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We compute the equilibrium, the fundamental eigenfrequency of oscillations modes, and quadrupolar
tidal deformability of anisotropic polytropic spheres. These studies are, respectively, performed through the
numerical solution of the Tolman-Oppenheimer-Volkoff equation, Chandrasekhar radial oscillation
equations, and nonlinear first-order Riccati equation for tidal deformability, all modified from their
original version to include the anisotropic effects. For the polytropic exponent γ ¼ 2 and the anisotropic
model of Cattoen, Faber, and Visser, we show that the anisotropy could be reflected in the radial pressure,
energy density, speed of sound, radial stability, and tidal deformability.

DOI: 10.1103/PhysRevD.105.024008

I. INTRODUCTION

Compact objects [1–3], such as for instance neutron
stars, white dwarfs, or quark stars, which arise during the
final stages of stellar evolution, are unique probes of
properties of matter under exceptionally extreme condi-
tions, which cannot be reproduced on Earth-based experi-
ments. As they are the denser objects in the Universe (after
black holes), they comprise excellent cosmic laboratories to
study and constrain nonstandard physics and modified
theories of gravity. Matter in the interior of those objects
is characterized by ultrahigh densities, for which the usual
description of stellar plasmas in terms of Newtonian fluids
is inadequate. Therefore, very dense compact objects
are relativistic in nature, and as such, they are properly
described only within Einstein’s General Relativity (GR).
When studying relativistic astrophysical objects, the

authors usually focus on stars made of isotropic fluids,
where the radial pressure pr equals the tangential pressure
pt. Celestial bodies, however, are not always made of
isotropic matter. As a matter of fact, under certain con-
ditions, the fluid can indeed become anisotropic. The
review article by Ruderman [4] considered for the first
time that possibility: In that work, the author made the
observation that in a very dense medium anisotropies may
arise due to relativistic particle interactions. The inves-
tigation of the impact of anisotropies on the properties of
relativistic stars received a boost by the subsequent work of

Ref. [5]. Indeed, anisotropies may arise in many different
contexts involving dense matter media, such as phase
transitions [6], pion condensation [7], or in the presence
of type 3A superfluid [8]. See also Refs. [9–11] for more
recent works on the topic, and references therein. In those
works, relativistic models of anisotropic strange quark stars
were studied, while the energy conditions were found to be
satisfied. In particular, in Ref. [9], an exact analytic solution
was obtained; in Ref. [10], an attempt was made to find a
singularity free solution to Einstein’s field equations; and in
Ref. [11], the Homotopy Perturbation Method was
employed and is a tool to tackle Einstein’s field equations.
Besides, alternative approaches capable of inducing anisot-
ropies onto known isotropic seed solutions have been
introduced [12,13].
The inspiral and subsequent relativistic collision of two

objects in a binary system, and the gravitational wave
signal emitted during the whole process, contain a wealth of
information regarding the nature of the colliding bodies.
The imprint of the equation of state within the signals
emitted during binary coalescences is mainly determined
by adiabatic tidal interactions, characterized by a set of
coefficients, known as the tidal Love numbers and the
corresponding deformability.
The theory of tidal deformability was introduced in

Newtonian gravity first by Love [14,15] more than a
century ago, with the purpose of understanding the yielding
of the Earth to disturbing forces. In the case of a spherical
body, Love introduced two dimensionless numbers to
describe the tidal response of the Earth. To be more precise,
the first number, h, describes the relative deformation of
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the body in the longitudinal direction (with respect to the
perturbation), while the second number, k, describes the
relative deformation of the gravitational potential.
The consideration of self-gravitating compact objects

requires a relativistic theory of tidal deformability, which
was developed in Refs. [16–20] for spherically symmetric
neutron stars and black holes. Naturally, the key deform-
ability parameter is the relativistic generalization of k, since
the role of the gravitational potential is now played by the
metric tensor. Then, tensor perturbations of a spherically
symmetric geometry fall into two classes: even parity (or
electric/polar) and odd parity (or magnetic/axial). Hence,
there are electric and magnetic relativistic tidal Love
numbers, kE and kB, respectively. Moreover, each one
may be decomposed in spherical harmonics of index l, with
l being the angular degree, thus introducing kEl and kBl .
The latest cosmological data [21] indicate that non-

