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We explore alternate theories of gravity where the gravitational term in the Lagrangian R
8πG is replaced by

a function f1ðRÞ and the matter Lagrangian is multiplied by a function f2ðRÞ. We argue that nuclear
physics can provide strong experimental constraints on such theories. In particular using energy conditions
on the pressure in the 4He nucleus, for f1ðRÞ ¼ R

8πG and f2ðRÞ ¼ 1þ λR, we find a limit of

jλj < 5 × 10−12 m2, more than thirty orders of magnitude stronger than the previous limit.

DOI: 10.1103/PhysRevD.105.024020

I. INTRODUCTION

Although Einstein’s theory of general relativity is very
successful, alternative theories have received a great deal of
attention. For example, in fðRÞ gravity, the gravitational
action is an arbitrary function of the scalar curvature R.
Nojiri and Odintsov [1] proposed an alternative where the
dark energy Lagrangian is instead multiplied by a function
of the curvature. Bertolami et al. [2] proposed multiplying
the entire matter Lagrangian by this function of the
curvature and combining it with the nontrivial gravitational
action, and this combination was subsequently used to
reproduce the observed acceleration of the Universe [3,4],
galactic rotation curves [5–7], the dynamics of galaxy
clusters [8], and inflation in the early Universe [9].
While a number of people have explored such theories,

relatively few have considered the constraints imposed by
preexisting data [10–13]. In addition, research focuses
overwhelmingly on astrophysical scenarios. While this
makes some sense, as the initial motivation came from
this area, there is no reason to expect that the area in which
one hopes to see benefits is the best place to look for
constraints. March et al. studied the effects of nonstandard
gravity on ocean experiments [13] and found effects
considerably stronger than such astrophysical limits. We
argue that this result is not surprising, because the strongest
constraints come from large density gradients, which can
be measured more readily in terrestrial than astrophysical
observations. We find that looking at nuclei can produce
limits many orders of magnitude better than previous limits.
The paper is organized as follows. In Sec. II we discuss

the appropriate choice of Lagrangian to describe a perfect
fluid, and contend that the appropriate on-shell matter
Lagrangian is given by Lm ¼ −ρ. In Sec. III we analyze
what systems can be studied to provide constraints on

nonstandard gravity coming from f2ðRÞ, and conclude that
nuclear physics is a good choice, because of the large
density gradient. In Sec. IV we apply this to a simple model
where f2ðRÞ ¼ 1þ λR, and derive limits on λ. In Sec. V we
discuss how energy conditions can be used to obtain limits
and apply it to our model. In Sec. VI we summarize our
conclusions and compare to previous work. Throughout
our paper, our conventions are c ¼ 1, metric signature
ðþ − −−Þ, and curvature Rμν ¼ RMTW

μν , and R ¼ −RMTW

where MTW refers to the conventions of Misner, Thorne,
and Wheeler [14].

II. THE LAGRANGIAN

For concreteness, we will consider a form of the action
I ¼ R

d4x
ffiffiffiffiffiffi−gp

L which is prevalent in the literature,

L ¼ −
1

2
f1ðRÞ þ f2ðRÞLm; ð1Þ

where Lm is the matter Lagrangian. With this action, the
gravitational field equations are given by

− 2
∂L
∂RRμ

ν −
1

2
f1ðRÞgμν þ 2ð∇μ∇ν − gμν□Þ ∂L∂R

¼ f2ðRÞTμ
ν; ð2Þ

where □ ¼ ∇μ∇μ is the d’Alambertian operator and the
stress-energy tensor is given as usual by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ

δgμν
ð ffiffiffiffiffiffi

−g
p

LmÞ: ð3Þ

It should be noted that Tμν is derived from the matter
Lagrangian, and, in the presence of nonminimal gravity
coupling, does not necessarily correspond to what one
would physically measure [15]. Ordinary gravity is*ecarlson@wfu.edu
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recovered by setting f1ðRÞ ¼ 1
8πGR and f2ðRÞ ¼ 1. In this

class of theories, stress-energy is not generally conserved;
instead, we have

∇μ½f2ðRÞTμ
ν� ¼ −Lm∇νf2ðRÞ: ð4Þ

As is common, we will consider the case where the
matter can be described as a perfect fluid, so that

