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We consider a higher-derivative generalization of disformal transformations inD-dimensional spacetime
and clarify the conditions under which they form a group with respect to the matrix product and the
functional composition. These conditions allow us to systematically construct the inverse transformation in
a fully covariant manner. Applying the invertible generalized disformal transformation to known ghost-free
scalar-tensor theories, we obtain a novel class of ghost-free scalar-tensor theories, whose action contains
the third- or higher-order derivatives of the scalar field as well as nontrivial higher-order derivative
couplings to the curvature tensor.
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I. INTRODUCTION

Scalar-tensor theories have been studied extensively as a
model of inflation/dark energy, and there has been a
growing interest in incorporating higher-derivative inter-
actions of the scalar field into the action without introduc-
ing Ostrogradsky ghost [1,2]. It was shown that the ghost
can be eliminated if the higher-derivative terms are
degenerate [3–8]. With the knowledge of the degeneracy
conditions, one can systematically construct ghost-free
scalar-tensor theories, which are known as degenerate
higher-order scalar-tensor (DHOST) theories [4,9–12].1
The DHOST theory includes the Horndeski [18–20] and
the Gleyzes-Langlois-Piazza-Vernizzi theories [21] as spe-
cial cases, and hence form a general class of healthy scalar-
tensor theories (see [22,23] for reviews).
To pursue more general frameworks of scalar-tensor

theories, a redefinition of the metric or an invertible
transformation has been playing an important role. This
is because, in general, an invertible transformation maps a
ghost-free theory to another ghost-free theory as it does not
change the number of dynamical degrees of freedom
(DOFs) [24,25]. Let us consider a transformation between
gμν and ḡμν. For a given action of scalar-tensor theories
S̄½ḡμν;ϕ�, we substitute the transformation law to obtain a
new action S½gμν;ϕ�. Hence, ḡμν and gμν are respectively

referred to as the original- and new-frame metrics. So long
as the transformation is invertible, the two actions are
mathematically equivalent up to the redefinition of varia-
bles and boundary terms. However, when matter fields are
taken into account, one has to define the metric to which the
matter fields are minimally coupled. As an aside, even if the
gravity sector is degenerate, introducing a matter sector
could revive the Ostrogradsky ghost, and hence one needs a
careful analysis [26]. Therefore, the resultant action
S½gμν;ϕ� can be regarded as a new theory, rather than a
mere redefinition of the original action S̄½ḡμν;ϕ�.
A well-established example of such metric transforma-

tions is the disformal transformation [27–29], which is of
the form

ḡμν¼F0ðϕ;XÞgμνþF1ðϕ;XÞ∇μϕ∇νϕ; X≔gμν∇μϕ∇νϕ;

ð1Þ

where Greek indices μ; ν; � � � represent spacetime indices
and ∇μ denotes the covariant derivative with respect to the
metric gμν, with the scalar field ϕ unchanged. Note that in
the present paper, for simplicity, a “disformal transforma-
tion” denotes a transformation of the form (1) with F0 ≠ 1
and F1 ≠ 0 in general (and also its generalization discussed
below), which also contains the purely conformal trans-
formation with F1 ¼ 0 as a special case. As we shall see in
detail in Sec. II A, the transformation (1) is invertible (i.e.,
the new-frame metric gμν can be uniquely expressed in
terms of ϕ and ḡμν without referring to any particular
configuration) if and only if F0ðF0 þ XF1ÞðF0 − XF0X −
X2F1XÞ ≠ 0, where FiX ≔ ∂Fi=∂X (i ¼ 0, 1).

1Relaxing the degeneracy conditions so that the higher-
derivative terms are degenerate only in the unitary gauge, we
obtain a broader class of scalar-tensor theories [13–17]. In that
case, there is an apparent extra DOF in a generic gauge, but it
satisfies an elliptic differential equation and hence is an instanta-
neous (or “shadowy”) mode [14,17].
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Interestingly, it was shown in [30] that the disformal
transformation (1) in general maps the Horndeski class
to its exterior, which is now known as the quadratic/cubic
DHOST class [4,9,10].2 Also, the quadratic/cubic DHOST
class itself is closed under the disformal transformation
[10]. Applications of the disformal transformation have
been extensively explored in various contexts; inflation
[32–40], cosmic microwave background [41–43], dark
matter and dark energy [44–59], cosmological perturba-
tions [60–67], solar system tests and screening mecha-
nisms [47,68–73], relativistic stars [74–79], and black
holes [80–94].
A natural question is whether there exists a more general

class of invertible transformations, which would bring us
new fruitful insights on scalar-tensor theories. The trans-
formation (1) is the most general up to the first derivative of
the scalar field. Recently, a higher-derivative generalization
of the disformal transformation was studied in the context
of cosmological perturbations [66,67]. However, the invert-
ibility of such generalized disformal transformations
remains unclear. The aim of the present paper is to address
this issue. The authors of [66] studied the generalized
disformal transformation in the context of inflationary
cosmology and showed that the transformation can be
regarded as invertible if higher-derivative terms are sup-
pressed by the slow-roll parameter and can be neglected.
On the other hand, the authors of [95,96] studied a general
derivative-dependent field transformation by applying the
method of characteristics, and formulated a set of necessary
and sufficient conditions for the local invertibility as the
degeneracy condition to remove additional DOFs after the
transformation. In particular, they applied the criteria to a
disformal transformation of the form

ḡμν ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞ∇μϕ∇νϕþ F2ðϕ; XÞ∇μ∇νϕ

ð2Þ

on a homogeneous and isotropic cosmological background
and showed that the transformation is noninvertible unless
F2 ¼ 0, for which the transformation (2) reduces to (1).
The point is that, in order to prove the noninvertibility of a
transformation, it is sufficient to show it on a particular
background. In contrast, the invertibility of a transforma-
tion on a particular background does not guarantee the
invertibility on generic backgrounds. In principle, the
invertibility conditions obtained in [95,96] would apply
to the construction of invertible generalized disformal
transformations without referring to a particular back-
ground. Nevertheless, in practice, the application would
not be so straightforward, and so far there is no known
explicit example of invertible disformal transformations
with higher-order field derivatives.

