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We investigate the retrolensing of sunlight reflected by a photon sphere and by a potential barrier near an
antiphoton sphere around a Reissner-Nordström naked singularity. We apply the deflection angles of the
light rays in strong deflection limits to the retrolensing. We show that the retrolensing by the photon sphere
around the Reissner-Nordström naked singularity can be brighter than the one around a Reissner-
Nordström black hole because of the rays reflected by the potential barrier.
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I. INTRODUCTION

Gravitational lensing with a small deflection angle α ≪
1 has been investigated eagerly for finding dark and
massive objects such as dark matters and extrasolar planets
[1]. On the other hand, the images of light rays with a large
deflection angle α > 1 in a strong gravitational field have
been considered intermittently. In 1931 [2], Hagihara
pointed out that an observer can see light rays reflected
by a photon sphere, which is a sphere made of unstable
circular light orbits, and Darwin [3] and several authors
revisited the images [4–25]. Phenomena related to the
photon sphere are more significant than before; gravita-
tional waves emitted by black hole binaries have been
reported by LIGO and Virgo Collaborations [26] and
a shadow at the center of a giant elliptical galaxy M87
has been detected by the Event Horizon Telescope
Collaboration [27]. Theoretical and observational aspects
of the photon sphere and an antiphoton sphere—which
which is a sphere made of stable circular light orbits1—
have been investigated [31–37]. The generalizations or
alternative surfaces of the photon sphere have been also
suggested by several researchers [24,38].
In 2002, Bozza [12] investigated the gravitational lens-

ing of the light rays reflected by the photon sphere in a
general asymptotically-flat, static, and spherical symmetric
spacetime in a strong deflection limit b → bm þ 0, where b
is the impact parameter of the light and bm is its critical
impact parameter. The deflection angle of the light ray is
expressed by
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where ā and b̄ are determined by the metric of the
spacetime.2 The gravitational lensing in the strong deflec-
tion limit has been investigated in many aspects, and the
details of its analysis have been studied [17–22,39–57].
In 2019, Shaikh et al. [19] investigated the gravitational

lensing of rays which pass through a photon sphere and
which are reflected by a potential barrier near an antiphoton
sphere in a general asymptotically-flat, static and spherical
symmetric spacetime without an event horizon. The deflec-
tion angle in a strong deflection limit b → bm − 0 is
expressed by
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where c̄ and d̄ are calculated from the metric of the
spacetime.3

Compact objects in nature would not have a large
amount of an electric charge since the charged compact
objects are neutralized quickly. However, in general rela-
tivity, the Reissner-Nordström spacetime is often consid-
ered as a toy model of a compact object since its property
would be similar to other spacetimes, such as a Hayward

*tsukamoto@rikkyo.ac.jp
1It is of concern that the antiphoton sphere may lead to

instability of compact objects because of the slow decay of linear
waves [28–30].

2In Ref. [12], the order of the vanishing term in the deflection
angle in the strong deflection limit is considered as Oðb − bmÞ
but we should read the order asOððb=bm − 1Þ log ðb=bm − 1ÞÞ as
shown in Refs. [39–41].

3We can approximate b2m=b2−1∼2ðbm=b−1Þ∼2ð1−b=bmÞ,
but we keep the form of Eq. (1.2) as well as Ref. [19].
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spacetime [58], and since we might treat it analytically.
A shadow [27,59–63], time delay of rays [64], and
gravitational lensing [65,66] in the Reissner-Nordström
spacetime have been investigated.
Eiroa et al. have considered the deflection angle in the

