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It is shown here that symmetric-hyperbolicity, which guarantees well-posedness, leads to a set of two
inequalities for matrices whose elements are determined by a given theory. As a part of the calculation,
carried out in a mostly covariant formalism, the general form for the symmetrizer, valid for a general
Lagrangian theory, was obtained. When applied to nonlinear electromagnetism linearly coupled to
curvature, the inequalities lead to strong constraints on the relevant quantities, which were illustrated with
applications to particular cases. The examples show that nonlinearity leads to constraints on the field
intensities, and nonminimal coupling imposes restrictions on quantities associated to curvature.
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I. INTRODUCTION

The well-posedness of the initial value problem stands
out as a basic requirement to be satisfied by any relativistic
field theory. Broadly speaking, it implies that solutions for
a given problem exist, are unique, and depend continuously
on the initial data. Hence, well-posedness is at the roots of
physics, for it amounts to the predictability power of a
given theory. While it is difficult to decide whether a given
nonlinear theory has a well-posed initial value problem, a
necessary and sufficient condition for well-posedness
around a given solution is that all the linearized problems
obtained by linearizing near such a solution are well-posed,
see for instance [1,2].
In the linearized regime, well-posedness means that the

equation of motion is hyperbolic. At least three notions of
hyperbolicity can be distinguished [1,3]: (i) weak hyper-
bolicity, in which all the roots of the characteristic equation
are real, (ii) strong hyperbolicity, which implies that there is
an energy estimate that sets a bound for the energy of a
solution at a given time in terms of the initial energy,1 and
(iii) symmetric hyperbolicity, which is a sufficient con-
dition for well-posedness [4,5]. It follows that symmetric
hyperbolicity implies strong hyperbolicity, which in turn
implies weak hyperbolicity.
There are many examples in which the requirement of

some kind of hyperbolicity imposes severe restrictions on

the Lagrangian of a given theory. For instance, as shown in
[2], the equations of motion of Lovelock’s theory are
always weakly hyperbolic for weak fields but not strongly
hyperbolic in a generic weak-field background. The well-
posedness of Horneski theory has been analyzed in [2,6].
As shown in the latter reference, the most general
Horndeski theory that is strongly hyperbolic for weak
fields in a generalized harmonic gauge is simply k-essence
coupled to Einstein’s gravity (see also [7]). The well-
posedness of scalar-tensor effective field theory was stud-
ied in [8], where it was shown that the equations of motion
are strongly hyperbolic at weak coupling.
Wewould like to explore here the constraints imposed by

the requirement of well-posedness in the case of nonlinear
electromagnetic theories coupled to gravity. Nonlinear
electromagnetism has been widely studied in several
contexts. A nonexhaustive list of applications and refer-
ences includes black holes [9–13], astrophysics [14–16],
and cosmology [17–21]. There are also several articles
devoted to different aspects of the propagation of pertur-
bations in nonlinear electromagnetic theories, such as
[22–25]. The matter of (symmetric) hyperbolicity for
nonlinear electromagnetism minimally coupled to gravity
was analyzed in a flat spacetime background in [26], while
the hyperbolicity of Maxwell’s equations with a local (and
possibly nonlinear) constitutive law in flat spacetime was
considered in [27]. Our aim here is to determine the
restrictions that follow from the requirement of symmetric
hyperbolicity on nonlinear electromagnetism nonmini-
mally coupled to gravity, several aspects of which have

1In fact, strong hyperbolicity is a necessary and sufficient
condition for the initial-value problem to be well-posed.
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been studied in detail in [28–31]. We shall restrict to
couplings linear in the curvature, since higher-order cou-
plings produce higher-than-second-order equations for the
gravitational field [28].
As mentioned above, a sufficient condition for well-

posedness to hold is that the system under study admits a
symmetric-hyperbolic representation. The theory of first-
order symmetric-hyperbolic systems, originally due to
Friedrichs [32], has been extensively developed (see for
instance [3] and references therein). To study the evolution
of a system we shall adopt here the modern geometric
approach to the subject outlined by Geroch in [33], in
which covariance is kept during most of the calculation,
instead of using a 3þ 1 decomposition of spacetime (as for
instance in [27]).2 We shall see that such approach leads to a
general form for the symmetrizer, and to conditions for
symmetric hyperbolicity that are easier to evaluate than
those for other types of hyperbolicity.
The structure of the paper is as follows. In Sec. II the

basic notation used in the equations of motion is presented.
Symmetric hyperbolicity, the related concept of symmetr-
izer, and the role of the constraints are analyzed in Sec. III.
The equations defining the characteristic cones will be
deduced in Sec. IV. Our main result, namely the explicit
form of the matrices that are needed to investigate the
symmetric hyperbolicity of any nonlinear electromagnetic
theory nonminimally coupled to gravity can be found in
Sec. V. In Sec. VI, some examples of the restrictions
imposed by symmetric hyperbolicity are presented for
different theories. Our closing remarks are presented in
Sec. VII.

II. LAGRANGIANS AND EQUATIONS OFMOTION

To begin with, let M denote a smooth four-dimensional
spacetime with a Lorentzian metric g of signature
ðþ;−;−;−Þ. For the sake of concreteness we assume
M to be also oriented and globally hyperbolic,
i.e., M ≅ R × Σ, with Σ a codimension-1 hypersurface.
Sticking to the conventions Rab ≡ Rc

acb and ½ab�≡
ab − ba, the canonical decomposition of the Riemman
tensor into its irreducible parts reads

Rab
cd ¼ Wab

cd þ
1

2
δ½a½cSb�d� þ

R
12

gabcd; ð1Þ

where Wabcd is the Weyl conformal tensor, Sab is the
traceless part of the Ricci tensor, R is the scalar curvature,
and gabcd ¼ ga½cgd�b is the Kulkarni-Nomizu product of the
metric with itself. Clearly, each factor in the decomposition
has the same algebraic symmetries as the full Riemann
tensor, that is

Rabcd ¼ −Rbacd ¼ −Rabdc; Rabcd ¼ Rcdab; ð2Þ

Rabcd þ Racdb þ Radbc ¼ 0: ð3Þ

An arbitrary rank four covariant tensor satisfying
Eq. (2) has 21 independent components and is often
referred to as a double symmetric (2,2) form (the skew
pairs can be interchanged). If, in addition, the tensor
satisfies Eq. (3), it is called an algebraic curvature tensor
(see for instance [34]).
If we are given a double symmetric (2,2) form onM, say

χ, then we may obtain its left-dual ⋆χ and right-dual χ⋆ by

⋆χabcd ¼ 1

2
εab

pqχpqcd; χabcd⋆ ¼ 1

2
εpqcdχabpq; ð4Þ

where εabcd is the Levi-Civita tensor with ε0123 ¼ ffiffiffiffiffiffi−gp
.