In the present paper, we will construct a general class of
invertible disformal transformations with higher-order field
derivatives in D-dimensional spacetime. We first clarify
that the invertibility of the conventional disformal trans-
formation (1) originates from its closedness under the
matrix product and the functional composition. We
then consider a higher-derivative generalization of the
disformal transformation with these properties and con-
struct the inverse transformation in a fully covariant
manner. We also clarify how known DHOST theories
are transformed under the generalized disformal trans-
formations. As a result, we obtain a novel class of healthy
degenerate theories, which possesses at most three propa-
gating DOFs. Interestingly, the resultant action contains the
third- or higher-order derivatives of the scalar field as well
as a novel type of higher-order derivative couplings to the
curvature tensor.
The rest of this paper is organized as follows. In Sec. II,

we discuss under which conditions the generalized dis-
formal transformations can be invertible and explicitly
construct the inverse transformation. Our construction also
applies to the vector disformal transformation [97], which
we shall discuss in the Appendix. In Sec. III, we provide
several specific examples of invertible disformal trans-
formations with the second or third derivatives of the scalar
field. Then, in Sec. IV, we study the generalized disformal
transformation of known DHOST theories. Finally, we
draw our conclusions in Sec. V.

II. INVERTIBILITY OF DISFORMAL
TRANSFORMATIONS

A. Transformations up to the first derivative

We first review the case of the conventional disformal
transformation that contains up to the first derivative of the
scalar field to clarify the reason why it is possible to
construct the inverse transformation in this case. Let us
consider a class of metric transformations of the form (1),
which we recapitulate here for convenience:

ḡμν ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞϕμϕν; ð3Þ

where we have introduced ϕμ ≔ ∂μϕ and then X ≔ ϕμϕ
μ.

Note that the following results hold in general
D-dimensional spacetime.
A remarkable feature of this class of transformations is

that it is equipped with two binary operations and hence
forms a group under each of the two operations. One of the
two operations is the matrix product of two disformal
metrics, while the other is the functional composition of
two sequential disformal transformations. In what follows,
we demonstrate that the class of conventional disformal
transformations is indeed closed under the two operations
mentioned above.

2However, in two spacetime dimensions, the Horndeski class is
closed under the disformal transformation of the form (1) [31].
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(A) Closedness under the matrix product. We consider
two independent transformations of the form (3),

ḡμν ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞϕμϕν;

g̃μν ¼ f0ðϕ; XÞgμν þ f1ðϕ; XÞϕμϕν: ð4Þ

By contracting ḡμν and g̃μν with the unbarred metric,
one can construct another disformal metric, which
we call the matrix product of two disformal metrics.
Written explicitly, the matrix product is computed as

gαβḡμαg̃βν¼F0f0gμνþ½ðF0þXF1Þf1þF1f0�ϕμϕν;

ð5Þ

which is again of the form (3).
This property allows us to construct the inverse metric for
ḡμν as the inverse element in the group under the matrix
product. Indeed, by choosing

f0 ¼
1

F0

; f1 ¼ −
F1

F0ðF0 þ XF1Þ
; ð6Þ

we can make gαβḡμαg̃βν ¼ gμν, which means that the inverse
metric ḡμν is given by

ḡμν ¼ gμαgνβg̃αβ ¼
1

F0

�
gμν −

F1

F0 þ XF1

ϕμϕν

�
: ð7Þ

Here, we have assumed F0 ≠ 0 and F0 þ XF1 ≠ 0.
(B) Closedness under the functional composition.

We consider two sequential transformations of the
form (3),

ḡμν ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞϕμϕν;

ĝμν ¼ F̄0ðϕ; X̄Þḡμν þ F̄1ðϕ; X̄Þϕμϕν: ð8Þ

Here, X̄ denotes the kinetic term of the scalar field
contracted by ḡμν, which is computed by use of (7) as

X̄ ≔ ḡμνϕμϕν ¼
X

F0 þ XF1

: ð9Þ

Then, the composition of the two transformations is
given by

ĝμν ¼ F0ðϕ; XÞF̄0ðϕ; X̄ðϕ; XÞÞgμν
þ ½F̄1ðϕ; X̄ðϕ; XÞÞ
þ F1ðϕ; XÞF̄0ðϕ; X̄ðϕ; XÞÞ�ϕμϕν; ð10Þ

which is again of the form (3).
The inverse for the map ḡμν ¼ ḡμν½gαβ;ϕ� is nothing but the
inverse element of ḡμν in the group under the functional
composition and hence is given by requiring ĝμν ¼ gμν, i.e.,

F̄0ðϕ; X̄Þ ¼
1

F0ðϕ; Xðϕ; X̄ÞÞ
;

F̄1ðϕ; X̄Þ ¼ −
F1ðϕ; Xðϕ; X̄ÞÞ
F0ðϕ; Xðϕ; X̄ÞÞ

; ð11Þ

where X in the right-hand sides is regarded as a function of
ðϕ; X̄Þ by use of (9). Note that we need

X̄X ≔
∂X̄
∂X ¼ F0 − XF0X − X2F1X

ðF0 þ XF1Þ2
≠ 0 ð12Þ

to locally express X in terms of X̄. Hence, the explicit form
of the inverse transformation is given by

gμν ¼
1

F0ðϕ; Xðϕ; X̄ÞÞ
½ḡμν − F1ðϕ; Xðϕ; X̄ÞÞϕμϕν�; ð13Þ

and a set of necessary and sufficient conditions for
the disformal transformation (3) to be invertible is
summarized as

F0 ≠ 0; F0 þXF1 ≠ 0; F0 −XF0X −X2F1X ≠ 0:

ð14Þ

Although not directly related to the invertibility of the
transformation, F0 > 0 and F0 þ XF1 > 0 are necessary to
preserve the metric signature [28].
The above analysis demonstrates that the two properties

[A] and [B] play an essential role in the systematic
construction of the inverse metric and the inverse trans-
formation. Note that for the existence of the inverse
transformation, the existence of the inverse metric is
necessary. As we saw above, when computing the func-
tional composition of the two disformal transformations in
(8), one needs to express X̄ in terms of the unbarred
quantities, in which the inverse metric ḡμν shows up.
In the next subsection, we study a generalized disformal
transformation with higher derivatives satisfying the
above two properties and explicitly construct its inverse
transformation.