relativistic matter in the Universe is dominated by dark
matter. Despite the success of the concordance cosmologi-
cal model at large scales (∼1 Mpc) based on the cold dark
matter paradigm, a series of shortcomings at galactic and
subgalactic scales (i.e., ∼kpc or less) persists, such as the
core/cusp problem and the missing satellite problem—for
excellent reviews, see, e.g., Refs. [22,23]. Those problems
may be tackled if dark matter consists of ultralight scalar
particles with a mass m ≪ eV [24]. In those models,
ultralight bosons can cluster, forming macroscopic Bose-
Einstein condensates with the mass of the Sun or even
larger. Those self-gravitating clumps for spinless bosons
are called scalar boson stars [25–35]. Boson stars are
intrinsically anisotropic, and under certain circumstances,
they can be described by a polytropic equation of state.
Asteroseismology has been a powerful tool to infer the

inner structure of the Sun and other similar stars, allowing
astronomers to have a detail characterization of the micro-
physics and fluid dynamical processes taking place in
their interiors, for instance, nuclear reactions, equation of
state, differential rotation rate, and meridional circulation
[36,37]. Moreover, those techniques are now being
extended to the study of the inner structure of compact
objects [38–40]. Those new methods of diagnostics provide
us with a robust way to search for hints of nonconventional
physics inside stars, such as the existence of dark matter
[41,42] or alternative theories of gravity [43,44]. Therefore,
in this work, by computing the oscillations of those new
class of stars, i.e., the frequencies and eigenfunctions of the
radial oscillations of pulsating stars, e.g., Refs. [45,46], we
can learn about their composition as well as the equation of
state of the strongly interacting matter, since the precise
values of the frequency modes are very sensitive to the
underlying physics, composition, and inner structure of the
star; see, e.g., Refs. [47–55] and references therein.
In the present work, we compute the tidal Lover numbers

kE2 as well as the radial oscillation frequencies for non-
rotating polytropic spheres made of anisotropic matter

having boson stars in mind. The plan of our work is the
following. In the next section, we briefly review the
structure equations describing hydrostatic equilibrium of
relativistic stars as well as the equations for the perturba-
tions of pulsating objects, and we summarize the theory
regarding tidal Love numbers. In the third section, we
discuss the equation of state and the factor of anisotropy
considered here, while in Sec. IV, we display and discuss
our main numerical results regarding several different
properties of the polytropic spheres. Finally, we close
our work with some concluding remarks in Sec. V. We
adopt the mostly positive metric signature, ð−;þ;þ;þÞ,
and we work in geometrized units, where the speed of light
in vacuum as well as Newton’s constant are set to
unity, c ¼ 1 ¼ G.

II. STELLAR EQUILIBRIUM EQUATIONS AND
RADIAL PULSATION EQUATIONS

A. Stellar equilibrium equations

The anisotropic matter making up the compact object is
described by a stress-energy tensor as follows,

Tμ
ν ¼ Diag½−ρ; pr; pt; pt�; ð1Þ

where ρ represents the energy density, while pr and pt are
the radial and tangential pressure of the fluid, respectively.
Equivalently, instead of pt, we may work with the
anisotropic factor, σ, defined by

σ ¼ pt − pr: ð2Þ

The background line element to seek spherically sym-
metric static objects, in Schwarzschild-like coordinates
ðt; r; θ;ϕÞ, is given by

ds2 ¼ −eνdt2 þ eλdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where the functions ν ¼ νðrÞ and λ ¼ λðrÞ depend on the
radial coordinate only.
The hydrostatic equilibrium equations used to analyze

relativistic stars within GR are obtained by using the
Einstein field equation and the line element (3). This set
of equations, also known as the Tolman-Oppenheimer-
Volkoff (TOV) equations [5] (see also Refs. [56,57]), are

m0 ¼ 4πr2ρ; ð4Þ

p0
r ¼ −ðρþ prÞ

�
mþ 4πr3pr

r2e−λ

�
þ 2σ

r
; ð5Þ

ν0 ¼ 2

�
mþ 4πr3pr

r2e−λ

�
; ð6Þ

with
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e−λ ¼ 1 −
2m
r

: ð7Þ

The primes ð 0Þ stand for derivation with respect to r, and
mðrÞ represents the mass inside a radius r.
Equations (4)–(6) are integrated imposing at the center of

the star (r ¼ 0) the initial conditions

mð0Þ ¼ 0; ρð0Þ ¼ ρc; prð0Þ ¼ pc;

