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We study the nonlinear evolution of the spherical symmetric charged black holes under a small neutral
scalar field perturbation in Einstein-Maxwell-dilaton theory with coupling function fðϕÞ ¼ e−bϕ in
asymptotic anti–de Sitter spacetime. The nonminimal coupling between scalar and Maxwell fields allows
the transmission of the energy from the Maxwell field to the scalar field, but also behaves as a repulsive
force for the scalar. The scalar field oscillates with damping amplitude and converges to a final value. The
irreducible mass of the black hole increases abruptly at initial times and then saturates to the final value
exponentially. The saturating rate is twice the decaying rate of the dominant mode of the scalar. The effects
of the black hole charge, the cosmological constant, and the coupling parameter on the evolution are
studied in detail. When the initial configuration is a naked singularity spacetime with a large charge to mass
ratio, a horizon will form soon and hide the singularity.
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I. INTRODUCTION

The famous no-hair theorem in Einstein-Maxwell theory
and its generalization in scalar-tensor theory shows that a
black hole can be completely characterized by 3 degrees of
freedom: its mass, charge, and angular momentum [1–7].
However, there are exceptions to the rule as well. In
gravitational theories beyond general relativity (GR) the
dilatonic and colored black holes in the Einstein-dilaton-
Gauss-Bonnet theory [8,9] and the rotating [10–12] or
higher-dimensional [13–18] or shift-symmetric Galileon
[19–21] hairy black hole solutions circumvent the no-hair
theorem. Even GR with certain matter sources could evade
the no-hair theorem, such as black hole solutions with
a Yang-Mills field [22–25], Skyrme field [26,27], and a
conformally coupled scalar field [28]. Recently, as a
dynamic mechanism leading to hairy black hole solutions
under the frame of GR, spontaneous scalarization has
attracted much attention. It was initially proposed in the
study of the neutron star and also happens when black holes
are surrounded by enough matter in scalar-tensor theory
[29–33]. Recent studies show that spontaneous scalariza-
tion could exist typically in the models containing non-
minimal coupling of a real scalar field to the source terms

which could be either the geometric invariant sources such
as the Ricci scalar, Gauss-Bonnet, Chern-Simons invariant
[34–46], or the matter invariant sources such as the
Maxwell invariant in Einstein-Maxwell-scalar (EMS)
theory [47–53] and the Einstein-Maxwell-vector model
[54]. The successful observation of gravitational waves
[55,56] and the black hole shadow [57–59] have pushed
the research and theoretical detection of black holes into a new
era providing a newwindow to test the characteristics of black
holes. Thus it is necessary to carefully study the physics on
hairy black holes such as metrics, the dynamic process of
formation and evolution, and use the observation to test no-
hair theorem or constraint the families of black holes [60,61].
As a natural and simple generalization of the Einstein-

Maxwell theory, the Einstein-Maxwell-dilaton (EMD)
theory occurs in the context of Kaluza-Klein theories in
which the scalar field describes how the extra dimensions
dilate along the four-dimensional spacetime [62] It also
originates from the low-energy limit of string theory and is
ubiquitous in supergravity [63]. The dilaton couples to the
Maxwell term nonminimally and prevents the Reissner-
Nordström (RN) solution in EMD theory. Instead, only
dilatonic black hole solutions exist that present some RN-
unlike features such as that the black hole charge to mass
ratio can exceed unity [64–66]. The solutions here have
mass, charge, rotation, and scalar hair, together with scalar,
vector, and tensor radiative channels, and therefore offer an
interesting theoretical and computational playground to
explore possible deviations from the general relativity
prediction.
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The mathematical structure of the EMD model allows
for defining a well posed initial value problem rather than
those in the extended scalar-tensor-Gauss-Bonnet models
[67–72]. In asymptotic flat spacetime for EMD theory, the
black hole endowed with a potential emerging from low-
energy heterotic string theory was found nonlinearly stable
under perturbations [73]. The dynamical evolution of
individual black holes, as well as the merger of binary
black hole systems, was analyzed in [74]. Hirschmann et al.
found that the black hole systems are difficult to distinguish
from their analogs within general relativity when the charge
is relatively small. The dynamics in EMSmodels with more
generic nonminimally coupling functions are also of
interest, especially from the viewpoint of spontaneous
scalarization. Here the RN black hole is a solution
but unstable against scalar perturbations for a sufficiently
large charge to mass ratio. The scalar hairy black
hole solution is energetically and dynamically favored
[47,53,75].
In this paper, we will study the evolution of spherically