B. Transformations with higher derivatives

Having clarified the reason why the conventional dis-
formal transformation (3) is invertible, we now consider
transformations with higher derivatives. The main difficulty
here is that the higher covariant derivatives depend on the
Christoffel symbol, i.e., the derivative of the metric. This
generically spoils the property [B] since a functional
composition of two transformations generically yields
unwanted extra terms with higher derivatives that are not
contained in the original transformation law. In order to
make a transformation invertible, one has to tune it so that
such extra terms do not show up. As a general example of
transformations for which this tuning is possible, let us
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consider a metric transformation in D-dimensional space-
time defined by

ḡμν ¼ F0gμν þ F1ϕμϕν þ 2F2ϕðμXνÞ þ F3XμXν: ð15Þ

Here, Xμ ≔ ∂μX ¼ 2ϕαϕ
α
μ with ϕμν ≔ ∇μ∇νϕ and TðμνÞ ≔

ðTμν þ TνμÞ=2. Also, Fi’s (i ¼ 0, 1, 2, 3) are functions of
ðϕ; X; Y; ZÞ, where Y and Z are defined as follows:

Y ≔ ϕμXμ; Z ≔ XμXμ: ð16Þ

Note that the conventional disformal transformation (3)
is included as a special case with F0 ¼ F0ðϕ; XÞ,

F1 ¼ F1ðϕ; XÞ, and F2 ¼ F3 ¼ 0. In what follows, we
explicitly construct the inverse transformation for (15) with
a particular focus on the properties [A] and [B].
We first examine the property [A], i.e., the closedness

under the matrix product. To this end, we consider two
independent transformations of the form (15),

ḡμν ¼ F0gμν þ F1ϕμϕν þ 2F2ϕðμXνÞ þ F3XμXν;

g̃μν ¼ f0gμν þ f1ϕμϕν þ 2f2ϕðμXνÞ þ f3XμXν: ð17Þ

The matrix product of ḡμν and g̃μν is calculated as follows:

gαβḡμαg̃βν ¼ F0f0gμν þ ½F0f1 þ F1ðf0 þ Xf1 þ Yf2Þ þ F2ðYf1 þ Zf2Þ�ϕμϕν

þ ½F0f2 þ F1ðXf2 þ Yf3Þ þ F2ðf0 þ Yf2 þ Zf3Þ�ϕμXν

þ ½F0f2 þ F2ðf0 þ Xf1 þ Yf2Þ þ F3ðYf1 þ Zf2Þ�Xμϕν

þ ½F0f3 þ F2ðXf2 þ Yf3Þ þ F3ðf0 þ Yf2 þ Zf3Þ�XμXν; ð18Þ

which is again of the form (15), and hence the property [A]
is satisfied.3 The inverse matrix for ḡμν is obtained by
putting gαβḡμαg̃βν ¼ gμν in (18). While this requirement
apparently yields five equations for four unknown func-
tions f0, f1, f2, f3, only four of them are independent, and
hence the system is not overdetermined. Thus, the coef-
ficient functions in g̃μν are fixed as

f0 ¼
1

F0

; f1 ¼ −
F0F1 − ZðF2

2 − F1F3Þ
F0F

;

f2 ¼ −
F0F2 þ YðF2

2 − F1F3Þ
F0F

;

f3 ¼ −
F0F3 − XðF2

2 − F1F3Þ
F0F

: ð19Þ

Here,we assumedF0 ≠ 0 anddefined the following quantity:

F ≔ F2
0 þ F0ðXF1 þ 2YF2 þ ZF3Þ

þ ðF2
2 − F1F3ÞðY2 − XZÞ; ð20Þ

which was also assumed to be nonvanishing. As a result, the
inverse metric ḡμν is given by

ḡμν ¼ 1

F0

�
gμν −

F0F1 − ZðF2
2 − F1F3Þ

F
ϕμϕν

− 2
F0F2 þ YðF2

2 − F1F3Þ
F

ϕðμXνÞ

−
F0F3 − XðF2

2 − F1F3Þ
F

XμXν

�
: ð21Þ

Next, let us study under which conditions the trans-
formation (15) can satisfy the property [B], i.e., the
closedness under the functional composition. We consider
sequential transformations with

ḡμν ¼ F0gμν þ F1ϕμϕν þ 2F2ϕðμXνÞ þ F3XμXν;

ĝμν ¼ F̄0ḡμν þ F̄1ϕμϕν þ 2F̄2ϕðμX̄νÞ þ F̄3X̄μX̄ν; ð22Þ

with F̄i’s (i ¼ 0, 1, 2, 3) being functions of ðϕ; X̄; Ȳ; Z̄Þ. In
the case of the first-order disformal transformations studied
in Sec. II A, the invertibility is guaranteed if X can be
locally expressed in terms of X̄. In the present case with
higher derivatives, we have

X̄ ¼ ḡμνϕμϕν ¼
XF0 − F3ðY2 − XZÞ

F
; ð23Þ

which is a function of ðϕ; X; Y; ZÞ in general. Let us
consider to express ĝμν as a functional of ϕ and gμν. If X̄
depends on Y or Z in a nontrivial manner, then the
derivatives of X̄ in ĝμν yield derivatives of Y or Z, which
do not appear in the transformation law (15). On the other
hand, so long as X̄ has no dependence on either Y or Z, then