strong defection limit r0 → rm þ 0, where r0 and rm are the
radial coordinate of the closest position of a light ray and
the position of the photon sphere, respectively, orb→ bmþ0
numerically in the Reissner-Nordström spacetime [42].
Bozza [12] obtained the analytical form of ā in Eq. (1.1)
and b̄ was partly calculated numerically in the strong
deflection limit b → bm þ 0. The exact analytical expres-
sions of ā and b̄ have been obtained by Tsukamoto and
Gong [41] and by Tsukamoto [50]. The gravitational lensing
in the strong deflection limit, b → bm þ 0, by a marginally
unstable photon sphere has also been considered [21].
Gravitational lensing by a photon sphere around a naked
singularity in the Reissner-Nordström spacetime with
q2=m2¼1.05 in the strong defection limit b → bm − 0 has
been investigated by Shaikh et al. [19] and exact analytical
forms of c̄ and d̄ in Eq. (1.2) have been calculated by
Tsukamoto [67].
Holz and Wheeler [68] have investigated retrolensing

with the deflection angle α ∼ π in a lens configuration that
has the Sun as the source of a light, an observer, and a black
hole as a lens object line up in this order. Retrolensing by a
photon sphere around a black hole [43,44,69–71], around a
wormhole [17,51], and a naked singularity [72] have been
investigated. Retrolensing with a deflection angle α ∼ 3π
also have been studied [51]. Retrolensing by a Reissner-
Nordström black hole in our galaxy [43] and near our solar
system [50] have been studied.
In this paper, we apply the retrolensing of light rays

reflected near a photon sphere around a Reissner-
Nordström naked singularity by using the exact analytic
expressions of ā and b̄ in Eq. (1.1) in the strong deflection
limit b → bm þ 0 and c̄ and d̄ in Eq. (1.2) in the strong
deflection limit b → bm − 0. The retrolensing by the
photon sphere around the Reissner-Nordström naked sin-
gularity can be brighter than the one around a Reissner-
Nordström black hole because of the rays reflected by a
potential barrier near an antiphoton sphere.
This paper is organized as follows. We investigate the

retrolensing near the photon sphere around the Reissner-
Nordström naked singularity in Sec. II, and we discuss and
conclude our results in Sec. III. We review the deflection
angle of rays in the strong deflection limits in the Reissner-
Nordström spacetime briefly in Appendix. In this paper, we
use the units in which the light speed and Newton’s
constant are unity.

II. RETROLENSING IN THE REISSNER-
NORDSTRÖM SPACETIME

In this section we investigate the retrolensing of rays
outside and inside of the photon sphere, the percent errors

of the deflection angles in the strong deflection limits, and
retrolensing light curves in the Reissner-Nordström space-
time. As shown in Fig. 1, we consider a lens configuration
where the ray is emitted by the Sun S, it is reflected by the
photon sphere as a lens L with a deflection angle α, and it
reaches an observer O. An image I with an image angle θ
can be seen by the observer O. We define an effective
deflection angle ᾱ as

ᾱ≡ α − 2πn; ð2:1Þ

where n is the winding number of the ray.
By using a source angle β≡∠OLS defined in the

domain 0 ≤ β ≤ π and an angle θ̄ between the line LS
and the light ray at S, the Ohanian lens equation [6,44,73] is
expressed by

β ¼ π − ᾱðθÞ þ θ þ θ̄: ð2:2Þ

We assume that the photon sphere L, the observer O, and
the Sun S are almost aligned in this order. This yields

β ∼ 0; ð2:3Þ

ᾱ ∼ π; ð2:4Þ

α ∼ π þ 2πn; ð2:5Þ

and

Dls ¼ Dol þDos; ð2:6Þ

where Dls, Dol, and Dos are the distances between L and S,
between O and L, and between O and S, respectively. We
assume bm ≪ Dol and bm ≪ Dls and we neglect θ ¼ b=Dol

and θ̄ ¼ b=Dls in the lens equation.

