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In this paper, using the quasilocal formalism of Brown and York, the flow of energy through a closed
surface containing a gravitating physical system is calculated in a way that augments earlier results on the
subject by Booth and Creighton. To this end, by performing a variation of the total gravitational
Hamiltonian (bulk plus boundary part), it is shown that associated tidal heating and deformation effects
generally are larger than expected. This is because the aforementioned variation leads to previously
unrecognized correction terms, including a bulk-to-boundary inflow term that does not appear in the
original calculation of the time derivative of the Brown-York energy and leads to corrective extensions of
Einstein’s quadrupole formula in the large sphere limit.
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I. INTRODUCTION

The influence of tidal deformation and heating effects on
a nearly isolated gravitating systems due to external fields
was successfully treated and described by Booth and
Creighton in [1]. Instead of using pseudotensorial tech-
niques, which were more popular at the time [2–4], the
authors used the Brown-York quasilocal formalism to
address the problem. Specifically, in order to describe
the interaction of a spatially and temporally bounded
gravitating system with an external tidal field, they per-
formed a variation of the boundary part of the total
gravitational Hamiltonian, which allowed them to calculate
energy and momentum fluxes on a quasilocal surface and
thus determine the tidal work done by an external gravi-
tational field in the so-called “buffer zone”. Taking advan-
tage of the fact that the associated quasilocal energy
expression coincides with the Arnowitt-Deser-Misner
energy at spatial infinity [5–7] and the Trautman-Bondi-
Sachs energy at null infinity [8–11], the authors provided
two interesting applications of their formulas.
First, the authors calculated the energy flux due to

gravitational waves through a quasilocal surface in the
wave zone (near infinity) to obtain the correct mass loss for
a system radiating gravitational waves.

Second, the authors calculated the tidal heating of a self-
gravitating body interacting with an external tidal field in
the local asymptotic reference frame of the body. While this
effect typically occurs for arbitrary pairs of bodies moving
around each other in noncircular orbits, the example
discussed in [1] is one that is familiar from the solar
system, namely the tidal deformation and associated tidal
heating of the Gallilean moon Io by Jupiter, which is
generally held responsible for the strong volcanic activity
on Jupiter’s satellite.
As will be shown in the second section of this work

(after a brief overview of the essentials of the considered
quasilocal geometric framework in the first section),
particularly with respect to the latter application, the
analysis of Booth and Creighton can be extended in one
particular respect: The mass-energy transfer through the
quasilocal surface can alternatively be calculated by vary-
ing the total gravitational Hamiltonian (bulk plus boundary
parts), which, in contrast to the results originally obtained
by the authors, leads to the emergence of correction terms;
that is, a confined stress-energy term and a bulk-to-
boundary inflow term that combines the dynamical degrees
of freedom of the bulk with those of the boundary.
Although this does not change the validity of the original
results of Booth and Creighton (the authors considered a
case in which the correction terms become zero), it is
nevertheless argued in the present work that the latter term
must be taken into account in the quasilocal calculation of
more violent tidal deformations and heating effects than
those treated in [1], especially in cases of tidal deformations
of celestial bodies revolving in circular motion around each
other, where there is considerable mass and/or radiation
transfer through the quasilocal surface (possibly due to the
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collapse of one of the bodies). To illustrate this, a recap of
Booth and Creighton’s results on the tidal heating of
isolated bodies is given in the third section of this work,
followed by a discussion of the extent to which these results
are insufficient to describe fluctuations of the interior field
of tidally deformed bodies that lead to non-negligible
backreactions to the exterior fields of these objects. In this
context, specific ideas from the theory of extended irre-
versible thermodynamics are used as the basis for the
discussion. Apart from that, another comparatively simple
geometrical example is discussed, namely the mass-energy
inflow through the quasilocal surface of a spatially and
temporally bounded gravitating system, caused by grav-
itoelectromagnetic (GEM) fields. Using this example, it is
argued that corrections to the time derivative of the Brown-
York mass occur and lead to corrections to the Einstein
quadrupole formula in the large sphere limit; corrections
that should find application in Einstein-Hilbert gravity not
only in the special cases discussed in this paper, but in
many cases of interest, including the description of, for
example, tidal deformation and tidal heating effects caused
by accretion phenomena or merger processes in relativistic
N-body systems.

II. GEOMETRIC SETTING AND
QUASILOCAL ACTION

As a prerequisite for later considerations, this section
provides a brief introduction to the quasilocal framework
discussed in [1,12] and reviews some of the important
aspects of the underlying geometric model. To that end, a
spacetime ðM; gÞ with manifold M ¼ M ∪ ∂M shall be
considered, which is foliated by a family of t ¼ const-
hypersurfaces fΣtg. Evolving continuously between two
fixed instants of time Σ1 and Σ2, this spacetime shall be
assumed to be temporally and spatially bounded. That
is to say, it shall be assumed to be bounded by a timelike-
hypersurface B in such way that there holds ∂M ¼
Σ1 ∪ Σ2 ∪ B, where none of the embedded boundary parts
shall strictly be assumed to be smooth; however, the
timelike portion B shall be assumed to be connected for
the sake of simplicity. Moreover, the timelike boundary
part shall be assumed to be foliated by a collection of
two-surfaces fΩtg such that B ¼ f∪t Ωt∶t1 ≤ t ≤ t2g. As a
result of the fixings made, it is ensured that both spatial
boundary parts Σ1 and Σ2 are given in such a way that they
contain a pair of two-surfaces Ω1 and Ω2, respectively,
which bifurcate Σ1 and Σ2 locally.
The world tube thus obtained divides spacetime into two

distinct parts; an interior partM and an exterior part M̄, in
such a way that the interior part M is contained in the
Lorentzian manifold M̄ of an associated ambient space-
time ðM̄; ḡÞ such that M ⊂ M̄ and hence Σ1;Σ2;B ⊂ M̄.
Given this specific geometric setting, one can now select