symmetric charged black holes in anti–de Sitter (AdS)
spacetime in EMD theory. It is known that the cosmological
constant can significantly affect the scalarization of the
black hole [32]. The regular hairy black hole solutions
exist in all asymptotic flat, de Sitter (dS), and AdS
spacetime in EMS models [48,76,77]. While in the
extended scalar-tensor-Gauss-Bonnet model, they exist
only in asymptotic flat and AdS spacetime [78]. The
positive cosmological constant can quench the tachyonic
instability. While the dynamically and thermodynamically
stable scalarized black holes can exist in EMD theory [73].
Therefore, it is necessary to study the full nonlinear
dynamical evolution of the black holes in asymptotic
AdS spacetime in EMD theory and compare the results
with those in asymptotic flat spacetime. Note that the
dynamics in AdS spacetime is qualitatively different from
those in asymptotic flat spacetime since the scalar modes
can propagate to the spacial boundary in finite coordinate
time and be bounced back. The studies in asymptotic AdS
spacetime cannot be naively generalized to the case of
asymptotically flat spacetime since their boundary behav-
iors are distinct.
This paper is organized as follows. In Sec. II, we

introduce the equations of motions and boundary behaviors
of the variables in EMD theory. In Sec. III, we demonstrate
the numerical results, where the effects of the coupling
function parameter b (III A), the charge (III B), and the
cosmological constant (III C) on the dynamical scalariza-
tion are studied in detail. Section IV gives the summary and
discussion.

II. EINSTEIN-MAXWELL-DILATON THEORY

The action of Einstein-Maxwell-dilaton theory in AdS
spacetime in this work is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λ − 2∇μϕ∇μϕ − e−bϕFμνFμν�:

ð1Þ

The cosmological constant Λ is negative for asymptotic
AdS spacetime. R is the Ricci scalar of the metric gμν. The
Maxwell field strength is Fμν ¼ ∂μAν − ∂νAμ in which Aμ

is the gauge field. The coupling function between the real
dilaton ϕ and gauge field is fðϕÞ ¼ e−bϕ in which the
parameter b is a constant. Note that the action is invariant
under the Z2 symmetry ðb;ϕÞ → −ðb;ϕÞ. Hereafter, we
keep −b > 0 in this paper without loss of generality. The
dilatonic coupling function appears in Kaluza-Klein mod-
els, supergravity, or low-energy string models. Some of the
exact solutions in asymptotic flat spacetime are obtained
in [64,65].
The equations of motion are

Rμν −
1

2
Rgμν þ Λgμν ¼ 2

�
∂μϕ∂νϕ −

1

2
gμν∇ρϕ∇ρϕ

þ e−bϕ
�
FμρFν

ρ −
1

4
gμνFρσFρσ

��
;

ð2Þ

∇μ∇μϕ ¼ −
b
4
e−bϕFμνFμν; ð3Þ

∇μðfðϕÞFμνÞ ¼ 0: ð4Þ

It is obvious that ϕ ¼ 0 will not be a solution of Eq. (3)
unless Aμ ¼ 0 and thus the RN-AdS black hole is not a
solution of EMD theory. However, when ϕ is very small,
one could obtain a solution that is very close to the RN-AdS
black hole. This solution is unstable and a stable black hole
with nontrivial scalar hair will form at the end. Our
numerical simulation studies this nonlinear dynamic proc-
ess in detail. To implement the simulation, we take the
ingoing Eddington-Finkelstein coordinate ansatz

ds2¼−αðt;rÞdt2þ2dtdrþζðt;rÞ2ðdθ2þsin2θdϕ2Þ: ð5Þ

The coordinate is regular on the black hole apparent
horizon which is defined by

0 ¼ gab∂aζ∂bζ: ð6Þ

Here indices a; b ∈ ft; rg. Once we get the apparent
horizon ra, we can get the irreducible mass of the black

