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We describe a new kind of resonance occurring in relativistic three-body hierarchical systems—the
precession resonance—occurring when the relativistic precession time scale of a binary equals the period of
a distant perturber. We find that, contrary to what most previous studies assumed, it can lead to an
exponential increase of the eccentricity of the binary even when relativistic precession dominates the
quadrupolar perturbation. The resonance may happen in the observation band of LISA or change the
eccentricity distribution of triples. We discuss the physics of the resonance, showing that it mainly depends
on three parameters.
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I. INTRODUCTION

Resonances in many-body systems—occurring when at
least two different frequencies take commensurate values—
have played a major role in astronomy ever since the first
studies of Poincaré and Laplace. Already in Newtonian
mechanics, the phenomenology of orbital resonances is
quite rich since they can lead to either stable orbits (this is
the case of Pluto [1] or the Trojans [2]) or unstable ones (the
Kirkwood gaps in the asteroid belt [3] or the Cassini
division in Saturn’s rings [4]). It is not surprising that
relativistic effects bring several new interesting features to
resonant systems that are not present in Newtonian
mechanics. For example, even a two-body system may
display the so-called “transient resonances” [5] which is a
unique feature of relativistic effects, whereas three-body
systems can undergo new kinds of resonances generalizing
the Newtonian case [6–8] or present purely GR effects such
as light-ring resonances [9,10].
Since three-body systems are quite common in our

Universe [11–14], relativistic resonances may be of impor-
tance in the advent of gravitational-wave (GW) astronomy,
either through a direct imprint of the resonance in the
gravitational waveform of black holes binaries (BHBs) [6–
8,15–18], or by the modification of the original distribution
of eccentricity of merging BHBs [19–21]. This last effect is
known to occur in the Kozai-Lidov (KL) resonances
[22,23] which can induce large eccentricity oscillations
in a (so-called inner) binary system if it is orbited by a
highly inclined (so-called outer) perturber.
It is generally admitted that post-Newtonian (PN) relativ-

istic effects quench the KL resonance because they induce a
supplementary perihelion precession which dephases the

resonant frequencies [24–26]. However, if relativistic effects
are strong, the perihelion precession time scale itself could be
comparable to the period of the outer perturber, leading to a
resonant behavior. The purpose of this article is to study the
effects of such kind of resonance, whichwe term “precession
resonance.”Note that this is a phenomenon distinct from the
“tidal resonances” recently unveiled in Refs. [6,7], or from
another kind of precession resonance where the precession
time scales of both inner and outer orbits are commensurate,
discussed in Refs. [27,28]. Although the consequences of a
similar type of resonance have already been studied in the
Solar System [the ν6 resonance between asteroids and Saturn
[29,30]; however, in this case the precession is not due to
general-relativistic (GR) effects], we are not aware of any
previous study of the impact of precession resonances on
relativistic three-body systems.Wewill show that precession
resonances can induce an exponential growth of the eccen-
tricity of the inner binary even in regions where the KL time
scale is much greater than the relativistic precession time
scale, thus invalidating previous claims in the literature. This
could affect gravitational-wave observables through both of
the channels mentioned before, i.e., by modifying the
eccentricity distribution of BHBs or by directly affecting
their gravitational waveform observable in low-frequency
GW detectors like the future space-borne interferometer
LISA [31].

II. RESONANT HIERARCHICAL SYSTEMS

We consider a three-body system in a hierarchical
configuration where an inner binary, with masses m1

and m2, is orbited by a distant perturber m3. We can
decompose the motion into two osculating ellipses called
the inner and outer orbits, of frequencies n and n3, with
planetary elements a; e;ω; ι;Ω; u and a3, e3, ω3, ι3, Ω3, u3,
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respectively, which are the semimajor axis, eccentricity,
argument of perihelion, inclination, longitude of ascending
node, and true anomaly of the orbit. The outer orbit is built
by replacing the inner binary with an effective point particle
located at its center of mass, as explained in Ref. [32]. The
hierarchical assumption only assumes a ≪ a3, so these
elements evolve slowly in time due to the interactions
between the two orbits. We will always be interested in
dynamics on time scales greater than the period of the inner
binary, so we will average all quantities over one orbit of
the inner binary; however, it will be crucial not to average
over one outer orbit in order to account for the effect of
precession resonances. The Hamiltonian of the three-body
system can then be written as [25,32]

H ¼ −
GNmμ

2a
−
GNMμ3
2a3

− 3μ
G2

Nm
2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p þHquad; ð1Þ

where m¼m1þm2 and μ¼m1m2=m (M¼m1þm2þm3

and μ3 ¼ mm3=M) are the total and reduced masses of the
inner (outer) binary, and GN is Newton’s constant. The first
two terms in this Hamiltonian correspond to the Newtonian
energies of the two orbits. Since a is conserved by virtue
of averaging the Hamiltonian over one inner orbit [25,32],
we could also drop the first term. However, a3 may be free
to vary. The third term corresponds to the Hamiltonian
inducing relativistic precession of the inner orbit. Finally,
the last term is the Newtonian quadrupolar coupling
between the two orbits, given in Appendix A. Before
moving on, let us emphasize that in the Hamiltonian (1), we
have neglected relativistic effects on the outer orbit, as well
as the relativistic coupling between the angular momenta of
the two orbits. In the power-counting rules presented in
Ref. [32], this Hamiltonian is accurate to 1PN (v2) and
quadrupolar (ϵ2) order, but neglects “cross-terms” of
magnitude vnϵm (n;m > 0), where v2 ¼ GNm=a and
ε ¼ a=a3. As we prove in Appendix B, this accuracy is
sufficient to quantitatively describe precession resonances.
The equations of motion stemming from the Hamiltonian