a time evolution vector field ta which can be decomposed in
components perpendicular and parallel to the leaves of the

spacelike foliation of the local spacetime ðM; gÞ. This
means that ta can be written—everywhere except at the
timelike boundary B—in the form ta ¼ Nna þ Na, where
N is the lapse function, Na is the shift vector field and na

represents a forward-pointing timelike unit vector field
orthogonal to the folia of ðM; gÞ. At the timelike boundary
B, however, the same vector field must be decomposed
alternatively in the form ta ¼ N va þN a, where N is the
boundary lapse function, N a is the boundary shift vector
field and va is a forward-pointing timelike unit vector field
being orthogonal toΩt and tangent to B. By the selection of
a time-flow vector field, a time parameter t can now be
fixed by solving the relation Ltt ¼ 1 (according to which Lt
represents the Lie derivative along ta).
Next, it may be assumed that there exists an outward-

pointing spacelike unit normal to B, henceforth denoted by
ua, which is usually nonorthogonal to the timelike gen-
erator na, but orthogonal to another timelike unit vector
field va that is tangent to B. At the same time, there is a
spacelike vector field sa which is orthogonal to the timelike
generator na. Due to the nonorthogonality of the two vector
fields na and ua, there must exist a scalar field η≡ uana,
which vanishes only for the special case of a timelike
boundary which is exactly orthogonal to all leaves of its
spacelike foliation. This scalar field also occurs in the
relation sava≡−η and in the decomposition relations va ¼
λðna − ηuaÞ, sa ¼ λðua þ ηnaÞ and na ¼ λðva þ ηsaÞ,
ua ¼ λðsa − ηvaÞ, whose validity follows directly from
that of the normalization conditions uaua ¼ sasa ¼
−nana ¼ −vava ¼ 1, where λ ¼ 1ffiffiffiffiffiffiffiffi

1þη2
p is a boost param-

eter. This boost parameter also occurs in the relation
N ¼ λN between the standard lapse function N and
the boundary lapse function N , which occur in the
volume elements of spacetime and that of the embedded
spacelike boundary hypersurface, i.e.,

ffiffiffiffiffiffi−gp ¼N
ffiffiffi
h

p
andffiffiffiffiffiffi−γp ¼N

ffiffiffi
q

p
. These relations, in turn, apply with respect to

the determinant of the four-metric gab of ðM; gÞ, its
induced three-metrics hab ¼ gab þ nanb on Σt and γab ¼
gab − uaub on B and the two-metric qab ¼ gab þ nanb −
sasb ¼ gab − uaub þ vavb that is induced by gab on Ωt.
Ultimately, as a byproduct of considering all these

definitions, Hayward’s quasilocal action [13]

SG½g� ¼
1

16π

 Z
M

Rωg þ 2

ZΣ2

Σ1

Kωh

þ 2

Z
B

Θωγ þ 2

ZΩ2

Ω1

sinh−1ηωq

!
; ð1Þ

can finally be set up, where, in this context, R ¼ gabRab

denotes the Ricci scalar of the spacetime ðM; gÞ, and K ¼
habKab andΘ ¼ γabΘab term the scalar extrinsic curvatures
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of the spacelike folia Σt and the timelike boundary B of
ðM; gÞ. Moreover, as can be seen, the different volume
elements ωg ≔

ffiffiffiffiffiffi−gp
d4x, ωh ≔

ffiffiffi
h

p
d3x, ωγ ≔

ffiffiffiffiffiffi−γp
dtd2x,

and ωq ≔
ffiffiffi
q

p
d2x enter the definition of this quasilocal

action.
Following closely the steps taken in [6,12], one finds that

Hayward’s action can be rewritten in a slightly different
form. More specfically, using the decomposition relation
R ¼ ð3ÞRþ KabKab − K2 þ 2∇bðKnb − abÞ for the Ricci

scalar, the Hamiltonian and momentum constraints H ¼
8πffiffi
h

p ðPabPab − 1
2
P2Þ −

ffiffi
h

p
16π

ð3ÞR and Ha ¼ −2DbPb
a, which

are defined with respect to the fields Pab¼
ffiffi
h

p
16πðKab−

habKÞ, Kab¼ 1
2N ð _hab−2DðaNbÞÞ, and

ffiffiffiffi−gp
16π ðKabKab−K2Þ¼

Pab
_hab− 8πNffiffi

h
p ðPabPab− 1

2
P2Þ−2PabDaNb, as well as the

identities k ¼ λðΘþ ηK − abub þ λðv∇ÞηÞ, Nk − ðKab−
KhabÞNasb ¼ NK − λðN∇Þη − ðN∇Þvaua, in relation
to which K ¼ qabKab ¼ qab∇aub represents the extrinsic
curvature of the spacelike intersection surfaces Ωt formed
in relation to ua, one finds that Hayward’s action can be
rewritten in the form

SG½g� ¼
Z

dt
Z
Σt

d3x½Pabhab − NH −HaNa�

þ 1

8π

Z
dt
Z
Ωt

_ωqsinh−1η

þ
Z

dt
Z
Ωt

d2x½N hþ haN a�; ð2Þ

where h ¼
ffiffi
q

p
8π K, ha ¼ −

ffiffi
q

p
8π u

cqba∇bvc and the overdot
denotes the Lie derivative with respect to ta.
As a result of these conversions of Hayward’s quasilocal

action, the generalized gravitational Hamiltonian

H ¼
Z
Σt

ðNHþHaNaÞd3x −
Z
Ωt

ðN hþ haN aÞd2x ð3Þ

is obtained, whose precise form was first determined by
Brown and York in the course of their field-theoretical
generalization of Hamilton-Jacobi theory [6]. Given
with respect to the canonical variables ðhab; PabÞ and
ð ffiffiffi

q
p

; sinh−1ηÞ, this generalized gravitational Hamiltonian
provides a feasible quasilocal description of the total
amount of energy momentum of a gravitational field with
spatially and temporally finite dimensions, which repre-
sents an alternative to more traditional pseudotensorial
descriptions of the subject.1