FIG. 1. Lens Configuration. The ray of the Sun S at the source
angle β≡∠OLS is reflected by a photon sphere L with an
effective deflection angle ᾱ. An angle θ denotes the image angle
of image I observed by an observer O and θ̄ denotes an angle
between the line LS and the ray at S.
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A. Light rays slightly outside of the photon sphere

In the strong deflection limit b → bm þ 0, the exact
analytical expressions of ā and b̄ in the deflection angle
(1.1) in a Reissner-Nordström spacetime have been
obtained as

ā ¼ rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mrm − 4q2

p ð2:7Þ

and

b̄ ¼ ā log

�
8ð3mrm − 4q2Þ3
m2r2mðmrm − q2Þ2

×

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrm − q2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mrm − 4q2

q �
2
�
− π; ð2:8Þ

respectively [41,50]. Here, m and q are mass and charge of
the lensing object and rm is the radius of the photon sphere
given by

rm ¼ 3mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2 − 8q2

p
2

ð2:9Þ

for 0 ≤ q < 3m=ð2 ffiffiffi
2

p Þ. The analytic formulas recover the
numerical results by Eiroa et al. [42] and Bozza [12] as
shown in Refs [41,50].
From the deflection angle αðbÞ (1.1) and b ¼ θDol, we

obtain the positive solution of the lens equation (2.2) as
θ ¼ θnoutðβÞ, where

θnoutðβÞ≡ θm

�
1þ exp

�
b̄ − ð1þ 2nÞπ þ β

ā

��
; ð2:10Þ

and where θm ≡ bm=Dol is the image angle of the photon
sphere. The magnification μnout of the image is given by

μnoutðβÞ ¼ −
D2

os

D2
ls

sðβÞθnout
dθnout
dβ

; ð2:11Þ

where a function sðβÞ for a point source is given by

sðβÞ ¼ 1

β
: ð2:12Þ

The function sðβÞ for an uniform-luminous disk with a
finite size on the observer’s sky [74–76] becomes an
integral over the disk on a source plane:

sðβÞ ¼ 1

πβ2s

Z
disk

dβ0dϕ; ð2:13Þ

where β0 is a reduced radial coordinate which is divided by
Dls on the source plane, βs ≡ Rs=Dls is the reduced radius
of the Sun where Rs is the radius of the Sun, and where ϕ is

an azimuthal coordinate around the origin on the source
plane. By fixing the origin of the coordinates on the source
plane, which is the intersection point of an axis β ¼ 0 and
the source plane, sðβÞ can be rewritten as

sðβÞ ¼ 2

πβ2s

�
πðβs − βÞþ

Z
βþβs

−βþβs

arccos
β2 þ β02 − β2s

2ββ0
dβ0

�
ð2:14Þ

for β ≤ βs and

sðβÞ ¼ 2

πβ2s

Z
βþβs

β−βs
arccos

β2 þ β02 − β2s
2ββ0

dβ0 ð2:15Þ

for βs ≤ β. If the photon sphere, the observer, and the Sun
are perfectly aligned, sðβÞ is given by

sð0Þ ¼ 2

βs
: ð2:16Þ

From Eqs. (2.10) and (2.11), its magnification μnoutðβÞ is
obtained as

μnoutðβÞ ¼ −
D2

os

D2
ls

θ2me½b̄−ð1þ2nÞπ�=ā

ā

× f1þ e½b̄−ð1þ2nÞπ�=āgsðβÞ: ð2:17Þ

Notice that the lens equation has a negative solution θ ∼
−θnoutðβÞ and its magnification is given by −μnoutðβÞ
approximately. The total magnification μtotoutðβÞ of the
couples of the images from n ¼ 0 to ∞ is given by