3Precisely speaking, the right-hand side of (18) is not of the
form (15) as it is not symmetric in μ and ν in general. Therefore,
for the closedness under the matrix product, the underlying set of
transformations should be enlarged to include such asymmetric
terms. Nevertheless, as mentioned in the main text, the inverse
element of (15) can be found in the symmetric subset. This is
reminiscent of the fact that a product of two symmetric matrices is
not necessarily symmetric, while the inverse of a symmetric
matrix is symmetric.
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the composition of the two transformations is again of the
form (15), meaning that the property [B] is satisfied.
Therefore, we require

X̄Y ¼ X̄Z ¼ 0; ð24Þ

where X̄Y ≔ ∂X̄=∂Y and X̄Z ≔ ∂X̄=∂Z, so that
X̄ ¼ X̄ðϕ; XÞ. We also assume X̄X ≠ 0 so that we can
solve the relation X̄ ¼ X̄ðϕ; XÞ for X to have X ¼ Xðϕ; X̄Þ.
Then, we have X̄μ ¼ X̄XXμ þ X̄ϕϕμ with X̄ϕ ≔ ∂X̄=∂ϕ,
and hence

Ȳ ¼ ḡμνϕμX̄ν ¼ X̄X
YF0 þ F2ðY2 − XZÞ

F
þ X̄ϕX̄;

Z̄ ¼ ḡμνX̄μX̄ν ¼ X̄2
X
ZF0 − F1ðY2 − XZÞ

F
þ 2X̄ϕȲ − X̄2

ϕX̄:

ð25Þ
Here, we require that these two equations can be
solved for Y and Z to obtain Y ¼ Yðϕ; X̄; Ȳ; Z̄Þ and
Z ¼ Zðϕ; X̄; Ȳ; Z̄Þ, which is guaranteed if the Jacobian
determinant j∂ðȲ; Z̄Þ=∂ðY; ZÞj is nonvanishing.
We are now ready to write down the expression for the

inverse transformation for ḡμν ¼ ḡμν½gαβ;ϕ�. With the
requirement X̄ ¼ X̄ðϕ; XÞ, we can express ĝμν in terms
of the unbarred quantities as

ĝμν ¼ F0F̄0gμν þ ðF̄1 þ F1F̄0 þ 2X̄ϕF̄2 þ X̄2
ϕF̄3Þϕμϕν þ 2ðX̄XF̄2 þ F2F̄0 þ X̄ϕX̄XF̄3ÞϕðμXνÞ þ ðX̄2

XF̄3 þ F3F̄0ÞXμXν;

ð26Þ

where the functions of ðϕ; X̄; Ȳ; Z̄Þ in the right-hand side are regarded as functions of ðϕ; X; Y; ZÞ by (23) and (25). The
inverse transformation can be obtained by putting ĝμν ¼ gμν, which fixes the coefficient functions in ĝμν as

F̄0 ¼
1

F0

; F̄1 ¼ −
X̄2
XF1 − 2X̄ϕX̄XF2 þ X̄2

ϕF3

X̄2
XF0

; F̄2 ¼ −
X̄XF2 − X̄ϕF3

X̄2
XF0

; F̄3 ¼ −
F3

X̄2
XF0

: ð27Þ

Thus, we have obtained the inverse transformation in the following form:

gμν ¼
1

F0

�
ḡμν −

X̄2
XF1 − 2X̄ϕX̄XF2 þ X̄2

ϕF3

X̄2
X

ϕμϕν − 2
X̄XF2 − X̄ϕF3

X̄2
X

ϕðμX̄νÞ −
F3

X̄2
X
X̄μX̄ν

�
; ð28Þ

where the functions of ðϕ; X; Y; ZÞ in the right-hand side can be translated back into functions of ðϕ; X̄; Ȳ; Z̄Þ by use of (23)
and (25).4

To summarize, we have obtained a set of sufficient conditions for the generalized disformal transformation (15) to be
invertible. The conditions are summarized as

F0 ≠ 0; F ≠ 0; X̄X ≠ 0; X̄Y ¼ X̄Z ¼ 0;

���� ∂ðȲ; Z̄Þ∂ðY; ZÞ
���� ≠ 0: ð29Þ

This set of conditions can be used not only as a simple criterion for the invertibility of a given transformation of the form
(15) but also as a useful tool to construct invertible generalized disformal transformations as we shall see below. In order for
the condition X̄Y ¼ X̄Z ¼ 0 and X̄X ≠ 0 to be satisfied, let us take X̄ ¼ X̄0ðϕ; XÞ as an input, with X̄0 being an arbitrary
function of ðϕ; XÞ such that X̄0X ≠ 0. Then, by use of (23), e.g., the function F3 is written in terms of X̄0, F0, F1, and F2 as

F3 ¼
XF0 − X̄0ðϕ; XÞ½F0ðF0 þ XF1 þ 2YF2Þ þ F2

2ðY2 − XZÞ�
Y2 − XZ þ X̄0ðϕ; XÞ½ZF0 − F1ðY2 − XZÞ� : ð30Þ

Therefore, we obtain invertible transformations by choosing the functions X̄0, F0, F1, and F2 so that they satisfy the
remaining conditions in (29), i.e., F0 ≠ 0, F ≠ 0, and j∂ðȲ; Z̄Þ=∂ðY; ZÞj ≠ 0. In particular, for the above F3, the condition
F ≠ 0 yields

4The above analysis shows that the transformation D̄∶ ðḡμν;ϕÞ ↦ ðgμν;ϕÞ defined by (28) is the left inverse of the transformation
D∶ ðgμν;ϕÞ ↦ ðḡμν;ϕÞ defined by (15), i.e., D̄ ∘Dðgμν;ϕÞ ¼ ðgμν;ϕÞ. Since the left inverse of a group element is also its right inverse, it
follows that D ∘ D̄ðḡμν;ϕÞ ¼ ðḡμν;ϕÞ.
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F ∝ ½YF0 þ F2ðY2 − XZÞ�2 ≠ 0: ð31Þ