Notice that the place of the ⋆ indicates the pair of skew
indices, which are Hodge dualized. A direct consequence is
that

⋆⋆χabcd ¼ −χabcd; χabcd⋆⋆ ¼ −χabcd: ð5Þ

We aim at constructing Lagrangians describing the cou-
pling of gravity with the electromagnetic field using
invariants that are at most linear in the curvature,3 and
respecting the Uð1Þ gauge invariance of electromagnetism.
Recalling that every algebraic curvature tensor satisfy the
Ruse-Lanczos identity, we may construct the following
independent rank four tensors (see the Appendix for
details)

ð1Þχabcd ≡ gabcd; ð2Þχabcd ≡ εabcd; ð6Þ

ð3Þχabcd ≡ Rgabcd; ð4Þχabcd ≡ Rεabcd; ð7Þ

ð5Þχabcd ≡Wab
cd; ð6Þχabcd ≡ ⋆Wab

cd; ð8Þ

ð7Þχabcd ≡ δ½a½cSb�d�: ð9Þ

Notice that ðΓÞχabcd ðΓ ¼ 1; 2;…; 7Þ are double symmetric
(2,2) forms by construction and it can be checked that they
exhaust the interesting possibilities: the first pair, Eq. (6),
involves only algebraic terms in the metric, while the
remaining Eqs. (7)–(9) contain at most linear terms in the
curvature.
Let Fab ¼ ∂ ½aAb� denote a test electromagnetic (EM)

field propagating onM. We shall focus on the propagation
properties of such a field on a fixed gravitational back-
ground. The EM field will be described by the gauge-
invariant action functional of the form

2For a list of other approaches to the analysis of the evolution
of minimally coupled electromagnetism, see [26].

3As discussed in [28], higher-order couplings lead to equations
of motion with derivatives of the metric higher than 2.
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S ¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
LðI1; I2;…; I7Þ; ð10Þ

where the factor 1=4 is introduced for future convenience
and the Lagrangian density is taken as an arbitrary smooth
function of the following scalars

IΓ ≡ ðΓÞHabFab; where ðΓÞHab ≡ 1

2
χabcdFcd: ð11Þ

In analogy with electrodynamics in material media, we
call ðΓÞHab the Γth induction tensor and ðΓÞχabcd the Γth
constitutive tensor. Particular instances described by
Eq. (10) include Maxwell’s theory, minimally-coupled
nonlinear electrodynamics, and the three-parameter non-
minimal Einstein-Maxwell model originating from QED
vacuum polarization in a background gravitational field
(see for instance [35]), among others. With the conventions
presented above, the variation of the action with respect to
the four potential yields a coupled system of first-order
quasilinear partial differential equations (PDEs) for the
fields, given by

∇bHab ¼ 0; ∇b⋆Fab ¼ 0: ð12Þ

Here, ∇a is the covariant derivative compatible with the
metric and the full induction tensor is defined by

Hab ≡X
LΓ

ðΓÞHab; ð13Þ

with LΓ ≡ ∂L=∂IΓ, for conciseness. Notice that the system
defined by Eq. (12) is composed of eight equations for only
six unknowns. In relevant physical situations, the equations
must include six dynamical equations (defined with respect
to some time coordinate, to be identified later) and two
constraints, which are to be imposed on initial data.

III. SYMMETRIC-HYPERBOLICITY

In order to study whether the equations of motion
admit a symmetric-hyperbolic representation, it is conven-
ient to recast the system of equations Eq. (12) in a unified
manner as

KA
m
βðx;ΦÞ∂mΦβ þ JAðx;ΦÞ ¼ 0; ð14Þ

where x ∈ M, KA
m
β is the principal part of the PDE and

JAðx;ΦÞ stands for semilinear contributions (whose
explicit form is unnecessary for our discussion). Here
capital Latin indices (A ¼ 1;…; 8) stand for the space of
multitensorial equations, lowercase Latin indices (m ¼ 0,
1, 2, 3) stand for space-time indices, and Greek indices
ðβ ¼ 1;…; 6Þ for tensorial unknowns. To start with, we
introduce an ordering of the antisymmetric indices to obtain
the six possible collective quantities

1 → ð01Þ 2 → ð02Þ 3 → ð03Þ 4 → ð32Þ
5 → ð13Þ 6 → ð21Þ: ð15Þ

Making the identificationΦβ → Fbc and performing simple
manipulations in Eqs. (12), the principal part is then
written as

KA
m
α ¼

1

2
ðXa

m
bc; εambcÞ; ð16Þ

with

Xabcd≡
X
Γ
LΓ

ðΓÞχabcdþ4
X
Γ

X
Λ

LΓΛ
ðΓÞHab

ðΛÞHcd: ð17Þ

Xabcd consists of a main term involving only first partial
derivatives of the Lagrangian density and a nonlinear term
including the Hessian matrix of the latter. Clearly, if the
Lagrangian is a linear combination of the invariants IΓ, the
last term vanishes and linear equations of motion follow.
More importantly, Xabcd is always a symmetric double
(2,2)-form independently on the specific form of the
Lagrangian. This is a direct consequence of the symmetries
of the constitutive tensors together with the symmetry of
the Hessian matrix, i.e., LΓΛ ¼ LΛΓ.
In what follows we shall use the covariant approach for

first-order symmetric-hyperbolic systems outlined in [33]:
a symmetric hyperbolization of Eq. (14) means that there
exist a smooth symmetrizer hAα and a covector field nm,
such that
(1) K̂m

αβ ≡ hAαKA
m
β is symmetric in the indices α, β.