μtotoutðβÞ≡ 2
X∞
n¼0

jμnoutðβÞj

¼ 2
D2

os

D2
ls

θ2m
ā
jsðβÞj

�
eðb̄−πÞ=ā

1 − e−2π=ā
þ e2ðb̄−πÞ=ā

1 − e−4π=ā

�
ð2:18Þ

and it gives, in the perfectly aligned case,

μtotoutð0Þ ¼ 4
D2

os

D2
ls

θ2m
āβs

�
eðb̄−πÞ=ā

1 − e−2π=ā
þ e2ðb̄−πÞ=ā

1 − e−4π=ā

�
: ð2:19Þ

We consider the retrolensing of the sunlight reflected by
the photon sphere at Dol ¼ 0.01 pc away as shown in
Fig. 2. We assume that the Sun moves with the orbital
velocity v ¼ 30 km=s on a source plane and with the
closest separation βmin between the center of the Sun disk
and the axis β ¼ 0 on the source plane as shown Fig. 2.
The separation between the image θnout and its paired

image is given by
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2θnout ¼ 2θm

�
1þ exp

�
b̄ − ð1þ 2nÞπ þ β

ā

��
ð2:20Þ

and the separation of the image angles with the winding
number n ¼ 0 as a function of q=m is plotted in Fig. 3.

B. Light rays slightly inside of the photon sphere

In the case of light rays reflected by a potential barrier
near the antiphoton sphere for m < q < 3m=ð2 ffiffiffi

2
p Þ, the

exact forms of c̄ and d̄ of the deflection angle (1.2) in the
strong deflection limit b → bm − 0 are obtained by
Tsukamoto [67] as

c̄≡ 2rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mrm − 4q2

p ð2:21Þ

and

d̄ ¼ c̄ log
�

16ð3mrm − 4q2Þ3ðrm − rcÞ
2ðmrm − q2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3mrm − 4q2Þðmrm − q2Þ

p
×

1

ðmrm − q2Þfmrmðrm þ 2rcÞ − 2q2ðrm þ rcÞg
�
− π;

ð2:22Þ

where rc is the smaller positive zero point of the effective
potential of the light ray with the impact critical parameter
bm given by

rc ¼
rmð ffiffiffiffiffiffiffiffiffi

mrm
p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrm − q2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mrm − q2
p ð2:23Þ

for m < q < 3m=ð2 ffiffiffi
2

p Þ.
For the deflection angle (1.2), the positive solution of the

lens equation (2.2) is obtained by θ ¼ θninðβÞ, where
θninðβÞ is given by

θninðβÞ≡ θmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp½d̄−ð1þ2nÞπþβ

c̄ �
q ð2:24Þ

and its magnification is given by

μninðβÞ ¼
D2

os

2D2
ls

θ2m exp½d̄−ð1þ2nÞπ
c̄ �

c̄f1þ exp½d̄−ð1þ2nÞπ
c̄ �g2

sðβÞ: ð2:25Þ

A negative solution of the lens equation is θ ¼ θ−ninðβÞ,
where

θ−ninðβÞ ¼ −θninð−βÞ ∼ −θninðβÞ ð2:26Þ

FIG. 2. Retrolensing. The Sun is on the source plane and the
plane is orthogonal to the optical axis β ¼ 0. βmin denotes the
smallest source angle. We assume that the Sun moves with
the orbital velocity v ¼ 30 km=s on the source plane.

FIG. 3. The image separation 2θ0out of outer images as a
function of q=m. Solid (red), dashed (green), and dotted (ma-
genta) curves denote the image separation in the cases of
m ¼ 60 M⊙, 30 M⊙, and 10 M⊙, respectively. The distance to
the photon sphere is Dol ¼ 0.01 pc and the source angle is β ¼ 0
and the winding number is n ¼ 0.
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and its magnification is given by −μninðβÞ. The total
magnification μtotinðβÞ of the pair images from n ¼ 0 to
∞ is given by

μtotinðβÞ ¼ 2
X∞
n¼0

jμninðβÞj

¼
X∞
n¼0

D2
os

D2
ls

θ2m exp½d̄−ð1þ2nÞπ
c̄ �

c̄f1þ exp½d̄−ð1þ2nÞπ
c̄ �g2

jsðβÞj ð2:27Þ

and it gives, in the perfectly aligned case,

μtotinð0Þ ¼ 2
X∞
n¼0

D2
os

D2
ls

θ2m exp½d̄−ð1þ2nÞπ
c̄ �

c̄f1þ exp½d̄−ð1þ2nÞπ
c̄ �g2βs

: ð2:28Þ

The image separation between θnin and its pair is
given by

2θnin ¼
2θmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ exp½d̄−ð1þ2nÞπþβ
c̄ �

q ð2:29Þ

and the case of n ¼ 0 is shown in Fig. 4.

