed in
the focal plane of an imaging telescope [4].
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In Refs. [2,5] we found the solution to describe the EM
field in the image plane, divided into various regions of
interest, including the regions of strong and weak inter-
ference and the region of geometric optics. For that, we
studied an optically opaque lens with an arbitrary axially
symmetric mass distribution, such as a large rotating star or
distant, compact spiral and elliptical galaxies. We have
shown that deviations from spherical symmetry in the
gravitational field of the lens are relevant only in the strong
interference region of the lens in close vicinity to its
primary optical axis (a line connecting the center of the
target and that of the lens) (see Fig. 1). Such asphericity
leads to the appearance of caustics of various order in the
PSF of the lens. In the two remaining regions, the optical
properties of the lens are consistent with those of a point
mass [1,6–9]. Hence, to capture the most interesting lensing
behavior by a generic lens, we focus on the strong
interference region.
As we have shown in [2] (see Appendix B therein), the

new angular eikonal method can be extended to describe
lensing by a generic extended lens, with a gravitational
field that is sourced by a mass distribution that is given in
the form of symmetric trace-free (STF) tensor moments.
Representing the gravitational potential of an extended
gravitating body in terms of STF tensors is equivalent to the
spherical harmonics representation. The advantage of using
STF moments is that they allow us to derive the gravita-
tional phase shift in the generic case for arbitrary mass
distributions, thus generalizing our previous results for
axisymmetric bodies. Recognizing the value of such a
major modeling improvement, there is strong motivation
to further develop this approach and demonstrate its value
for practical applications. This is the purpose of our
present paper.
This paper organized as follows: In Sec. II we summarize

the solution for the EM field that was obtained on the
background of a gravitational field with a generic mass
distribution. We also discuss the angular eikonal method
that can be used to study the optical properties of a lens. In
Sec. III we consider lensing by bodies of arbitrary compo-
sition, with their static gravitational fields represented by
STF tensor mass multipole moments. We derive the eikonal
gravitational phase shift and discuss the optical properties
of a generic gravitational lens. We compute results for

several low order moments. In Sec. IV we generalize the
results to describe gravitational lensing using the entire
infinite set of the STF multipole moments. In Sec. V we
discuss results and outline the next steps in our inves-
tigation. To streamline the main text, we moved some
computational details to the appendixes. Appendix A
presents the lowest order STF moments. The correspon-
dence between STF moments and spherical harmonics
is shown in Appendix B. In Appendix C we compute
specific derivatives with respect to the vector impact
parameter. Appendix D introduces the projection operators.
Polarization matrices of the corresponding order are shown
in Appendix E. Finally, the situation of light propagating at
large impact parameter with respect to a quadrupolar lens is
briefly explored in Appendix F.

II. OPTICAL PROPERTIES OF
AN EXTENDED LENS

We consider an isolated extended mass distribution,
acting as a gravitational lens. To characterize the gravita-
tional field of a generic lens, following [1,2], we use a static
harmonic metric in the first post-Newtonian approximation
of the general theory of relativity. The line element for this
metric in lens-centric spherical coordinates ðr; θ;ϕÞ, to the
accuracy sufficient to describe light propagation in a weak
gravitational field [10], may be given as

ds2 ¼ ð1þ c−2UþOðc−4ÞÞ−2c2dt2
− ð1þ c−2UþOðc−4ÞÞ2ðdr2þ r2ðdθ2þ sin2 θdϕ2ÞÞ;

ð1Þ

where the Newtonian potential, U, generated by the mass
density ρðrÞ characterizing the source, is given as usual:

UðrÞ ¼ G
Z

ρðr0Þd3r0
jr − r0j : ð2Þ

We study the propagation of a high-frequency plane EM
wave [i.e., neglecting terms∝ ðkrÞ−1, where k ¼ 2π=λ is the
wave number and λ is the wavelength] in the vicinity of the
lens. The high-frequency approximation was justified and
used in [1,2,8] to allow treatment of the Maxwell equations
on the background of (1) and (2). Defining the object’s
Schwarzschild radius as rg ¼ 2GM=c2, where M is the
object’smasswith λ=rg ≪ 1, andR is the object’s radiuswith
rg=R ≪ 1, we assume that the wave is emitted by a point
source that is located at a large distance r0 from the lens, so
rg=r0 ≪ 1, and it is received in an image plane also located at
a large distance r from the lens, such that rg=r ≪ 1.

A. Notations and lensing geometry

Before summarizing the solution derived in [2], we need
to present the geometry of the problem and introduce our

FIG. 1. The different optical regions of the SGL (adapted
from [6]).
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basic notations. Following [1,2], we represent the incident
(unperturbed) trajectory of a light ray as

rðtÞ ¼ r0 þ kcðt − t0Þ þOðrgÞ; ð3Þ

where k is a unit vector in the incident direction of the light
ray’s propagation path and r0 represents the starting point.
Next, we define b ¼ ½½k × r0� × k� as the impact parameter
of the unperturbed trajectory of the light ray.
We introduce the parameter τ ¼ τðtÞ along the path of

the light ray (see details in Appendix B in [1]):

τ ¼ ðk · rÞ ¼ ðk · r0Þ þ cðt − t0Þ; ð4Þ

which may be positive or negative. Note that τ ¼ z when
the z axis of the chosen Cartesian coordinate system is
oriented along the incident direction of the light ray. We can
see that the quantity τ ¼ r cosα evolves from a negative
value (representing a source at a large distance from the lens,
α ≃ π), through τ ¼ 0 (the shortest distance from the lens
where α ¼ π=2), to positive values (with α ≃ 0 at the image
plane.) The parameter τ allows us to rewrite (3) as

rðτÞ ¼ bþ kτ þOðrgÞ; with

krðτÞk≡ rðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðrgÞ: ð5Þ

We use a lens-centric cylindrical coordinate system
ðρ;ϕ; zÞ with its z coordinate oriented along the wave
vector k, a unit vector in the unperturbed direction of
the propagation of the incident wave. We also introduce a
light ray’s impact parameter, b, and coordinates in the
image plane, x, located in the strong interference region at
distance z from the lens. These quantities are given as

k ¼ ð0; 0; 1Þ; ð6Þ

b ¼ bðcosϕξ; sinϕξ; 0Þ ¼ bm; ð7Þ

x ¼ ρðcosϕ; sinϕ; 0Þ ¼ ρn: ð8Þ

With these definitions, we may now proceed with
summarizing the solution derived in [2].

B. The EM field on the image plane

As the EM wave travels through a gravitational field,
interaction with gravity causes the wave to scatter and
diffract [1]. In Refs. [2,5], while studying the Maxwell
equations on the background space-time (1), we developed
a solution to the Mie problem for the diffraction of the EM
waves on a large gravitating body (λ=R ≪ 1, see discussion
in [1,11]) and found the EM field at an image plane located
in any of the optical regions behind the lens (see Fig. 1).
In the cylindrical coordinate system and overall

lensing geometry presented above, within the paraxial

approximation, this EM field on an image plane takes
the following form [2,5]:

�
Eρ

Hρ

�
¼

�
Hϕ

−Eϕ

�
¼ E0

r0
AðxÞe−iwt

�
cosϕ

sinϕ

�

þOðr2g; ρ2=Z2Þ; ð9Þ

where E0 is the constant amplitude of the field. The
remaining components are small, ðEz;HzÞ ∝ Oðρ=zÞ.
In its general form, the complex amplitude of the EM

field AðxÞ from (9) is given as

AðxÞ ¼ k
ir

1

2π

ZZ
d2b exp½iφðb;xÞ�; ð10Þ

where φ is the eikonal phase of the EM wave accumulated
as the wave travels on its path from the source to the image
plane. The eikonal phase is a scalar function invariant under
a set of general coordinate transformations. Within the
required approximation, the phase φ is found as a solution
to the eikonal equation [12,13]:

gmn∂mφ∂nφ ¼ 0; ð11Þ

which is a direct consequence of Maxwell’s equations. The
solution of (11) describes the wavefront of an EM wave
propagating in curved spacetime. The solution’s geometric
properties are defined by the metric tensor gmn from (1).
A solution to (11) is sought by expanding the eikonal φ

with respect to the gravitational constant G while assuming
that the unperturbed solution is a plane wave (see, for
instance, [14] and references therein). Using the para-
metrization (6)–(8), the result is given as

φðxÞ ¼ φ0 þ
k
2r̃

ðb − xÞ2 þ φðbÞ þOðr2gÞ; ð12Þ

where the first term, φ0 ¼ kðr0 þ rþ x2=2ðr0 þ rÞÞ, is the
phase accumulated by the EM if it were traveled in the
absence of gravity with 1=r̃ ¼ 1=rþ 1=r0 (as discussed in
[6]). The second term, kðb − xÞ2=2r̃, is the extra geometric
path resulted from gravitational lensing, treated within the
thin lens approximation [15].
The last quantity in the phase of this expression is the

gravitational phase shift, φðbÞ, that is acquired by the EM
wave as it propagates along its geodetic path from the
source to the image plane on the background of the
gravitational field (1)–(2) with potential, U, from (2) that
has the form (see discussion in [2]):

φðbÞ ¼ 2k
c2

Z
τ

τ0

Uðb; τ0Þdτ0: ð13Þ

Note that dependence on τ in the Newtonian potential
comes from the fact that r≡ rðb; τÞ, as given by (5).
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Substituting these results in (10) yields the amplifi-
cation factor of the EM field in the image plane, AðxÞ,
which exhibits the familiar structure of the Fermat
potential [2]:

AðxÞ ¼ k
ir

1

2π

ZZ
d2b

× exp

�
ik

�
1

2r̃
ðb − xÞ2 þ 2

c2

Z
τ

τ0

Uðb; τ0Þdτ0
��

:

ð14Þ

The integral of (14) is well known. Within the weak
field and slow motion approximation, it was obtained
previously using different methods and tools. For in-
stance, a similar integral formula for the lensed wave
amplitude was obtained using the scalar theory of light in
[16–19], by using the Fresnel–Kirchhoff diffraction for-
mula [11], and it was also obtained using the path
integral formalism [20,21] in [22,23]. We note that
due to the spherical symmetry of the monopole gravita-
tional field and its conceptual simplicity, the majority of
previous efforts considered primarily the case a point
mass, where the gravitational potential (2) is given only
by the monopole term. Only a handful of authors con-
sidered contributions from a quadrupole mass distribution
(see relevant discussion in [2,3]).
Our solution (9) with AðxÞ from (14) generalizes

previous results by treating the EM field as a genuine
vector field. It was presented in [2] and allows us to develop
a wave-optical treatment of gravitational lensing, which is
important for practical applications of this phenomenon
[24], relying on conventional tools of wave optics,
e.g., [25].