We shall use this strategy to construct a nontrivial example
of invertible transformations of the form (15) in Sec. III A.
A caveat here is that the transformation law could be ill

defined for some particular configuration of ðgμν;ϕÞ.
Nevertheless, it is still possible to perform the invertible
disformal transformation ḡμν ¼ ḡμν½gαβ;ϕ� on some seed
action of scalar-tensor theories S̄½ḡμν;ϕ� to generate a new
action S½gμν;ϕ�. For instance, provided that X̄0, F0, and F1

are regular functions, the denominator of (30) vanishes for
configurations with Y ¼ Z ¼ 0, which happens when
X ¼ const. This means that, even if the new action
S½gμν;ϕ� admits a solution with X ¼ const, one cannot
map the solution via the disformal transformation to
generate a solution in the original frame. On the other
hand, so long as we consider configurations for which the
transformation law is well defined, there is one-to-one
correspondence between the configuration space in the new
frame and the one in the original frame.
One may think that arbitrary tensors of the form Φn

μν ≔
ϕα1
μ ϕα2

α1 � � �ϕαn−1ν (e.g.,Φ
1
μν ¼ ϕμν and Φ2

μν ¼ ϕα
μϕαν) and/or

scalar quantities constructed from gμν, ϕμ, and Φn
μν (e.g.,

□ϕ and ϕβ
αϕα

β) can be included in the transformation law
(15). For instance, one could consider transformations of
the form (2), in which a term with ϕμν is present. In this
case, one can make use of the Cayley-Hamilton theorem,
which allows us to write any Φn

μν with n ≥ D in terms of
gμν;ϕμν;Φ2

μν;…;ΦD−1
μν . Therefore, considering a transfor-

mation composed of gμν;ϕμν;Φ2
μν;…;ΦD−1

μν , the property
[A] may be satisfied, which allows us to systematically
construct the inverse metric. However, as mentioned earlier,
a composition of such transformations generates various
terms with the third-order derivative of the scalar field as
well as the second-order derivative of the metric through
the Christoffel symbol [see (51) and (54)], which are not
contained in the original transformation law. Hence, it is
practically difficult to remove all such terms, implying that
the property [B] cannot be satisfied in general. This
explains why transformations of the form (2) are non-
invertible, as shown in [96]. The reason why we could
obtain a concise invertibility condition for the transforma-
tion (15) is that there is only a single function X̄ðϕ; X; Y; ZÞ
that controls whether or not the class of transformations is
closed under the functional composition. The point is that,
so long as the conditions in (29) are satisfied, the
Christoffel symbols are encapsulated in two sets of scalar
quantities ðY; ZÞ and ðȲ; Z̄Þ, between which the inverti-
bility is manifest.
As a final remark, the above discussion can be extended

to more general transformations containing the third
derivative of ϕ,

ḡμν¼F0gμνþF1ϕμϕνþ2F2ϕðμXνÞ þF3XμXν

þ2F4ϕðμYνÞ þ2F5ϕðμZνÞ þ2F6XðμYνÞ þ2F7XðμZνÞ

þF8YμYνþ2F9YðμZνÞ þF10ZμZν; ð32Þ

where Yμ ≔ ∂μY, Zμ ≔ ∂μZ, and here

Fi ¼ Fiðϕ; X; Y; Z;ϕμYμ;ϕμZμ; XμYμ; XμZμ;

YμYμ; YμZμ; ZμZμÞ: ð33Þ

Likewise, it is straightforward to include arbitrarily higher-
order derivatives of ϕ in the transformation. Rather than
presenting a general discussion, we shall provide an
example of invertible disformal transformations with the
third derivative of ϕ in Sec. III B.

III. EXAMPLES

A. Example with the second derivative
of the scalar field

As an example of invertible disformal transformations of
the form (15), let us consider the case with F0 ¼ 1,
F1 ¼ F2 ¼ 0, and F3 ¼ F3ðϕ; X; Y; ZÞ ≠ 0, i.e.,

ḡμν ¼ gμν þ F3ðϕ; X; Y; ZÞXμXν: ð34Þ

In this case, we have

X̄ðϕ; X; Y; ZÞ ¼ X − F3ðY2 − XZÞ
1þ ZF3

; ð35Þ

which we require to be a function only of ðϕ; XÞ. Assuming
that X̄ ¼ X þ Pðϕ; XÞ with P ≠ 0 and PX ≠ −1, from (30)
we have

F3 ¼ −
Pðϕ; XÞ

Y2 þ ZPðϕ; XÞ ; ð36Þ

for which the transformation law of the metric is explicitly
written as

ḡμν ¼ gμν −
Pðϕ; XÞ

Y2 þ ZPðϕ; XÞXμXν: ð37Þ

Then, the inverse metric is given by

ḡμν ¼ gμν þ Pðϕ; XÞ
Y2

XμXν: ð38Þ

We also have
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Ȳ¼ð1þPXÞ
�
YþZP

Y

�
þPϕðXþPÞ;

Z̄¼ð1þPXÞ
�
YþZP

Y

��
Z
Y
ð1þPXÞþ2Pϕ

�
þP2

ϕðXþPÞ;

ð39Þ

which can be inverted as

Y ¼ Ȳ2 − Z̄P − PϕðX̄ − PÞð2Ȳ − X̄PϕÞ
ð1þ PXÞðȲ − X̄PϕÞ

;

Z ¼ Z̄ − Pϕð2Ȳ − X̄PϕÞ
ð1þ PXÞðȲ − X̄PϕÞ

Y: ð40Þ

The inverse disformal transformation takes the form

gμν ¼ ḡμν þ
P

Ȳ2 − Z̄P − PϕðX̄ − PÞð2Ȳ − X̄PϕÞ
× ðP2

ϕϕμϕν − 2PϕϕðμX̄νÞ þ X̄μX̄νÞ; ð41Þ

where X in the arguments of P and Pϕ is regarded as a
function of ðϕ; X̄Þ by solving X̄ ¼ X þ Pðϕ; XÞ for X. Note
that, while the transformation (37) does not contain either
ϕμϕν or ϕðμXνÞ, in general these terms show up in the
inverse transformation (41). If P ¼ PðXÞ, such terms
vanish in (41). The simplest case would be Pðϕ; XÞ ¼ c0
with c0 being a nonvanishing constant, for which the
disformal transformation (37) and its inverse (41) are
explicitly written as