(1), which describe the evolution of planetary elements of
both orbits on long time scales, are called the Lagrange
planetary equations (LPEs) and they are given in
Appendix A. It is quite simple to obtain the time evolution
of the system using a numerical integrator. This evolution is
generically characterized by two time scales corresponding to
the third and fourth terms in theHamiltonian (1), respectively:

tPN ¼ a
3

�
a

GNm

�
3=2

; ð2Þ

tKL ¼ a33m
1=2

G1=2
N a3=2m3

: ð3Þ

On a post-Newtonian time scale tPN, the perihelion precesses
by an order-one quantity following the equation

_ωPN ¼ 1

tPNð1 − e2Þ ; ð4Þ

which originates from the third term in the Hamiltonian (1).
The second (Kozai-Lidov) time scale, stemming from the
quadrupolar coupling between the two orbits, rules out the
dynamics of all other osculating elements on top of inducing a
supplementary perihelion precession not written in Eq. (4).
The usual treatment of such hierarchical systems, following
the pioneering work of Kozai and Lidov [22,23], supposes
that both tPN and tKL are much longer than the period of the
outer orbit. One can then get simplified equations by
averaging the Hamiltonian over one period of the outer
binary [25,33]. The dynamics is then dictated by which time
scale dominates the evolution.
(1) tPN ≫ tKL: The quadrupolar force is of greater

magnitude than PN effects. The inner system is
characterized by KL oscillations of eccentricity and
inclination whose origin is in an exchange of angular
momentum between the two orbits.

(2) tPN ∼ tKL: The quadrupolar force has an equivalent
strength to PN effects. Several interesting behaviors
can emerge from the nontrivial interplay between
quadrupolar and PN terms [27,34–41].

(3) tPN ≪ tKL: PN terms dominate the evolution. This
greatly suppresses the magnitude of KL oscillations,
so that the outer orbit cannot induce sizable changes
in the eccentricity of the inner orbit [24–26].

In some cases, the KL mechanism can induce such great
eccentricities that it can make a binary system merge within
one KL oscillation [19,21,42]. However, if the inclination of
the system is not large enough, the quadrupolar KL mecha-
nism is ineffective at producing large eccentricities and the
evolution of the inner binary is controlled by radiation-
reaction forces only. As soon as it enters the PN-dominated
zone, tPN ≪ tKL, it will behave very similarly to an isolated
binary system whose eccentricity evolves towards negligible
values due to the effect of radiation reaction. In this picture,
then, there is little hopeofmeasuring a nonzero eccentricity in
the waveform of the inner binary.
The purpose of this article is to show that a particular

type of resonance can completely alter the time evolution of
the eccentricity in the PN-dominated domain tPN ≪ tKL.
Indeed, if the inner binary is relativistic enough, one can
imagine a situation where its precession frequency is in
phase with the (inverse) period of the outer orbit. Thus,
let us define a precession resonance by the following
condition:

q _ω ¼ pn3; ð5Þ

where p, q are integers. This mean that the perihelion of the
inner orbit should complete p revolutions when the third
object completes q revolutions. By its very essence, such a
resonance requires that the inner binary should be quite
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relativistic; furthermore, this also means that the PN time
scale tPN should be of the same order of magnitude as the
outer binary period. Consequently, it is no longer sensible
to average the Hamiltonian over one outer orbit because we
are not in the approximation that tPN is a long time scale.
This is why the standard treatment of the post-Newtonian
KL mechanism was unable to predict the effect of these
resonances, and thus to our knowledge they have never
been reported in the literature (for other examples of
nonsecular effects see, e.g., Refs. [21,25,38,43–47]).
Notice that a similar kind of resonance can occur in the
Solar System (the ν6 resonance in the asteroid belt [29,30]);
however, in this case the perihelion precession is not due to
relativistic effects.
Where are resonant terms hidden in the Hamiltonian

displayed in Eq. (1)? By expanding the eccentric anomaly
as a Fourier series in time, one can see that the quadrupolar
coupling in Eq. (A1) contains terms oscillating as, e.g.,
cosð2ω − pn3tÞ, where p ∈ Z. Far from precession reso-
nances, one can average this term over one period of the
outer orbit, yielding a zero answer apart from p ¼ 0.
However, close to a resonance this term behaves as a
constant and will not vanish. The resonance condition is
exactly the one written in Eq. (5), with q ¼ 2 given by our
quadrupolar approximation. Had we included the octupole,
there would also have been q ¼ 3 resonances. Physically,
the presence of resonant terms in the Hamiltonian (1)
makes possible an exchange of energy between the inner
and outer orbits. More precisely, the outer orbit can transfer
its Newtonian energy [second term in the Hamiltonian (1)]
to the PN energy of the inner orbit [third term in the
Hamiltonian (1)], leading to a drastic change in the inner
orbit eccentricity, as we will see later on.
A resonance condition may appear as a fine-tuning