C. Percent errors of the deflection angle
in the strong deflection limits

The deflection angle α of the ray is obtained as

α ¼ 2

Z
∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

b2 − A
q − π; ð2:30Þ

where r0 is the radial coordinate of the reflection point of
the light ray, b ¼ bðr0Þ is the impact parameter of the ray
and it can be expressed by

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
r20

Aðr0Þ

s
; ð2:31Þ

and AðrÞ is defined by

AðrÞ ¼ 1 −
2m
r

þ q2

r2
: ð2:32Þ

We consider the positive impact parameter only unless we
comment on the negative impact parameter. See Appendix
for a short review on the Reissner-Nordström spacetime
and the deflection angle.
The percent errors of deflection angle calculated by

α of Eq:ð1.1Þ − α of Eq:ð2.30Þ
α of Eq:ð2.30Þ × 100 ð2:33Þ

and

α of Eq:ð1.2Þ − α of Eq:ð2.30Þ
α of Eq:ð2.30Þ × 100 ð2:34Þ

as a function of α of Eq. (2.30) are shown in Figs. 5
and 6, respectively. Note that the percent errors (2.33)
and (2.34) of the deflection angle α ∼ π for q=m ∼ 0.1 are
about −10 percent and that the ones of α ∼ 3π become a
few percent. In the almost marginally unstable photon
sphere case with q=m≲ 3=ð2 ffiffiffi

2
p Þ, the absolute values of

FIG. 4. The image separation 2θ0in of the inner images as a
function of q=m. The curve types,m,Dol, β, and n are the same as
the ones of Fig. 3.

FIG. 5. The percent error (2.33) of α of Eq. (1.1) as a function
of α of Eq. (2.30) calculated in numerical for outer images. A
solid (red), dashed (green), dotted (magenta), and dot-dashed
(blue) curves denote the percent errors for q=m ¼ 1.001, 1.01,
1.03, and 1.05, respectively.
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the percent errors of the deflection angle α ∼ π are huge.
This implies that the deflection angles diverge nonlogar-
ithmically in the marginally unstable photon sphere case
with q=m ¼ 3=ð2 ffiffiffi

2
p Þ.

D. Retrolensing light curves

The light curves of retrolensing by the photon
sphere in the Reissner-Nordström black hole and naked

singularity spacetimes are shown in Figs. 7–9. Figure 10
shows the apparent magnitude of the light curves at
the peak in the perfectly aligned case as a function of
q=m. Notice that light curves consist of only light rays
reflected slightly outside of the photon sphere around
the black hole for q=m ≤ 1 while the ones consist of
both light rays reflected slightly outside and inside of
the photon sphere around the naked singularity for
1 < q=m < 3=ð2 ffiffiffi

2
p Þ.

FIG. 6. The percent error (2.34) of α of Eq. (1.2) as a function
of α of Eq. (2.30) calculated numerically for inner images. The
types of curves for the given q=m are the same as Fig. 5.

FIG. 8. Light curves with the smallest source angle βmin ¼ 0,
0.5βs, βs, and 1.5βs are denoted by (red) solid, (green) dashed,
(magenta) dotted, and (blue) dash-dotted curves, respectively. We
set the distance to the lens Dol ¼ 0.01 pc, the mass m ¼ 30 M⊙,
and the charge q=m ¼ 1.01.