λð0Þ ¼ 0; νð0Þ ¼ νc; and σð0Þ ¼ 0; ð8Þ

with ρc and pc being the central energy density and the
central radial pressure, respectively. Since at the surface of
the star (r ¼ R) the interior solution is connecting with the
exterior Schwarzschild vacuum solution, the following
condition must be satisfied:

prðRÞ ¼ 0: ð9Þ

At this point, the interior and the exterior metric are
related as

eνðRÞ ¼ e−λðRÞ ¼ 1 −
2M
R

; ð10Þ

where M and R are the mass and the radius of the star,
respectively.

B. Radial pulsation equations

The radial stability equations are obtained by perturbing
both the space-time and the fluid variables, preserving the
spherical symmetry of the background object. The pertur-
bations are introduced in both the field equations and the
stress-momentum tensor conservation equations, by main-
taining only the first-order terms (see Refs. [58,59]). This
equation can be placed into two first-order equations, one
equation for the relative radial displacement ξ and other one
for Lagrangian perturbation Δpr [60]. Hence, the radial
stability of a compact star is determined through the
following set first-order equations,

ξ0 ¼ ξ

2
ν0 −

1

r

�
2ξσ

Γpr

�
Γpr

pr þ ρ
þ 1

�
þ 3ξþ Δpr

Γpr

�
; ð11Þ

Δp0
r ¼ eλ−νðpr þ ρÞω2ξr − 4ξp0

r þ
8σξ

r
þ 2δσ

r

−
�
ν0

2
þ 4πreλðpr þ ρÞ

�
Δpr þ

ξrðpr þ ρÞ
4

ν02

− 8πðpr þ ρÞrξeλðσ þ prÞ; ð12Þ

with Γ ¼ ð1þ ρ
pr
Þ dpr

dρ and ω being the adiabatic index and
the eigenfrequency, respectively.
Equations (11) and (12) are integrated from along the

radial coordinate. To take regular solution in the center of

the object, it is considered that for r → 0 the second term of
the right-hand side of Eq. (11) must vanish. Thus,

ðΔprÞcenter ¼
�
−2ξσ

�
Γpr

pr þ ρ
þ 1

�
− 3ξΓpr

�
center

: ð13Þ

At this point, for normalized eigenfunctions, we take
ξðr ¼ 0Þ ¼ 1. In turn, at the star’s surface, where radial
pressure is zero, prðRÞ ¼ 0, the next condition is required:

ðΔprÞsurface ¼ 0: ð14Þ

C. Tidal deformability

The theory of tidal Love numbers may be found, for
instance, in Refs. [17–19] for isotropic stars and Ref. [61]
for anisotropic stars. By definition, the tidal deformability
parameter λ and the dimensionless tidal deformabilityΛ are
related to the tidal Love number kE2 as follows,

λ≡ 2

3
kE2R

5; ð15Þ

Λ≡ λ

C5
; ð16Þ

with C ¼ M=R representing the compactness of the star.
In terms of C, the tidal Love number is computed to be

[17,19]

kE2 ¼ 8C5

5

Ko

3Ko lnð1 − 2CÞ þ P5ðCÞ
; ð17Þ

Ko ¼ ð1 − 2CÞ2½2CðyR − 1Þ − yR þ 2�; ð18Þ

yR ≡ yðr ¼ RÞ; ð19Þ

where P5ðCÞ is a fifth-order polynomial given by

P5ðCÞ ¼ 2C½4C4ðyR þ 1Þ þ 2C3ð3yR − 2Þ
þ 2C2ð13 − 11yRÞ þ 3Cð5yR − 8Þ − 3yR þ 6�:

ð20Þ

The function yðrÞ satisfies a Riccati differential equation,

ry0 ¼ −y2 þ ½1 − rP�y − r2Q; ð21Þ

and the functions P ¼ PðrÞ andQ ¼ QðrÞ are computed in
terms of the background quantities as follows,

P ¼ 2

r
þ eλ

�
2m
r

þ 4πrðpr − ρÞ
�
; ð22Þ
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Q¼ 4πeλ
�
4ρþ8prþ

prþρ

Ac2s
ð1þc2sÞ

�
−ν02−6

eλ

r2
; ð23Þ

where A ¼ 1þ dσ
dpr

, and c2s ¼ dpr
dρ is the radial speed of

sound; see, e.g., Ref. [61] for more details.