between two incommensurable frequencies, namely, the
inner precession time scale and the outer period. However,
if the inner binary evolves under the effect of radiation
reaction, its orbit will shrink and thus its precession time
scale will decrease. Thus, starting from an initial binary
precessing too slowly to be in resonance with the distant
perturber, radiation reaction will induce the inner binary to
pass through all of the resonance conditions before merger.
It is therefore important to study the effect of precession
resonances for an inner binary driven by radiation reaction.
To this aim, we numerically solve the system of differential
equations from the LPEs (A11)–(A16) for both inner and
outer orbits, augmented with the radiation-reaction (RR)
terms for the inner orbit [48,49]:

da
dt

����
RR

¼ −
64

5

G3
Nm

3ν

a3ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ð6Þ

de
dt

����
RR

¼ −
304

15

G3
Nm

3ν

a4ð1 − e2Þ5=2
�
1þ 121

304
e2
�
; ð7Þ

where ν ¼ μ=m is the symmetric mass ratio of the inner
binary, and the evolution of other planetary elements is
left unchanged by radiation reaction. Figure 1 shows the
huge impact that resonances can have on the evolution of
the inner binary in the PN-dominated zone tPN ≪ tKL.
When the resonance condition is met, the eccentricity of
the inner binary increases exponentially in a very short
time up to values that can reach e ≃ 0.1 even starting from
negligible values. For comparison, we also show the
eccentricity computed using the Hamiltonian (1) aver-
aged over one orbit of the outer binary, which cannot
account for the effect of resonances as discussed pre-
viously. In this case, the evolution of e is virtually
indistinguishable from the power-law decrease e=e0 ≃
ða=a0Þ19=12 expected from the inspiral of an isolated
binary [49]. This happens because these systems are
very relativistic, so that the inner binary precession
completely suppresses KL oscillations. Furthermore,
our integrations are performed with the relative inclina-
tion of the two orbits ιtot ¼ ιþ ι3 ¼ 60°, which means
that, even if the inner binary was less relativistic, the KL

FIG. 1. Effect of the resonances on the evolution of the
eccentricity of the inner binary. We consider an inner BHB
system of total mass m ¼ 50 M⊙ and mass ratio
ν ¼ m1m2=m2 ¼ 0.15. The semimajor axis a is initialized to a ¼
0.02 AU with an eccentricity of e ¼ 0.03, corresponding to the
expected radiation reaction decrease from a moderate e a Hubble
time ago. The mass of the BH perturber is either m3 ¼ 50 M⊙
(upper panels) or m3 ¼ 4 × 106 M⊙ (lower panels), and its
distance is varied from 1 AU (top left) to 100 AU (bottom right).
The other initial conditions of the system are e3 ¼ 0.7,
ω ¼ ω3 ¼ Ω ¼ 0°, and ιtot ¼ ιþ ι3 ¼ 60°. The continuous blue
curve corresponds to the eccentricity of the inner binary e
obtained by solving the LPE with the complete Hamiltonian
(1), which is not averaged over the period of the outer orbit. For
comparison, we show in dashed orange the evolution of the
eccentricity obtained by averaging the Hamiltonian (1). The
vertical black dashed line corresponds to a GW frequency of
fGW ¼ 15 mHz in the LISA band [31,50]. The numbers close to
each resonance denote the corresponding value of p in Eq. (5)
with q ¼ 2 (note that higher p’s correspond to smaller resonance
effects).
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mechanism in the quadrupole approximation would not
induce extreme eccentricities.
All of the systems displayed in Fig. 1 would enter the

LISA bandwidth at a GW frequency of fGW ¼ 15 mHz
with eccentricities greater than 10−3, which is potentially
measurable given the planned sensitivity [50]. Not taking
into account the effect of resonances would lead to the
incorrect estimate of e being beyond the detection limit.
Furthermore, note that the range of parameters considered
in Fig. 1 is not unrealistic for three-body systems, although
it requires a quite small a3. BH triples of similar mass
formed in globular clusters often feature an outer semi-
major axis of a few AU [51–56], while mass segregation
can make binaries migrate at short distances from super-
massive BHs (SMBHs) a3 < 100 AU [57–60].
On the other hand, several other mechanisms can lead to

non-negligible eccentricities in the LISA bandwidth,
including the KL mechanism for binaries with nearly
perpendicular inclinations [19,21,25,34,42,61–65] (as pre-
viously stated, the KL oscillations would take place only
when tPN ≳ tKL, i.e., for separations of the inner binary
wider than the ones considered in Fig. 1). Disentangling the
effect of precession resonances from others would neces-
sitate a detailed population study, which is beyond the
scope of this article. A clear-cut identification of a
precession resonance could be possible if one of the
resonances was inside the LISA bandwidth, allowing for
a direct measurement of the increase of eccentricity in the
waveform of the system. We find that such an exciting
event could happen for an outer period of a few days or less,
which could be the case if a binary system was stuck in a
migration trap in disks around SMBHs [66].