C. Optical properties of an axisymmetric lens

To explore the solution (9)–(14), in Refs. [2,5], we
considered the case of a lens with arbitrary multipole
structure. We used a form of U representing an axisym-
metric gravitational field of a body (such as the Sun) with
mass M and equatorial radius R, with its external gravi-
tational potential reduced to k ¼ 0 spherical harmonics,
Cl0, and expressed [26,27] in terms of the usual dimen-
sionless zonal harmonic coefficients Jl ¼ −Cl0:

UðrÞ ¼ GM
r

�
1 −

X∞
l¼2

Jl

�
R
r

�
l
Pl

�
k · r
r

��
þOðc−4Þ

¼ GM

�
1

r
−
X∞
l¼2

ð−1Þl
l!

JlRl ∂l

∂sl
�
1

r

��
þOðc−4Þ;

ð15Þ

where Pl are the Legendre polynomials [28], and s is the
unit vector along the axis of rotation. Furthermore, in

the case of an axisymmetric gravitational field that also
exhibits “north-south symmetry,” such as the Sun’s, the
expression (15) contains only the l ¼ 2; 4; 6; 8… even
zonal harmonics [26].
To derive the gravitational phase shift φðbÞ present in

(14) [and explicitly shown by (13)], we consider the fact
that the typical distances traveled by the EM wave from the
source to the lens, τ0 ¼ ðk · r0Þ, and from the lens to the
observer, τ ¼ ðk · rÞ, are much larger than the impact
parameter, namely b=jτ0j ≪ 1 and b=jτj ≪ 1. Following
[2], we introduce a unit vector in the direction of the axial
symmetry (i.e., rotation axis), s, given as

s ¼ ðsin βs cosϕs; sin βs sinϕs; cos βsÞ: ð16Þ

As a result, using the light trajectory parametrization
r ¼ rðb; τÞ from (5), we obtain the total accumulated
gravitational phase shift φðbÞ that takes the form (see
details in [2]):

φðbÞ ¼ 2k
c2

Z
τ

τ0

Uðb; τ0Þdτ0 ¼ krg ln 4k2rr0 − 2krg

�
ln kb

þ
X∞
l¼2

Jl
l

�
R
b

�
l
sinlβs cos½lðϕξ − ϕsÞ�

�
: ð17Þ

The first two terms in (17) represent the phase shift due
to the monopole term of the gravitational field of the lens,
while the last term is that due to contributions from the
infinite set of the zonal harmonics, Jl.
We recognize that in the case when lensing on a large

optically opaque body is considered, part of the incident
radiation is being absorbed by the body (see discussion of
the fully absorbing boundary conditions, e.g., in [1,2]).
This results in the fact that the radial components of the
impact parameter in the integral (14) varies as b ∈ ½R;∞½
with R being the characteristic size of the lensing object,
while its angular coordinate varies as ϕξ ∈ ½0; 2π�.
Furthermore, given the fact that b ≥ R, in the case of a
typical astrophysical body (i.e., star, compact galaxy, etc.),
the magnitude of the logarithmic term in (17) is much larger
than that of the Jl term.
These considerations allow us to evaluate the radial

integral in (14) by the method of stationary phase.
As a result, in the case of an axisymmetric lens, the
complex amplitude of the EM field (14) takes the form
(see [2,5]):

AðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0eikðr0þrþrg ln 4k2rr0ÞBalðxÞ; ð18Þ

where σ0 ¼ −krg ln krg=e − π
4
is constant, discussed in

[28,29], and BalðxÞ is the remaining angular integral of
complex amplitude of the EM field for an axisymmetric
lens [2,5] (denoted with a subscript “al”):
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BalðxÞ ¼
1

2π

Z
2π

0

dϕξ exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r̃

r
ρcosðϕξ−ϕÞ

þ 2rg
X∞
l¼2

Jl
l

�
Rffiffiffiffiffiffiffiffiffi
2rgr̃

p
�

l
sinlβs cos½lðϕξ−ϕsÞ�

��
:

ð19Þ

Equation (19) is a new diffraction integral formula that was
first reported in [2]. It extends previous wave-theoretical
descriptions of gravitational lensing phenomena to the case
of a lens with an arbitrary axisymmetric structure.
This quantity allows one to compute the point-spread

function (PSF) of an axisymmetric lens in the strong
interference region behind the lens [2,4]:

PSFðxÞ ¼ jBalðxÞj2: ð20Þ

The PSF, which represents the impulse-response of the
gravitational lens, is the fundamental expression that is
used in practical models of gravitational lenses, especially
when imaging is concerned [4].

D. Eikonal phase shift for an axisymmetric body

To capture the difference between various Newtonian
potential models, we introduce the multipolar eikonal phase
shift, ξbðb; sÞ. This shift is acquired by the EM wave as it
interacts with the extended gravitational field of an axi-
symmetric body in its vicinity. In the majority of practically
important cases, the contribution of the monopole term
within any model of the gravitational potential will result in
the same structure of the first term in the phase of (19). To
quantify the difference between the models, we focus on
the contributions of multipoles to the total gravitational
phase shift that is responsible for the second term in the
phase of (19).
Therefore, the quantity of interest—the eikonal gravita-

tional phase shift, 2ξbðb; sÞ—is obtained by dropping
the monopole term from (17), or by presenting (17) as
φðbÞ ¼ krg ln4k2rr0 − 2krg lnkbþ 2ξbðb;sÞ, which yields
the following result [2]:

ξbðb; sÞ ¼ −krg
X∞
l¼2

Jl
l

�
R
b

�
l
sinlβs cos½lðϕξ − ϕsÞ�:

ð21Þ

This expression and its impact on the optical properties of
an axisymmetric lens was studied extensively in [2–4,30].
Our objective is to generalize this expression to the case

of arbitrary gravitational fields, including fields with no
axial symmetry. Given the fact that contribution of the
monopole term in the potential UðxÞ in (14) to the phase
delay φðbÞ from (17) will be identical for all cases, the
difference will be due to the form of the potential used to

capture the nonspherical part of the mass distribution. For
this purpose, we explore the use of the STF formalism.

III. LENSING BY BODIES OF ARBITRARY
COMPOSITION

The solution given by (9)–(14) allows us to consider
extended lenses, relying on physically motivated lens
models where the gravitational potential is given in its
most generic form. For practical applications, the potential
UðrÞ is typically expanded in terms of spherical harmonics:

UðrÞ ¼ GM
r

�
1þ

X∞
l¼2

Xþl

k¼0

�
R
r

�
l

× Plkðcos θÞðClk cos kϕþ Slk sin kϕÞ
�
þOðc−4Þ;

ð22Þ
where Plk are the associated Legendre polynomials [28],
while Clk and Slk are the normalized spherical harmonic
coefficients that characterize nonspherical contributions to
the gravitational field.
Although the form (22) is effective for many applica-

tions in geodesy, it is not technically convenient when we
study light propagation in a gravitational field. In part,
this is due to the fact that integration of the gravitational
potential in (14) is not well defined for potentials of the
form (22). Thus, alternative representations of UðxÞ are
needed. In [2], we considered the case of axisymmetric
bodies (summarized in Sec. II C). We now consider a
generic potential in the form of an expansion of UðxÞ
using STF tensors.

A. Computing the gravitational phase shift
using STF tensors

In [2], we observed that expanding the potential (2) in
terms of STF tensors [31–35] offers a viable alternative to
(22). As was discussed in [31], the scalar gravitational
potential (2) may equivalently be given in the following
form:

UðrÞ ¼ G
Z

ρðr0Þd3r0
jr − r0j ¼ GM

X∞
l¼0

ð−1Þl
l!

T ha1…ali

×
∂l

∂xha1…∂xali
�
1

r

�
þOðc−4Þ; ð23Þ

where r ¼ jrj, M is the post-Newtonian mass of the body,
and T ha1…ali are the normalized STF multipole moments,
defined as

M ¼
Z

d3r0ρðr0Þ; T ha1…ali ¼ 1

M

Z
d3r0ρðr0Þx0ha1…ali;

ð24Þ
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where xha1…ali ¼ xha1xa2…xali ≡ x̂L, while the angle
brackets h…i and x̂ denote the STF operator (see
Appendix A, were we present the coordinate combinations
needed to compute the lowest STF moments). Note that in
the static post-Newtonian case we may use the multipole
moments normalized to the mass of the body M. Also,
without loss of generality, we can choose the origin of the
coordinate system at the center of mass of the gravitating
system, allowing us to eliminate the dipole moment T a

from the expansion (23).

Using the identity [36],

∂l

∂xha1…∂xali
�
1

r

�
¼ ð−1Þlð2l − 1Þ!! n̂ha1…ali

rlþ1
; ð25Þ

the potential (23) may be given in the following form:

UðrÞ ¼ GM
X
l≥0

ð2l − 1Þ!!
l!