Tμν ¼ ðρþ pÞuμuν − pgμν; ð5Þ

where ρ is the comoving energy density, p the pressure, and
uμ the four-velocity satisfying uμuμ ¼ 1. This density and
pressure should in principle be derivable directly from the
matter Lagrangian Lm, and should be functions of only the
number density n and entropy per particle s. This requires
care, as pointed out by [16]. In ordinary gravity there are
various options for the perfect fluid Lagrangian which yield
identical equations of motion, but they are not the same in
the presence of nontrivial f2ðRÞ [17] because the matter
Lagrangian appears in Eq. (2) in its own right.
To resolve the issue, one must look more closely at how

the Lagrangian for a perfect fluid works. It is common to
simply assume a form such as Lm ¼ −ρ or Lm ¼ p. These
Lagrangians are normally derived in standard gravity by
imposing equations of motion on a more detailed under-
lying Lagrangian. Therefore, they cannot be used to derive
the equations of motion. They do not even yield the correct
stress-energy tensor. Following [18], the form Lm ¼ −ρ
can be derived from

Lm ¼ −ρðn; sÞ þ βAJμ∇μα
A þ θ∇μðsJμÞ þ ϕ∇μJμ; ð6Þ

and the form Lm ¼ p can be derived from

Lm ¼ −ρðn; sÞ þ JμðβA∇μα
A − s∇μθ −∇μϕÞ; ð7Þ

where Jμ ¼ nuμ,1 αA (A ¼ 1, 2, 3) are fluid coordinates that
label each comoving component of the fluid, and βA, θ, and
ϕ are Lagrange multiplier fields. We consider Jμ as an
independent variable, with n and uμ derived from Jμ. These
Lagrangians are equivalent in ordinary gravity because one
can transform between them by integrating by parts.
In nonminimally coupled gravity the equivalence breaks

down because the matter Lagrangian is no longer a full term
of the action, and therefore integrating it by parts is no
longer mathematically valid. If one derives the matter
equations of motion from the different forms of the
Lagrangian, one ends up with factors of f2ðRÞ in different
places, sometimes inside derivatives, depending on which
equations require integration by parts. This is in conflict

with the claim of [16] that the equations of motion remain
unchanged.
Using an inappropriate Lagrangian can yield noncon-

servation of particle number, as pointed out for barotropic
fluids by [19]. The correct form must yield the conservation
laws the Lagrange multipliers were introduced to yield,
conserving particle number ∇μJμ ¼ 0, comoving entropy
density ∇μðsJμÞ, and comoving fluid coordinates
Jμ∇μαA ¼ 0, as pointed out by [15]. This can be done
by keeping the factor of f2ðRÞ attached to the Lagrange
multipliers, as is done in Eq. (6), yielding Lm ¼ −ρ. This
conclusion matches [20]. In fact, f2ðRÞ can be absorbed
into the Lagrange multipliers, yielding the form of the
Lagrangian that [16] eventually declares to be correct. We
therefore agree with their final result.

III. THE TEST SYSTEM

In order to keep the theory physically viable, we require
that the modifications be perturbative. That is, we require
that f1ðRÞ − R

8πG and f2ðRÞ − 1 be subleading order under
ordinary circumstances.
Under such conditions, the change to the matter equa-

tions of motion, found in [16], will also be subleading
order. The gravitational equations of motion are a different
matter. In particular the term 2ð∇μ∇ν − gμν□Þ ∂L∂R is poten-
tially of different order from the other changes. The
derivatives in this term can act on either R or ρ and will
tend to have the physical effect of smoothing out the
quantity being differentiated. A smoothing of R would
quite possibly go unnoticed, as it amounts to a change in
gravity at small scales and it is difficult to measure gravity
on small scales. A smoothing of ρ is a different matter. We
can often measure density very precisely, and it is not at all
difficult to find sharp density gradients—as long as one is
not restricting their attention to astrophysical scenarios. We
therefore expect the strongest limits on theories with
nontrivial f2ðRÞ to be found by studying systems with
strong density gradients. The strongest known density
gradients are found in nuclear physics. We will look at
the alpha particle, also known as the 4He nucleus, as we feel
it provides the best combination of high density gradient,
quality measurements, and spherical symmetry.
We will not take a first-principles approach to the 4He

nucleus, because nuclear structure can be quite complex
and difficult to predict from underlying physics. A rigorous
calculation of exactly how strongly such theories are
constrained might require this, as the presence of new
interactions in modified gravity might well significantly
change the structure of a nucleus, but our concern is to
illustrate the principle, not to map out the precise limits
imposed on various theories. We will therefore consider the
approximation that a nucleus can be described as a perfect
fluid to be adequate for our purposes.
For the same reason, we will not try to solve for the