(ii) The matrix K̂αβðnÞ≡ K̂α
m
βnm is positive definite.

Roughly speaking, the first statement means that it should
be possible to construct from Eqs. (14) a new subsystem of
first-order quasilinear PDEs given by

K̂α
m
β∂mΦβ þ Ĵα ¼ 0; ð18Þ

with Ĵα ≡ hAαJA. Clearly, the new system contains only
evolution equations and its dimension is equivalent to the
number of unknown fields. The second statement means
that the new system can be solved uniquely for any given
set of initial conditions on a hypersurface Σ with normal
covector nm. What are the remaining equations the sym-
metrizer does not capture? For the system to be consistent
they should not be of the evolution type. In other words,
they must be satisfied automatically once they are satisfied
initially, i.e., they should be what we normally call the
constraints.4

The geometrical meaning of the covectors introduced in
the previous paragraph is as follows. At a spacetime point
p ∈ M, the collection of all covectors satisfying condition
(2) is denoted by Sp. This set defines a nonempty open,

4See Refs. [3,33,36] for additional details.
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convex cone at p and the tangent vectors pa ∈ TpM such
that pana > 0 for all na ∈ Sp determine the cone of
influence of the physical field, i.e., the maximal speed
of propagation in any given direction. It turns out that the
latter is also a nonempty open, convex cone at p.
In the next subsection, we start by showing that a family

of symmetrizers parametrized by a vector field always
exists for the system of first-order PDEs given by Eqs. (12).
It is important to point out that our result is general in the
sense that it does not depend on the specific form of the
Lagrangian density. We then obtain the conditions that a
theory must satisfy for positive definiteness [see condition
(2) above] to hold. This is first obtained for a particular
covector and henceforth generalized by inspecting the
characteristic varieties (dispersion relations), which are
necessarily well-behaved for symmetric hyperbolic
systems.

A. Symmetrizer

In order to find a symmetrizer, it is convenient to work
with projections. In other words, we seek a multitensorial
field hAα such that the quantity δϕαðhAαKA

m
βÞδψβ is

symmetric in δϕ and δψ . Making the identifications

δϕα → Aab; δψα → Bab; ð19Þ

where A and B are generic bivectors, we obtain from
Eq. (16), the relation

KA
m
βδψ

β ¼
�
1

2
Xa

m
bcBbc;⋆Ba

m

�
: ð20Þ

Since there is no known practical procedure to obtain
a symmetrizer for an arbitrary system of PDE’s, hyper-
bolizations are found, for a sufficiently low number of
dimensions, by solving explicitly the algebraic equations
inherent to the system defined by Eq. (14) and, in higher
dimensions, by guessing. Let us show that the symmetrizer
is given by the projection

δϕαhAα ¼
�
Aa

q;
1

2
⋆Xa

qrsArs

�
tq; ð21Þ

where tq is an auxiliary vector field and ⋆Xa
qrs is the left

Hodge dual as defined before. Indeed, multiplying (21) by
(20) one obtains

δϕαðhAαKA
m
βÞδψβ¼1

2
ðXa

m
bcAa

qBbcþ⋆Xa
qrsArs⋆Ba

mÞtq:
ð22Þ

Now, defining

Ya
q ≡ Xa

qrsArs; ⋆Ya
q ≡ ⋆Xa

qrsArs; ð23Þ

and using the well-known identity valid for antisymmetric
tensors

ð⋆YaqÞð⋆BamÞ ¼ −
1

2
ðYlnBlnÞδmq þ YamBaq; ð24Þ

it follows that

δϕαðhAαKA
m
βÞδψβ ¼ 1

2

�
Xa

m
bcðAa

qBbc þ AbcBa
qÞ

−
1

2
ðXabcdBabAcdÞδmq

�
tq; ð25Þ

which is obviously symmetric in A and B since
Xabcd ¼ Xcdab. Therefore, the symmetrizer itself is given
by the simple expression

hAα ¼
1

2
ðgaqrz;⋆Xa

qrzÞtq; ð26Þ

It is remarkable that Eq. (26) is valid independently of the
specific content of the tensor field Xabcd: in particular it
does not matter whether the equations of motion contain
quasilinear terms or not.
The application of Eq. (26) to (16) yields the object

K̂α
m
β ¼

1

4
ðgaqrzXa

m
bc þ ⋆Xa

qrzεa
m
bcÞtq; ð27Þ

which, after straightforward algebraic manipulations,
becomes

K̂α
m
β ¼−

1

4
ðgq½aXb�mcdþgq½cXd�mabþδmqXabcdÞtq: ð28Þ

Notice that this equation is indeed symmetric in the
exchange of antisymmetric indices ab ⇔ cd and that the
auxiliary vector field tq remains (up to now) arbitrary, so we
can use it at our disposal. This concludes the first step of
our task.