An important characteristic of the given generalized
Hamiltonian is the fact that it splits up into a bulk
part HBulk ¼

R
Σt
ðNHþHaNaÞd3x and a boundary part

HBoundary ¼ −
R
Ωt
ðN hþ haN aÞd2x, where, as already

indicated, the boundary part HBoundary coincides in an
asymptotically flat spacetime in the so-called large sphere
limit with well-known candidates for the total quasilocal
stress-energy momentum of the gravitational field itself—
with that of Arnowitt, Deser, and Misner at spacelike
infinity and that of Bondi and Sachs at null infinity.
Given the exact form of the quasilocal gravitational

Hamiltonian (3), the quasilocal charge

E ¼
Z
Σt

ðNε − paNaÞωh −
Z
Ωt

ðN e − jaN aÞωq; ð4Þ

can be derived by using Einstein’s equations

Gab ¼ 8πTab: ð5Þ

As may be noted, the quasilocal charge obtained again
consists of two parts; a bulk part EBulk¼

R
Σt
ðNε−paNaÞωh

and a boundary part EBoundary ¼ −
R
Ωt
ðN e − jaN aÞωq.

This all is of significance in that the results obtained so
far form the starting point for Booth and Creighton’s
quasilocal calculation of tidal heating, which will be briefly
discussed in the third and final section of this paper.
However, for the analysis of the results of the now
upcoming second section of this work, it is important to
note that the authors considered only the boundary part of
expression (4) as the basis for their quasilocal calculation of
tidal heating. More specifically, an important step in their
calculation was to determine the temporal variation of said
boundary part, for which they obtained the result

dW
dt

¼
Z
Ωt

�
− _N eþ ja _N a þN

2
sab _qab

�
ωq: ð6Þ

As will be shown in the next section, the calculation yields a
different result when the full quasilocal expression (4) (and
only its boundary part) is considered. Specifically, it is
shown that the temporal variation of the quasilocal charge
(4) leads to correction terms that do not appear in the original
calculation of Booth and Creighton, but must typically be
included when considering nonvanishing stress-energy
tensors. As is argued later in the third and final section of
this work, this may prove to be of relevance not only for the
determination of tidal heating effects, but also for other
applications in the quasilocal approach to general relativity.1For a detailed review, see for instance [14].
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III. GRAVITATIONAL HAMILTONIAN AND
QUASILOCAL ENERGY FLUX

With the results of the previous section at hand, the next
step will be to derive the exact form of the correction terms
mentioned in the introduction. For this purpose, a temporal
variation of the total functional E (bulk plus boundary)
shall be calculated in the following by Lie dragging it along
the flow of the time evolution vector field ta. As a basis for
doing this, the decomposition relations Tab ¼ εnanb þ
napb þ panb þ Sab and τab ¼ evavb þ vajb þ javb þ sab
will be used, whose validity implies that Tabtanb ¼ Nε −
paNa and τabtavb ¼ N e − jaN a holds true with respect
to any given pair of (totally general) stress-energy and
surface stress-energy tensors Tab and τab. As may be noted
in this context, the fields pa ¼ hacTcbnb and ja ¼ qacτcbvb

represent the mass-energy and surface mass-energy fluxes
and Sab ¼ hachbdTcd and sab ¼ qacqbdτcd represent the
stress and surface stress tensors of matter fields located
within the bounded spacetime region M ⊂ M̄.
Assuming that Lt denotes the induced Lie derivative at

Σt pointing along ta, it proves to be instrumental for the
calculation of the time derivative of E to note that

Lt½ωhðNε − paNaÞ� ¼ ωhLtðNε − paNaÞ
þ ωhðNK þDbNbÞðNε − paNaÞ;

ð7Þ

holds true with respect to any spacetime ðM; gÞ whose
geometric structure permits consideration of the quasilocal
approach described in the very first section. Moreover, it
proves beneficial to heed another observation; the local
conservation laws∇aTa

c · Nnc ¼ ∇aTa
c · Nc ¼ 0, in com-

bination with the decompositions of Tab and τab mentioned
above, lead to the generalized continuity and contracted
generalized Euler equations

Ltε¼ðNDÞε−εNK−NDapa−2ðpDÞN−NSabKab; ð8Þ

and

Ltpa · Na ¼ ðNDÞðpaNaÞ − NDbSbaNa − SbaNaDbN

− NKpaNa − εðNDÞN; ð9Þ

equations that were first published (though in terms of
some slightly different conventions) many years ago in
[15]. For notational clarification, it may be noted here that
the definitions ðNDÞ ≔ NaDa and ðpDÞ ≔ paDa have
been used in the present context.
By suitably combining these relations and applying the

inverse Leibniz rule with the idea of producing a total
divergence term, one obtains the result

NLtε−Ltpa ·Na¼Da½ðNε−pbNbÞNa−N2paþNSabNb�−ðNKþDaNaÞðNε−pbNbÞ−NSabðNKabþDðaNbÞÞ: ð10Þ

Therefore, in further consequence, one finds

Lt½ωhðNε − paNaÞ� ¼ ωh

�
LtNε − paLtNa þ N

2
SabLthab

�
þ ωhDa½ðNε − pbNbÞNa − N2pa þ NSabNb�: ð11Þ

By applying Gauss’ law in the next step and using the constraint relation Daτ
a
b ¼ πa ¼ γabTacuc, in respect to which