hole M0 ¼
ffiffiffiffi
A
4π

q
¼ ζðt; raÞ in which A ¼ 4πζ2ðt; raÞ is the

area of the black hole. As the black hole area does not
decrease, we will see that the irreducible mass of the black
hole will not decrease in the evolution. On the other hand,
we will study the rescaled Misner-Sharp mass defined as
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MMS ¼ m
4π in which the generalized Misner-Sharp quasi-

local mass is defined by [79]

m ¼ 2πζ

�
−
Λ
3
ζ2 þ 1 − gab∂aζ∂bζ

�
: ð7Þ

The rescaled Misner-Sharp mass tends to the ADMmass of
the spacetime as r → ∞.
We also require the gauge potential Aμdxμ ¼ Aðt; rÞdt

and the dilaton ϕ ¼ ϕðt; rÞ. With these choices, the
Maxwell field can be worked out as

∂rA ¼ Q
ζ2fðϕÞ ; ð8Þ

in whichQ is a constant interpreted as the electric charge of
the black hole. Equation (8) indicates the strength of the
Maxwell field. The coupling function fðϕÞ acts as an
effective dielectric that varies the strength. To implement
the numerics, we introduce auxiliary variables

S ¼ ∂tζ þ
1

2
α∂rζ; P ¼ ∂tϕþ 1

2
α∂rϕ: ð9Þ

Then the Einstein equations become

∂tS ¼ 1

2
S∂rαþ α

2

�
2S∂rζ − 1

2ζ
þ 1

2
ζΛþ Q2

2ζ3fðϕÞ
�
− ζP2;

ð10Þ

∂2
rα ¼ −4P∂rϕþ 4S∂rζ − 2

ζ2
þ 4Q2

ζ4fðϕÞ ; ð11Þ

∂rS ¼ 1 − 2S∂rζ

2ζ
−
ζΛ
2

−
Q2

2ζ3fðϕÞ ; ð12Þ

∂2
rζ ¼ −ζð∂rϕÞ2: ð13Þ

The scalar equation becomes

P0 ¼ −
Pζ0 þ Sϕ0

ζ
−

Q2

4ζ4fðϕÞ2
dfðϕÞ
dϕ

: ð14Þ

Given an initial ϕ, we can integrate Eqs. (11), (12), (13),
and (14) to get α, S, ζ, P at the initial time. Then from
Eq. (9) we get the ϕ at the next time step. Equation (10) is
redundant and can be used to check the accuracy of the
numerical code. To solve these equations numerically, we
need to specify boundary conditions. Expanding the
variables in the asymptotic infinity, we get the asymptotic
solutions

ϕ ¼ ϕ3ðtÞ
r3

þ 3

8Λr4
ð−bQ2 − 8ϕ0

3ðtÞÞ þOðr−5Þ; ð15Þ

α ¼ −
Λ
3
r2 þ 1 −

2M
r

þQ2

r2
þ Λ
5r4

ϕ2
3ðtÞ þOðr−5Þ; ð16Þ

ζ ¼ r−
3ϕ2

3ðtÞ
10r5

þ 3ϕ3ðtÞ
14Λr6

ð−bQ2 − 8ϕ0
3ðtÞÞ þOðr−7Þ; ð17Þ

S ¼ −
Λ
6
r2 þ 1

2
−
M
r
þ Q2

2r2
−

3Λ
20r4

ϕ2
3ðtÞ þOðr−5Þ; ð18Þ

P¼Λϕ3ðtÞ
2r2

þ 1

r3

�
−bQ2

4
−ϕ0

3ðtÞ
�
þ 3

2Λr4
ϕ00
3ðtÞþOðr−5Þ;

ð19Þ

in which ϕ0
3ðtÞ ¼ dϕ3ðtÞ

dt . The free parameters of the asymp-
totic solution are the Arnowitt-Deser-Misner (ADM) mass
M and charge Q of the black hole, and the cosmological
constant Λ. Function ϕ3ðtÞ is unknown and should be
determined by evolution. In the static case, ϕ3 can be
viewed as the parameter indicating the existence of the
scalar hair. Note that we have set ζ − r ¼ 0 as r → ∞ by
fixing the residual radial reparametrization freedom [80].
Some variables such as ζ, α, and S are divergent at infinity.
We introduce the following new variables to do the
numerical calculation:

ζ≡ rσ; α≡ r2a; S≡ r2s; P≡ 1

r
p: ð20Þ

In asymptotic AdS spacetime, the scalar perturbation can
reach the infinity in finite coordinate time and be bounced
back to the bulk. We must include the infinity in the
computational domain. We thus compactify the radial
direction by a coordinate transformation:

z ¼ r
rþM

: ð21Þ

The computation domain in the z coordinate is then ðz0; 1Þ
where z0 corresponds to some radius r0 which is close to
the black hole horizon from inside and z ¼ 1 corresponds
to radial infinity. Now the boundary conditions at z ¼ 1 are

σ ¼ 1; σ0 ¼ 0; s ¼ −
Λ
6
;

s0 ¼ 0; s00 ¼ 6ðM − 1Þ; ð22Þ

p¼ 0; a¼−
Λ
3
; a0 ¼ 0; a00 ¼ 12ðM−1Þ: ð23Þ

The z direction is uniformly discretized. Equations (11),
(13), and (14) are discretized with a fourth-order finite
difference while Eq. (12) is discretized with a second-order
finite difference. The time direction marches with fourth-
order Runge-Kutta method. We employ Kreiss-Oliger
dissipation to stabilize the numerical evolution.
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III. NUMERICAL RESULTS

The free parameter of the system is the black hole
chargeQ, ADM massM, and the cosmological constant Λ.
We take the initial dilaton profile as

ϕ0 ¼ κe−
ðr−4rhÞ2

w2 or

ϕ0 ¼
� ð1r− 1

r1
Þ3ð1r− 1

r2
Þ3 κ1þκ2 sin

10
r

r2 ; r1 < r < r2;

0; r ≤ r1 or r ≥ r2:
ð24Þ

Here, κ < 10−9 and width w ¼ 1.8rh where rh is the
horizon radius of the initial black hole. Initial parameters
fr1; r2g ¼ f2rh; 3rhg, and κ1, κ2 are of order 10−2 so that
the initial scalar field is of order 10−10 and negligible
compared to the initial black hole. Hereafter, we fixM ¼ 1
in this paper to implement the dimension-lessness of the
physical quantities.
We show the sketches of the very early time evolutions of

metric α and scalar ϕ in Fig. 1. For small −Λ, the extremal
charge of the initial extremal black hole is about
Qe ≃M ¼ 1. When Q < Qe, the initial configuration is
a black hole spacetime. Part of the energy of the Maxwell
field is transferred to the scalar field due to their non-
minimal coupling. The scalar field grows rapidly and is
captured by the black hole. So the scalar decreases

monotonically in the radial direction and the radius of
the apparent horizon increases with time.
When Q > Qe, the initial solution we could obtain is a

spacetime with naked singularity. Surprisingly, we find that
our numerical codes work well with the initial condition

ϕ0 ¼ κexp
−ðr−4MÞ2

ð1.8MÞ2 when Q is greater than Qe but not too
large. As shown in the right panels of Fig. 1, the initial
configuration is a spacetime with naked singularity. But a
horizon forms soon and hides the singularity, resulting in a
regular spacetime geometry outside the horizon. In fact,
since there is no well-defined initial value problem for the
naked singularity, we cannot do the simulation straight-
forwardly for the whole space region. Instead, we only
evolve the region ranging from a cutoff r0 to the infinity.
Due to the divergence near the central singularity, the cutoff
cannot be too small. In fact, from the metric ansatz we
know that the light signal propagates with dr

dt ¼ α
2
. In Fig. 1,

the cutoff locates at r0 ≃ 0.8 and the initial metric function
at r0 is αðr0Þ ≃ 0.6. It takes Δt ≃ 0.04 when the apparent
horizon forms (see the sixth line from the top for example
in the upper right panel of Fig. 1). So the influence region
of the initial information at the cutoff is at most

r0 þ Δr ≤ r0 þ αðr0Þ
2

Δt ≃ 0.812. However, the apparent
horizon is now located at ra ≃ 0.92. So the information
at the cutoff will not affect the region beyond the apparent

FIG. 1. Sketches of the very early time evolutions (from t ¼ 0 to t ¼ 0.27) of metric α and scalar ϕ starting from an initial black hole
(left panels) or a naked singularity (right panels) spacetime. The blue line corresponds to the initial case. The time step between adjacent
lines is Δt ≃ 0.0081.
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horizon when a black hole forms. We indeed obtain a stable
numerical simulation. A scalarized black hole withQ > Qe
forms at the end.