T L
n̂L
rlþ1

: ð26Þ

The first few terms of (26) or, equivalently, (23), are given as

UðrÞ ¼ GM

�
1

r
þ 3T habi

2r5
xaxb þ 5T habci

2r7
xaxbxc þ 35T habcdi

8r9
xaxbxcxd þOðr−6Þ

�
: ð27Þ

This Cartesian multipole expansion of the Newtonian gravitational potential is equivalent to expansion in terms of spherical
harmonics (22) [31–35]. In fact, this expression may be used to establish the correspondence between T ha1…ali and Clk and
Slk from (22) (see Appendix B for details on how to establish such correspondence).
To compute the gravitational phase shift, we use UðrÞ from (23) in the expression for the phase shift φðbÞ in (17):

φðbÞ ¼ 2k
c2

Z
τ

τ0

Uðb; τ0Þdτ0 ¼ krg
X∞
l¼0

ð−1Þl
l!

T ha1…ali
Z

τ

τ0

∂l

∂xha1…∂xali
�
1

r

�
dτ0: ð28Þ

With the definitions for r from (5), we may generalize the expression for a gradient ∇ by relating it to the derivatives
parallel to k and perpendicular to it, b, namely ∇ ¼ ∇⊥ þ∇k ≡∇b þ kd=dτ þOðrgÞ and write

∂l

∂xha1…∂xali ≡ ∇ha1…:∇ali ¼
Xl
p¼0

l!
p!ðl − pÞ! kha1…kap ∂̂apþ1

…∂̂ali
∂p

∂τp þOðrgÞ; ð29Þ

where we use a new shorthand notation ∂̂a ≡ ∂=∂ba, with the hatted notation indicating differentiation that is carried out in
two dimensions only, with respect to the two nonzero components of the impact parameter (see also Appendix C), and τ is
defined by (4).
With this representation (29), we can compute the relevant integral [where from (5) we have r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
]:

Z
τ

τ0

∂l

∂xha1…∂xali
�
1

r

�
dτ0 ¼

Xl
p¼0

l!
p!ðl − pÞ! kha1…kap ∂̂apþ1

…∂̂ali

Z
τ

τ0

∂p

∂τ0p
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ02

p
�
dτ0: ð30Þ

Using (4) and (5), we evaluate the integral over τ0 in (30) by taking into account the fact that τ changes the sign after
passing through τ ¼ 0, being negative for τ0 to 0 and positive from 0 to τ:

Z
τ

τ0

dτ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ02

p ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
þ jτ0j

b

�
; ð31Þ

where we employed the useful relations

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
− τÞ ¼ b2 and

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

q
þ τ0Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

q
− τ0



¼ b2: ð32Þ
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As a result, (30) takes the form

Z
τ

τ0

∂l

∂xha1…∂xali
�
1

r

�
dτ0 ¼ ∂̂ha1…∂̂ali

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
þ jτ0j

b

��

þ
Xl
p¼1

l!
p!ðl − pÞ! kha1…kap ∂̂apþ1

…∂̂ali

� ∂p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ ∂p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
�
; ð33Þ

where we accounted for the fact that τ changes sign at τ ¼ 0.
As a result, the gravitational phase shift (28) takes the most general form:

φðbÞ ¼ krg
X∞
l¼0

ð−1Þl
l!

T ha1…ali
�
∂̂ha1…∂̂ali

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

�
þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
þ jτ0j

b

��

þ
Xl
p¼1

l!
p!ðl − pÞ! kha1…kap ∂̂apþ1

…∂̂ali

� ∂p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ ∂p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
��

: ð34Þ

In the case of gravitational lensing, the typical distances
involved are much larger than the impact parameter,
b=r ≪ 1, and also b=r0 ≪ 1, allowing us to simplify
expression (34). For that, we observe that b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p ≡
b=r ≪ 1, b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p ≡ b=r0 ≪ 1, and also ðk · rÞ ≃ r,
ðk · r0Þ ≃ −r0, thus the following approximations are
valid:

lnðkð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞÞ ¼ ln½kðrþ ðk · rÞÞ�≃ ln2kr;

ln
	
k
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ20

q
þ jτ0j




¼ ln½kðr0 þ jðk · r0ÞjÞ�≃ ln2kr0:

ð35Þ

We also observe that any derivatives in (34) with res-
pect to bal would result in expressions that are at most
of Oðb=r2Þ or Oðb=r20Þ, which are small and may be
neglected. We also realize that any (p − 1)th derivative,
either with respect to τ or τ0, applied to the second term
in (34), would result in producing terms of Oð1=rpÞ or
Oð1=rp0 Þ, which are also small and may be neglected. These
considerations allow us to greatly simplify (33):

Z
τ

τ0

∂l

∂xha1…∂xali
�
1

r

�
dτ0 ¼ −2∂̂ha1…∂̂ali ln kb; ð36Þ

and also the gravitational eikonal phase shift (34) that may
now be given as

φðbÞ ¼ krg ln 4k2rr0 − 2krg

�
ln kbþ

X∞
l¼2

ð−1Þl
l!

T ha1…ali∂̂ha1…∂̂ali ln kb
�
þOðr2gÞ: ð37Þ

Similarly to the case of (18)–(19), we substitute result (37) into (14) and compute the integral with respect to the radial
variable b, relying on the method of stationary phase while considering that the monopole term is dominant in the regions of
interest (as we did in [2]). As a result, in the case of an extended lens with arbitrary mass distribution, the complex amplitude
of the EM field BðxÞ from (18) takes the form

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ þ 2rg

X∞
l¼2

ð−1Þl
l!

T ha1…alið∂̂ha1…∂̂ali ln kbÞjb¼ ffiffiffiffiffiffi
2rgr

p
��

: ð38Þ

We can use this result to derive the eikonal phase for any
of the terms in the Newtonian potential (26) and present in
(37) and (38).
Similarly to (21), we isolate the contribution of the STF

multipole moments to the total phase shift φðbÞ in (37).
This allows us to present the eikonal phase shift ξbðbÞ,
expressed via the STF multipole moments, as

ξbðbÞ ¼ −krg
X∞
l¼2

ð−1Þl
l!

T ha1…ali∂̂ha1…∂̂ali ln kbþOðr2gÞ;

ð39Þ

which is the generalization of the eikonal phase shift (21).
Note that, as opposed to (21), expression (39) is given for a
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lensing object that is characterized by an arbitrary mass
distribution. This is a key result. Together with (38), it
allows us to describe gravitational lensing by the most
general compact mass distribution.

B. Gravitational phase shift for the
lowest STF moments

To demonstrate the practical utility of our results, we
now compute several low-order terms in (39), for l ¼ 2,
3, 4. In Appendix C, we compute the corresponding
derivatives with respect to the vector impact parameter,
which are present in (39). Below, we present the results
for the eikonal phase shift for the quadrupole (l ¼ 2),
octupole (l ¼ 3), and hexadecapole (l ¼ 4) STF multipole
moments.

1. Quadrupole moment

With the expression for ∂̂2
ab ln kb from (C4), we present

the result for the eikonal phase ξ½2�b ðbÞ characterizing the
contribution from the quadrupole (i.e., l ¼ 2) STF mass
moment, T habi:

ξ½2�b ðbÞ ¼ krg
1

2b2
T habið2mamb þ kakb − δabÞ; ð40Þ

where ma ¼ ba=b is the ath component of the unit vector
in the direction of the impact parameter, see (7). Note that
the expression in parentheses in (40), which came from the
derivatives ∂̂habi ln kb, is already in STF form. It acts on the
STF mass quadrupole moment T habi, projecting the quad-
rupole moment onto the plane perpendicular to k.
We parametrize the vectors k, m using (6), (7) and

present (40):

ξ½2�b ðbÞ ¼ krg
1

2b2
ððT 11 − T 22Þ cos 2ϕξ þ 2T 12 sin 2ϕξÞ;

ð41Þ

where the form of the quadrupole STF mass moment is kept
in its generic form.
The rank-2 STF tensor T habi in three dimensions has five

independent components. Examining (41), we see that
when the distances r0 and r are large (i.e., the thin lens
approximation), the eikonal phase shift is given only by its
transverse part, which depends on the combination of three
independent components of the quadrupole moment tensor.
The remaining two components, T 13 and T 23, are present
only in the longitudinal part of the phase shift (i.e., in the
direction parallel to k, as opposed to the transverse
components that are in the direction perpendicular to k,
see Sec. IVA), hence they are not seen in lensing
observations. This is due to the fact that in (40) the
quadrupole STF mass moment T habi is multiplied by

(2mamb þ kakb − δab), which is a projection operator onto
the plane of the impact parameter. Therefore, we observe
only transverse components of T habi; effects due to
longitudinal components are suppressed. As we demon-
strate below, this behavior also characterizes higher-rank
STF multipole tensors: in (39) only the transverse parts of
these tensors contribute to lensing observations for higher
values of l.
In the case when distances are of the same order of

magnitude, b ∼ r ∼ r0, the result for φðbÞ takes a more
complicated form that depends on all the components
of the T habi, both transverse and longitudinal. In
Appendix F, we derive the form of the eikonal phase
shift for such cases, to show that although the expression
formally depends on all the components of the STF
quadrupole moment, the longitudinal components are
strongly suppressed by various powers of b=r, b=r0,
which in the case of astrophysical lenses are negligibly
small, b=r ≪ 1, b=r0 ≪ 1. This justifies the approxima-
tion that we use to derive (37).
To further analyze (41), we introduce two quantities:

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 11 − T 22Þ2 þ 4T 2

12

q
;

cos 2ϕ2 ¼
T 11 − T 22

Q2

;

sin 2ϕ2 ¼
2T 12

Q2

; ð42Þ

and present (41) in a much simpler form:

ξ½2�b ðbÞ ¼ krg
Q2

2b2
cos½2ðϕξ − ϕ2Þ�: ð43Þ

We can see that the contribution of the quadrupole STF
moment T habi is reduced to just two parameters: the
magnitude Q2 and the phase ϕ2 that determine the size
and the rotation angle of the quadrupole caustic formed in
the PSF of a lens (see [2,3] for details).
There is a connection between T habi in (26) and the

spherical harmonics present in (22) (see the derivation
given in Appendix B):

T 11 ¼
�
−
1

3
C20 þ 2C22

�
R2; T 12 ¼ 2S22R2;

T 22 ¼
�
−
1

3
C20 − 2C22

�
R2; T 13 ¼ −C21R2;

T 33 ¼
2

3
C20R2; T 23 ¼ −S21R2: ð44Þ

Consistent with the vanishing trace of T ab, only five of
these terms are independent. Using these quantities we
compute (42):
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Q2 ¼ 4R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
22 þ S222

q
; cos 2ϕ2 ¼

C22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
22 þ S222

p ;

sin 2ϕ2 ¼
S22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
22 þ S222

p ; ð45Þ

which can be used to express (43) as

ξ½2�b ðbÞ ¼ krg
2R2

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
22 þ S222

q
cos½2ðϕξ − ϕ2Þ�: ð46Þ

Considering the case of an axisymmetric body, we
remember that T habi is given as

T habi ¼ −MJ2R2

�
sasb −

1

3
δab

�
; ð47Þ

where s is the vector of rotational axis given by (16). Using
this expression, the result (41) reduces to

ξ½2�b ðbÞ ¼ −krgJ2
R2

2b2
sin2βs cos½2ðϕξ − ϕsÞ�; ð48Þ

which is identical to the l ¼ 2 zonal harmonic term in the
case of an axisymmetric mass distribution (21), which
was studied in [2,3,30]. This correspondence shows the
utility of the STF moments describing light propagation
in the vicinity of a gravitating object with arbitrary mass
distribution.
Comparing expressions (46) and (48), we see that

they have nearly identical structure. However, (46) was
derived using the potential (22), with spherical harmonic
coefficients defined in a coordinate system with arbitrary
orientationwith respect tok. Aswe see below, similar results
can be obtained for l > 2 due to the fact that (46) contains
only the projection of the multipole moments on the plane
transverse to k. By choosing the axis of rotation for each l,
the remaining freedom is now fixed yielding (48).

2. Octupole moment

Settingl ¼ 3 in (39), we use the result for ∂̂3
abc ln kb from

(C5) and derive the eikonal phase shift, ξ½3�b ðbÞ, introduced
by the octupole STF moment, T habci, which is given as

ξ½3�b ðbÞ ¼ krg
1

6b3
T habcið8mambmc − 2maðδbc − kbkcÞ − 2mbðδac − kakcÞ − 2mcðδab − kakbÞÞ: ð49Þ

Once again we observe that the expression in parentheses in (49) that came from ∂̂habci ln kb is already STF. It acts on the
quantity T habci, also an STF tensor. As we shall see in Sec. IVA, this results in a transverse traceless (TT) projection of
T habci onto the plane of the impact parameter that is perpendicular to k.
Again using the parametrization for the vectors k, m given in (6), (7), we present (49) as

ξ½3�b ðbÞ ¼ krg
1

6b3
ð2ðT 111 − 3T 122Þ cos 3ϕξ þ 2ð3T 112 − T 222Þ sin 3ϕξÞ: ð50Þ

Similarly to the case of the quadrupole moment, we introduce two quantities:

Q3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 111 − 3T 122Þ2 þ ð3T 112 − T 222Þ2

q
; cos 3ϕ3 ¼ −

2ðT 111 − 3T 122Þ
Q3

; sin 3ϕ3 ¼ −
2ð3T 112 − T 222Þ

Q3

; ð51Þ

and present (50) in a much simplified form:

ξ½3�b ðbÞ ¼ −krg
Q3

6b3
cos½3ðϕξ − ϕ3Þ�: ð52Þ

We observe that, yet again, the effect of the STF octupole moment T habci is reduced to only two parameters: the scaleQ3

and the phase ϕ3, which determine the size and rotation angle of the caustic formed by the STF octupole contribution to
the PSF.
In Appendix B, we present the correspondence between T habci from (26) and the spherical harmonics from (22):

T 111 ¼
�
3

5
C31 − 6C33

�
R3; T 112 ¼

�
1

5
S31 − 6S33

�
R3; T 113 ¼

�
−
1

5
C30 þ 2C32

�
R3;

T 122 ¼
�
1

5
C31 þ 6C33

�
R3; T 222 ¼

�
3

5
S31 þ 6S33

�
R3; T 223 ¼

�
−
1

5
C30 − 2C32

�
R3;

T 123 ¼ 2S32R3; T 133 ¼ −
4

5
C31R3; T 233 ¼ −

4

5
S31R3; T 333 ¼

2

5
C30R3: ð53Þ
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It is easy to check that the rank-3 STF tensor T habci has seven independent components; the values of the remaining 20
components are determined by its symmetries and vanishing trace.
Using these quantities we compute (51)

Q3 ¼ 48R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
33 þ S233

q
; cos 3ϕ3 ¼

C33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
33 þ S233

p ; sin 3ϕ3 ¼
S33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
33 þ S233

p ; ð54Þ

that transforms (52) as

ξ½3�b ðbÞ ¼ −krg
8R3

b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
33 þ S233

q
cos½3ðϕξ − ϕ3Þ�: ð55Þ

Also, we know that in the axisymmetric case, T habci has the form

T habci ¼ −MJ3R3

�
sasbsc −

1

5
δabsc −

1

5
δacsb −

1

5
δbcsa

�
: ð56Þ

With this, using the parametrization (16), expression (50) reduces to

ξ½3�b ðbÞ ¼ −krgJ3
R3

3b3
sin3βs cos½3ðϕξ − ϕsÞ�; ð57Þ

which is identical to the term with l ¼ 3 in (21), studied in [2,3]. Similarly to the quadrupole case, expressions (55) and (57)
are formally identical.

3. Hexadecapole moment

In the case when l ¼ 4, we use the result for ∂̂4
abcd ln kb from (C6) and derive the eikonal phase shift, ξ½4�b ðbÞ, introduced

by the hexadecapole STF moment, T habcdi, which has the form

ξ½4�b ðbÞ ¼ krg
1

4b4
T habcdi

�
8mambmcmd þ 1

3
ðδbc − kbkcÞðδad − kakdÞ þ 1

3
ðδac − kakcÞðδbd − kbkdÞ

þ 1

3
ðδab − kakbÞðδcd − kckdÞ − 4

3
ðmambðδcd − kckdÞ þmamcðδbd − kbkdÞ þmamdðδbc − kbkcÞ

þmbmcðδad − kakdÞ þmbmdðδac − kakcÞ þmcmdðδab − kakbÞÞ
�
: ð58Þ

Similarly to the cases of the quadrupole and octopole considered earlier, the expression in parentheses in (58) that came
from ∂̂habcdi ln kb is in an STF form. It acts on the quantity T habcdi, that is an STF tensor. This again results in the TT
projection of T habcdi onto the plane of the impact parameter that is perpendicular to k.
Again, using parametrizations for vectors k, m, from (6), (7), we present (58) as

ξ½4�b ðbÞ ¼ krg
1

4b4
fðT 1111 þ T 2222 − 6T 1122Þ cos 4ϕξ þ 4ðT 1112 − T 1222Þ sin 4ϕξg: ð59Þ

Introducing the two quantities

Q4 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 1111 þ T 2222 − 6T 1122Þ2 þ 16ðT 1112 − T 1222Þ2

q
; ð60Þ

cos 4ϕ4 ¼
6ðT 1111 þ T 2222 − 6T 1122Þ

Q4

; sin 4ϕ4 ¼
6ð4ðT 1112 − T 1222ÞÞ

Q4

; ð61Þ

we present (59) in a much simplified form:
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ξ½4�b ðbÞ ¼ krg
Q4

24b4
cos½4ðϕξ − ϕ4Þ�: ð62Þ

Once again, the hexadecapole moment T habcdi is reduced to only two parameters, Q4 and ϕ4, representing the two
degrees of freedom available in the impact parameter plane.
Following the method outlined in Appendix B, we can establish a correspondence between T habcdi from (26) and the

spherical harmonics present in (22):

T 1111 ¼
�
3

35
C40 −

12

7
C42 þ 24C44

�
R4; T 2222 ¼

�
3

35
C40 þ

12

7
C42 þ 24C44

�
R4;

T 1112 ¼
�
−
6

7
S42 þ 24S44

�
R4; T 1113 ¼

�
3

7
C41 −

60

7
C43

�
R4; T 2223 ¼

�
3

7
S41 þ

60

7
S43

�
R4;

T 1122 ¼
�
1

35
C40 − 24C44

�
R4; T 1123 ¼

�
1

7
S41 −

60

7
S43

�
R4; T 1133 ¼

�
−

4

35
C40 þ

12

7
C42

�
R4;

T 2233 ¼
�
−

4

35
C40 −

12

7
C42

�
R4; T 1222 ¼

�
−
6

7
S42 − 24S44

�
R4; T 1223 ¼

�
1

7
C41 þ

60

7
C43

�
R4;

T 3333 ¼
8

35
C40R4; T 1233 ¼

12

7
S42R4; T 1333 ¼ −

4

7
C41R4; T 2333 ¼ −

4

7
S41R4: ð63Þ

As these quantities are components of an STF tensor, out of the 15 terms T habcdi in (63), only 9 are independent.
Using these quantities we compute (61):

Q4 ¼ 1152R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
44 þ S244

q
; cos 4ϕ4 ¼

C44ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
44 þ S244

p ; sin 4ϕ4 ¼
S44ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
44 þ S244

p ; ð64Þ

and transform (62) as

ξ½4�b ðbÞ ¼ krg
48R4

b4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
44 þ S244

q
cos½4ðϕξ − ϕ4Þ�: ð65Þ

In the axisymmetric case, we can calculate the STF moment T abcd as

T habcdi ¼ −MJ4R4

�
sasbscsd −

1

7
ðsasbδcd þ sascδbd þ sasdδbc þ sbscδad þ sbsdδac þ scsdδabÞ

þ 1

35
ðδabδcd þ δacδbd þ δadδbcÞ

�
: ð66Þ

With this form of T habcdi, using the parametrization (16),
expression (59) reduces to

ξ½4�b ðbÞ ¼ −krgJ4
R4

4b4
sin4βs cos½4ðϕξ − ϕsÞ�; ð67Þ

which is identical to the term with l ¼ 4 in expression (21)
that was discussed in [2,3].
Once again, we see that the two forms of the gravita-

tional phase shift (65) and (67) are formally identical.