FIG. 7. Light curves with the charge q=m ¼ 0, 1, and 1.001 are
denoted by (red) solid, (green) dashed, and (magenta) dotted
curves, respectively. We set the distance to the lens
Dol ¼ 0.01 pc, the mass m ¼ 30 M⊙, and the smallest source
angle βmin ¼ 0.

FIG. 9. Light curves with the mass m ¼ 60 M⊙, 30 M⊙, and
10 M⊙ are denoted by (red) solid, (green) dashed, and (magenta)
dotted curves, respectively. We set the distance to the lens
Dol ¼ 0.01 pc, the charge q=m ¼ 1.01, and the smallest source
angle βmin ¼ 0.
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III. DISCUSSION AND CONCLUSION

We have investigated the retrolensing of the sunlight
reflected by the photon sphere and by the potential barrier
near the antiphoton sphere in the Reissner-Nordström black
hole and naked singularity spacetimes by using the exact
forms of the deflection angles in the strong deflection limits
b → bm − 0 and b → bm þ 0. Note that we can apply the
formula for the retrolensing by the Reissner-Nordström
black hole investigated by Tsukamoto and Gong [50]
to the retrolensing of the rays reflected at slightly outside
of the photon sphere around the naked singularity for
1 < q=m < 3=ð2 ffiffiffi

2
p Þ. The retrolensing by the photon

sphere around the Reissner-Nordström naked singularity
can be brighter than the one around the Reissner-Nordström
black hole because of the light rays reflected by the
potential barrier near the antiphoton sphere.
The light curves of the retrolensing have characteristic

shapes as shown in Figs. 7–9 because of the spherical
symmetry and the disk shape of the Sun. The time-
symmetrical shape of the light curves helps us to distin-
guish the retrolensing from other phenomena of light
emissions, and we would distinguish the events of retro-
lensing from the other events since the retrolensing light
curves have precise solar spectra and they can be observed
on the ecliptic [68].
We do not consider the case of q=m ¼ 3=ð2 ffiffiffi

2
p Þ in this

paper. For q=m ¼ 3=ð2 ffiffiffi
2

p Þ, the effective potential of the
light ray with the critical impact parameter b ¼ bm gives
VðrmÞ ¼ V 0ðrmÞ ¼ V 00ðrmÞ ¼ 0 and V 000ðrmÞ < 0, where
the prime is a differentiation with respect to the radial
coordinate r, and the photon sphere and antiphoton photon

sphere come together as one marginally unstable photon
sphere at r ¼ rm ¼ raps ¼ 3m=2. In this case, the deflec-
tion angle diverges nonlogarithmically and we cannot apply
the formulas obtained in this paper to the marginally
unstable photon sphere. The deflection angle in the strong
deflection limit b → bm þ 0 of the marginally unstable
photon sphere of the Reissner-Nordström spacetime and its
application to a usual lens configuration have been inves-
tigated by Tsukamoto [21]. The deflection angle of the
marginally unstable photon sphere in the strong deflection
limit b → bm − 0 and retrolensing by the marginally
unstable photon sphere in the strong deflection limits b →
bm − 0 and b → bm þ 0 are left as future work.

APPENDIX: DEFLECTION ANGLE IN THE
REISSMAN-NORDSTRÖM SPACETIME

In this Appendix, we briefly review the deflection angle
of light rays in strong deflection limits in a Reissner-
Nordström spacetime (see Refs. [41,50,67] for details). The
Reissner-Nordström spacetime has a line element

ds2 ¼ −AðrÞdt2 þ dr2

AðrÞ þ r2ðdϑ2 þ sin2 ϑdφ2Þ; ðA1Þ

where AðrÞ is given by

AðrÞ ¼ 1 −
2m
r

þ q2

r2
ðA2Þ

and m ≥ 0 is an Arnowitt-Deser-Misner mass and q ≥ 0 is
an electrical charge and it has time-translational and axial
Killing vectors tμ∂μ ¼ ∂t and φμ∂μ ¼ ∂φ because of its
stationarity and axisymmetry, respectively. There is an
event horizon r ¼ rH, where

rH ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; ðA3Þ

for q ≤ m while the spacetime has a naked singularity for
m < q. Without loss of generality we can assume ϑ ¼ π=2
because of spherical symmetry.
By using a wave vector kμ ≡ _xμ, where the dot denotes a

differentiation with respect to an affine parameter, the
trajectory of a light ray is expressed by kμkμ ¼ 0 and it
can be rewritten as