A. Effects of coupling parameter b on the
dynamical scalarisation

In this subsection, we fix Λ ¼ 0.03 and choose certainQ
to study the effects of coupling parameter b on the
dynamical scalarization. Since ϕ3 can be viewed as an
indicator of the scalar hair, we show the final value ϕf of ϕ3

in the left panel of Fig. 2. The ϕf increases with both −b
and Q. Unlike the case in the EMS model where the static
hairy black hole solution exists only when −b and Q are
large enough [77], there is always a static hairy black hole
solution here whenQ < Qe. This is reasonable since only a
hairy black hole solution exists in EMD theory. The initial
RN-AdS black hole solution is dressed with scalar hair
soon after the evolution. As the nonminimal coupling
between the scalar field and the Maxwell field becomes
stronger, the black hole will be dressed heavier. When
Q > Qe, our numerical codes work well only if −b is large.
This implies that the weak nonminimal coupling between
the scalar field and the Maxwell field cannot destroy the
original naked RN-AdS-like singularity. Only when the
coupling is strong enough would the original naked
singularity be destroyed, and the hairy black hole solution
gradually develops.
We show the Misner-Sharp mass and the scalar profile at

late equilibrium time in the upper panels of Fig. 3. The
Misner-Sharp mass tends to the ADM mass M ¼ 1 as the
radius tends to infinity. For small values of −b, the
distribution of MMS is close to that of the corresponding
RN-AdS black hole. For large values of −b, MMS is
constant to a relatively large radial distance. At a larger
radius, the radial dependence arises due to the presence of
the scalar fields. We show the rescaled scalar field r2ϕ
which resembles the energy of the scalar in the spherical
shell in the lower panels of Fig. 3. The peak moves farther

away from the black hole1 for larger −b. In order to better
understand the move of peak with −b, we can consider the
behavior of scalar field perturbation at a certain fixed −b
and analyze the potential felt by the scalar field perturba-
tion. Specifically, it can be seen from Eq. (3) that the scalar
field perturbation satisfies

∇μ∇μδϕ ¼ Vδϕ; ð25Þ

with the effective potential V ≡ b2e−bϕFμνFμν. Since ϕ
decreases along the r direction, e−bϕ will be a rapidly
decreasing function along r, forming a steep potential near
the horizon. When increasing −b, the effective potential
becomes steeper and drives the peak of r2δϕ away from the
horizon. Combining our analysis for Fig. 1, we conclude
that the nonminimal coupling between the scalar and the
Maxwell field plays two competing roles. On the one hand,
it transfers the energy of theMaxwell field to the scalar. The
scalar grows and is trapped by the black hole. On the other
hand, it behaves as an effective repulsive force that drives
the scalar away from the black hole. This is clear when one
compares the left panel of Fig. 2 and bottom panels of
Fig. 3. The ϕf at infinity increases monotonically with −b,
indicating that more energy is transferred to the scalar. But
the scalar value at the black hole horizon increases at first
and then decreases with−b due to the repulsive effect of the
nonminimal coupling.
Now we show the evolution of ln jϕ3 − ϕfj in the upper

panels of Fig. 4. It resembles the behavior of quasinormal
mode. The early time behavior of ϕ3 is closely related to the
initial perturbation. Then it oscillates with damping ampli-
tude and converges to the final value ϕf. Using the Prony
method [81], we worked out the complex frequencies of
the dominant damping modes shown in the lower panels of
Fig. 4. The imaginary part ωI increases at first and then
decreases with −b, indicating that the black hole with

FIG. 2. The final value ϕf of ϕ3 for various b whenQ is fixed (left panel), and for variousQ when b is fixed (right panel). Note that in
the left panel, regular hairy black hole solutions from the evolution of initial naked RN-AdS-like singularity spacetimes exist for
−b > 4.5 when Q ¼ 1.2. In the right panel regular hairy black holes exist for Q < 2, 3, 4 when −b ¼ 20, 50, 150, respectively.
Here Λ ¼ −0.03.