B. Positive definiteness

Let us next investigate whether the above symmetrizer
constitutes a true hyperbolization of the equations of
motion. This will be achieved if we manage to find a
covector field nm such that the characteristic matrix

K̂αβðt;nÞ ¼−
1

4
½t½aXb�mcdþ t½cXd�mabþ tmXabcd�nm ð29Þ

is positive definite, i.e.,

δϕαK̂αβδϕ
β > 0; ð30Þ

for all nonzero vectors δϕα ∈ R6. A direct calculation gives
the equivalent inequality
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−
�
taXb

m
cdAabAcd þ 1

4
tmXabcdAabAcd

�
nm > 0; ð31Þ

where Aab is an arbitrary but nonzero bivector. Notice that
the latter is a fully covariant expression in the sense that it
does not depend on any particular choice of coordinates. It
will restrict, however, the choices of admissible covector
and auxiliary vector fields.
In order to proceed, we shall decompose Aab and Xabcd

with respect to the auxiliary vector field tq. To do so,
assuming that tq is timelike, future directed, and normal-
ized, we write the bivector as

Aab ¼ a½atb� þ εab
cdtcbd; ð32Þ

with

aa ≡ Aabtb; ba ≡ ⋆Aabtb; aata ¼ 0 bata ¼ 0: ð33Þ

Similarly, for any double (2,2) form, we have5

Xabcd ¼ fgabpqðgcdrsPpr þ εcdrsQprÞ
þ εabpqðgcdrsRpr þ εcdrsSprÞgtqts; ð34Þ

with the two-index tensors given by

Pab ≡ Xacbdtctd; Qab ≡ −Xacbd⋆tctd;
Rab ≡ −⋆Xacbdtctd; Sab ≡ ⋆Xacbd⋆tctd; ð35Þ

and orthogonal to tq by construction. In general, each of the
latter has nine independent components since the number
of independent components of Xabcd is 36. However, in the
particular case in which Xabcd ¼ Xcdab, the following
simplified relations are valid:

Pab ¼ Pba; Sab ¼ Sba; Qab ¼ Rba; ð36Þ

so that Pab and Sab have six independent components each,
while Qab (or, equivalently, Rab) have the remaining nine
components. Notice that, in the context of electrodynamics
in material media, these tensors would be related to the
permittivity, permeability, and magnetoelectric cross terms
of the medium [38].
Using the above decompositions in Eq. (31), the new

covariant inequality

ðnmtmÞ½Pprapar − Sprbpbr�
> 2ðnmtnÞεmq

np½Rqrapar þ Sqrapbr� ð37Þ

follows, which is to be satisfied for any three vectors ap and
bq, not vanishing simultaneously. Furthermore, since our

considerations are essentially algebraic we may restrict to
an arbitrary point p ∈ M. In order to complete our
symmetric hyperbolization, it suffices to find a specific
covector na ∈ T�

pM satisfying inequality (37) since, if this
is the case, there will be a unique connected, open and
convex cone, Sp, containing the initial covector, and this
cone will exhaust all possibilities. The natural choice here is
the covector na ¼ gabtb, since the right-hand side of
Eq. (37) will vanish. Now, since nmtm > 0 for the latter,
we obtain the equivalent inequalities

Pprapar > 0; Sprbpbr < 0;

for all nonzero vectors ap, bq. In words, a symmetric
hyperbolization is achieved for a covector na if the
two-index tensors Pab and Sab, obtained from Xabcd
and ⋆Xabcd⋆ via contractions with na, satisfy the above
inequalities.
For the sake of completeness, let us a repeat the

calculations in an adapted frame at p, such that

gabðpÞ ¼ ηab; tq ¼ δq0: ð38Þ

Using Eq. (34), it can be shown that Xabcd has the following
block matrix display:

Xαβ ¼
�

P Q

QT S

�
; ð39Þ

where P, Q, and S denote the covariant 3 × 3 matrices
constructed with the corresponding tensors in the obvious
way. In order to compute Eq. (29) in matrix form it is
convenient to define the auxiliary 3 × 3 matrices (a similar
notation was used in [27])

A1¼

0
B@
0 0 0

0 0 1

0 −1 0

1
CA; A2¼

0
B@
0 0 −1
0 0 0

1 0 0

1
CA; A3¼

0
B@

0 1 0

−1 0 0

0 0 0

1
CA:

Taking into account that the transposition relation ðAkÞT ¼
−Ak holds, a direct calculation gives:

K̂αβðnÞ ¼
�
n0P − nkðQAk −AkQTÞ nkAkS

−nkSAk −n0S

�
: ð40Þ

The above relation may be thought as a linear map from
T�
xM to the 21-dimensional space of symmetric 6 × 6

matrices Sym6. The set of all symmetric positive definite
matrices forms an open convex cone in Sym6 with apex on
the origin. It turns out that the image of the particular
covector nm ¼ ηmntn will lie inside this cone whenever

P≻0; S ≺ 0; ð41Þ5See for instance [37] for similar decompositions.
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since nm ¼ ð1; 0; 0; 0Þ in our frame. Therefore, if Eqs. (41)
are satisfied point wisely, symmetric hyperbolicity is
guaranteed for the corresponding covector field. In other
words, if the auxiliary vector field ta is vorticity free, then
initial data given on a hypersurface Σ with normal covec-
tors ta are uniquely evolved away from the hypersurface.
As will be shown in Sec. VI, the requirements set by
Eq. (41) may yield severe constraints on the Lagrangian
density, the intensity of the curvature tensor or the
electromagnetic field.

C. Constraints

We now discuss the remaining equations, which are
left aside by the symmetrizer. To do so, we recall that,
according to Geroch’s formalism, a constraint is a tensor
cAn such that

cAnKA
m
α þ cAmKA

n
α ¼ 0: ð42Þ

It is straightforward to show that, in our case, this tensor is
given by

cAn ¼ ðxgan; yganÞ; ð43Þ

where x; y ∈ R. Indeed, multiplying Eq. (43) by (16) one
obtains

cAnKA
m
α ¼

1

2
ðxXnm

bc þ yεnmbcÞ ð44Þ

which is obviously antisymmetric in n and m. Here, the
emergence of two real numbers reveals that the vector space
of constraints is actually two dimensional, as expected.
From the above calculation one concludes that the

constraints are complete, in the sense that the number of
constraint equations plus the number of evolution equations
equals the number of initial equations. The constraints are
integrable if the equation

cAn∇nðKA
m
β∇mΦβ þ JAÞ ¼ 0 ð45Þ

is identically satisfied solely due the algebraic structure of
the principal symbol, independently of the Eq. (14) of the
original system. We leave for the reader to verify that this is
indeed the case. This means that the original system of
equations is equivalent to a symmetric-hyperbolic one with
two additional integrable constraints.