density self-consistently. Instead, we will assume the
1Note that our Jμ differs from [18] by a factor of

ffiffiffiffiffiffi−gp
because

we define it to be a vector, rather than a vector density.
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energy density is proportional to the nucleon density. Since
4He is an isospin singlet, we anticipate that the mass density
will be well-approximated by nucleon mass times twice the
proton density, which in turn is traced by the charge
density. The charge density will presumably be determined
exclusively from the standard model matter Lagrangian,
and hence not modified by the presence of nonminimal
gravitational couplings. The perfect fluid Lagrangian Lm is
also rooted in the standard model Lagrangian, and hence
we would expect the energy density coming from it, rather
than the physically measured density, to be proportional to
the charge density.
For the charge density, we will use the “experimental”

charge distribution from [21] (quotes are theirs). This
distribution appears to be calculated by “model-indepen-
dent” techniques rather than actually measured, and it has
no error bars, but they also give the form factors calculated
from this distribution and the experimentally measured
form factors. The two seem to compare well, although they
are not on the same graph. A rigorous calculation would
require taking the error bars on the measured form factors,
using them to calculate a range of possible charge dis-
tributions, and comparing these to nuclear structure calcu-
lations incorporating modified gravity.
In order to ensure that the lack of rigor in our calculations

does not produce spurious constraints, we will use two
models for the nuclear density and compare our results. We
fit the charge distribution graphed in [21] with a function of
the form

ρe ¼ Ne−½ðarÞ4þb4�1=4 ; ð8Þ

where a ¼ 2.677 fm−1 and b ¼ 3.549. Then N ¼
8.00 u=fm3 yields the correct total mass. We will also
consider a simple Gaussian,

ρg ¼ ρ0e
− r2

2σ2 ; ð9Þ

where ρ0 ¼ 0.278 u=fm3 and σ ¼ 0.9705 fm, which is
fitted to the measured mass and rms radius rrms ¼

ffiffiffi
3

p
σ ¼

1.681 fm [22], but clearly of a different shape. It should be
noted that any distribution that has a cusp in the density
distribution will yield nonsense results due to the contri-
butions from □ρ, and therefore commonly-used distribu-
tions like ρ ¼ ρ0f1þ exp½ðr − R1=2Þ=a�g−1 will not work.
We will then find constraints on modified gravity by
calculating the pressure needed to maintain each shape,
and noting the threshold at which it exceeds various energy
conditions.

IV. THE EXAMPLE MODEL

To illustrate the value of looking to nuclear structure for
constraints, we will apply the approach to the simplest
model with nonminimal coupling. This model is given by

f1ðRÞ ¼
1

8πG
R; ð10aÞ

f2ðRÞ ¼ 1þ λR: ð10bÞ

The only prior constraint on thismodel that we can find in the
literature is jλj ≪ 1.65 × 1020 m2, found by [10] by assum-
ing that changes to the Sun’s density profile must be
perturbative.
With this choice, the gravitational equation of motion

becomes

8πGð1þ λRÞTμ
ν ¼ ð1þ 16πGλρÞ

�
Rμ

ν −
1

2
Rgμν

�

− 16πGλ

�
∇μ∇ν − gμν□ −

1

2
Rgμν

�
ρ;

ð11Þ
and its divergence becomes

∇μ½ð1þ λRÞTμ
ν� ¼ λρ∇νR: ð12Þ

We write the metric in the form

ds2 ¼ eνðrÞdt2 − hðrÞdr2 − r2dΩ2: ð13Þ

We wish to solve Eqs. (11) and (12), but solving them
exactly generates complexities that yield little insight. We
therefore seek approximations that are appropriate for the
range in which we expect to find limits. If jλj≲ r2n, where rn
is the characteristic size of the nucleus, the effects of the new
term are perturbations on the unmeasurably small ordinary
gravitational attraction of a nucleus to itself. On the other
hand, if 8πGjλjρ≳ 1, then the modified gravity would cause
the metric to have large deviations from flat space, possibly
even a singularity. Since such a large gravitational effect in a
nucleus should cause substantial changes in scattering
experiments, we exclude the region 8πGjλjρ≳ 1 as not
physically plausible. For our computations, we therefore
assume that jλj ≫ r2n and 8πGjλjρ ≪ 1, which numerically
means we are assuming 10−30 m2 ≪ jλj ≪ 108 m2. Wewill
also assume that the pressure is not much greater than the
mass density, so jpj≲ ρ. When encountering derivatives on
the density, wewill treat derivatives as being of order r−1n , so
that, for example, ρ00 ∼ r−2n ρ, where primes denote deriva-
tives with respect to r.
We begin by looking at the trace of Eq. (11), which is