1Note that the scalar ϕ itself decreases with r monotonically.
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FIG. 4. The evolution of ϕ3 (upper panels) and the dominant damping modes of ϕ3 vs b (lower panels). Here Λ ¼ −0.03.

FIG. 3. The Misner-Sharp mass (upper panels) and rescaled scalar profile r2ϕ (lower panels) of the final hairy black holes when
Q ¼ 0.9 (left panels) and 0.3 (right panels) for various b. The dashed lines in the upper panels correspond to the Misner-Sharp mass of
the RN-AdS black hole with Q ¼ 0.9 and Q ¼ 0.3, respectively. Here Λ ¼ −0.03.
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intermediate nonminimal coupling needs more time to
settle down. This can be explained by the two competing
roles −b plays. When −b is small, the energy is transferred
from the Maxwell field to the scalar. The scalar is caught by
the black hole and the initial RN-AdS black hole is
destroyed, gradually developing into a hairy black hole
solution. But now, the repulsive effect is weak such that the
system takes a shorter time to settle down. As −b increases,
the initial RN-AdS black hole is also destroyed, but the
repulsive effect becomes strong. The competition between
the gravitational attraction and the repulsive effect makes
the system needs more time to settle down. As −b increases
further, the repulsive effect dominates and makes the
system settles down more easily. The real part ωR increases
monotonically with −b, indicating that the energy transfers
faster to the scalar with stronger nonminimal coupling.
To more vividly demonstrate how each component mode

evolves, we show the evolution of the amplitudes of
each component mode in Fig. 5. These are calculated by
partitioning the time axis into many overlapping

subintervals with an appropriate offset and performing
discrete Fourier transformation on each of these subinterv-
als [82]. We see that all modes decay at late times except the
zero mode. The oscillating frequency and decaying rate of
the dominant decaying mode are consistent with the ωR and
ωI from the Prony method. From left to right in Fig. 5 are
cases for −b ¼ 1, 30, 200, respectively. The real part of the
frequency of the dominant decaying mode increases for
larger −b and the energy of the scalar increases faster as −b
increases. This is consistent with our analysis for the
bottom right panel of Fig. 4. We also find that the dominant
decaying mode takes a longer time to decay at the
intermediate value of −b. This is in accordance with the
convex behavior of ωI with −b.
Now, we study the evolution of the irreducible mass of

the black hole, which is shown in Fig. 6. At early times, the
irreducible mass increases abruptly. This is different from
the case in the EMS model where the irreducible mass
changes little at early times [77]. The RN-AdS black hole
solves the EMS theory, the instability of this solution

FIG. 5. The evolution of the logarithm of amplitude ln jϕ̂3ðtÞj of discrete Fourier transformation of ϕ3ðtÞ for b ¼ −1 (left panel),
b ¼ −30 (middle panel), and b ¼ −200 (right panel) when Q ¼ 0.9. Here Λ ¼ −0.03.

FIG. 6. The evolution of irreducible mass M0 (upper panels) and lnðMf −M0Þ (lower panels) of the black hole for various b when
Q ¼ 0.3, 0.6, and 0.9. Here Mf is the final value of the irreducible mass of the black hole. Here Λ ¼ −0.03.
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triggered by the scalar field is local and it costs time for the
scalar perturbation traveling from the initial position to the
horizon. Only when the scalar perturbation arrives at
the horizon does the black hole begin to grow. However,
for the EMD theory, the RN-AdS black hole metric does
not solve the model, from the very beginning of the process
of evolution the energy outside the horizon is redistributed
everywhere, and some of it is swallowed by the central
black hole.
At late times, the irreducible mass saturates to the final

value Mf with behavior

M0ðtÞ ≃Mf − e−γftþcf : ð26Þ

This is similar to the case in the EMSmodel at late times. γf
is the saturating rate and depends on −b. Note that the
irreducible mass does not decrease here. The increment of
the black hole irreducible mass Mf −Mi is shown in the
left panel of Fig. 7. HereMi is the initial irreducible mass of
the black hole. When Q is small, Mf −Mi increases
monotonically as a function of −b. When Q becomes
large, Mf −Mi is no longer a monotonic increasing
function of −b. Instead, it increases at first and then
decreases as −b increases. For the model with a large
Q, the strength of the effective repulsive force from the
Maxwell field affecting the scalar field increase fast and
balance the black hole’s attractive force thus suppressing
the energy flux from outside to inside of the horizon.
The saturating rate γf is shown in Fig. 7. When Q is

small, γf decreases almost monotonically with −b. When
Q is large, γf decreases at first and then increases with −b.
The irreducible mass saturates faster when −b is small or
large enough. This is consistent with Fig. 4. An interesting
fact we find is that at late times, there is