IV. LENSING WITH A GENERIC
GRAVITATIONAL LENS

As we saw in Sec. III B, even at the l ¼ 4 representing
the hexadecapole moment, the gravitational phase shift is

represented by a familiar expression that is determined
by only two parameters: a magnitude and a rotation angle.
This is because the quantity ∂̂ha1…∂̂ali ln kb in (39)
behaves as the transverse projection operator, thus pro-
jecting the STF moment of the appropriate order onto
the plane of the impact parameter, i.e., the lens plane.
Therefore, the product of T ha1…ali∂̂ha1…∂̂ali ln kb, in (39),
may be generalized and given as

T ha1…ali∂̂ha1…∂̂ali ln kb ¼ ð−1Þlþ1
Ql

bl
cos½lðϕξ − ϕlÞ�;

ð68Þ
where Ql and ϕl are the magnitude and the rotation angle
that are computed or estimated for each order l of the STF
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multiple moments from their subset projected on the plane
of the impact parameter.

A. Generalized expression for the gravitational
phase shift

In Appendix D, we compute the derivatives of the
∂̂ha1…ali ln kb, (D9)–(D11). Each derivative ln kb with
respect to the vector impact parameter produces an appro-
priate TT projection operator that is multiplied by various
powers of ma and Kronecker delta. (An interesting obser-
vation is that these expressions are STF in two dimensions,
but not STF in three dimensions.) In fact, the following
expressions are valid:

T habi∂̂habi ln kb ¼ −½T hiji�TT 2

b2
mimj; ð69Þ

T habci∂̂habci ln kb ¼ ½T hijki�TT 8

b3
mimjmk; ð70Þ

T habcdi∂̂habcdi ln kb ¼ −½T hijkli�TT 48
b4

mimjmkml; ð71Þ

where the quantities ½T ha1…ali�TT are the transverse trace-
less (TT) projections of the STF multipole moments onto
the plane of the impact parameter, perpendicular to k.
Considering the structure of the derivatives ∂̂ha1…ali ln kb,

we can see that this behavior persists at each orderl, yielding
a corresponding TT projection operator. Therefore, based on
these considerations, expressions T ha1…ali∂̂ha1…ali ln kb
may be generalized to arbitrary order:

T ha1…ali∂̂ha1…ali ln kb

¼ ð−1Þlþ1
ð2l − 2Þ!!

bl
½T ha1…:ali�TTma1…mal : ð72Þ

Next, examining the structure of the TT-projected STF
multipole moments, ½T ha1…ali�TT, we see that at each order
they are given by distinct combinations:

½T ha1…:ali�TT ¼ tþlU
þ
a1…al þ t×lU

×
a1…al ; ð73Þ

where tþl and t×l are the components of the ½T ha1…:ali�TT
tensor and Uþ

a1…al and U
×
a1…al are the two orthogonal basis

vectors for each order (similar to the two polarizations that
exist in the quadrupole formalism of generating gravita-
tional waves [31], which usually is done only at the l ¼ 2

level). The lowest order tþl and t×l are given as

tþ2 ¼ 1

2
ðT 11 − T 22Þ; t×2 ¼ T 12; ð74Þ

tþ3 ¼ 1

4
ðT 111 − 3T 122Þ; t×3 ¼ 1

4
ð3T 112 − T 222Þ; ð75Þ

tþ4 ¼ 1

8
ðT 1111þT 2222−6T 1122Þ; t×4 ¼

1

2
ðT 1112−T 1222Þ:

ð76Þ

Concerning the STF basis vectors Uþ
a1…al and U×

a1…al ,
they represent the l-times rotation operators in the two-
dimensional plane perpendicular to k. For convenience,
explicit structure ofUþ

a1…al andU
×
a1…al for l ∈ f2; 3; 4g, is

given in Appendix E. One can verify that for the para-
metrization (6)–(7), the following important relations exist:

Uþ
a1…alm

a1…mal ¼cos½lϕξ�; U×
a1…alm

a1…mal ¼sin½lϕξ�:
ð77Þ

Thus, the basis vectors are the rotation generators that, in
combination with the unit vectorsma, act as the Chebychev
polynomials [28], rotating the products (77) by the angle
lϕξ in two orthogonal directions. Note that a similar result
was obtained in [37] by integrating the nonlinear geodesic
deviation equation and generalizing the result to a sum over
independent amplification tensors of increasing rank, thus
validating our approach.
With the important property (77), from (73) we derive

another useful expression:

½T ha1…:ali�TTma1…mal ¼ tþl cos½lϕξ� þ t×l sin½lϕξ�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�;

ð78Þ

where the angle ϕl is determined from

cos½lϕl� ¼
tþlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ2
l þ t×2l

q ; sin½lϕl� ¼
t×lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ2
l þ t×2l

q : ð79Þ

As a result, the gravitational eikonal phase shift (39)
takes the following compact form:

ξbðbÞ ¼ krg
X∞
l¼2

ð2l − 2Þ!!
l!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�

þOðr2gÞ: ð80Þ

We observe that at each order, the gravitational phase
shift is determined by only the 2 degrees of freedom of the
corresponding TT-projected STF multipole moment, tþl and
t×l . The structure of the result (80) is very familiar to us
from [2], where we studied the case of lenses with an
axisymmetric matter distribution. What is surprising is the
fact that even an arbitrary lens exhibits the same structure
seen in (21). The difference is that at each STF order, l,
the amplitude and the angle of (79)–(80) is set by only two
TT-projected STF mass multipole moments, tþl and t×l .
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B. Relation to spherical harmonics

Using the correspondence between the STF mass
moments at various orders and the spherical harmonic
coefficients, given by (44), (53), and (63), correspondingly,
we have the following relationships:

tþ2 ¼ 2C22R2; t×2 ¼ 2S22R2; ð81Þ

tþ3 ¼ −6C33R3; t×3 ¼ −6S33R3; ð82Þ

tþ4 ¼ 24C44R4; t×4 ¼ 24S44R4: ð83Þ

Again, one may generalize these expressions to arbitrary
order, yielding

tþl ¼ ð−1Þll!CllRl; t×2 ¼ ð−1Þll!SllRl: ð84Þ

As a result, (78)–(79) transforms as

½T ha1…:ali�TTma1…mal ¼l!Rl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
llþS2ll

q
cos½lðϕξ−ϕlÞ�;

ð85Þ

where

cos½lϕl� ¼
ð−1ÞlCllffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
ll þ S2ll

q ; sin½lϕl� ¼
ð−1ÞlSllffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
ll þ S2ll

q :

ð86Þ

Ultimately, we express (72) as

T ha1…ali∂̂ha1…ali ln kb ¼ ð−1Þlþ1l!ð2l − 2Þ!!
�
R
b

�
l ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
ll þ S2ll

q
cos½lðϕξ − ϕlÞ�: ð87Þ

With this result, the gravitational phase shift (39) takes the form

ξbðbÞ ¼ krg
X∞
l¼2

ð2l − 2Þ!!
�
R
b

�
l ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
ll þ S2ll

q
cos½lðϕξ − ϕlÞ� þOðr2gÞ: ð88Þ

This is an important conclusion as it significantly
simplifies the modeling of generic compact astrophysical
lenses, including stars as well as distant and compact spiral
and elliptic galaxies. The parameters Cll and Sll are very
natural, and may be used to study arbitrary matter dis-
tributions. If these parameters are known, the task of
developing physically justified models for the correspond-
ing lenses may be significantly simplified.

C. Generalized expression for light deflection

Using (37), we identify the total gravitational phase shift,
φðbÞ, acquired by the EM wave as it travels through the
gravitational field of the extended lens. This is a generali-
zation of the classic Shapiro time delay to the case of an
extended gravitational lens with arbitrary mass distribution.
This delay corresponds to the total gravitational deflection
angle acquired by a light ray or, equivalently, rotation of
the wavefront of the EM wave. Using the expression (5) for

the radius vector of the EM wave, together with b given
by (16), we compute this angle as

θg ¼ −k−1∇φðbÞ

¼ −k−1
�
eb

∂φðbÞ
∂b þ eϕξ

∂φðbÞ
b∂ϕξ

þ k
∂φðbÞ
∂τ

�
; ð89Þ

where the basis vector eb is the unit vector in the direction
of the vector impact parameter b and eϕξ

is the unit vector
in the azimuthal direction and is orthogonal to b and k.
Clearly, in the case of a compact lens [i.e., neglecting the
terms b=r and b=r0 in (34)] delay, computed from (37),
does not depend on τ, thus the last derivative in (89) results
in 0.
With these considerations in mind, we compute the

vector of the total angle of the gravitational deflection of
light as the light ray passes in the vicinity of an extended
gravitational lens with arbitrary mass distribution:

θg ¼ 2rg

�
eb
b
þ
X∞
l¼2

ð−1Þl
l!