III. EQUATION OF STATE AND
ANISOTROPIC PROFILE

In this section, we motivate the expressions of the
equation of state (EoS) as well as of the form of the factor
of anisotropy considered in the present work, following
closely Ref. [62].
Boson stars are self-gravitating configurations made of

either spin-0 fields, called scalar boson stars [30], or spin-1
fields (vector bosons), called Proca stars [63,64]. The highest
mass of scalar boson stars neglecting self-interactions was
obtained in Refs. [25,26], and afterward in Refs. [27,28], it
was demonstrated that self-interactions may significantly
affect the mass.
A canonical complex scalar field, Φ, is described by

an action corresponding to the Einstein-Klein-Gordon
system [34]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

þ LM

�
; ð24Þ

LM ¼ −gμν∂μΦ∂νΦ� − VðjΦjÞ; ð25Þ

where g is the determinant of the metric tensor gμν, R is the
corresponding Ricci scalar, LM is the Lagrangian corre-
sponding to the matter content, and V is the self-interaction
scalar potential.
For static, spherically symmetric configurations, i.e., if

the star does not possess rotation speed, we make for the
scalar field the ansatz [34]

Φðr; tÞ ¼ ϕðrÞ expð−iϖtÞ; ð26Þ

withϖ being a real parameter identified with the oscillation
frequency.
It is worth noticing that, although the scalar field itself

depends on time, the corresponding stress-energy tensor is
time independent. Therefore, Einstein’s field equations take
the usual form for an anisotropic fluid, for which the energy
density is computed to be [65,66]

ρ ¼ ϖ2e−νϕ2 þ e−λϕ02 þ VðϕÞ; ð27Þ

while the radial and tangential pressures are found to be

pr ¼ ϖ2e−νϕ2 þ e−λϕ02 − VðϕÞ; ð28Þ

pt ¼ ϖ2e−νϕ2 − e−λϕ02 − VðϕÞ: ð29Þ

Notice that the radial pressure is different than the
tangential one, and therefore a boson star is always
anisotropic. The factor of anisotropy is defined by

σ ≡ pt − pr ¼ −2e−λϕ02 < 0: ð30Þ

Moreover, it turns out that in the case of boson stars the
factor of anisotropy is always negative.
Under certain conditions, however, the anisotropy may

be ignored, and so in that case, the system may be viewed
as an object made of isotropic matter. A concrete model in
which the scalar potential is assumed to be

VðjΦjÞ ¼ m2jΦj2 þ λ

2
jΦj4; ð31Þ

withm being themass of the scalar field and λ being the self-
interaction coupling constant, was studied, e.g., in Ref. [67],
where the authors considered the following EoS [27],

pr ¼
ρ0
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

ρ0

r
− 1

�
2

; ð32Þ

with ρ0 being a constant given by

ρ0 ¼
m4

3λ
: ð33Þ

This EoS describes boson stars that are approximately
isotropic, provided that the condition

λ

4π
≫ m2 ð34Þ

holds [67].
It is worth mentioning that the well-known results are

recovered in the two extreme limits, namely

pr ≈
ρ2

12ρ0
; ρ ≪ ρ0; ð35Þ

for dilute stars [68], and

pr ≈
ρ

3
; ρ ≫ ρ0; ð36Þ

in the ultrarelativistic limit.
Quite generically, in a dilute and cold boson gas, the

details of the self-interaction potential do not matter, as
long as the system is characterized by a repulsive, short
range self-interaction. The equation-of-state of a Bose-
Einstein condensate is found to be of the polytropic form

pr ¼ Kρ2; ð37Þ
corresponding to a polytropic exponent γ ¼ 2, while the
constant of proportionality, K, is given in terms of the mass
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of the particles, m, and the scattering length, a, as follows
[69,70]:

K ¼ 2πa
m3

: ð38Þ

In the following, for convenience, we set K ¼ z
B setting

z ¼ 0.01 and B ¼ 66 ½MeV=fm3�.
Finally, following Refs. [71–74], we shall consider for

the factor of anisotropy the following expression,

σ ¼ κprð1 − e−λÞ; ð39Þ

where κ is called a dimensionless prefactor. This expression
ensures that the anisotropy has the correct dimensions and
vanishes both at the center and at the surface of the star.
Furthermore, since the anisotropic profile contains varia-
bles of the fluid and space-time, in the nonrelativistic
regime, where 1 − e−λ ≪ 1, it is expected that σ ∼ 0. Since
radial pressure is greater than tangential, see Eqs. (28)

and (29), the anisotropy factor is always negative. Therefore,
in order to have σ < 0, we consider κ < 0 due to the
functions pr and 1 − e−λ on the right side of Eq. (39) are
always positive. Thus, in the following numerical analysis,
we will consider κ in the range between −2 and 0. For other
types of anisotropic factor, e.g., review [75,76].

IV. NUMERICAL RESULTS

A. Numerical method

The equilibrium configuration and tidal deformability of
anisotropic polytropic spheres are analyzed by means of
the numerical integration of the system of equation and
boundary conditions established in Sec. II. For each value
of ρc and κ considered, this process starts in the center and
ends at the star’s surface.
The study of the radial stability of anisotropic spheres

begins solving the set of equations (4)–(6), by employing
the Runge-Kutta fourth-order method. Having determined
the coefficients of the radial stability equations for each ρc
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FIG. 1. Fluid radial pressure, energy density, and anisotropic factor in their normalized form and the square sound velocity as a
function of the radial coordinate for some different values of κ. ρc ¼ 660 ½MeV=fm3� and pc ¼ 66 ½MeV=fm3� are considered in panels.
The normalization factor is B ¼ 66 ½MeV=fm3�.
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and κ, Eqs. (11) and (12) are solved through the shooting
method for a trial value of ω2. If after each numerical
integration the condition (14) is not satisfied, the eigen-
frequency squared is corrected with the aim to attain this
equality in the next integration (check, e.g., Ref. [60]).

B. Equilibrium of anisotropic polytropic spheres

Figure 1 shows the behavior of the fluid radial pressure
pr=B, energy density ρ=B, anisotropic factor σ=B, and the
speed of sound squared c2s with the radial coordinate for five
values of κ. The central energy density and central pressure
considered are, respectively, ρc ¼ 660 ½MeV=fm3� and
pc ¼ 66 ½MeV=fm3�. The influence of the anisotropy in
the radial pressure, energy density, and the speed of sound
squared can be seen in panels. One finds the diminution of
ρ=B, pr=B, and c2s with the diminution of κ.
The mass, normalized to the Sun’s massM⊙, as a function

of the central energy density is presented in Fig. 2 for some
values of κ. The central energy density considered is in the
range 10 ≤ ρc=B ≤ 100. In each curve, we find that the
maximummass pointMmax=M⊙ and the null eigenfrequency
of oscillationω ¼ 0 are determined by considering the same
central energy density. From this result, we understand that
the stable and unstable equilibrium configurations against
small radial perturbation can be recognized by the condi-
tions dM=dρc > 0 and dM=dρc < 0, respectively. Some
similar results are reported in literature. For instance, in
Refs. [77,60], respectively, investigated the stability of
anisotropic neutron stars against radial perturbations, con-
sidering σ ¼ κpr, and radial stability of anisotropic strange
stars, employing σ ¼ κprð1 − e−λÞ.
The mass M=M⊙ against the total radius R for five

different values of κ is shown in Fig. 3. From curves, we
observe that the mass and radius change substantially with
κ. We find that the radius and mass of the compact object
decay with κ. The diminution of the mass with κ can be

understood inspecting the relation between σ and κ. A
lower negative anisotropy σ counteracts the fluid pressure,
thus obtaining equilibrium configurations with lower
masses and radii.