III. A SEMIANALYTICAL MODEL OF THE
RESONANCES

In order to gain a physical understanding of the phe-
nomenon at play when the resonance conditions are met,
and to efficiently map the large parameter space, in this
section we will work out a simplified set of equations
describing the evolution of the eccentricity of the inner
binary at resonance. To this aim, we will make several
simplifying assumptions in order to put the LPEs (A11)–
(A16) in a tractable form.
(i) First, we will carry out our computations at lowest

order in the eccentricity e, since it can be seen from the
numerical solution that e never reaches extreme values. We
will also assume that e is always sufficiently small so that
its influence on radiation reaction is negligible. This means
that the semimajor axis a can be expressed as

aðtÞ ¼ a0

�
1 −

t
tRR

�
1=4

; tRR ¼ 5a40
256G3

Nm
3ν

; ð8Þ

where a0 is the value of a at t ¼ 0. Radiation reaction is
essential to make the binary pass through a resonance, so

we cannot ignore its effect. However, since tRR ≫
tKL ≫ tPN, we can always assume that the resonance takes
places on time scales much shorter than tRR and expand the
power law in Eq. (8) accordingly.
(ii) Second, we will place ourselves in the vicinity of the

lowest-order resonance, defined by _ω ¼ n3=2. Since, in the
PN regime, the major contribution to _ω is given by the PN
precession [Eq. (4)], this means that there exists a relation
between the semimajor axis of the two orbits:

a3 ¼ a0

�
Ma20

36G2
Nm

3

�
1=3

; ð9Þ

where we have chosen the initial time so that t ¼ 0
corresponds to the exact resonance _ω¼ n3=2 with e ¼ 0.
Thus, at the resonance the KL time scale is

tKL ¼ a0M
36m3

�
a0

GNm

�
5=2

⇒
tKL
tPN

¼ Ma0
12GNmm3

≫ 1; ð10Þ

which means that the PN time scale is always the shortest at
the resonance, as expected.
(iii) Third, we will neglect the variation of the outer orbit

planetary elements during the resonance. Indeed, it can be
checked by using the LPE for the outer orbit that, at
resonance, the time scale for the variation of the outer orbit
elements is

tout ∼
a0
ν

�
a0

GNm

�
17=6

�
M
m

�
2=3

; ð11Þ

so that tout ≫ tKL ≫ tPN. This allows us to choose ι3 ¼ 0 so
that ι ¼ ιtot is the relative inclination between the two
orbits.
(iv) Fourth, we will collect in the LPE only the terms that

are constant or in resonance, given that the other terms
oscillate quickly in time and will average out. This is done
by expanding the outer orbit’s variables in the quadrupolar
Hamiltonian as a Fourier series in time, and then keeping in
the Hamiltonian only terms that are constant or propor-
tional to cosð2ω − n3tÞ, sinð2ω − n3tÞ, throwing away all
other trigonometric functions of ω and n3t. We show in
Appendix A the relevant formulas for carrying out this
Fourier series expansion; see Eq. (A6).
Under this last simplifying assumption, the Hamiltonian

of the inner binary becomes

H
μ
¼ −3

G2
Nm

2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p −
GNa2m3

16a33

�
2þ 3e2

ð1 − e23Þ3=2
ð3cos2 ι − 1Þ

þ 15e2ðf1 cos ψ þ f2 sin ψÞ
�
; ð12Þ

where ψ ¼ 2ω − n3t is the resonant angle, and we did not
simplify

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
≃ 1 in the first term of H (corresponding
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to the PN precession) since its magnitude is much
greater than the second (quadrupolar) term, so that
even a small e could give a non-negligible contribution
to the Hamiltonian. The two angular factors f1 and f2 are
defined by

f1 ¼
a1 − ã1

2
ð1þ cos2 ιÞ cos 2ω3

− b1ð1þ cos2 ιÞ sin 2ω3 þ
a1 þ ã1

2
sin2 ι; ð13Þ

f2 ¼ cos ιð2b1 cos 2ω3 þ ða1 − ã1Þ sin 2ω3Þ; ð14Þ

where b1, a1, and ã1 are functions of the outer orbit
eccentricity e3 defined in Appendix A [Eqs. (A8)–(A10)].
Note that the terms in the first line of the Hamiltonian (12)
correspond to the well-known orbit-averaged Hamiltonian
[as given in, e.g., Ref. [25], setting to zero the cosω term as
required by our assumption (iv)], while the second line
contains the resonant terms. Furthermore, if e3 → 0, then
f1, f2 → 0, which means that the lowest-order resonance is
suppressed in the case of a circular outer orbit. An explicit
computation shows that the next resonance _ω ¼ n3 would
still persist in the case where e3 ¼ 0, although its effect on
the eccentricity of the inner binary is generically weaker
than the lowest-order resonance, as can be seen in Fig. 1.
It is now quite easy to find the evolution of the inner

planetary elements using the LPEs (A11)–(A16). We find
that _ι is suppressed by an eccentricity factor e2, so that its
variation is quite negligible. This is confirmed from our
numerical solution. Thus, we will assume that ι is fixed in
the following. The system then reduces to two differential
equations in e and ψ , which we write as

_e ¼ 15e
8tKL

ðf1 sin ψ − f2 cos ψÞ; ð15Þ

_ψ ¼ 15

4tKL
ðf1 cos ψ þ f2 sin ψÞ þ 2e2

tPN
þ t
τ2

þ 3ð5 cos2 ι − 1Þ
4tKLð1 − e23Þ3=2

; ð16Þ

where the new time scale τ is a mixture of RR and PN time
scales:

τ ¼
�
4tPNtRR

5

�
1=2

¼ a0
8

ffiffiffiffiffi
3ν

p
�

a0
GNm

�
9=4

: ð17Þ

In order to obtain Eq. (16), we have expanded the PN
precession term for small eccentricities and small t=tRR,
and we have neglected higher-order terms (this also means
that we neglect the variation of a in the quadrupolar
Hamiltonian, i.e., we set a ¼ a0 everywhere except in
the PN term whose magnitude is the greatest). From the
three time scales displayed in Eqs. (15)–(16), the PN time

scale tPN is always the shortest one. On the other hand, the
ratio of tKL to τ is

tKL
τ

¼ 16M
135m3

ffiffiffiffiffi
3ν

p �
a0

GNm

�
1=4

; ð18Þ

so that it can be either larger or less than one, depending on
the mass ratios and the relativistic parameter. For example,
in the system considered in Fig. 1, the ratio tKL=τ is of order
unity at the resonance. We will see later on that the precise
value of this ratio determines the exponential growth of e.
Finally, let us state once again that we will not neglect the
first term proportional to e2 in Eq. (16), since tPN is the
shortest time scale and even a small eccentricity could give
a term of order 1=tKL in Eq. (16). We will indeed see in the
following that this term plays a crucial role in the
resonance.
In order to cast the equations in a form that depends on

only a few parameters, we will now neglect the coefficient
f2 in what follows. Indeed, notice that since b1 ∼ a1 −
ã1 ≪ a1 þ ã1 for generic e3 (see Fig. 4), one can approxi-
mate f2 ≃ 0, f1 ≃ ða1 þ ã1Þsin2 ι=2 for angles ι that are not
too small. This also means that the strength of the
resonance is maximized at ι ¼ π=2. Introducing the dimen-
sionless time t̃ ¼ 15f1t=8tKL, the system (15)–(16) can be
written in a form depending on only three parameters:

e0 ¼ e sin ψ ; ð19Þ

ψ 0 ¼ 2 cos ψ þ αe2 þ βt̃þ γ; ð20Þ

where a prime denotes differentiation with respect to t̃, and
the coefficients α, β, and γ are given by

α ¼ 4M
45m3f1

a0
GNm

; β ¼ 256νM2

6075m2
3f

2
1

�
a0

GNm

�
1=2

;

γ ¼ 2ð5 cos2 ι − 1Þ
5f1ð1 − e23Þ3=2

: ð21Þ

The parameter α ≫ 1 represents the competition
between PN and KL time scales at resonance.
Furthermore, we will show later on that α sets the value
of the maximum eccentricity e that one can achieve at the
resonance. β ∼ 1 represents a mixture between radiation-
reaction, PN, and KL time scales. A small βmeans that the
radiation-reaction time scale is slow, so that the resonance
will be quite effective at producing high eccentricities
since the system spends a lot of time in resonance; on
the other hand, a high β will generically produce small
eccentricities since the system crosses the resonance
condition rather quickly when the radiation-reaction time
scale is short. Finally, γ ∼ 1 depends only on ι and the
outer eccentricity e3.
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We were not able to find an analytic solution to the
system (19)–(20); however, it is now easy to build an
understanding of the physical phenomenon at play. Indeed,
if ψ varies quickly in time, then the derivative of e in
Eq. (19) will average out and e will just feature small
oscillations. On the other hand, when ψ varies slowly, i.e.,
when t̃ is such that ψ 0 ¼ 0 in Eq. (20), then the ψ-
dependent term in Eq. (19) can be considered as constant
and e undergoes exponential growth. This growth cannot
last forever since the increase of eccentricity will move the
system out of the resonance condition _ω ¼ n3=2 from the
fact that _ω depends on e, cf. Eq. (4). Equivalently, requiring
that the second term in Eq. (20) should add a maximum
dephasing of π to the phase ψ (meaning that e0 changes
sign), one gets that the maximum eccentricity that one can
possibly reach at resonance is given by

e2max ¼
2π

α
: ð22Þ

From this result, we can see that the resonance is efficient
for smaller α, e.g., when m3 ≳m and when f1 is maximal,
which corresponds to a perpendicular inclination and a
large e3. However, the binary does not always reach emax
during resonance if the radiation-reaction time scale is fast,
as Fig. 2 illustrates.
These remarks allow for a qualitative—but not quanti-

tative—understanding of the resonance. In the following,

we will then adopt a semianalytic approach by solving the
simplified system (19)–(20) numerically, which is a lot
faster than integrating the full LPE. In Fig. 2 we show the
comparison between e obtained from the LPE and the
simplified system (19)–(20). One can see that our model is
quite effective at reproducing the LPE solution, even if the
exact period of the oscillations is slightly different in the
two cases.
We then use our simplified system (19)–(20) to

obtain the final eccentricity eF reached after resonance,
varying α, β, and γ. One can observe two different
behaviors depending on β. If β ≲ 1, the resonance is
effective and eF is mostly limited by the maximal
eccentricity e2max ¼ 2π=α. On the other hand, if β ≳ 1,
the system will never reach emax and α has very little
influence on eF. We show a color plot of eF in both the
ðα; βÞ and ðβ; γÞ planes in Fig. 3, which unveils bands
corresponding to larger or smaller eF values. We also find
that eF can be decreased with respect to the initial value of
e only when β ≳ 1. A decrease of eccentricity is also an
interesting phenomenon in itself, since it would mean, for
example, that a binary whose eccentricity e has been
excited to large values by the standard KL mechanism

FIG. 2. Comparison between full and approximate solutions.
The upper panel shows a system with parameters m3 ¼
m ¼ 50 M⊙, ν ¼ 0.1, a3 ¼ 0.5 AU, e3 ¼ 0.7, ι ¼ 70°,
ω3 ¼ ω ¼ Ω ¼ 0°, and initial eccentricity e ¼ 10−3, correspond-
ing to ðα; β; γÞ ¼ ð424; 0.3; 0.232Þ. The lower panel has
m3 ¼ 30 M⊙, ν ¼ 0.25 and the same other parameters, corre-
sponding to ðα; β; γÞ ¼ ð591; 1.36; 0.232Þ. The solid blue curve
shows the solution from the full LPE, while the dashed orange
curve is the solution from the simplified system (19)–(20). The
central time t ¼ 0 is chosen to correspond to the instant where
a ¼ a0, where a0 is defined in Eq. (9). The horizontal dashed line
corresponds to the maximal possible eccentricity e2max ¼ 2π=α.
The system from the upper panel reaches emax while staying in
resonance, whereas the one from the lower panel exits resonance
before reaching emax.