48πGλ□ρ − 8πGðρ − 3pÞ ¼ R − 8πGλRðρþ 3pÞ: ð14Þ

Making use of our approximations jλρ00j ≫ ρ and
8πGjλjρ ≪ 1, this simplifies to

R ¼ 48πGλ□ρ: ð15Þ
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Note that in the nuclear region the contribution to the
curvature from new physics is larger than that from
conventional gravity.
Before writing out the d’Alambertian explicitly, we need

to get some idea of the size of the metric deviations from
flat spacetime. We find these by looking at the temporal and
radial components of Eq. (11). The temporal component
can be written as

ð1þ 16πGλρÞ d
dr

ðrh−1 − rÞ

¼ 16πGλh−1=2
d
dr

ðρ0r2h−1=2Þ þ 8πGρr2: ð16Þ

Our approximations mean that the first factor on the left is
just one and we can neglect the final term on the right.
Assuming the metric perturbation is small, jh − 1j ≪ 1, we
can bring the h−1=2 inside the derivative to leading order,
and integrate to yield

h ¼ 1 − 16πGλρ0r; ð17Þ

where the constant of integration is chosen so that h is
nonsingular at the origin.
The difference between the temporal and radial compo-

nents of Eq. (11) can be put in the form

− ½1þ 8πGλð2ρ − rρ0Þ�
�
h0

h
þ ν0

�

¼ 16πGλrρ00 þ 8πGhrð1þ λRÞðρþ pÞ: ð18Þ

If we substitute Eq. (15) into (18), it is not hard to see that the
first term on the right dominates the others, and the factor on
the left is just one. Substituting (17) into (18) we have

ν0 ¼ 16πGλρ0: ð19Þ

Note that this implies rnν0 ≪ 1. We see from Eqs. (17) and
(19) that the condition that themetric be perturbative requires
our approximation 8πGjλjρ ≪ 1, as asserted previously. We
also note that the deviation of the metric from flat spacetime
from new physics exceeds the contribution from standard
gravity.
Expanding the d’Alambertian explicitly in terms of

metric components and applying our approximations,
Eq. (15) becomes simply

R ¼ −48πGλ
�
ρ00 þ 2

r
ρ0
�
: ð20Þ

We then proceed to find the pressure, starting from Eq. (12),
which is

d
dr

½ð1þ λRÞp� ¼ −
1

2
ν0ðρþ pÞð1þ λRÞ − λρR0: ð21Þ

In standard gravity with λ ¼ 0, Eq. (21) would lead to the
Tolman-Oppenheimer-Volkoff equation, but by substitut-
ing Eqs. (19) and (20) we find that, in our case, the last term
on the right dominates. Dropping the other terms, integrat-
ing by parts, and then substituting Eq. (20), we find

p ¼ 48πGλ2ðρρ00 þ 2
r ρρ

0 − 1
2
ρ02 þ 2

R
∞
r

1
r ρ

02drÞ
1 − 48πGλ2ðρ00 þ 2

r ρ
0Þ : ð22Þ

V. ENERGY CONDITIONS AND RESULTS

It should be noted that Eq. (22) was derived without
reference to any equation of state, and therefore does not
describe the pressure produced by a given mass distribution.
It describes the pressure required to maintain a given mass
distribution in the presence of the couplingwehave chosen to
examine. A rigorous calculation of the sort discussed in
Sec. III would have us also calculate the pressure from the
equation of state, and require that the two calculations align.
Because nuclear equations of state are hard to calculate, we
will instead consider plausible constraints an equation of
state might satisfy, in the form of energy conditions.
Energy conditions, like so many other things, require

care when working in the context of modified gravity. As
discussed in [23], there are various ways of expressing
energy conditions, which are equivalent under the
assumption of the Einstein field equation. In modified
gravity the Einstein field equation does not hold, and the
equivalence breaks down. A lack of understanding of the
philosophical underpinnings of energy conditions makes it
difficult to determine which formulation is correct. Rather
than try to answer that question in general, we note that,
because we are using energy conditions in lieu of the
equation of state, it is reasonable to suppose that the
physical formulation is appropriate for our purposes.
The energy conditions therefore take the standard form