−A_t2 þ _r2

A
þ r2 _φ2 ¼ 0: ðA4Þ

The light ray can be characterized by its closest distant or its
reflectional point r ¼ r0 and an equation

A0_t20 ¼ r20 _φ
2
0 ðA5Þ

holds at the reflectional point. Here and hereinafter
functions with subscript 0 denote the functions at the

FIG. 10. The apparent magnitudes of the peak of a photon
sphere at a distance Dol ¼ 0.01 pc as a function of q=m in the
perfectly aligned case (βmin ¼ 0). The apparent magnitudes of the
peak for the mass with m ¼ 60 M⊙, 30 M⊙, and 10 M⊙ are
shown as (red) solid, (green) dashed, and (magenta) dotted
curves, respectively. Note that the error of the strong deflection
limit analysis at almost marginally unstable case q=m ∼ 1.06
is huge.
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reflectional point r ¼ r0. The impact parameter of a light is
given by

bðr0Þ≡ L
E
¼ r20 _φ0

A0_t0
; ðA6Þ

where E≡ −gμνtμkν ¼ A_t and L≡ gμνφμkν ¼ r2 _φ are
conserved energy and conserved angular momentum of
the ray, respectively. From Eq. (A5), the impact parameter
can be expressed by

b ¼ �
ffiffiffiffiffi
r20
A0

s
: ðA7Þ

From Eq. (A4), the radial motion of the light is
given by

_r2 þ VðrÞ
E2

¼ 0; ðA8Þ

where VðrÞ is an effective potential defined by

VðrÞ≡ Ab2

r2
− 1: ðA9Þ

The ray can exist in a region VðrÞ ≤ 0. There is a photon
sphere at r ¼ rm, where rm is given by

rm ¼ 3mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2 − 8q2

p
2

ðA10Þ

for 0 ≤ q < 3m=ð2 ffiffiffi
2

p Þ and an antiphoton sphere at
r ¼ raps, where raps is

raps ¼
3m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2 − 8q2

p
2

ðA11Þ

for m<q< 3m=ð2 ffiffiffi
2

p Þ. Note that VðrmÞ ¼ V 0ðrmÞ ¼ 0
and V 00ðrmÞ < 0 hold for the critical impact parameter
b ¼ bm ≡ bðr0 ¼ rmÞ and that VðrapsÞ ¼ V 0ðrapsÞ ¼ 0

and V 00ðrapsÞ > 0 hold for the critical impact parameter.
Notice that the prime is the differentiation with respect
to the radial coordinate r. We define the smaller positive
zero point r ¼ rc of the effective potential of the light ray
with the impact critical parameter bm for m < q <
3m=ð2 ffiffiffi

2
p Þ. We obtain rc as

rc ¼
rmð ffiffiffiffiffiffiffiffiffi

mrm
p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrm − q2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mrm − q2
p : ðA12Þ

We note that bðr0 ¼ rcÞ ¼ bm. A plot of the radial
coordinates of the photon sphere rm, an antiphoton sphere
raps, an event horizon rH, and the smaller positive zero point
rc of effective potential is shown in Ref. [67].
We consider that a light ray comes from at a spatial

infinity and that it is reflected at r ¼ r0. From Eq. (A4),
the deflection angle α of the ray is obtained as

α ¼ 2

Z
∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

b2 − A
q − π: ðA13Þ
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