FIG. 3. Final eccentricity after resonance. The final eccentricity
eF is extracted by solving the simplified system (19)–(20) with
initial values ψ ¼ 0, e ¼ 5 × 10−3 at t̃ ¼ −100. The two upper
color plots show eF normalized to the maximal eccentricity emax
in the ðα; βÞ plane for β < 1 and for the two values γ ¼ 0, 1.
There appears to be some bands where the resonance is
ineffective at enhancing the eccentricity. Changing γ modifies
the location of the bands but has little effect outside them. The
lower color plot shows eF in the ðγ; βÞ plane for α ¼ 100
(corresponding to emax ¼ 0.25). Notice that when β ≳ 1 the
eccentricity can actually be decreased by the resonance (shown
in white).
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could see its eccentricity decreased by the resonance,
which pushes its merger time towards higher values.

IV. CONCLUSIONS

The relativistic resonance phenomenon described for
the first time in this article may drastically modify the
parameters of a binary system perturbed by a distant mass.
Indeed, a binary in an initial quasicircular orbit under-
going a precession resonance may be brought to a new
state whose eccentricity is potentially measurable by low-
frequency GW detectors like LISA. When using the
orbital eccentricity to discriminate against formation
channels of BHs, it will be important to take precession
resonances into account. Thus, an important follow-up
of the present work will be to include the effect of
precession resonances in population studies, which for
the time being consider only the impact of the KL
mechanism on BHB eccentricities [19–21]. Another
exciting prospect is the possibility of observing a pre-
cession resonance directly in the waveform of a BHB in
the LISA band, which calls for new waveform templates
incorporating the effect of such a phenomenon. This could
ultimately lead to a direct measurement of the parameters
of the outer orbit from the inner binary waveform, thus
giving important information on the properties of such
three-body systems.
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APPENDIX A: QUADRUPOLAR HAMILTONIAN

In the quadrupolar approximation, the Hamiltonian
Hquad of the three-body system used in Eq. (1) is given
by expanding the full three-body Newtonian Hamiltonian
in the center-of-mass frame of the inner binary, with the
result [32]

Hquad ¼ −
3GNm3

2R3
QijNiNj; ðA1Þ

whereR is the radius vector of the outer orbit, R is its norm,
and N ¼ R=R is its unit vector. The traceless quadrupole
moment of the inner binary, averaged over one orbit, is [32]

Qij ¼ μa2

2

�
ð1þ 4e2Þαiαj þ ð1 − e2Þβiβj − 2þ 3e2

3
δij

�
;

ðA2Þ

where α (γ) is the unit vector directed towards
the perihelion (angular momentum), and β ¼ γ × α.

In terms of the osculating elements, the expressions of
these vectors are

α ¼ RzðΩÞRxðιÞRzðωÞux;

β ¼ RzðΩÞRxðιÞRzðωÞuy;

γ ¼ RzðΩÞRxðιÞRzðωÞuz; ðA3Þ

where ux, uy, uz are the Cartesian basis vectors. In a
similar way, one can define the unit vectors parametrizing
the orientation of the outer orbit, which we denote
by α3, β3, and γ3. We can finally give the expression of
the radius vector of the outer orbit in terms of its osculating
elements:

R ¼ a3ð1 − e3 cos η3Þ; ðA4Þ

N ¼ cos η3 − e3
1 − e3 cos η3

α3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

q sin η3
1 − e3 cos η3

β3; ðA5Þ

where η3 is the eccentric anomaly of the outer orbit defined
by η3 − e3 sin η3 ¼ n3t. In the following, it will be useful
to expand the quadrupolar Hamiltonian (A1) as a Fourier
series in time, using

NiNj

R3
¼ 1

a33
½ða0 þ a1 cos n3tÞαi3αj3 þ ðã0 þ ã1 cos n3tÞβi3βj3

þ b1 sin n3tðαi3βj3 þ αj3β
i
3Þ�: ðA6Þ

The eccentricity-dependent coefficients in the Fourier
series (A6) are given by

a0 ¼ ã0 ¼
1

2ð1 − e23Þ3=2
; ðA7Þ

a1 ¼
1

π

Z
π

−π

ðcos η − e3Þ2
ð1 − e3 cos ηÞ4 cosðη − e3 sin ηÞdη; ðA8Þ

ã1 ¼
1

π

Z
π

−π

ð1 − e23Þ sin2 η
ð1 − e3 cos ηÞ4 cosðη − e3 sin ηÞ dη; ðA9Þ

b1¼
1

π

Z
π

−π

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e23

p
ðcos η−e3Þ sin η

ð1−e3 cos ηÞ4
sinðη−e3 sin ηÞdη;