IV. CHARACTERISTIC CONES

Suppose that we manage to find a symmetric hyper-
bolization with constraints, as described in the previous
sections. We have seen that this choice, however, is far from
unique. Indeed, by the continuity of Eq. (40), any small
deformation of ta will be such that condition (2) of
symmetric hyperbolization is satisfied. It turns out that

the set of all admissible covectors Sp in T�
pM is determined

by the unique connected, open, convex, positive cone
containing the initial covector [3]. Its existence is related
to the hyperbolicity of the characteristic polynomial,
defined by

pðnÞ≡ det ðK̂αβðnÞÞ; ð46Þ

which is a homogeneous multivariate polynomial of
degree 6 in our case. Recall that, at a spacetime point,
such a polynomial is called hyperbolic in a direction ta if
pðtaÞ > 0 and the univariate polynomial pðua þ λtaÞ only
has real roots for all covectors ua ≠ ta. Now the vanishing
set of the characteristic polynomial will define an algebraic
variety: the cone of characteristic conormals (or character-
istic cone, for brevity). In general, it will consist of different
codimension 1 sheets that may be nested, intersect along
lines, or even coincide. Geometrically, hyperbolicity in the
direction of ta is the requirement that every line parallel to
ta intersects this algebraic variety at exactly “6” points
(counting multiplicities). Clearly, this condition severely
constrains the topology of the characteristic cones, thus
guaranteeing well-behaved propagation for small wavy
excitations. In particular, it was shown by Garding [39]
that the closure of the connected component of ta in the set
fnajpðnaÞ ≠ 0g is necessarily convex: the hyperbolicity
cone of the polynomial. That symmetric hyperbolicity
implies the hyperbolicity of the characteristic polynomial
is direct. To see this one simply observes that the equation

detðK̂αβðaþ λtÞÞ ¼ 0 ð47Þ

characterizes the eigenvalues of the quadratic form
K̂αβðamÞ relative to the metric K̂αβðtmÞ—and these eigen-
values have to be real (see [3] for further details).
In order to compute the characteristic polynomial expli-

citly, we substitute Eq. (40) into (46) and use Schur’s
determinant identity to obtain the product of determinants

pðnÞ ¼ − detðSÞqðnÞ; ð48Þ

where

qðnÞ≡ det ðn20P − n0nkðQAk −AkQTÞ − nknlAkSAlÞ:
ð49Þ

Notice that qðtÞ is necessarily positive definite, since P > 0
and S < 0 for this particular covector. Interestingly, the
determinant in Eq. (49) has been calculated several times in
literature, see, e.g., [27,40]. In particular, it can be shown
that it factorizes as

qðnÞ ¼ ðnmtmÞ2PðnÞ; ð50Þ

where
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PðnÞ ¼ 1

24
εa1a2a3a4εb1b2b3b4

× Xa1a2b1c1Xc2a3b2c3Xc4a4b3b4nc1nc2nc3nc4 : ð51Þ

In other words, the sixth-order polynomial always reduces
to a product of a quadratic polynomial and a quartic
polynomial. Since the vanishing set of the quadratic
polynomial gives a noncompact variety (plane) inconsistent
with the constraint equations, the characteristic cone is
given by the covectors ka that satisfy the fourth-order
Fresnel equation

PðkÞ ∼ ð⋆Xpq
arXbpcsXdq

rs⋆Þkakbkckd ¼ 0: ð52Þ

The fourth rank tensor defined by the terms between
parentheses is called the Kummer tensor, whereas its totally
symmetrized version is usually called the Tamm-Rubilar
tensor. If symmetric hyperbolicity holds, then the above
polynomial is necessarily hyperbolic in the direction of ta,
its vanishing set determining the causal structure of the
theory up to a conformal factor. In specific situations,
where Xabcd is sufficiently simple, Eq. (52) will reduce to
the more familiar product of quadratic polynomials6

PðkÞ ∼ ðgabð1ÞkakbÞðgabð2ÞkckdÞ ¼ 0: ð53Þ

In these cases, symmetric hyperbolicity guarantees that
the rank-2 contravariant tensors gabð1Þ and gabð2Þ are non-

degenerate, necessarily of Lorentzian type and with the
same signature. Furthermore, if these tensors coincide,7

then only one of them must be considered in the dispersion
relation (reduced polynomial), i.e.,

PredðkÞ ∼ gabð1Þkakb ¼ 0: ð54Þ

It is important to point out that the above-mentioned
result stating that symmetric hyperbolicity leads to a cone
strongly constraints the possible shape of the Fresnel
surfaces, defined in a convenient three space: they must
be topologically equivalent to those obtained from the 4D
hyperbolicity cone. Hence, open surfaces are not allowed
by symmetric-hyperbolic propagation.8

V. GENERAL RESULT

We have seen that symmetric-hyperbolicity imposes
restrictions on admissible physical theories. Importantly,
they are always expressed in terms of matrix inequalities,
which are much easier to guarantee than to check the

hyperbolicity of the corresponding characteristic polyno-
mial. In order to obtain explicit expressions for the matrix
inequalities, it is convenient to introduce the projection
tensor hab ¼ gab − tatb, which projects arbitrary tensors
onto the “rest spaces” orthogonal to tq, i.e.,

hab ¼ hba; hachcb ¼ hab; habtb ¼ 0: ð55Þ

Similarly, we decompose the electromagnetic two form, the
Weyl tensor and the traceless part of the Ricci tensor as