ḡμν¼gμν−
c0

Y2þc0Z
XμXν; gμν¼ ḡμνþ

c0
Ȳ2−c0Z̄

X̄μX̄ν:

ð42Þ

B. Example with the third derivative of the scalar field

Let us now consider another example of invertible
transformations of the following form:

ḡμν ¼
V2X −U2Z

V2ðX þ c1Þ − U2Z

×

�
gμν þ

c1Z
V2X −U2Z þ c1ðV2 −WZÞZμZν

�
; ð43Þ

where c1 is a nonvanishing constant and we have defined

U ≔ ϕμZμ; V ≔ XμZμ; W ≔ ZμZμ: ð44Þ

This transformation is of the form (32) and the third
derivative of ϕ appears in Zμ ¼ 8ϕαϕ

α
β∇μðϕγϕβ

γ Þ. The
inverse metric takes the form

ḡμν¼V2ðXþc1Þ−U2Z
V2X−U2Z

�
gμν−

c1Z
V2ðXþc1Þ−U2Z

ZμZν

�
:

ð45Þ

Then, the relevant scalar quantities transform as follows:

X̄¼Xþc1; Z̄¼Z;
Ū
U
¼ V̄
V
¼ W̄
W

¼1þc1ðV2−WZÞ
V2X−U2Z

:

ð46Þ

Note that the property [B] is guaranteed by
Z̄U ¼ Z̄V ¼ Z̄W ¼ 0, which is a natural generalization of
the condition X̄Y ¼ X̄Z ¼ 0 in (29).5 The relations in (46)
can be solved for the unbarred quantities as

X¼ X̄−c1; Z¼ Z̄;
U
Ū
¼V
V̄
¼W
W̄

¼1−
c1ðV̄2−W̄ Z̄Þ
V̄2X̄−Ū2Z̄

:

ð47Þ

Hence, the inverse transformation is obtained as
follows:

gμν ¼
V̄2X̄ − Ū2Z̄

V̄2ðX̄ − c1Þ − Ū2Z̄

×

�
ḡμν −

c1Z̄
V̄2X̄ − Ū2Z̄ − c1ðV̄2 − W̄ Z̄Þ Z̄μZ̄ν

�
: ð48Þ

IV. GENERALIZED DISFORMAL
TRANSFORMATION OF SCALAR-TENSOR

THEORIES

As mentioned earlier, substituting the transformation law
of a disformal transformation ḡμν ¼ ḡμν½gαβ;ϕ� into some
seed action of scalar-tensor theories S̄½ḡμν;ϕ�, we obtain a
new action S as a functional of gμν and ϕ. In this section, we
use DHOST theories known so far as a seed and discuss
what action is obtained as a result of the generalized
disformal transformation.
The known classes of DHOST theories in four dimen-

sions are described by the action of the following form
[4,9–12]:

5It should also be noted that Ȳ takes the form

Ȳ ¼ Y þ c1VðVY − UZÞ
V2X − U2Z

;

and hence has a nontrivial dependence on U and V, but this
does not spoil the invertibility as the transformation (43) is
independent of Y. On the other hand, if the transformation
law had a nontrivial Y dependence, then Ȳ should satisfy
ȲU ¼ ȲV ¼ ȲW ¼ 0.

INVERTIBLE DISFORMAL TRANSFORMATIONS WITH HIGHER … PHYS. REV. D 105, 024015 (2022)

024015-7



S̄½ḡμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ½ā0ðϕ; X̄ÞR̄

þ ā1ðϕ; X̄ÞḠμν∇̄μ∇̄νϕ

þ L̄ðḡμν;ϕ; ∇̄μϕ; ∇̄μ∇̄νϕÞ�; ð49Þ

with R̄ and Ḡμν being respectively the Ricci scalar and the
Einstein tensor in the original frame. Here, L̄ is a scalar
quantity constructed from ḡμν, ϕ, ∇̄μϕ, and ∇̄μ∇̄νϕ.
We discuss how the action (49) is transformed under
the generalized disformal transformation (15). Note
that the first covariant derivative of the scalar field remains
unchanged (namely, ∇̄μϕ ¼ ϕμ) and that the transforma-
tion law for X̄ is given by (23). Hence, in what
follows, we derive the transformation law for the other
building blocks of the action (49), i.e., the square root of
the metric determinant

ffiffiffiffiffiffi
−ḡ

p
, the Ricci tensor R̄μν, and the

second covariant derivative of the scalar field ∇̄μ∇̄νϕ.
By repeated use of the matrix determinant lemma, we

obtain6

ffiffiffiffiffiffi
−ḡ

p
ffiffiffiffiffiffi−gp ¼ F0F 1=2; ð50Þ

with F defined in (20). Here, we have assumed F0 > 0 and
F > 0, which are necessary to preserve the metric sig-
nature. The change of the Christoffel symbol is a tensor,
which is written as follows:

Cλ
μν ≔ Γ̄λ

μν − Γλ
μν ¼ ḡλα

�
∇ðμḡνÞα −

1

2
∇αḡμν

�
: ð51Þ

In terms of this Cλ
μν, the Ricci tensor in the original frame

can be expressed as

R̄μν ¼ Rμν þ 2∇½αCα
ν�μ þ 2Cα

β½αCβ
ν�μ

¼ Rμν þ 2∇̄½αCα
ν�μ − 2Cα

β½αCβ
ν�μ; ð52Þ

where T ½μν� ≔ ðTμν − TνμÞ=2. The Ricci scalar in the
original frame can be written in the form,