γf ¼ −2ωI; ð27Þ

which can be obtained by comparing the γf in Fig. 7 and ωI

in Fig. 4. In fact, the irreducible mass is nothing but the
value of ζ at the horizon. Hence the late time evolution of

the irreducible mass can be deduced from the evolution of
ζ. It is known that the perturbation of the scalar field
invokes the backreaction of the metric only at the second
order [83]. Namely, there is

δζ ∼ ðδϕÞ2 þ � � � ; ð28Þ

where “� � �” represents other possible perturbations.
Therefore, the saturating rate −γf of the δζ should be
twice that of ωI . This relation holds also in the EMS
theory [77].

B. Effects of charge Q on the dynamic scalarization

In this subsection, we fix Λ ¼ 0.03 and choose certain b
to study the effects of charge Q on the dynamic scalariza-
tion. The final value ϕf of ϕ3 is shown in the right panel of
Fig. 2. There is always a hairy black hole solution when Q
is nonvanishing. The scalar hair increases monotonically
with both Q and −b. Note that our numerical evolution
codes crash for Q > 2, 3, 4 when −b ¼ 20, 50, 150,
respectively. This implies that the charge to mass ratio of
the regular hairy black hole solution cannot be too
large [65].
The evolution of ϕ3 still resembles the behavior of the

quasinormal mode. All the modes damp exponentially
except the zero modes. The frequencies of the dominant
modes are shown in Fig. 8. The real part increases
monotonically with Q and −b. The imaginary part
increases monotonically with Q only when −b is small.
For large −b, it increases with small Q at first, then it
decreases with intermediate Q, and then increases with
large Q. In fact, when −b is fixed, the strength of the
nonminimal coupling is controlled by charge. When Q is
small, the energy of the Maxwell field is transferred to the
scalar but the repulsive effect is small, resulting in a hairy
black hole solution in a relatively short time. As Q
increases, the repulsive effects of the nonminimal coupling
become stronger and its competition between the gravita-
tional attraction makes the system need more time to
settle down.

FIG. 7. The increment of the black hole irreducible massMf −Mi (left panel) and saturating rate γf (right panel) for various bwhenQ
is fixed. Here Λ ¼ −0.03.
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The irreducible mass M0 of the black hole still increases
abruptly at early times, and then saturates to the final value
exponentially. The left panel of Fig. 9 shows2 that the
increment of the irreducible mass Mf −Mi increases
monotonically with Q. The right panel shows that the rate
γf decreases with Q when −b is small. For large −b, the
rate decreases with small Q at first and then increases with
intermediateQ and then decreases again with largeQwhen
−b is large. When the coupling parameter −b is small, it
takes a shorter time to settle down for systems with small
Q. This is consistent with the results from the imaginary
part of the frequencies of the dominant modes in the left
panel of Fig. 8 and there is still γf ¼ −2ωI at late times.

C. Effects of the cosmological constant
Λ on the black hole evolution

In this subsection, we fix Q ¼ 0.6 and choose b ¼ −20
and −150 to study the effects of Λ on the black hole
evolution. The AdS space looks like a potential well.

The larger the −Λ is, the deeper and narrower the potential
well. Less energy of the Maxwell field is transferred to the
scalar field. So the final value ϕf decreases with −Λ in
the left panel of Fig. 10. On the other hand, we find that the
final value ϕf ∝ Λ−1 as Λ → 0. This implies that the
asymptotic solution in AdS spacetime cannot be general-
ized straightforwardly to the asymptotic flat spacetime. In
fact, the asymptotic expansion of the scalar field behaves as
ϕ ∼ cþ ϕ1=rþOðr−2Þ in asymptotic flat spacetime. The
boundary condition should be changed to do the numerical
calculations in asymptotic flat spacetime.
The complex frequencies of the dominant damping

modes of ϕ3 are shown in the middle and right panels
of Fig. 10. Both the imaginary part of the frequency ωI and
the real part ωR tend to zero as Λ → 0. In AdS space, the
smaller the cosmological constant, the flatter the potential
well and the smaller the oscillating frequency of the scalar.
The scalar needs more time to traverse the space and the
system needs much more time to settle down when −Λ is
very small. As −Λ increases, ωI decreases and ωR
increases. The system oscillates faster and damps faster.
Note that unlike the case for the EMS model, there is
always a hairy black hole solution for large −Λ.