Daτ
a
b ¼ γdbγ

e
c∇eτ

c
d applies, the temporal variation of the functional E can now straightforwardly be calculated, leading

to the result

dE
dt

¼
Z
Σt

�
_Nε − pa

_Na þ N
2
Sab _h

ab
�
ωh −

Z
Ωt

�
_N e − ja _N a þN

2
sab _qab −X

�
ωq: ð12Þ

Here, it should be noted that to obtain this very integral
expression, the definitions sab ¼ qacqbdτcd, ba ≡ ðv∇Þva,
_N ¼ LtN, _Na ¼ LtNa, _hab ¼ Lthab as well as _N ¼ LtN ,
_N a ¼ LtN a, _qab ¼ Ltqab have been used, where Lt
denotes the induced Lie derivative at Ωt pointing along ta.
The integrand X occurring in the boundary part of

Eq. (12) consists of two parts, i.e.,

X ¼ X1 þX2; ð13Þ
where

X1 ¼ N 2πava þN πaN a ð14Þ
represents the confined stress-energy term and

X2 ¼ −
η

λ
N 2εþ ηN 2pava þ ηNpaN a

−
N 2

λ
paua þ λN Sabvaub þ λSabN aub ð15Þ

represents a bulk-to-boundary inflow term, as may be
concluded from the fact that the bulk expressions ε, pa,
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andSab enter into its definition.
2 For the sake of clarification,

it may be noted here that the relations Nasa ¼ −ηN ,
Nε − paNa ¼ N

λ ε −Npava − paN a, N2pasa ¼ N 2

λ paua,
andSabsaNb ¼ λN Sabvaub þ λSabN aub have been used in
order to obtain this particular form of equation (15). The
corresponding integral term that occurs in relation (12),
which results fromconverting the total divergence appearing
in Eq. (11), is equal to the net flux of quasilocal bulk energy
passing through Ωt being transferred from the gravitating
physical system under consideration (through the spatial
boundary) to its environment.
Upon closer inspection of the full boundary part of

integral expression (12), it can further be observed that
said part of the expression (on account of its physical units)
can be interpreted as a power functional of the form
P ¼ RΩt

Iωq, where the corresponding integrand reads

I ¼ _N e − ja _N a þN
2
sab _qab −X: ð16Þ

However, such an interpretation only truly makes sense
if electromagnetic and/or gravitational radiation passes

through the quasilocal surface Ωt; a case in which the
quantity I typically can be identified as the intensity of
the total radiant energy escaping from the system into the
environment. But, as shall be discussed in greater detail in
the next section, where applications will be considered, the
integral

R
Ωt
X2ωq cannot be neglected.

Before that, however, Eq. (12) shall first be considered
from a different angle in order to also illuminate the
geometric aspect of the chosen approach. For this purpose,
one may rewrite (12) using the field equations of the theory,
which yields the result

dH
dt

¼
Z
Σt

�
_NH−Ha

_NaþN
2
Qab

_hab
�
d3x

−
Z
Ωt

�
_N h−ha _N aþN

2
Qab _qab−

ffiffiffi
q

p
X

�
d2x; ð17Þ

for the temporal variation of the gravitational Hamiltonian.
As may be noted, the definitions

Qab ¼
ffiffiffi
h

p

8π

�
ð3ÞRab − 2KacKc

b þ KKab −
1

N

�
_Kab þ ðNDÞKab þDaDbN

�

−
1

2
hab

�
ð3ÞRþ K2 − KcdKcd −

2

N

�
_K þ ðNDÞK þDaDaN

���
; ð18Þ

and

Qab ¼
ffiffiffi
q

p
8π

ðKab − ðK − bauaÞqabÞ; ð19Þ

have been used in the present context. Moreover, as may
also be noted, relation (18) has been used in combination
with the constraint equations of the theory to rewrite
relations (13) and (14) in the form

X1 ¼ N 2Daτ
a
bvb þNDaτ

a
bN a; ð20Þ

and

X2 ¼ −
η

λ
N 2H −

1

2
ηN 2Hava −

1

2
ηNHaN a

−
N 2

2λ
Haua þ λNQabvaub þ λQabN aub; ð21Þ

and therefore obtain with (17) a purely geometrical
expression that agrees exactly with the time derivative of
the quasilocal gravitational Hamiltonian. Here, as may be
noted, the use of Einstein’s equations (or rather the
constraint equations resulting from them) does not prove
to be mandatory in this context, but rather practical, since
all calculations could also be carried out exclusively with
geometric quantities, which, of course, yields exactly the
same result in the end.
As may be noted, there is something both astonishing

and appealing about results (12) and (17), namely, that the
occurring bulk and boundary integral expressions look very
similar; only the correction terms prevent an exact sim-
ilarity. From the structure of (17) it can be generally
concluded that a change of the matter content of a spatially
and temporally bounded gravitating system always
depends on how the individual components of the metric
evolve over time. Moreover, it can be concluded that such
a change also strongly depends on the structure of the
occurring correction terms, which can be interpreted
physically as a bounded mass-energy distribution plus a
nonvanishing bulk to boundary inflow that combines the
dynamical degrees of freedom of the bulk with those of the
boundary; even if it is assumed that the considered local

2Note that the bulk fields ε, pa, and Sab can, of course, be
reexpressed on the boundary in terms of associated boundary
fields. However, in order to highlight the fact that these fields can
be used to interpret

R
Ωt
X2ωq as a bulk-to-boundary inflow, the

form of ε, pa, and Sab has been intentionally left unchanged at
this point.
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gravitational field is stationary. It can be expected that
pseudotensorial methods lead to similar results, although
further studies of such an approach may be in order.
Anyway, to illustrate the physical relevance of the

derivations made, some selected applications will now
be discussed in the next section, with a particular focus
on possibly testable implications of the theory. In particular,
two effects will be examined in more detail, namely the loss
of quasilocal mass energy due to (i) tidal deformation and
heating, and (ii) the emission of gravitational, electromag-
netic, and/or GEM radiation. With respect to the first type
of effect, as it turns out, the model proves consistent with
the results of Booth and Creighton in the sense that the
derived correction terms play no role in calculating the loss
of quasilocal mass due to tidal heating. The reason for this,
as will be shown, is that the authors’ approach remains fully
valid precisely when the source-free Einstein equations are
considered (as done in [1]), whereas it must very well be
extended if matter fields are present and thus the non-
vacuum field equations apply. However, this is exactly what
is to be expected in the presence of tidal effects which lead
to perturbations not only of the external but also of the
internal field of a body. Something similar is also to be
expected, as shall be made clear below, in the second case
to be discussed, which is devoted to the combined emission
of gravitational and electromagnetic radiation by a gravi-
tating physical system.