for a perfect fluid

null∶ ρþ p ≥ 0; ð23aÞ

weak∶ ρ ≥ 0 and ρþ p ≥ 0; ð23bÞ

strong∶ ρþ 3p ≥ 0; ð23cÞ

dominant∶ ρ ≥ jpj: ð23dÞ

Because we have already assumed positive energy density,
the weak and null conditions are equivalent for our
purposes. The strong energy condition is derived in
standard gravity by insisting that gravity is attractive and
using Einstein’s equations to derive Eq. (23c). Since
Einstein’s equations do not apply in nonstandard gravity,
we have no particular reason to demand that this form of the
strong energy condition apply. The dominant energy con-
dition is derived from the premise that mass-energy does not
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propagate faster than light. This is a reasonable expectation
for matter, so we will accept it. In addition, the dominant
energy condition implies the weak and null energy con-
ditions, sowe don’t have to consider them separately.Wewill
therefore take the dominant energy condition to supply our
cutoff point. Since, for all these energy conditions, the
constraints on p are proportional to ρ, we divide through
by ρ to get constraints on p=ρ that are constant and
dimensionless.
In the case of the Gaussian, Eq. (22) can be solved

analytically to give

p
ρ
¼

24πG λ2ρ0
σ2

e−
r2

2σ2

�
r2

σ2
− 4

�

1 − 48πG λ2ρ0
σ2

e−
r2

2σ2

�
r2

σ2
− 3

� : ð24Þ

This is plotted for some interesting values of λ in Fig. 1.
The “experimental” distribution does not seem to lend itself
to analytical solution. It is plotted in Fig. 2. The strong and
dominant energy inequalities are saturated for the values of

λ listed in Table I. Note that for a finite value of λ, the
denominator appearing in Eq. (22) vanishes, causing the
pressure to diverge at some radius, so the density profiles
we used are impossible to maintain for any equation of
state. This value is also included in Table I. At this point,
the assumption jpj≲ ρ becomes invalid, along with the
approximations derived from it, 8πGjλpj ≪ 1 and
jλρ00j ≫ jpj, but these will still be valid until the ratio p

ρ

is implausibly large.
It should be noted that the choice of the Gaussian

density distribution causes a change in the limits by less
than a factor of two, so we see that our limit is not strongly
shape dependent. Because we believe the experimental
density profile is realistic and the dominant energy
condition must be satisfied, we will treat jλj <
5 × 10−12 m2 as our limit. This is well within our region
of applicability, 10−30 m2 ≪ jλj ≪ 108 m2.

VI. CONCLUSIONS

We have studied alternate theories of gravity with
nonminimal coupling between matter and curvature. We
argued that in a large class of such theories the nuclear
realm is an excellent place to look for experimental limits.
Because our argument is based on the effect of density
gradients, systems which merely have high density, like
neutron stars, would provide much weaker limits.
We illustrated our approach using a theory where the

matter Lagrangian is multiplied by a factor of 1þ λR.
Using the 4He nucleus we found a limit jλj < 5 × 10−12 m2,
more than thirty orders of magnitude stronger than the best
previous limit we know of [10]. We anticipate that our
approach will produce strong limits in any model with a
nontrivial matter coupling f2ðRÞ. Theories with only
f1ðRÞ, such as fðRÞ chameleon theories [24], will likely
not be so strongly constrained.
It should be noted that in the parameter range we focused

on, the perturbative contributions proportional to λ are
negligible, but there are large effects coming from λ2

contributions. Much of the previous work kept only linear
terms in λ [11–13], and therefore missed what may be the
largest contributions to new physics from nonminimally
coupled gravity.

Strong

Dominant

Divergent

0 1 2 3 4 5
1.0

0.5
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1.5

2.0

FIG. 1. The pressure to density ratio for the Gaussian density
profile as a function of radius corresponding to the cutoff values
of λ as given in Table I.

Strong
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Divergent
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FIG. 2. The pressure to density ratio for the experimental
density profile as a function of radius corresponding to the cutoff
values of λ as given in Table I.

TABLE I. Limiting values of λ for the Gaussian and exper-
imental density profiles at which the strong energy condition is
first violated, the dominant condition is violated, and the value for
which the pressure diverges.

λ (μm2) Gaussian Experimental

Strong 2.46 2.72
Dominant 9.35 5.00
Divergent 10.54 8.24
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