T ha1…ali
�
eb

∂
∂bþ eϕξ

∂
b∂ϕξ

�
∂̂ha1…∂̂ali ln kb

�
: ð90Þ

The first term in (90) is the Einstein deflection angle in the gravity field of a spherically symmetric matter distribution
(i.e., in the presence of a monopole or point mass). The second term with T ha1…ali describes the effect of the multipole STF
moments as a sum of (i) an additional deflection toward or away from the optical axis (the line parallel to the incoming ray
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of light that intersects the lens at the center), and (ii) a deflection away from the plane defined by the incoming ray and the
center of the lens.
As we discussed in this document, the product of T ha1…ali∂̂ha1…∂̂ali ln kb, present in (90), may be given by (68) with

Ql and ϕl being the magnitude and the rotation angle computed for each order l of the STF multipole moment, projected
onto the plane of the impact parameter. Using the result (68) in (90), we have

θg ¼
2rg
b

�
eb þ

X∞
l¼2

ð2l − 2Þ!!
ðl − 1Þ!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
ðeb cos½lðϕξ − ϕlÞ� þ eϕξ

sin½lðϕξ − ϕlÞ�Þ
�
: ð91Þ

We note that the axisymmetric case with delay com-
puted with the help of the corresponding phase shift (17)
was considered in [2]. The result given by (91) is new.
It describes the three-dimensional deflection of light
in the presence of an arbitrary gravitational field of an
extended lens.
We recall that (37) was obtained from (34) under the

conditions b=r0 ≪ 1 and b=r ≪ 1. As a result, we are not
sensitive to the longitudinal components of the gravita-
tional field expressed via the STF multipole moments. In
the case when b=r0 ∼ 1 and b=r ∼ 1, the phase shift (34)
contains all the components of the STF moments. In
Appendix F, we consider this for the quadrupole case,
l ¼ 2. However, lensing geometries where the lens-centric

distances to the emitter and observer are comparable to
the size of the lens itself are rare. These mostly concern
light propagation to and from interplanetary spacecraft
within the Solar System. For these few cases, the
expressions given in Appendix F will be sufficient.
However in the case of a generic lensing situation,
expression (91) represents the most comprehensive treat-
ment for the gravitational deflection of light by extended
gravitating bodies.

D. Optical properties of a generic lens

Using the gravitational eikonal phase shift given (37), we
can express (80) as

φðbÞ ¼ krg ln 4k2rr0 − 2krg

�
ln kb −

X∞
l¼2

ð2l − 2Þ!!
l!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�

�
þOðr2gÞ: ð92Þ

Substituting this expression in (14), we get

AðxÞ ¼ eikrg ln 4k
2rr0

k
ir

1

2π

ZZ
d2b exp

�
ik

�
1

2r̃
ðb − xÞ2

− 2rg

�
ln kb −

X∞
l¼2

ð2l − 2Þ!!
l!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�

���
: ð93Þ

As we can see, AðxÞ is a rather complicated function of the impact parameter bðb;ϕξÞ. In general, this integral must be
evaluated numerically. However, there are two important observations: (i) Even for complicated mass distributions, the
contribution of the higher multipole moments of order l is suppressed by 1=bl. In fact, at some distance from the lens, its
lensing potential becomes indistinguishable from that of a monopole. (ii) In the case of a weakly aspherical lens, multipole
moments are small, making it possible to evaluate (93) using the method of stationary phase with respect to the radial
variable, b, as we did in [2,5].
Accordingly, if we evaluate the radial integral in (93) using the method of stationary phase (see [1,2,5]), the amplification

factor (93) takes the form

AðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0eikðr0þrþrg ln 4k2rr0ÞBðxÞ; ð94Þ

where BðxÞ is the generalized complex amplitude of the EM field in case of an arbitrary, weakly aspherical lens:

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r̃

r
ρ cosðϕξ − ϕÞ − 2rg

X∞
l¼2

ð2l − 2Þ!!
l!ð ffiffiffiffiffiffiffiffiffi

2rgr̃
p Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�

��
: ð95Þ

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYS. REV. D 105, 024022 (2022)

024022-14



Equation (95) is a new diffraction integral that extends
previous wave-theoretical descriptions of gravitational
lensing to the case of a lens with arbitrary structure.
Note that instead of (80), we could use (88) to obtain an
expression identical to (95) but expressed in terms of
spherical harmonics coefficients. The results are equivalent.
The corresponding PSF of the generic lens [2], similarly

to (20), is given as

PSFðxÞ ¼ jBðxÞj2: ð96Þ

This PSF can be used for the practical modeling of
gravitational lenses, especially for imaging of faint
sources [4].
Finally, to study imaging with an extended lens, we must

consider the EM field as it is seen through an imaging
telescope. To do this, we treat the imaging telescope as a
thin lens and perform a Fourier transform of the EM field
(15) characterized by the complex amplitude BðxÞ, as given

by (38). For that, we introduce xi, representing a point on
the focal plane of the optical telescope:

fxig≡ ðxi; yi; 0Þ ¼ ρiðcosϕi; sinϕi; 0Þ: ð97Þ
Following [4], we use the expression for the Poynting

vector carried by an EM wave in a vacuum in a flat
spacetime and observed on the focal plane of an imaging
telescope, S0ðx;xiÞ. Then, we obtain the amplification
factor μðx;xiÞ of the optical system consisting of the SGL
and the imaging telescope (i.e., the convolution of the PSF
of the SGL with that of an optical telescope), that in the
case of a generic axisymmetric lens takes the form

Iðx;xiÞ ¼ jAðx;xiÞj2; ð98Þ
where Iðx;xiÞ is the intensity distribution corresponding to
the image of a point source as seen by the imaging telescope
(see details in [4]) and Aðx;xiÞ is the normalized Fourier
transform of the complex amplitude BðxÞ from (95):

Aðx;xiÞ ¼
1

2π

Z
2π

0

dϕξ

�
2J1ðuðϕξ;ϕiÞ 12 dÞ

uðϕξ;ϕiÞ 12 d
�

× exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ − 2rg

X∞
l¼2

ð2l − 2Þ!!
l!ð ffiffiffiffiffiffiffiffiffi

2rgr̃
p Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ2
l þ t×2l

q
cos½lðϕξ − ϕlÞ�

��
; ð99Þ

with d being the telescope’s aperture and uðϕξ;ϕiÞ is given by

uðϕξ;ϕiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2αηi cosðϕξ − ϕiÞ þ η2i

q
; where α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
; ηi ¼ k

ρi
f
; ð100Þ

with α and ηi characterizing the spatial frequencies of the
SGL PSF and its caustic region, while f is the imaging
telescope’s focal length.
Using the intensity of light observed in the image plane,

Iðx;xiÞ, given by (98) with Aðx;xiÞ from (99) we can
study imaging with an extended gravitational lens that has a
generic internal structure and mass distribution.
Expressions (96) and (98) are the PSF of the extended lens

and the intensity of light observed at the image sensor of an
imaging telescope. Their optical properties are guided by
(95) and (99), correspondingly. The structure of these
expressions is similar to those studied in [2,4,5] where we
studied lensing by axisymmetric mass distributions. The
primary difference is the fact that expressions (95) and (99)
do not have the same rotational axis at each order. In fact, the
angle ϕl is different for each STF order, as shown in (79) or
(86), and is set by the unique set of the TT-projected STF
multipolemassmoments. Based on our prior research [2], we
know that at each order l the PSF will exhibit a unique
caustic [3] with the cusps yielding bright images to be
observed by the telescope [4]. This result allows for phy-
sically consistent modeling of realistic gravitational lenses.

V. DISCUSSION AND CONCLUSIONS

In this paper, we studied the optical properties of
gravitational lenses with generic mass distributions. To
characterize the static external gravitational field produced
by such objects, we used the STF tensor representation of
the mass multipole moments. Through this route, we were
able to obtain the most general solution for the gravitational
phase shift, which is the key concept used to characterize
the diffraction of light in a gravitational field. This allowed us
to develop a wave-optical treatment of gravitational lenses
with arbitrary structure and internal mass distribution. In
Ref. [38] we considered the STF multipole moments for
several well-known solids possessing uniform density dis-
tribution and show how they may be practically computed
and used to study gravitational lensing phenomena.
Our results were obtained taking into account that in

gravitational lensing, the Schwarzschild radius of the lens,
rg, is many orders of magnitude smaller than the typical
distances involved, rg ≪ r; r0. Furthermore, as was shown
in [1,2,8], the highest amplification is achieved in the case
when the light ray’s impact parameter, b, is of the order of
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the physical dimensions of a compact lensing object,R, that
is also much smaller than the typical distances, R ≪ r; r0.
The resulting conditions on the impact parameter, b=r ≪ 1
and also b=r0 ≪ 1, make our approximation well justified
for astrophysical lenses. As a result, we demonstrated that
the STF form is very useful for practical lensing systems.
The Cartesian STF tensor mass multipole moments are

very useful. Although the information about a mass
distribution that they possess is identical to that captured
by spherical harmonics, the STF representation of a
gravitational potential offers technical advantages for
problems dealing with light propagation in a weak gravi-
tational field. These advantages relate to the fact that the
gravitational eikonal equation may now be integrated to
any desired order.
We found that at each STF order the gravitational