IV. TIDAL HEATING,
GRAVITOELECTROMAGNETISM, AND

FURTHER APPLICATIONS

In view of the results derived in the previous section,
the question naturally arises whether or not the derived
correction terms play a role for the quasilocal calculation of
tidal heating, and whether or not, therefore, the original
results of Booth and Creighton from [1] need to be
modified or generalized in some sense. Unsurprisingly,
as will be explained below, the authors’ approach turns out
to be perfectly sound (in terms of the specific assumptions
made in their work). However, as shall also be made clear
below, said approach needs very well to be generalized in
cases where quasilocal methods are to be used to describe
more violent tidal deformations and heating effects than
those discussed in [1], such as in cases of tidal deformations
of celestial bodies in N-body systems that are accompanied
by substantial mass and/or radiation transfer through the
quasilocal surface, as occur for example when one of the
bodies collapses or pairs of bodies merge with each other.
Before discussing mass loss due to such effects, how-

ever, it is first necessary to show that Booth and Creighton’s
results occur as a special case of those derived in the
previous section. To show this, it is sufficient to make a
single assumption, namely that the considered spacetime
ðM; gÞ is Ricci-flat and therefore the on-shell vacuum field
equations

Rab ¼ 0; ð22Þ

are satisfied; a requirement that has the effect that the time
derivative of the bulk part appearing in (12) becomes zero
in the same way as the derived correction terms, which
further implies that this relation reduces to the form

dE
dt

¼ −
Z
Ωt

�
_N e − ja _N a þN

2
sab _qab

�
ωq: ð23Þ

Consequently, however, by utilizing the fact that _qab ¼
−qacqbd _qcd holds in the given context, one finds that
relations (6), (12), and (23) all coincide in the case that the
source-free Einstein equations are satisfied, thus making it
clear that the results of the work of Booth and Creighton
occur as a special case of the results derived in section two
of this work. Based on this, it can be further concluded that
the temporal variation of the full Hamiltonian (bulk plus
boundary) needs to be considered only when matter fields
are present and spacetime is not Ricci-flat, while in the
opposite case it is sufficient to consider the boundary part
of the gravitational Hamiltonian, as was done in [1].
Having clarified this, it shall now be briefly be reviewed

how the obtained formula can be used to describe tidal
deformation and heating effects. To this end, one may recall
that Booth and Creighton used the Hartle-Thorne model
[4,16] as a basis for their quasilocal calculations, i.e., a
perturbative vacuum model that describes how the external
field of a small self-gravitating central body changes under
the influence of an external tidal field. This very model
deals with a spacetime metric gab of the form

gab ¼ ηab þ eab; ð24Þ

which is given with respect to the flat Minkowski metric
ηab, where jeabj ≪ 1 applies by definition. In rectangular
coordinates, the individual components of the perturba-

tion tensor eab take the form e00 ≡ ϕ≡ − 2M
r − 3Qiksisk

r þ
r2Eiksisk, e0j≡Aj≡−2

r
dQjk

dt skþ 4r3
21

dEjk
dt s

k− 10r3
21

dEik
dt s

isksj,
and eij ¼ ð2Mr − 3

r3 Qklsksl þ r2EklskslÞδij, where, in this
regard, the fieldQik ¼

R
εðxixk − 1

3
r2δikÞd3x represents the

trace-free and symmetric quadrupole moment of the self-
gravitating body and Eik ¼ Ri0k0 the electric part of the
Weyl tensor, which coincides with the Riemann curvature
tensor in the given case. The radial unit vector occurring in
this context is given by si ¼ xi

r, where r is the radial distance
from the center of the isolated body as measured in its local
asymptotic rest frame.
Taking advantage of the gauge ambiguity in setting up a

nearly Minkowskian coordinate system and switching to
spherical coordinates, it was shown in [1] that the Hartle-
Thorne metric (24) can be converted into a slightly different
form. More specifically, by using the diffeomorphism
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freedom to make the replacement eab → eab þ 2∂ðaξbÞ
with respect to the co-vector field ξj ¼ αr−2Qjkskþ
βr3Ejksk þ γr3Eiksisksj, where α, β, and γ are free con-
stants of order one, it was shown it the aforementioned
work that the rate at which tidal work is performed on an
isolated body is given (modulo higher order terms) by the
same formula as in the post-Newtonian approximation of
the theory, which had previously been derived by using
pseudotensorial techniques [2,3]. Using here the shorthand
notation Y ¼ 1