R̄ ¼ ḡμνR̄μν ¼ ḡμνðRμν − 2Cα
β½αCβ

ν�μÞ þ 2∇̄αðḡμ½νCα�
μνÞ;
ð53Þ

where the last term is the covariant divergence associated
with ḡμν. Also, the tensor Cλ

μν shows up in the trans-
formation law for the second derivative of ϕ as

∇̄μ∇̄νϕ ¼ ϕμν − Cλ
μνϕλ: ð54Þ

The above relations allow us to systematically compute the
transformation of the action (49). Since Cλ

μν contains the
derivative of ḡμν in which there are second derivatives of ϕ,
the resultant action contains the third or higher derivatives
of ϕ in general. It should be noted that so long as the
transformation (15) is invertible, the number of DOFs does
not change under the transformation [24,25]. Hence, the
generalized disformal transformation (15) can generate a
new class of higher-derivative ghost-free theories, which
itself is closed under the same class of transformations.
Also, performing the generalized disformal transformation
on the known minimally modified gravity theories [98–
104] (i.e., those without a propagating scalar DOF) yields a
novel class of minimally modified gravity.
Given the above transformation rules for the building

blocks, it is straightforward to write down the transforma-
tion of the action (49). Since the full expression is quite
involved, here we demonstrate the transformation of the
following subclass of the action:

S̄0½ḡμν;ϕ� ≔
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ½ā0ðϕÞR̄þ K̄ðϕ; X̄Þ�; ð55Þ

which reduces to the Einstein-Hilbert action with a canonical
scalar fieldwhen ā0 ¼ M2

Pl=2 and K̄ ¼ −X̄=2withM2
Pl being

the reduced Planck mass. Note that, if ā0 has a nontrivial
dependence on X̄, this action itself does not yield a degenerate
theory.When ā0X̄ ≠ 0, one has to take into account quadratic
termsof ∇̄μ∇̄νϕ to render the theorydegenerate.Applying the
above transformation rules, we obtain

S̄0½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
F0F 1=2½ā0ḡμνðRμν − 2Cα

β½αCβ
ν�μÞ

− 2ā0αḡμ½νCα�
μν þ K̄ðϕ; X̄Þ�; ð56Þ

with ā0μ ≔ ∂μā0 ¼ ā0ϕϕμ. In particular, for transformations
of the form (37), we have

S̄0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
F 1=2

�
ā0

�
gαβ −

F3

F
XαXβ

��
Rαβ −

F3

2F 2
XγF γXαβ þ

F3

4F 2
ZαF β

�

−
1

F
ā0α

�
Xα∇βðXβF3Þ − ZFα

3 −
1

2
ZαF3

�
þ K̄ðϕ; X þ Pðϕ; XÞÞ

	
; ð57Þ

6In D-dimensional spacetime, we have
ffiffiffiffiffiffi
−ḡ

p
=

ffiffiffiffiffiffi−gp ¼ FðD−2Þ=2
0 F 1=2.
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with F3μ ¼ F3ϕϕμ þ F3XXμ þ F3YYμ þ F3ZZμ and

F3¼−
Pðϕ;XÞ

Y2þZPðϕ;XÞ ; F ¼1þZF3¼
Y2

Y2þZPðϕ;XÞ :

ð58Þ

Thus, as mentioned earlier, the resultant action contains the
third derivative of ϕ. Moreover, there is a new type of
higher-order derivative coupling to the curvature tensor of
the form XαXβRαβ. Clearly, one would obtain even higher-
order derivatives of ϕ and other new types of coupling such
as ϕαXβRαβ or ZαZβRαβ if one considers the more general
transformation (32). Nevertheless, since it is generated
from the ghost-free action via the invertible transformation,
this higher-derivative action describes a healthy degenerate
theory, i.e., there are at most three propagating DOFs
without the Ostrogradsky ghosts.

V. CONCLUSIONS

In the present paper, we studied a higher-derivative
generalization of the disformal transformation, with a
special focus on transformations of the form (15), which
we recapitulate here:

ḡμν¼F0gμνþF1∇μϕ∇νϕþ2F2∇ðμϕ∇νÞXþF3∇μX∇νX;

ð59Þ

with Fi’s (i ¼ 0, 1, 2, 3) being functions of ϕ,
X ¼ ∇μϕ∇μϕ, Y ¼ ∇μϕ∇μX, and Z ¼ ∇μX∇μX. For this
type of transformation, we derived the invertibility con-
ditions (29) focusing on the group structure and explicitly
constructed its inverse transformation (28). Our construc-
tion of the inverse transformation is based on the following
two properties: [A] the closedness under the matrix product
and [B] the closedness under the functional composition.
With these two properties, the generalized disformal
transformations form a group with respect to the matrix
product and the functional composition, which allows
us to systematically construct the inverse metric and the
inverse transformation in a fully covariant manner. This
strategy can be straightforwardly extended to even more
general disformal transformations, e.g., of the form (32).
Our results hold in general D-dimensional spacetime.
Moreover, it also applies to the vector disformal trans-
formation [97] and the multidisformal transformation
[105,106], the former of which is discussed in the
Appendix. We also investigated the generalized disformal
transformation of known DHOST theories which contain
up to the second derivative of the scalar field. As a
consequence, we obtained a new class of ghost-free
theories containing the third or higher derivatives of the
scalar field as well as novel derivative couplings to the
curvature tensor, e.g., Rαβ∇αX∇βX.