phase shift is fully described by the components of the
TT-projected STF tensor moments, as shown by (72),
which depends only on two parameters tþl and t×l , as
given by (80) with (79). These combinations of the STF
moments are directly related to the Cll and Sll spherical
harmonics, as in (88) with (86). If either ftþl ; t×lg or
fCll; Sllg are known or otherwise determined from
observations, computation of the PSF is straightforward
and is given by a double integral (93). Although this
integral expression can be rapidly oscillating, there are
regimes where semianalytical treatments are possible.
Such conditions are realized in the case of impact
parameters significantly larger than the physical extent
of the lens or when the lens may be treated as weakly
aspherical. In these cases, the contributions of the multi-
pole mass moments diminish as 1=bl allowing for an
iterative solution with the method of stationary phase. As
a result, (93) may be reduced to a single integral (95)
with finite integration limits. Similarly, the intensity of
light seen at the image sensor of an imaging telescope is
governed by a similar integral, as in (99). The resulting
integral is manageable with a modest computational cost.
It is quite remarkable that at each multipolar order, only

two parameters are required to describe the effect of an
extended lens. This is simpler than expected and it applies
even to objects without any symmetries. Although, it is

common to account only for the sky plane components of
the lensing potential (hence the use of the plane lens
approximation, e.g., [15]), we were able to derive this
conclusion rigorously from the first principles. One con-
sequence is that observations from a single vantage point
are limited only to two combinations of the TT-projected
STF tensor moments of a gravity field, thus precluding
reconstruction of the full three-dimensional structure of
the mass distribution that is the source of that field (see
discussion in [38]). To overcome this limitation, the
observing position needs to change. The larger the sepa-
ration between observing positions, the higher the sensi-
tivity to the effects due to the three-dimensional structure of
an extended mass distribution. We consider this conclusion
to be quite fundamental for astronomy.
The new approach presented here is applicable to all

weakly aspherical, compact lenses in all lensing regimes
(one can demonstrate this by using the approach shown in
[5]). Advantages of our approach arise from the fact that we
can now describe lensing by any such mass distribution
using physically justified lens models. These results are
new and may be used to study gravitational lensing with a
wide range of realistic astrophysical systems, including
the SGL.
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APPENDIX A: COORDINATE COMBINATIONS
FOR THE LOWEST STF MOMENTS

We define the moments a usual:

ML ¼
Z

d3r0 ρðr0Þx0L; where L ∈ ½1;l�: ðA1Þ

The coordinate combinations needed to compute the
lowest Cartesian STF multipole moments [36] are

r2n̂ab ¼ STFabðxaxbÞ ¼ xaxb −
1

3
r2δab; ðA2Þ

r3n̂abc ¼ STFabcðxaxbxcÞ ¼ xaxbxc −
1

5
r2ðδabxc þ δbcxa þ δcaxbÞ: ðA3Þ

r4n̂abcd ¼ STFabcdðxaxbxcxdÞ ¼ xaxbxcxd

−
r2

7
ðxaxbδcd þ xaxcδbd þ xaxdδbc þ xbxcδad þ xbxdδac þ xcxdδabÞ þ r4

35
ðδabδcd þ δacδbd þ δadδbcÞ: ðA4Þ
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APPENDIX B: CORRESPONDENCE BETWEEN THE STF MASS MOMENTS
AND SPHERICAL HARMONICS

To derive the relations between the Cartesian and spherical quadrupole (l ¼ 2) moments explicitly, we can express the
spherical harmonics in terms of Cartesian coordinates. For that we use (22) and write

U½2�ðrÞ ¼ G
r3
ðP20C20 þ P21ðC21 cosϕþ S21 sinϕÞ þ P22ðC22 cos 2ϕþ S22 sin 2ϕÞÞ: ðB1Þ

Using a spherical coordinate system (x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, z ¼ r cosϕ), we have r2P20 ¼ ð2z2 − x2 − y2Þ=2,
r2P21 cosϕ ¼ 3xz, r2P21 sinϕ ¼ 3yz, r2P22 cos 2ϕ ¼ 3ðx2 − y2Þ, r2P22 sin 2ϕ ¼ 6xy. Substituting these expressions in
(B1), we get

U½2�ðrÞ ¼ GM
r5

�
C20

1

2
ð2z2 − x2 − y2Þ þ 3C21xzþ 3S21yzþ 3C22ðx2 − y2Þ þ 6S22xy

�
: ðB2Þ

From (27), we have the same quantity expressed via the components of the STF quadrupole moment T habi:

U½2�ðrÞ ¼ GM
3T habi
2r5

xaxb ¼ GM
3

2r5
ðT 11x2 þ 2T 12xyþ 2T 13xzþ 2T 23yzþ T 22y2 þ T 33z2Þ: ðB3Þ

Equating the terms with the same powers of x, y, z
between the form of the potential in terms of spherical
harmonics present in (B2) and that expressed via the STF
mass quadrupole in (B3) yields the following relations:

T 11 ¼
�
−
1

3
C20 þ 2C22

�
R2; T 12 ¼ 2S22R2;

T 22 ¼
�
−
1

3
C20 − 2C22

�
R2; T 13 ¼ −C21R2;

T 33 ¼
2

3
C20R2; T 23 ¼ −S21R2: ðB4Þ

Following the same approach, we can establish the
corresponding relationships between the octupole and
hexadecapole moments and the appropriate spherical har-
monics coefficients given by (53) and (63).

APPENDIX C: COMPUTING PARTICULAR
CASES

To demonstrate the practical utility of our results,
we derive several low order terms in (39). First, we
recognize that with k being constant, the two-
dimensional vector b and the one-dimensional quantity
τ, from (4)–(5), may be treated as two independent
variables, yielding dxa ¼ dba þ kadτ and also ∂=∂xa ¼
∂=∂ba þ ka∂=∂τ, where differentiation with respect to b
is carried out in two dimensions only, which is indicated
by the hatted notation. Then, to compute the needed
partial derivatives in (39), with respect to the vector of
the impact parameter, ∂̂a ≡ ∂=∂ba ≡ ð∂=∂bx; ∂=∂by; 0Þ
in our chosen Cartesian coordinate system, we may
formally write

∂xa
∂xb ¼ δab ¼

�
∂̂b þ kb

∂
∂τ
�
fba þ kaτ þOðrgÞg ¼ ∂̂bba þ kakb þOðrgÞ: ðC1Þ

By rearranging the terms in this identity, we obtain the following useful expression (see also [34,36]):

∂̂bba ¼ δab − kakb: ðC2Þ

This result essentially is the projection operator onto the plane perpendicular to k, namely Pab ¼ δab − kakb; this plane,
given the parametrization (6)–(7), is the plane of the impact parameter b.
With result (C2), we compute the partial derivatives present in (39) for several low order terms, namely l ¼ 2, 3, 4:

∂̂a ln kb ¼ ba
b2

; ðC3Þ

∂̂2
ab ln kb ¼ 1

b2
ðδab − kakbÞ −

2babb
b4

; ðC4Þ
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∂̂3
abc ln kb ¼ −

2ba
b4

ðδbc − kbkcÞ −
2bb
b4

ðδac − kakcÞ −
2bc
b4

ðδab − kakbÞ þ
8babbbc

b6
; ðC5Þ

∂̂4
abcd ln kb ¼ −

2

b4
ðδbc − kbkcÞðδad − kakdÞ −

2

b4
ðδac − kakcÞðδbd − kbkdÞ −

2

b4
ðδab − kakbÞðδcd − kckdÞ

þ 8

b6
ðbabbðδcd − kckdÞ þ babcðδbd − kbkdÞ þ babdðδbc − kbkcÞ þ bbbcðδad − kakdÞ

þ bbbdðδac − kakcÞ þ bcbdðδab − kakbÞÞ −
48babbbcbd

b8
; ðC6Þ

where ba is the ath component of the vector impact parameter.

APPENDIX D: INTRODUCING PROJECTION OPERATORS

Recognizing the fact that (C2) is the projection operator:

Pab ¼ δab − kakb; ðD1Þ

which projects on the transverse direction with respect to k or on the plane of the impact parameter b, we present results
(C4)–(C6) in the following identical form:

∂̂a ln kb ¼ Pai
bi

b2
; ðD2Þ

∂̂2
ab ln kb ¼ −

�
PaiPbj −

1

2
PabPij

�
1

b2
ð2mimj − δijÞ; ðD3Þ

∂̂3
abc ln kb ¼

�
PaiPbjPck −

1

4
PabPciPjk −

1

4
PacPbiPjk −

1

4
PbcPaiPjk

�
2

b3
ð4mimjmk − δijmk − δikmj − δkjmiÞ; ðD4Þ

∂̂4
abcd ln kb ¼ −

�
PaiPbjPckPdl −

1

6
ðPabPijPckPdl þ PacPikPbjPdl þ PadPilPbjPck þ PbcPjkPaiPdl

þþPbdPjlPaiPck þ PcdPklPaiPbjÞ þ
1

24
ðPabPcd þ PacPbd þ PbcPadÞPijPkl

�
2

b4
f24mimjmkml

− −4ðδilmjmk þ δjlmimk þ δklmimj þ δijmkml þ δikmjml þ δkjmimlÞ þ ðδijδkl þ δikδjl þ δilδkjÞg; ðD5Þ

where ba ¼ bma is the ath component of the vector of the impact parameter, with b being its magnitude and ma its unit
vector, see definitions given in parametrization (6)–(7).
With the results (D3)–(D5), we express the appropriate terms of T ha1…ali∂̂ha1…ali ln kb, as