Fab ¼ E½atb� þ εabcdtcBd; ð56Þ

Wabcd ¼ fgabpqðgcdrsEpr − εcdrsBprÞ
− εabpqðgcdrsBpr þ εcdrsEprÞgtqts; ð57Þ

Sab ¼ Statb þQðatbÞ þ Nab; ð58Þ

with the following definitions

Ea ≡ Fabtb; Ba ≡ ⋆Fabtb; ð59Þ

Eab ≡Wacbdtctd; Bab ≡ ⋆Wacbdtctd; ð60Þ

S≡ Sabtatb; Qa ≡ habSbctc; Nab ≡ hachbdScd: ð61Þ

According to the latter, the tensor fields fEa; Ba;Qa;
Eab;Bab; Nabg are automatically orthogonal to the auxiliary
vector field.
In order to compute Pab and Sab from Eq. (17), the

following relations involving the constitutive tensors
are useful

ð1Þχabcdtbtd ¼ hac; ð2Þχabcdtbtd ¼ 0; ð62Þ
ð3Þχabcdtbtd ¼ Rhac; ð4Þχabcdtbtd ¼ 0; ð63Þ
ð5Þχabcdtbtd ¼ Eac; ð6Þχabcdtbtd ¼ Bac; ð64Þ

ð7Þχabcdtbtd ¼ Nac: ð65Þ
Similarly, for the induction tensors, Eq. (11), one obtains

ð1ÞHabtb ¼ Ea; ð2ÞHabtb ¼ Ba; ð66Þ
ð3ÞHabtb ¼ REa; ð4ÞHabtb ¼ RBa; ð67Þ

ð5ÞHabtb ¼ EabEb − BabBb; ð6ÞHabtb ¼ EabBb þ BabEb;

ð68Þ
ð7ÞHabtb ¼ SEa þ NabEb − εabcdtbQcEd; ð69Þ

Using the above relations and the Ruse-Lanczos iden-
tities (see the Appendix), it can be checked that the tensors
Pab and Sab are given by

6A general ansatz leading to bimetricity in nonlinear
electromagnetism was presented in [41].

7Covariant conditions on the Fresnel surface for birefringence
to be absent were derived in [42].

8For examples of Fresnel surfaces in Maxwell’s theory non-
minimally coupled to gravity, see [38].
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Pab ¼ ðL1 þ L3RÞhab þ L5Eab þ L6Bab þ L7Nab þ 4EaEbðL11 þ 2RL13Þ þ 4EðaBbÞ½L12 þ RðL14 þ L23Þ�
þ 4BaBbðL22 þ 2RL24Þ þ 4½L15Eða þ L25Bða�½EbÞcEc − BbÞcBc� þ 4½L16Eða þ L26Bða�½EbÞcBc þ BbÞcEc�
þ 4½L17Eða þ L27Bða�½SEbÞ þ NbÞcEc − εbÞpqrQptqEr� þ � � � ; ð70Þ

Sab ¼ −ðL1 þ L3RÞhab − L5Eab − L6Bab þ L7Nab þ 4BaBbðL11 þ 2RL13Þ
− 4EðaBbÞ½L12 þ RðL14 þ L23Þ� þ 4EaEbðL22 þ 2RL24Þ þ 4½L15Bða − L25Eða�½EbÞcBc þ BbÞcEc�
− 4½L16Bða − L26Eða�½EbÞcEc − BbÞcBc� − 4½L17Bða − L27Eða�½SBbÞ þ NbÞcBc − εbÞpqrQptqBr� þ � � � ; ð71Þ

where the dots stand for possible nonlinear terms in the
irreducible parts of the curvature tensor, which we shall
not discuss in this work. The tensors Pab and Sab given
above are the most general ones when dealing with
symmetric hyperbolicity in models of nonlinear electro-
magnetism coupled linearly to curvature. The inequalities
given in Eqs. (41), defined in terms of such tensors, lead
to drastic restrictions on admissible theories: there must
be a strong compromise between the electromagnetic
quantities fEa; Bag, the spacetime curvature expressed
via fEab;Bab; Qa; Nabg and the partial derivatives of the
Lagrangian density.

VI. APPLICATIONS

Let us next present several examples that illustrate the
restrictions obtained so far. For the sake of completeness,
we display, in each case, the tensor Xabcd, the relevant
inequalities, and the corresponding characteristic polyno-
mial. A generic feature of the latter is nonfactorization: in
general, the characteristic varieties are described by van-
ishing sets of fourth-order polynomials that do not split into
products of second-order polynomials. Needless to say, this
fact makes it considerably difficult to guarantee hyper-
bolicity straight from the characteristic polynomial. In
contrast with this fact, symmetric-hyperbolicity automati-
cally implies that the characteristic varieties are necessarily
well behaved.

A. Maxwell electrodynamics L = − I1
Our first example is Maxwell’s linear theory, which is the

simplest possible case in our setting. Using Eq. (17), it
follows that

Xabcd ¼ −gabcd: ð72Þ

Taking the auxiliary vector field tq as timelike, future-
directed, and normalized, Eqs. (70) and (71) give the two-
index tensors as

Pab ¼ −hab; Sab ¼ hab: ð73Þ

In a frame such that gab ¼ ηab and tq ¼ δq0, the corre-
sponding 3 × 3 matrices are

Pij ¼ δij; Sij ¼ −δij; i; j ¼ 1; 2; 3: ð74Þ

Since they satisfy Eq. (41) identically, symmetric-
hyperbolicity is guaranteed for all timelike covector fields
nm ¼ ηmntn. A direct calculation using Eq. (52) leads to

PðkÞ ∼ ðgabkakbÞ2:

Only one of the quadratic polynomials is needed to obtain
the usual dispersion relation for linear electromagnetic
waves in vacuum:

PredðkÞ ∼ gabkakb ¼ 0: ð75Þ

Clearly, the cone of hyperbolicity at p, Sp, is the connected
component of ta, i.e., it coincides with the set of future-
directed timelike covectors, as expected.