FIG. 8. The imaginary and real part of the frequencies of the dominant damping modes of ϕ3 vs Q when b ¼ −150;−50, and −20.
Here Λ ¼ −0.03.

FIG. 9. The increment of irreducible mass of the black hole and the saturating rate for various Q when b ¼ −50 and −20. Here
Λ ¼ −0.03.

2We only show the increment when Q < 1 since when Q > 1,
the initial configuration is a naked singularity and there is no
corresponding Mi.
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The increment of the irreducible mass of the black hole is
shown in the left panel of Fig. 11. At initial times, M0

increases abruptly and then increases as Eq. (26) at late
times. The increment of the irreducible mass is larger for
smaller −Λ, due to the relatively flat potential well which
can accumulate more energy of the scalar that draws from
the Maxwell field. The saturating rate γf of the irreducible
mass increases as −Λ increases. This means that the system
settles down faster as −Λ increases.

IV. SUMMARY AND DISCUSSION

We studied the fully nonlinear evolution of the spherical
symmetric black holes under a small neutral scalar field
perturbation in EMD theory. The equation of motion of the
gauge field has no source and can be worked out directly.
The free parameters are the black hole charge Q, the
cosmological constant Λ, the coupling parameter −b, and
the ADM mass of the system. The scalar hair can be
represented by the coefficient ϕ3 of order Oðr−3Þ in the
expansion near infinity, which is determined by the
evolution. We fixed the ADM mass M ¼ 1 to implement
the dimension-lessness of the physical quantities.
We first studied the distribution of Misner-Sharp mass at

late equilibrium time. It is constant to a relatively large
radial distance, indicating that the scalar hair lies far away

from the black hole for large coupling parameters. Then we
show the final value of ϕ3. It increases monotonically with
both the black hole charge and the coupling parameter.
Unlike the case in the EMS model where the static hairy
black hole solution exists only when −b and Q are large
enough, there is always a static hairy black hole solution
here. The evolution of ϕ3 resembles the quasinormal mode.
The early time behavior of ϕ3 is closely related to the initial
perturbation. Then it oscillates with damping amplitude and
converges to the final value. The decaying rate of the
dominant decaying mode increases at first and then
decreases with −b. The irreducible mass of the black hole
increases abruptly at initial times and then saturates to the
final value exponentially. The saturating rate at late times
is twice the decaying rate of the dominant mode of ϕ3.
The system needs more time to settle down when −b is
intermediate. Note that we also simulated the evolution of
singularity spacetōīime with a large charge to mass ratio.
A horizon forms soon and hides the singularity, leaving a
regular spacetime geometry outside the horizon.
We also studied the effects of the cosmological constant

Λ on evolution. As Λ → 0, the final value of ϕ3 is
proportional to Λ−1. The boundary condition should be
changed when one implements a numerical simulation in
asymptotic flat spacetime. As Λ → 0, both the complex
frequency of the dominant mode and the saturating rate of

FIG. 10. The behavior of ϕf (left), the imaginary part (middle), and the real part (right) of the dominant damping modes of ϕ3 along
the parameter −Λ.

FIG. 11. The increment of the irreducible mass Mf −Mi (left), and the growth rates γf for various Λ when Q ¼ 0.6; b ¼ −20.
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the irreducible mass tend to zero. The system needs
much more time to settle down for a small cosmological
constant.
A natural generalization of this work is to study the

evolution of black holes in asymptotic flat and dS space-
time. The boundary condition is different in that there is not
an effective potential barrier at infinity that could bounce
the matter back to the bulk [84,85]. Another interesting
problem is to study the gravitational collapse or evolution
of the black hole with a complex scalar field. The dynamics
would be more rich and interesting [80,82,86–88].
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