T habi∂̂habi ln kb ¼ −T habi
�
PaiPbj −

1

2
PabPij

�
1

b2
ð2mimj − δijÞ

¼ −½T hiji�TT 1

b2
ð2mimj − δijÞ≡ −½T hiji�TT 2

b2
mimj; ðD6Þ

T habci∂̂habci ln kb ¼ T habci
�
PaiPbjPck −

1

4
PabPciPjk −

1

4
PacPbiPjk −

1

4
PbcPaiPjk

�

×
2

b3
ð4mimjmk − δijmk − δikmj − δkjmiÞ

¼ ½T hijki�TT 2

b3
ð4mimjmk − δijmk − δikmj − δkjmiÞ≡ ½T hijki�TT 8

b3
mimjmk; ðD7Þ
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T habcdi∂̂habcdi ln kb ¼ −T habcdi
�
PaiPbjPckPdl −

1

6
ðPabPijPckPdl þ PacPikPbjPdl þ PadPilPbjPck þ PbcPjkPaiPdl

þ PbdPjlPaiPck þ PcdPklPaiPbjÞ þ
1

24
ðPabPcd þ PacPbd þ PbcPadÞPijPkl

�
2

b4
f24mimjmkml

− 4ðδilmjmk þ δjlmimk þ δklmimj þ δijmkml þ δikmjml þ δkjmimlÞ þ δijδkl þ δikδjl þ δilδkjg

¼ −½T hijkli�TT 2

b4
f24mimjmkml − 4ðδilmjmk þ δjlmimk þ δklmimj þ δijmkml þ δikmjml þ δkjmimlÞ

þ δijδkl þ δikδjl þ δilδkjg ¼ −½T hijkli�TT 48
b4

mimjmkml; ðD8Þ

where the superscript TT stands for transverse traceless projection in the lens plane.
As a result, we have the following expressions:

T habi∂̂habi ln kb ¼ −½T hiji�TT 2

b2
mimj; ðD9Þ

T habci∂̂habci ln kb ¼ ½T hijki�TT 8

b3
mimjmk; ðD10Þ

T habcdi∂̂habcdi ln kb ¼ −½T hijkli�TT 48
b4

mimjmkml: ðD11Þ

Results, similar to (D9)–(D11), were verified through l ¼ 10, thus enabling a generalization to an arbitrary l.

APPENDIX E: POLARIZATION MATRICES

We computed the explicit forms of the polarization matricesUþ
a1…al ≡Uþ

l and U×
a1…al ≡U×

l entering expression (73) to
several orders, l ∈ f2; 3; 4g:

Uþ
2 ¼

2
64
1 0 0

0 −1 0

0 0 0

3
75; U×

2 ¼

2
64
0 1 0

1 0 0

0 0 0

3
75; ðE1Þ

Uþ
3 ¼

2
66666666666666664

0
B@

1

0

0

1
CA

0
B@

0

−1
0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

−1
0

1
CA

0
B@

−1
0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

3
77777777777777775

; U×
3 ¼

2
66666666666666664

0
B@

0

1

0

1
CA

0
B@

1

0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

1

0

0

1
CA

0
B@

0

−1
0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

0
B@

0

0

0

1
CA

3
77777777777777775

; ðE2Þ
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Uþ
4 ¼

2
66666666666666664

0
B@
1 0 0

0 −1 0

0 0 0

1
CA

0
B@

0 −1 0

−1 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@

0 −1 0

−1 0 0

0 0 0

1
CA

0
B@
−1 0 0

0 1 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

3
77777777777777775

; U×
4 ¼

2
66666666666666664

0
B@
0 1 0

1 0 0

0 0 0

1
CA

0
B@
1 0 0

0 −1 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
1 0 0

0 −1 0

0 0 0

1
CA

0
B@

0 −1 0

−1 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 0

1
CA

3
77777777777777775

: ðE3Þ

One can see that the basis vectors Uþ
l and U×

l are block
matrices where the structure at each consecutive order
replicates the structure at l ¼ 2 with different signs.
Similar structures, but with ever increasing complexity,
are evident for each order beyond those shown by expres-
sions (E1)–(E3). Each block within the matrices is respon-
sible for a single rotation, that being combined with others
leads to a rotation by lϕl, in analogy to the Chebychev
polynomials.
Using expressions (E1)–(E3), we can verify that the

following relations exist for l ∈ f2; 3; 4g:

Uþ
a1…alm

a1…mal ¼ cos½lϕξ�; U×
a1…alm

a1…mal ¼ sin½lϕξ�;
ðE4Þ

where the components ma of the vector impact parameter
are given by (7). In fact, using computer algebra, we were
able to verify these relationships up to l ¼ 10, which may
lead to generalization of an arbitrary order l.

APPENDIX F: LARGE IMPACT PARAMETER
APPROXIMATION

We recall that (37) was obtained from (34) by assuming
b=r0 ≪ 1 and b=r ≪ 1. As a result, we are not sensitive to
the longitudinal components of the gravitational field as
expressed via the STF multipole moments. However, in the
case when b=r0 ∼ 1 and b=r ∼ 1, the phase shift (34) will
contain all STF components. To demonstrate this, we
compute the phase shift for the quadrupole moment,
l ¼ 2. The derivatives present in (34) are

∂̂a ln kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ

Paibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p ; ðF1Þ

∂̂2
ab ln kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ PaiPbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�
δij −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�
bibj

�
; ðF2Þ

We also need the following:

X2
p¼1

l!
p!ðl − pÞ! kha1…kap ∂̂apþ1

…∂̂ali
∂p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p ¼ 2kha∂̂bi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p þ khakbi
∂
∂τ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

¼ −
1

ðb2 þ τ2Þ32
�
2ðkabb þ kbbaÞ þ τ

�
kakb −

1

3
δab

��
: ðF3Þ

Clearly, the same expressions exist for terms that depend on τ0.
Using the result (5) we determine that the following relations are valid to OðrgÞ:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
; rþ ðk · rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ: ðF4Þ

Then, using the derivatives (F2)–(F3) and relying on the notations (F4) from (28) we have the following expression for the
gravitational eikonal phase shift induced by the quadrupole STF moment, l ¼ 2:
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φ2ðbÞ ¼
1

2
krgT habi

��
mamb −

1

3
δab

��
4

b2
−
b2ð2rþ ðk · rÞÞ
r3ðrþ ðk · rÞÞ2 −

b2ð2r0 þ ðk · r0ÞÞ
r30ðr0 þ ðk · r0ÞÞ2

�

þ
�
kakb −

1

3
δab

��
2

b2
−

1

rðrþ ðk · rÞÞ −
ðk · rÞ
r3

−
1

r0ðr0 þ ðk · r0ÞÞ
−
ðk · r0Þ

r30

�
− 2ðkamb þ kbmaÞ

�
b
r3

þ b
r30

��
:

ðF5Þ

Using the parametrization (6)–(7), we transform the appropriate terms in (F5) as

T habi
�
mamb −

1

3
δab

�
¼ 1

2
ðT 11 þ T 22Þ þ

1

2
ðT 11 − T 22Þ cos 2ϕξ þ T 12 sin 2ϕξ; ðF6Þ

T habi
�
kakb −

1

3
δab

�
¼ T 33; ðF7Þ

T habiðkamb þ kbmaÞ ¼ 2T 13 cos 2ϕξ þ 2T 23 sinϕξ: ðF8Þ

With these results and using the fact that T habi is an STF tensor, T 11 þ T 22 þ T 33 ¼ 0, we transform (F5) as

φ2ðbÞ ¼
1

2
krg

��
1

2
ðT 11 − T 22Þ cos2ϕξ þ T 12 sin2ϕξ

��
4

b2
−
b2ð2rþ ðk · rÞÞ
r3ðrþ ðk · rÞÞ2 −

b2ð2r0 þ ðk · r0ÞÞ
r30ðr0 þ ðk · r0ÞÞ2

�

− T 33

�
1

rðrþ ðk · rÞÞ
�
1−

b2ð2rþ ðk · rÞÞ
2r2ðrþ ðk · rÞÞ2

�
þ ðk · rÞ

r3
þ 1

r0ðrþ ðk · r0ÞÞ
�
1−

b2ð2r0 þ ðk · r0ÞÞ
2r20ðr0 þ ðk · r0ÞÞ2

�
þ ðk · r0Þ

r30

�

− 4ðT 13 cosϕξ þ T 23 sinϕξÞ
�
b
r3

þ b
r30

��
: ðF9Þ

As expected, this expression contains all six components of T habi with only five of them being independent. In realistic
lensing geometries b=r ≪ 1 and b=r0 ≪ 1, which brings (F9) to the form (43) that features only the transverse components
of the quadrupole moment.

Using the relationship between T habi and the spherical harmonic coefficients from (44), we transform (F9) as

φ2ðbÞ ¼ krgR2

�
ðC22 cos2ϕξ þ S22 sin2ϕξÞ

�
4

b2
−
b2ð2rþ ðk · rÞÞ
r3ðrþ ðk · rÞÞ2 −

b2ð2r0 þ ðk · r0ÞÞ
r30ðr0 þ ðk · r0ÞÞ2

�

−
1

3
C20

�
1

rðrþ ðk · rÞÞ
�
1−

b2ð2rþ ðk · rÞÞ
2r2ðrþ ðk · rÞÞ2

�
þ ðk · rÞ

r3
þ 1

r0ðrþ ðk · r0ÞÞ
�
1−

b2ð2r0 þ ðk · r0ÞÞ
2r20ðr0 þ ðk · r0ÞÞ2

�
þ ðk · r0Þ

r30

�

þ 2ðC21 cosϕξ þ S31 sinϕξÞ
�
b
r3

þ b
r30

��
: ðF10Þ

We recall that r ¼ rðb; τÞ and r0 ¼ rðb; τ0Þ are given by (F4). Thus, in the case when b=r, r=r0 ≪ 1, we recover the earlier
result (46), where φ2ðbÞ ¼ 4krgðR=bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
22 þ S222

p
cos½2ðϕξ − ϕ2Þ�Þð1þOðb2=r2ÞÞ.
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