60
d
dt ½2ar5EikEik þ 2bEikQik − cr5QikQik� in

conjunction with the definitions a¼8βγþ4γ2−2β2þ4γ−
2β−3, b¼8αγ−12γþ6β−2αþ3, and c¼4α2−12α−9,
the obtained formula reads

dE
dt

¼ 1

2
Eik

dQik

dt
þY: ð25Þ

In this context, the 1
2
Eik

dQik

dt -term specifies the irreversible
(unrecoverable) part of thework done to deform and heat the
system (the dissipated energy is converted into heat),
whereas the secondY-term represents the reversible (recov-
erable) part of the work being done to increase the potential
energy of the system. Regarding these two terms, the former
irreversible one turns out to be the one of primary interest,
since (i) it is invariant under diffeomorphisms genererated
by ξj (in contrast to the second reversible term) and (ii) it is
the same leading-order term that was previously obtained
through analogous calculation using pseudotensorial
instead of quasilocal methods (which, surprisingly, all lead
to the same expression regardless of the choice of energy-
momentum complex and gauge conditions [2,3]; a situation
previously known only from the case of pseudotensors
calculated fromKerr-Schild metrics [17–19]). Although not
really obvious at the time, this compatibility of results is
not very surprising from today’s viewpoint in that it has
been shown by Chang, Chen, and Nester [20] that any
energy-momentum pseudotensor leads to an associated
Hamiltonian boundary term, so that it becomes clear
that—within the quasilocal Hamiltonian framework—
pseudotensors either give rise to distinct Dirichlet type
boundary conditions or to Neumann-type boundary con-
ditions; all of which are algebraic in terms of the metric.
Consequently, however, since the tidal heating results
obtained in the literature appear to be independent of the
choice of boundary conditions, it is hardly surprising that
the purely quasilocal calculation of Booth and Creighton
leads to very similar results as those of earlier works on
the subject that used the pseudotensorial approach. This
is not least the case because, in the approximate
calculations mentioned, the precise form of the boundary
conditions is not essential, because the results obtained by
using different boundary conditions deviate from each other
only in higher order. Therefore, from a purely mathematical

point of view, the good agreement of the results proves to be
completely natural.
However, what is striking in this context is that, in

contrast to the results of earlier pseudotensorial approaches,
the quasilocal results are not only completely general but
also coordinate-independent, which is why the results
obtained could in principle also be used to determine tidal
deformations and heating effects in more sophisticated and
physically challenging situations; that is, in situations
where not only fluctuations of the external gravitational
field of the body are considered, but also changes of the
interior field of the self-gravitating body are taken into
account. After all, it has to be kept in mind that the
Thorne-Hartle model is not designed to describe directly
the tidal deformations of a self-gravitating body, but only
the backreaction on its external gravitational field.
Backreactions to the interior field of the body are not
accounted for by the model, which is why it can only be
used to determine the effects of tidal heating if the overall
structural changes of the body are sufficiently small and
thus negligible.
Situations in which disregarding such structural changes

no longer seems justified are those in which the shape,
composition, and macroscopic thermal state of a given
body (or collection of bodies) change drastically during
gravitational interaction, e.g., when the body becomes
heavily tidally deformed and heated during interaction
with another, more massive celestial body, which may
eventually lead to the collapse and disintegration of the
body and its accretion by its much more massive
companion. In such a situation, with both celestial bodies
typically orbiting each other in circular motion, it is
reasonable to expect that matter is constantly escaping
from the system through the quasilocal surface of space-
time; at least as long as one assumes (inspired by Newton’s
theory of gravity) that the quasilocal surface represents
the body’s gravisphere, i.e., the spatially bounded sphere of
influence of the collapsing body under consideration.
Certainly also the collision of bodies—a process in which
similarly strong tidal deformations can occur—cannot be
described on the basis of a vacuummodel like that of Hartle
and Thorne.
It must be acknowledged, however, that describing

the aforementioned phenomenological effects (even at
the numerical level) is an extremely complicated venture;
especially given the need to describe how the body’s
internal gravitational field changes such that the matter
content of the spatially and temporally bounded gravita-
tional system changes relative to its local physical
environment.
Yet, despite the lack of a geometric model that could

fully account for these effects, it shall be argued below that
the integral expression (12) of the previous section can
indeed be used to predict the behavior of very general types
of matter distributions whose general form appears suitable
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to describe (at least in principle) processes in which objects
are very strongly tidally deformed due to the phenomeno-
logical effects mentioned above. Moreover, it will be
argued why and to what extent the Hartle-Thorne approxi-
mation proves insufficient to describe gravitational back-
reactions caused by isolated bodies that fail to be in almost
perfect (macroscopic) internal thermal equilibrium.
As a basis for the arguments used, the theory of extended

irreversible thermodynamics [21–26] shall be used at this
point, with the main idea being that the corresponding
physical framework is general enough to consider the case
where tidal heating of a body (or collection of bodies) leads
to the occurrence of heat flows and viscous stresses, and
thus to non-negligible backreactions on the internal geo-
metric field of the body (or bodies). In the mentioned
theory, the matter distribution under consideration is that of
a fluid mixture. Such a matter distribution can be fully
characterized by three different quantities, i.e., the so-called
thermal energy-momentum tensor Ta

b ¼ ϵwawb þϖawbþ
waϖb þ ðpþ ΠÞhab þ Πa

b, a particle number current
Na

A ¼ nAwa þ νaA, defined with respect to a number A of
species of particles, and a so-called covariant entropy
current Sa ¼ swa þ ηa, where, in this context, the scalar
fields ϵ, p, and s represent the energy density, pressure and
total entropy density of the fluid mixture, nA is the particle
density of a number of particle species A and π represents
the viscous bulk pressure. The vector fields wa,ϖa, νaA, and
ηa meanwhile represent the four-velocity vector of the
system, an energy flux current and so-called particle
diffusion and heat conduction fluxes, while the tensor field
πab represents the trace-free anisotropic viscous stress-
tensor.3 Depending crucially on whether one wishes to
specify these quantities in the so-called energy or particle
reference frames, different choices for some of the vector
fields can typically be made, namely either νaA ¼ −η−1qa,
ηa ¼ η−1Θqa −Qa, and pa ¼ 0 or νaA ¼ 0, ηa ¼ βqa −Qa

and pa ¼ qa, where β ¼ T−1 ≡
	
∂ε
∂s


−1

is the inverse of the

infamous Tolman-Ehrenfest temperature, η is the relativ-
istic enthalpy or “injection energy” per particle, Θ is the
so-called thermal potential of the fluid mixture (relativistic
chemical potential per particle and per temperature) andQa

is a second-order contribution which may be interpreted as
a generalized heat flux and for which different approaches
exist in the literature.
With respect to one of these choices, the physical

behavior of fluid mixtures can be specified exactly in
almost equilibrium states, in which the expressions given
below must follow the differential laws