C. Radial stability of anisotropic polytropic spheres

The Lagrangian perturbation Δpr and the relative radial
displacement ξ against the radial coordinate r are plotted on
the top and bottom of Fig. 4 for different κ and overtones n.
As can be seen in figure, before attaining the star’s surface,
the fundamental mode (n ¼ 0) does not present any zeros
while the first (n ¼ 1), the second (n ¼ 2), and third (n ¼ 3)
exitedmodes present, respectively, one, two, and three zeros.
The effects of anisotropy at the Lagrangian perturbation

and relative radial displacement can also be seen in Fig. 4.
We note that the effect of anisotropy is noticeable in each
radial oscillation mode n. From these results, it can be
understood that from radial pulsations of compact objects is
possible to get some information about the internal struc-
ture and obtain some proof of the presence of anisotropy
within compact objects.
The eigenfrequency of oscillation squared versus the

central energy density normalized with B is plotted in Fig. 5
for few values of κ. Only radial stable equilibrium con-
figurations are presented. In all cases shown, at small
central energy densities, the curves ω2ðρcÞ present a small
growth until attaining a maximum eigenfrequency value,
and after this point, ω2 decreases monotonically with the
increment of ρc, thus displaying that a polytropic star with
greater central energy density will have less radial stability.
The effects of the anisotropy on the radial stability of the
object can be observed. For an interval of central energy
density, the diminution of κ increases the radial stability of
the spherical object.
Figure 6 shows the behavior of the eigenfrequency of

oscillation squared with the total mass for some values of κ.
In all cases, the curves ω2ðMÞ displays a little growth until
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FIG. 2. The total mass, in solar masses M⊙, against the
normalized central energy density for few values of κ.
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FIG. 3. The mass M=M⊙ vs the radius for five values of κ.
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reaching a maximum eigenfrequency value; hereafter, ω2

decreases with the increment of the total mass until ω ¼ 0
in Mmax=M⊙. This maximum mass point marks the
beginning of the radial instability. In addition, for some
interval of total mass, the reduction of κ induces a
diminution of the radial stability.

D. Tidal deformability of anisotropic polytropic spheres

Tidal deformability, Λ, as a function of the total mass is
presented in Fig. 7 for different values of κ. As can be
noted, the deformability decreases with the increment of
M=M⊙ until reaching the maximum total mass.
Furthermore, for an interval of total mass, Λ decreases
with κ. From this result, we can understand that the
anisotropy in a compact object would significantly affect
the tidal deformability. Finally, it is worth mentioning that
the deformability of the last stable star increases with
decreasing of the dimensionless prefactor κ.

V. CONCLUSIONS

The equilibrium configuration, the radial stability, and
the tidal deformability of polytropic stars in the presence of
anisotropy are investigated. This is realized by means of the
numerical solution TOV equations, Chandrasekhar pulsa-
tion equations, and the Riccati equations for tidal deform-
ability, all modified for the anisotropic case. For the matter
that makes up the sphere, it follows that pr ¼ Kρ2. On the
other hand, the anisotropic factor employed takes the
form σ ¼ κprð1 − e−λÞ.
We show how some properties of the compact star such

as the radial pressure, energy density, speed of sound

squared, total mass, eigenfrequency of oscillation, and tidal
deformability are affected by the anisotropy.
Given the results, we note that for a central energy

density interval the radial stability increases with the
decrement of κ. Moreover, for a total mass range, the
radial stability and tidal deformability decrease with κ. In
all cases, we found that the maximum mass values and
the zero eigenfrequencies of oscillations are derived by the
same central energy densities, thus indicating that the
maximum mass point indicates the beginning of radial
instability. At this point, we obtained that the deformability
of the last stable compact star grows with the diminution of
the dimensionless prefactor.
Finally, it is important to mention that the change of the

deformability with anisotropy could lead to the possibility
that some equations of state that are outside of the limit of
tidal deformability of the event GW170817 could be within
this frame for certain values of the dimensionless prefactor
(review also Ref. [61]). Moreover, it can be noted that both
the mass and the tidal deformability found for some EoSs
could help us to place restrictions on the value of κ.
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