ðA10Þ

and they are plotted in Fig. 4. We have ignored the higher-
order coefficients in the Fourier series (A6) because they
give terms relevant only for higher-order resonances, _ω ¼
pn3=2 with p > 1. Note that the coefficients a0, ã0
correspond to the usual orbit-averaged Hamiltonian, while
the other coefficients multiply terms oscillating at the
frequency of the outer orbit.
The equations of motion stemming from the Hamiltonian

(1), which describe the evolution of planetary elements of
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both orbits on long time scales, are called the Lagrange
planetary equations, and they are given by

_a ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂H̃
∂u ; ðA11Þ

_e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

GNmae2

s
∂H̃
∂ω −

1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNma

p
e
∂H̃
∂u ; ðA12Þ

_ι¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1−e2Þ

p
sin ι

∂H̃
∂Ω−

cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1−e2Þ

p
sin ι

∂H̃
∂ω ;

ðA13Þ

_u ¼
ffiffiffiffiffiffiffiffiffiffiffi
4a

GNm

s
∂H̃
∂a þ 1 − e2ffiffiffiffiffiffiffiffiffiffiffiffiffi

GNma
p

e
∂H̃
∂e ; ðA14Þ

_ω¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

GNmae2

s
∂H̃
∂e þ cos ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1−e2Þ
p

sin ι

∂H̃
∂ι ; ðA15Þ

_Ω ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNmað1 − e2Þ
p

sin ι

∂H̃
∂ι ; ðA16Þ

where H̃ ¼ H=μ. (See, e.g., Ref. [67] for a derivation; in
particular, note that, while they are often used with orbit-
averaged Hamiltonians, the LPEs describe the evolution of
a three-body system without any need for averaging. The
presence of terms oscillating at the frequency of the outer
orbit induces variations of the orbital elements on the outer
binary time scale as in, e.g., Ref. [44]; however, they are of
too small in magnitude to be seen in the plots of the main

text.) The equations for the outer orbit are the same
provided one replaces the inner parameters by the outer
ones. Furthermore, in the LPEs one can use the elimination
of nodes, which means replacing Ω3 → Ωþ π [25,33].
Finally, we will also add to the LPEs the effect of radiation
reaction on the inner orbit [48,49]:

da
dt

����
RR

¼ −
64

5

G3
Nm

3ν

a3ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ðA17Þ

de
dt

����
RR

¼ −
304e
15

G3
Nm

3ν

a4ð1 − e2Þ5=2
�
1þ 121

304
e2
�
; ðA18Þ

where ν ¼ μ=m is the symmetric mass ratio of the inner
binary, and the evolution of other planetary elements is left
unchanged by radiation reaction.
Due to their complicated form, we will not display the

final equations obtained by plugging the Hamiltonian (1)
into the LPEs (A11)–(A16). Instead, we will present a
simplified version of them in Sec. III.

APPENDIX B: HIGHER-ORDER TERMS IN THE
HAMILTONIAN

An important question concerning the validity of our
results is whether a quadrupolar approximation at lowest
PN order is sufficient to accurately describe the motion of
three-body systems that we describe in this article. Indeed,
it is known that octupolar terms can drastically alter the KL
mechanism [25] or lead to another kind of precession
resonance [27,28], while 1PN terms induced by the outer
binary can be important when the third body is super-
massive [38,40]. Can the inclusion of higher-order terms in
the Hamiltonian (1) change the resonance behavior? In this
appendix, we explicitly prove that this is not the case.
The rationale for neglecting octupolar as well as other

PN terms (such as precession of the outer orbit) in the
Hamiltonian (1) is the following. Consider first the evo-
lution of the system far from resonance. The inclusion of
higher-order terms will definitely affect the parameters of
the outer binary (such as its argument of perihelion or
eccentricity), but what about the inner orbit? In all cases
described in this article, we are deep in the regime where
PN terms dominate over quadrupolar perturbations,
tPN ≪ tKL. As explained in the main text, this has the
consequence of averaging the multipolar interactions
between inner and outer binaries so that KL oscillations
are suppressed and the evolution of inner binary is similar
to an isolated binary. What is true for the quadrupolar
perturbation is also true for the octupole or PN-multipolar
cross terms (which are further suppressed compared to the
quadrupole), so that we can expect the inner binary to be
insensitive to higher-order terms in the Hamiltonian in
this case.

FIG. 4. Plot of the three Fourier coefficients defined in
Eqs. (A8)–(A10), showing the hierarchy b1 ∼ a1 − ã1 ≪ a1 þ
ã1 for any e3. Notice that a1 þ ã1 diverges when e3 → 1, so that
the effect of the resonance is maximized for large outer
eccentricities e3. However, if e3 is too close to 1, one would
get to a point where the resonance is so powerful that our
approximation (i) mentioned in Sec. III (e ≪ 1) would break
down, signaling that our simplified system would not accurately
reproduce the solution of the LPE.
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Consider next the situation when the system is close to
resonance. In all cases examined in the main text, the
duration of the resonance is a few times the KL time scale
tKL. Consequently, all higher-order terms in theHamiltonian
which are further suppressed with respect to the quadrupole
cannot accumulate on long time scales and give appreciable
variations in the osculating elements. In other words, their
effect can only be seen on time scalesmuch longer than a few
KL time scales, which is the duration of the resonance. Thus,
in this case higher-order terms in theHamiltonian also do not
induce appreciable changes changes to the evolution of the
three-body system at resonance.
Another effect that one can imagine is that the location of