There are several interesting directions for further
studies. One of them is to study cosmology in the novel
class of theories obtained via the generalized disformal
transformation. In particular, it would be important to
study which subclass accommodates models where the
speed of gravitational waves coincides with that of light,
in accordance with the almost simultaneous detection
of the gravitational waves GW170817 and the γ-ray
burst 170817A emitted from a binary neutron star merger

]107–109 ]. Applied to the early universe, especially
cosmological inflation, it would be important to clarify
the frame invariance of cosmological perturbations by
extending the analysis in [66,67]. Investigating how the
generalized disformal coupling affects the screening
mechanism would also be intriguing. Another direction
of interest is to see how the known solutions in scalar-
tensor theories are transformed under (15), following the
works [83,84]. Note that the new terms in the trans-
formation law (15) depend on the derivative of the scalar
kinetic term X, meaning that they become trivial for
solutions with X being constant [110–120], while there
would be a nontrivial contribution for solutions with a
nonconstant X [82,113,121]. We leave these issues for
future work.
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APPENDIX: VECTOR DISFORMAL
TRANSFORMATIONS WITH DERIVATIVES

In the main text, we constructed an invertible disformal
transformation with higher derivatives (15) as a generali-
zation of the conventional disformal transformation (1) in
the context of scalar-tensor theories. A similar transforma-
tion was also studied in the context of vector-tensor theories
[97], which is explicitly written as

ḡμν ¼ F0gμν þ F1AμAν; ðA1Þ

with the vector field Aμ unchanged. Here, F0 and F1 are
functions of X ≔ AμAμ. In this Appendix, we construct
invertible disformal transformations with the derivative of
Aμ. Note that the following results reduce to those in Sec. II
under the replacement Aμ → ϕμ, while the dependence on
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ϕ without derivative is not reproduced. We shall adopt a
notation similar to the one used in the main text to make the
correspondence clear. Namely, X; Y; Z; Fi;F in this
Appendix are the vector counterparts corresponding to
the ones defined for the case of scalar field.
Let us consider a metric transformation in D dimensions

defined by

ḡμν ¼ F0gμν þ F1AμAν þ 2F2AðμXνÞ þ F3XμXν; ðA2Þ

where Xμ ≔ ∂μX ¼ 2Aα∇μAα. Here, Fi’s (i ¼ 0, 1, 2, 3)
are functions of ðX; Y; ZÞ, in which Y and Z are defined as
follows:

Y ≔ AμXμ; Z ≔ XμXμ: ðA3Þ

It is straightforward to verify that the transformation (A2)
satisfies the property [A], i.e., the closedness under the
matrix product. Therefore, one can systematically construct
the inverse metric ḡμν, and the result is given by

ḡμν ¼ 1

F0

�
gμν −

F0F1 − ZðF2
2 − F1F3Þ

F
AμAν − 2

F0F2 þ YðF2
2 − F1F3Þ

F
AðμXνÞ −

F0F3 − XðF2
2 − F1F3Þ

F
XμXν

�
; ðA4Þ

with F defined by

F ≔F2
0þF0ðXF1þ2YF2þZF3ÞþðF2

2−F1F3ÞðY2−XZÞ:
ðA5Þ

Hence, we have

X̄ ¼ ḡμνAμAν ¼
XF0 − F3ðY2 − XZÞ

F
; ðA6Þ

which is a function of ðX; Y; ZÞ in general. As we did in
Sec. II, we require X̄Y ¼ X̄Z ¼ 0 [i.e., X̄ ¼ X̄ðXÞ] so
that the transformation satisfies the property [B], i.e.,
the closedness under the functional composition. We also
assume X̄X ≠ 0 so that we can solve the relation X̄ ¼ X̄ðXÞ
for X to have X ¼ XðX̄Þ. Then, we have

Ȳ ¼ ḡμνAμX̄ν ¼ X̄X
YF0 þ F2ðY2 − XZÞ

F
;

Z̄ ¼ ḡμνX̄μX̄ν ¼ X̄2
X
ZF0 − F1ðY2 − XZÞ

F
: ðA7Þ

Here, we require that these two equations can be solved for
Y and Z to obtain Y ¼ YðX̄; Ȳ; Z̄Þ and Z ¼ ZðX̄; Ȳ; Z̄Þ. The
inverse transformation is written as

gμν¼
1

F0

�
ḡμν−F1AμAν−2

F2

X̄X
AðμX̄νÞ−

F3

X̄2
X
X̄μX̄ν

�
; ðA8Þ

where the functions of ðX; Y; ZÞ in the right-hand side
can be translated into functions of ðX̄; Ȳ; Z̄Þ by use of (A6)
and (A7).
For vector-tensor theories, further generalization includ-

ing the field strength tensor Fμν ≔ 2∂ ½μAν� would also be

possible. Note that Fμν vanishes in the scalar limit
Aμ → ϕμ, and hence such an extension is peculiar to the
vector disformal transformation. The disformal transfor-
mation with Fμν in four dimensions was first studied in
[122], which has the form

ḡμν ¼ ΩðhF2i; hF4iÞgμν þ ΓðhF2i; hF4iÞF2
μν; ðA9Þ

with Fn
μν ≔ Fμ

α1Fα1
α2 � � �Fαn−1ν and hFni ≔ gμνFn

μν

(n ¼ 2; 4; 6;…). For instance, we have F2
μν ¼ Fμ

αFαν

and hF2i ¼ Fα
βFβ

α. Interestingly, this was shown to be
the most general metric transformation in four dimensions
that consists of Fμν and its dual [123]. Note that the
transformation (A9) does not contain the derivative of the
metric, and hence the invertibility condition can be
obtained by simply requiring that the Jacobian determinant
is nonvanishing [122]. It should be noted that the Cayley-
Hamilton theorem yields

F4
μν ¼

1

2
hF2iF2

μν þ
�
1

4
hF4i − 1

8
hF2i2

�
gμν ðA10Þ

in four dimensions, which allows us to express any Fn
μν

with n ≥ 4 as a linear combination of gμν and F2
μν. Thanks

to this relation, the transformation (A9) can satisfy both the
properties [A] and [B]. Likewise, it could in principle be
possible to incorporate Fμν into the transformation law
(A2) to obtain a more nontrivial class of invertible vector
disformal transformations. However, it should be noted that
the matrix identity following from the Cayley-Hamilton
theorem is dimension dependent, and hence a dimension-
independent expression for the inverse transformation
would no longer be available in this case.
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