∇aTa
b ¼ 0; ∇aNa

A ¼ 0; ∇aSa ≥ 0: ð26Þ

The respective laws are the laws of local conservation of
energy and particle number and the so-called Clausius-
Duhem inequality, which is nothing more than the differ-
ential form of the entropy law of thermodynamics.
All this is important for the subject of tidal heating for

the following reason: it makes a big difference for the form
of the bulk part of the integral relation (12) whether the
matter distribution under consideration is in thermal equi-
librium with its environment or not. More precisely, it turns
out that the bulk part of said relation is always zero (or,
more precisely, can be chosen to be zero) for fluid mixtures
that are in perfect thermal equilibrium, while this is not true
for corresponding matter fields outside thermal equilib-
rium. For such matter distributions, as it turns out, the bulk
part is always nonzero.
To see this, one may recall that the main equilibrium

condition for relativistic viscous fluids in extended irre-
versible thermodynamics (as well as in classical theory) to
be in thermal equilibrium is ∇aSa ¼ 0; a condition that
requires the complete absence of dissipative mechanisms.
For this condition to be satisfied and for the corresponding
system to actually reach a local thermostatic equilibrium
state, the heat exchange between the fluids must come to a
halt and the sum of all thermal potentials and chemical
reaction rates must approach zero. Besides that, the thermal
energy-momentum tensor and the particle number and
entropy currents of the fluid mixture must be the same
as that of an ordinary ideal fluid, meaning that Ta

b ¼
ðϵþ pÞwawb þ pδab, Na

A ¼ nA · wa, and Sa ¼ s · wa.
For this to hold, an equilibrium equation of state of the
form ϵþ p ¼ TðsþPA ΘAnAÞ must be valid, where each
ΘA represents a thermal potential associated with a species
A of particles (characterized in terms of the chemical
potential μA ≡ ∂ϵ

∂nA). Ultimately, moreover, the motion of
the fluids should be rigid in Born’ s sense, which means that
the orthogonal distances between the adjacent material
world lines of the two fluids must remain constant. In
effect, this means that hachbd∇ðcwdÞ ¼ 0 must hold, which
in turn means that ∇ðawbÞ ¼ 0 must be satisfied. However,
from this it follows that the matter field under consideration
must, at perfect thermal equilibrium, curve spacetime in
such a way that a stationary gravitational field is generated
with a timelike Killing vector field ξa that is directly
proportional to the four-velocity wa, i.e., ξa ¼ βwa with
β≡ c · N ≡ c ·

ffiffiffiffiffiffiffiffiffiffiffiffi
−ξaξa

p
with c ¼ const.

And while it is also possible in principle for internal
thermal equilibrium to occur with respect to non-Killing
observers, it is still reasonable to expect that the variables
_N, _Na, and _hab for fluid mixtures in equilibrio are very
close to zero (with respect to the Killing time parameter,
which is admittedly the most natural choice). From this, in
turn, it becomes clear that in nonequilibrium situations the

3As may be noted, all of these fields, including the thermal
stress-energy tensor, could of course also be written down in
(3þ 1)-form, but as will be made clear below, specifying these
quantities in this form will prove unnecessary for the ensuing
argument.
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bulk part of relation (12) can only be neglected and the
Thorne-Hartle model can only be in agreement with the
results of the quasilocal canonical framework of Brown
and York if the (3þ 1) quantities ε, pa, and Sab introduced
in the previous section are all exactly or at least close to zero.
For quasilocal surfaces, which are located very far from

the boundary of the spatially finite internal gravitational
field of the matter distribution under consideration, one can
safely assume that the mentioned quantities actually
become zero and thus for weak gravitational fields the
Thorne-Hartle approximation remains valid and leads to
correct results. An important reason for this is that
dissipative heating of small, weakly gravitating bodies
(such as, for example, Jupiter’s satellite Io) it can be
expected that only small amounts of electromagnetic
radiation are emitted in the course of the tidal deformation
process. However, for gravitational interactions of more
massive objects, especially when a body is torn apart by
tidal deformations or otherwise becomes unstable during
the interaction period (with the consequence that not only
the outer vacuum field of the body fluctuates, but also the
inner field, which can lead to the emission of non-
negligible amounts of electromagnetic radiation), this
can no longer be expected to be true, implying that the
Hartle-Thorne approximation can no longer be used and it
becomes necessary to consider integral relation (12) instead
of relation (23). For certain types of matter accumulations,
the structural changes in the gravitational source may even
cause mass energy to flow out of the system at sometimes
very high velocities (just think of relativistic jet flows in
accreting supermassive black holes). Such phenomena are
typically expected when bodies merge with each other; an
effect that, like tidal heating, is described in various places
in the literature based on the linearized approximation of
general relativity [20,27–32].
Now, all this has an interesting consequence; the

possibility of jointly measuring gravitational and electro-
magnetic radiation emitted during violent astrophysical
events such as those described above suggests that the
corrections calculated in the second part of the present
work can lead to actual observable effects. More specifi-
cally, when considering Eq. (16), it becomes clear that if the
Brown-York expression is to be a physically feasible
candidate for gravitational mass energy not only in theory,
but also in real life situations, there should be a shift in the
total intensity when electromagnetic and gravitational
radiation are emitted simultaneously from a gravitational
matter source. This effect should then be measurable.
Moreover, a comparable intensity shift should also occur
when GEM effects are measured.
To illustrate this, the mass-energy inflow through the

quasilocal surface of a spatially and temporally bounded
gravitating system caused by GEM fields shall be calcu-
lated next. Using for this purpose. a perturbative splitting
of the metric of the form (24) where the perturbation field

eab is used to define the trace-reversed gravitational
potential ψab ¼ eab − 1

2
ηabe, which is subject to the con-

ditions ∂aψab ¼ 0, jψ00j ≫ jψ jkj, and jψ0ij ≫ jψ jkj, one
finds that the linearized Einstein’s equations reduce to
the form