the resonances would be displaced by higher-order terms.
Again, this proves to be a small modification. Consider, for
example, the case where GR effects of the outer orbit are
taken into account. Then, the frequency of the outer orbit
(defined by the derivative of the mean anomaly _u3) receives
PN corrections from the LPE (A14). Thus, the resonance
condition will slightly shift from the previous one, _ω ¼ n3.
A last effect of octupolar terms is to trigger new

resonances of the form 3 _ω ¼ pn3 (p ∈ Z), while the
quadrupolar resonances discussed in the main text are
characterized by 2 _ω ¼ pn3. These higher-order resonances
are of course of smaller magnitude and we will not discuss
them here.
In order to prove our statements, we will consider the

evolution of two model systems when taking into account
higher-order terms in the Hamiltonian, namely, the octu-
pole, GR precession of the outer orbit, and coupling
between the spins of inner and outer binaries. This
corresponds to a Newtonian precision of order ε3 and
1PN of order v2ε3=2 in the power-counting rules presented
in Ref. [32]. We refer the reader to Ref. [32] for a derivation
of the corresponding Hamiltonian; note that, in order to be
consistent with the results presented in this article, we will
not average this Hamiltonian over the outer orbit time scale.
Thus, the supplementary terms that we consider are

Hε3 ¼ −
GNm3

2R4
Oijkð5NiNjNk − δijNk − δikNj − δjkNiÞ;

ðB1Þ

Hv2ε¼−
G2

Nmm3ðmþm3Þ
2a23ð1−e3 cosη3Þ2

�
1−3ν3

4
ð1þe3 cosη3Þ2

þð3þν3Þð1þe3 cosη3Þþν3e23
sin2 η3

1−e3 cos η3
−1

�
;

ðB2Þ

Hv2ε3=2 ¼
GNμm3ð4mþ 3m3Þ

2ðmþm3Þa33ð1 − e3 cos η3Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmað1 − e2Þ

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNðmþm3Þa3ð1 − e23Þ

q
γ · γ3; ðB3Þ

where the notations used in these equations have been
introduced in Appendix A. Let us comment on each of
these Hamiltonians. Hε3 is the octupolar Hamiltonian,
obtained after expanding Newton’s potential in the
center-of-mass frame of the inner binary. It depends
on the octupole moment of the inner binary Oijk ¼
νðm2 −m1Þhrirjrki (with r being the radius vector of
the inner orbit and ν its symmetric mass ratio) averaged
over one orbit, given by

Oijk ¼ 5ν

8
ðm1 −m2Þ½ð3þ 4e2Þαiαjαk

þ ð1 − e2Þðαiβjβk þ βiαjβk þ βiβjαkÞ�; ðB4Þ

where α and β have been defined in Eq. (A3).
Hv2ε is the 1PN Einstein-Infeld-Hoffmann Hamiltonian

of the outer orbit, responsible for its perihelion precession.
It depends on the outer eccentric anomaly η3 (defined by
η3 − e3 sin η3 ¼ n3t) and the outer symmetric mass
ratio ν3 ¼ mm3=ðmþm3Þ2. Averaging it over the outer
orbit, we would find a 1PN Hamiltonian similar to the
one describing perihelion precession of the inner orbit,
hHv2εi ¼ −3G2

Nmm3ðmþm3Þ=a23
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e23

p
. However, as

previously emphasized, we will not average it over the
outer orbit for consistency.

FIG. 5. Effect of higher-order terms on the resonance: eccen-
tricity around the lowest-order resonance _ω ¼ n3=2 for two
model systems. The continuous blue curve corresponds to
solving the LPEs (A11)–(A16) with a Hamiltonian composed
of Eq. (1) plus the three higher-order terms in Eqs. (B1)–(B3),
while the dashed orange curve corresponds to using the Ham-
iltonian (1) only, as is done in the main text. The first system has
the following parameters: m ¼ m3 ¼ 50 M⊙, ν ¼ 0.1,
a3 ¼ 0.5 AU, e3 ¼ 0.7, ι ¼ 70°, ω3 ¼ ω ¼ Ω ¼ 0°, and initial
eccentricity e ¼ 10−3. The second system has the parameters
m ¼ 50 M⊙, m3 ¼ 4 × 106 M⊙, ν ¼ 0.1, a3 ¼ 30 AU,
e3 ¼ 0.6, ι ¼ 60°, ω3 ¼ ω ¼ Ω ¼ 0°, and initial eccentricity
e ¼ 10−3. Time is centered so that t ¼ 0 corresponds to the
middle of the resonance.
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Finally, Hv2ε3=2 is the coupling between the angular
momentums of inner and outer binaries, derived, e.g.,
in Ref. [32].
We now solve for the evolution of the three-body system

following the LPEs (A11)–(A16). We present our results in
Fig. 5 for two model systems: one in which the perturber is
of the same mass as the binary system, and one in which the
perturber is supermassive. The behavior of the inner binary
system away from resonance is, as expected, very similar
to an isolated binary since all multipolar terms in the

Hamiltonian are “averaged out” by the quick PN preces-
sion. Close to resonance, the supplementary terms in the
Hamiltonian introduce some dephasing and slightly change
the duration of the resonance. This is only apparent when
the perturber is supermassive (bottom of Fig. 5). However,
note that the final eccentricity reached after resonance is
barely affected by the supplementary terms in both cases.
This justifies our previous arguments and proves that using
the minimal Hamiltonian (1) is sufficient for describing the
effect of precession resonances in the regime tPN ≪ tKL.
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