B. Minimally coupled nonlinear electrodynamics

1. Single invariant: L =LðI1Þ
If the Lagrangian density is an arbitrary function of the

invariant I1, a direct inspection of Eq. (17) gives

Xabcd ¼ L1gabcd þ 4L11FabFcd: ð76Þ

From Eqs. (70) and (71), we obtain the projections

Pab ¼ L1hab þ 4L11EaEb; Sab ¼ −L1hab þ 4L11BaBb;

ð77Þ

Simple manipulations using Eq. (41) then yield the matrix
inequalities

L1δij − 4L11EiEj ≺ 0; ð78Þ

L1δij þ 4L11BiBj ≺ 0: ð79Þ

In particular, they imply the condition L1 < 0, since the
theory should be well behaved when either the electric or
magnetic field vanish. However, notice that for field
intensities violating the inequalities, the propagation of
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small wavy excitations about the background field will be,
in general, ill posed.
A straightforward calculation using Eq. (52) gives the

well-known bimetric dispersion relation

PðkÞ ∼ ðgabð1ÞkakbÞðgabð2ÞkckdÞ; ð80Þ

with the effective metrics given by

gabð1Þ ≡ L2
1g

ab; gabð2Þ ≡ −ðL1gab þ 4L11τ
abÞ;

τab ≡ FacFb
c; ð81Þ

as was shown for instance in [43]. Needless to say, if
Eqs. (78) and (79) hold, the effective metrics are well
behaved, and both possess the same Lorentzian signature.
However, it should be clear from our discussion that
symmetric-hyperbolicity requires more than the simple
Lorentzian nature of the effective metrics.

2. Two invariants: LðI1;I2Þ
The case of two invariants is naturally more involved.

The symmetric double (2,2) form becomes

Xabcd ¼ L1gabcd þ 4fL11FabFcd þ L12ðFab⋆Fcd

þ ⋆FabFcdÞ þ L22⋆Fab⋆Fcdg: ð82Þ

Apart from minor details on definitions, this tensor coin-
cides with the so-called jump tensor obtained by Obukhov
and Rubilar in [44]. Notice also that the term involving L2

in Eq. (17) was discarded, since it is proportional to the
Bianchi identity. We then obtain the tensors [see Eqs. (70)
and (71)]

Pab ¼ L1hab þ 4fL11EaEb þ L12ðEaBb þ BaEbÞ
þ L22BaBbg; ð83Þ

Sab ¼ −L1hab þ 4fL11BaBb − L12ðEaBb þ BaEbÞ
þ L22EaEbg; ð84Þ

which, in the frame described above, lead to the inequalities

L1δij − 4fL11EiEj þ L12ðEiBj þ BiEjÞ þ L22BiBjg ≺ 0;

ð85Þ

L1δij þ 4fL11BiBj − L12ðEiBj þ BiEjÞ þ L22EiEjg ≺ 0:

ð86Þ

A tedious calculation using Eq. (52) yields the effective
metrics

gabð1Þ ¼ Xgab þ ðY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 − XZ

p
Þtab; ð87Þ

gabð2Þ ¼ Xgab þ ðY −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 − XZ

p
Þtab; ð88Þ

with

X ¼ L2
1 þ 2L1ðG − L22FÞ þ ðL12L12 − L11L22ÞG2;

Y ¼ 2L1ðL11 þ L22Þ þ 4ðL12L12 − L11L22ÞF;
Z ¼ ðL11L22 − L12L12Þ;

and we have used the notation I1 ≡ F, I2 ≡G, tab ≡
FacFb

c for conciseness. This result coincides with [44,45],
with minor modifications of notation.

C. Nonminimally coupled nonlinear electrodynamics

Since the equations of motion that follow from Eq. (10)
are very general, it is convenient to consider some par-
ticular cases. Hence, in what follows we assume that the
Lagrangian density takes the form

LðI1; I2Þ þ αI3 þ βI5 þ γI7; ð89Þ

where LðI1; I2Þ is an arbitrary function of the usual
electromagnetic invariants, and α, β, and γ are phenom-
enological parameters to be determined in principle from
experiments. Such a density is still sufficiently general to
include most of the relevant important models present in
literature.
Let us examine next some particular cases that follow

from Eq. (89).

1. Linear nonminimal model

The corresponding Lagrangian density is given by

L ¼ −I1 þ αI3 þ βI5 þ γI7; ð90Þ

since we expect to recover Maxwell’s theory in the flat
spacetime regime. This model describes several possible
nonminimal couplings of linear electrodynamics with
gravity, and it encompasses for instance the modifications
of Maxwell’s theory due to one-loop vacuum polarization
contributions [35]. Clearly, the corresponding equations of
motion are linear and, using Eq. (17), one obtains the
double symmetric (2,2) form as

Xabcd ¼ ðαR − 1Þgabcd þ βWabcd

þ γðgacSbd − gadSbc þ gbdSac − gbcSadÞ: ð91Þ

Notice that the irreducible parts of the Riemann tensor
contribute in different ways to the equations of motion.
Using the above prescription in Eqs. (70) and (71), we
obtain the following two-index tensors

Pab ¼ ðαR − 1Þhab þ βEab þ γNab; ð92Þ
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Sab ¼ ð1 − αRÞhab − βEab þ γNab: ð93Þ

Let us next consider several subcases.
Scalar curvature coupling ðα ≠ 0; β ¼ 0; γ ¼ 0Þ.—This

is by far the simplest type of nonminimal coupling.
Indeed, since the double symmetric (2,2) form in
Eq. (91) reduces to

Xabcd ¼ ðαR − 1Þgabcd; ð94Þ

the relevant two-index tensors read

Pab ¼ ðαR − 1Þhab; Sab ¼ ð1 − αRÞhab: ð95Þ

Hence, the simple matrix inequality

ð1 − αRÞδij≻0 ð96Þ

follows. Clearly, symmetric-hyperbolicity requires that
α < 1=R, which may forbid good propagation for suffi-
ciently high curvature, for a given α. Regarding the
characteristic cone, Eq. (52) gives

PðkÞ ∼ ðgabkakbÞ2; ð97Þ

which shows that in this case the dispersion relation is
governed by the background metric, i.e., the causal
structure is not changed by the coupling.
Weyl coupling ðα ¼ 0; β ≠ 0; γ ¼ 0Þ.—It follows from

Eqs. (92) and (93) that

Pab ¼ −Sab ¼ −hab þ βEab:

Although the ensuing inequalities need to be examined on a
case-by-case basis, they will lead to limits on the compo-
nents of the electric part of the Weyl tensor.9