□ψab ¼ 16πTab: ð27Þ
Here, it can be assumed for simplicity’s sake that Tjk ¼ 0

for j; k ¼ 1, 2, 3 and therefore Sab applies. Moreover, it can
be assumed that sab ¼ 0.
By defining next the fields ψ00ðxÞ≡ 2ϕðxÞ and

ψ0kðxÞ≡ 2AkðxÞ, one finds that the linearized field equa-
tions read

□ϕ ¼ 16πε; □Ak ¼ 16πpk; ð28Þ
where k ¼ 1, 2, 3 shall apply in the present context. The
form of the solutions of these Poisson equations is

ϕðt; x⃗Þ ¼
Z

ϕðt − jx⃗ − y⃗j; y⃗Þ
jx⃗ − y⃗j d4y; ð29Þ

and

A⃗ðt; x⃗Þ ¼
Z

A⃗ðt − jx⃗ − y⃗j; y⃗Þ
jx⃗ − y⃗j d4y: ð30Þ

The resulting line element of the metric reads

ds2¼−ð1−2ϕÞdt2−4Akdtdxkþð1þ2ϕÞδjkdxjdxk ð31Þ

in Cartesian coordinates. The solutions obtained can be
used to define gravielectric and gravimagnetic field

strengths E⃗ ≔ 1
2
∇⃗ϕ and B⃗ ≔ ∇⃗ × A⃗, which in turn can

be used to set up the GEM pendants to the Maxwell
equations and the Lorentz force law, i.e., the following set
of relations

∇⃗ E⃗ ¼ 4πε; ð32Þ

∇⃗ B⃗ ¼ 0; ð33Þ

∇⃗ × E⃗ ¼ −∂tB⃗; ð34Þ

∇⃗ × B⃗ ¼ −4πp⃗þ ∂tE⃗; ð35Þ

and

F⃗ ¼ mðE⃗ þ 4v⃗ × B⃗Þ; ð36Þ

which have to be met for the sake of consistency.
By considering the fact that N ¼ ffiffiffiffiffi

gtt
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϕ
p

≈
1þ ϕ, one finds by neglecting higher-order terms that
Eq. (12) takes the form
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dE
dt

¼
Z
Σt

ð _ϕε − pk
_AkÞωh −

Z
Ωt

ðλ _ϕe − jk _A
k −XÞωq; ð37Þ

where ε ¼ 1
8π ðE⃗2 þ B⃗2Þ and pk ¼ 1

π ϵkijEiBj are the GEM
energy current density and the GEM Poynting vector,
and Ab ¼ qbcAc is the vector potential on the quasilocal
boundary surface. The crucial observation in this context is
that the second corrective part X2 of the integrand X is
different from zero. It reads

X2 ¼ −ληð1þ 2ϕÞεþ λ2ηð1þ 2ϕÞpkvk

þ ληð1þ ϕÞpkAk − ð1þ 2ϕÞpkuk: ð38Þ

Imagining now that the two-surface Ωt is a sphere at
infinity, it becomes clear that the corresponding integral
expression will also be different form zero, i.e.,

Z
Ωt≡S∞

X2ωq ≠ 0:

From this, however, it now follows that the quasilocal
treatment of GEM effects requires consideration of the
corrections resulting from the time derivative of the Brown-
York mass given in the second section of this paper. Similar
corrections should also arise, as mentioned earlier, when
gravitational and electromagnetic radiation from a strongly
gravitating matter source are measured cooperatively, since
also in such a case a nonvanishing bulk-to-boundary energy
inflow term should arise, and hence corrections to
Einstein’s quadrupole formula. The reason for this is that
in both cases Einstein’s field equations are satisfied for a
nonvanishing matter source, which is why the correction
terms resulting from the time derivative of the total
quasilocal gravitational Hamiltonian cannot be neglected
in either case.
From a practical point of view, the calculated corrections

should manifest themselves in the form of a shift in the
intensity of the measured radiation. It is therefore to be
expected that the presence of a corresponding detectable
intensity shift of incoming gravitational and electromag-
netic radiation could provide a practical test of the utility
and feasibility of the Brown-York expression as a reason-
able candidate for the mass energy of the gravitational field.

V. CONCLUSION

In the present work, previous results by Booth and
Creighton on quasilocal tidal heating were extended in that
the mass-energy transfer through the quasilocal surface was
calculated in a different manner, namely by varying the
total gravitational Hamiltonian (bulk plus boundary parts)
and not only the boundary part. As it turned out, all the
results obtained are fully compatible with those of Booth
and Creighton’s work if it is assumed that the vacuum field
equations of the theory are satisfied (as the authors actually
did in their work). If this is not the case, however, as was
shown, correction terms resulting from the time derivative
of the Brown-York mass must be taken into account, one of
which specifies how mass flows from the bulk into the
boundary. To demonstrate the feasibility of the results
obtained, their applicability to the geometric setting con-
sidered in Booth and Creighton’s work on quasilocal tidal
heating was demonstrated in the third section of the work
and a comparatively simple geometric example was treated,
namely, the mass-energy inflow through the quasilocal
surface of a spatially and temporally bounded gravitating
system caused by GEM fields. This simple example was
used to show that the matter content of a spatially and
temporally bounded gravitating system can change with
time such that mass-energy flows through the quasilocal
surface and thereby escapes from the system. From this
insight, it was concluded that the obtained results can be
used to describe tidal deformation and tidal heating effects
in more challenging physical situations, such as in the
description of accretion phenomena or merger processes in
relativistic N-body systems.
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