In order to compute the dispersion relation explicitly,
we first recall that the Weyl conformal tensor has only
one independent Hodge dual, i.e., ⋆Wabcd ¼ Wabcd⋆.
A direct calculation using Eq. (52) gives a quartic equation
of the type

PðkÞ ∼ Gabcdkakbkckd; ð98Þ

with the Kummer tensor given by

Gabcd ≡ gabgcd −
β2

3

�
WapbqWc

p
d
q þ

1

4
gabWcpqrWd

pqr

�

þ β3

6
⋆Wpq

arWbpcsWdq
rs⋆: ð99Þ

Using the following identities due to Debever and Lanczos

WapcqWb
p
d
q − ⋆Wapcq⋆Wb

p
d
q ¼ Agabgcd; ð100Þ

WapqrWb
pqr ¼ 2Agab; ð101Þ

with A≡ 1
8
WpqrsWpqrs, we obtain the simplified expres-

sion

Gabcd ¼
�
1 −

β2

6
A

�
gabgcd −

β2

3
WapbqWc

p
d
q

þ β3

3
Wpq

arWbpcsWdq
rs: ð102Þ

Traceless Ricci couplings ðα ¼ 0; β ¼ 0; γ ≠ 0Þ.—In
this case, we have

Xabcd ¼ −gabcd þ γðgacSbd − gadSbc þ gbdSac − gbcSadÞ:
ð103Þ

The relevant matrices take the form

Pab ¼ −hab þ γNab; ð104Þ

Sab ¼ hab þ γNab: ð105Þ

As in the previous case, the corresponding inequalities will
relate the coupling constant γ to the curvature quantities
described by Nab. The Kummer tensor is given by

Gabcd ¼ gabgcd − γgabð7Þχcpdp

þ γ2

2
ðð7Þχapbpð7Þχcqdq − ð7Þχapbqð7ÞχcqdqÞ

þ γ3

6
ð7Þχapbqð7Þχcrdsð7Þχprqs:

Nonminimally coupled EM field in a cosmological
background.—Another relevant example is that of the
propagation in a cosmological background described by
the flat Friedman-Lemâitre-Robertson-Walker metric, for
which the Weyl tensor is null. In such a case, only the terms
associated to L1, L3, and L7 survive in Eqs. (70) and (71).
Using Einstein’s equations, the traceless part of the Ricci
tensor is given in terms of the matter by

Sab ¼ Tab −
T
4
gab;

where Tab is the energy-momentum tensor and T, its trace.
In a convenient tetrad basis, in which Tab¼diagðρ;p;p;pÞ,
it follows that

Pij ¼ −δij
�
1þ βðρ − 3pÞ − 1

2
γðρþ pÞ

�
; ð106Þ

9Conversely, for a given geometry, the inequalities may furnish
β-dependent limits on the region of space-time where the
propagation is symmetric-hyperbolic.
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Sij ¼ δij

�
1þ βðρ − 3pÞ þ 1

2
γðρþ pÞ

�
; ð107Þ

Hence, the inequalities (41) lead to

1þ βðρ − 3pÞ > 1

2
jγjðρþ pÞ;

which is trivially satisfied in the case of a linear EM field.
The propagationwill be symmetric hyperbolic if this inequal-
ity is satisfied at all times for which the model is valid.

VII. CONCLUSIONS

Well-posedness is a basic requirement for any field
theory, and it is guaranteed by symmetric-hyperbolicity.
We have obtained a general form for the symmetrizer, given
in Eq. (26), valid for a general Lagrangian theory. We have
shown that symmetric-hyperbolicity leads to a set of two
inequalities for the matrices P and S, whose elements are
determined by a given theory. Regarding the constraints,
we have verified that they are integrable.
When applied to nonlinear electromagnetism linearly

coupled to curvature, the matrices P and S are expressed
in terms the fields, the Lagrangian, and its derivatives, and
also of the different quantities associated to curvature. They
lead to strong constraints on the relevant quantities, which
were illustrated with applications to several particular cases.
The examples show that while in the linear theory, no
constraint arises from symmetric hyperbolic propagation,
nonlinearity leads to constraints on the field intensities, and
nonminimal coupling imposes restrictions on quantities asso-
ciated to curvature. In the general case, symmetric hyper-
bolicity relates the electromagnetic quantities fEa; Bag, the
spacetime curvature expressed via fEab;Bab; Qa; Nabg and
the partial derivatives of the Lagrangian density.
The ideas presented here can be applied in other settings,

such as electromagnetism in material media. We plan to
return to this problem in a future publication.

APPENDIX: RUSE-LANCZOS IDENTITY

Let χabcd denote an arbitrary double symmetric (2,2)
form at a point p ∈ M. Its double Hodge dual is defined as

⋆χabcd⋆ ¼ 1

4
εab

pqεcd
rsχpqrs: ðA1Þ

Writing the traces of χabcd as

χab ≡ χcacb; χ ≡ χaa; ðA2Þ

we may construct the symmetric trace-free tensor

ψab ≡ χab −
1

4
gabχ: ðA3Þ

Using elementary algebraic manipulations, it can be shown
that

⋆χabcd⋆þ χabcd ¼ ga½cψd�b þ gb½dψc�a; ðA4Þ

which is called the Ruse-Lanczos identity [46,47].
Applying this identity to the constitutive tensors results
in the following useful relations

⋆ð1Þχabcd⋆þ ð1Þχabcd ¼ 0;

⋆ð2Þχabcd⋆þ ð2Þχabcd ¼ 0;

⋆ð3Þχabcd⋆þ ð3Þχabcd ¼ 0;

⋆ð4Þχabcd⋆þ ð4Þχabcd ¼ 0;

⋆ð5Þχabcd⋆þ ð5Þχabcd ¼ 0;

⋆ð6Þχabcd⋆þ ð6Þχabcd ¼ 0;

⋆ð7Þχabcd⋆ − ð7Þχabcd ¼ 0:
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