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We derive an exact wormhole spacetime supported by a phantom scalar field in the context of fðRÞ
gravity theory. Without specifying the form of the fðRÞ function, the scalar field self-interacts with a mass
term potential which is derived from the scalar equation and in the resulting fðRÞ model the scalar
curvature is modified by the presence of the scalar field and it is free of ghosts and avoids the tachyonic
instability.
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I. INTRODUCTION

Wormholes in general relativity (GR) are solutions of
Einstein equations presenting hypothetical tunnels con-
necting different parts of the Universe or two different
Universes. The first discussion of a wormhole configura-
tion was presented by Flamm [1] and later by Einstein and
Rosen (ER) introducing the ER bridge, a physical space
being connected by a wormhole-type solution [2]. The
wormhole spacetimes as solutions of GR were further
investigated in the pioneering articles of Misner and
Wheeler [3] and Wheeler [4].
Introducing a static spherically symmetric metric the

necessary conditions to generate traversable Lorentzian
wormholes as exact solutions in GR were first found by
Morris and Thorne [5]. In these structures a condition on
the wormhole throat necessitates the introduction of exotic
matter, which leads to the violation of the null energy
condition (NEC). This type of matter has been discussed in
cosmological contexts [6], for possible observational appli-
cations. Recently, it was found in [7] that normal Dirac and
Maxwell fields can support wormhole configurations and
provide violation only of the NEC. Many wormhole
solutions were discussed in the literature. To avoid the
violation of the NEC in [8] the construction of thin-shell
wormholes was studied, where ordinary matter is concen-
trated on the wormhole throat. Recently, there are many
studies of wormhole solutions in modified gravity theories
like Brans-Dicke theory [9], mimetic theories [10], fðRÞ
gravity [11], Einstein-Gauss-Bonnet theory [12], Einstein-
Cartan theory and general scalar-tensor theories [13].
Wormholes with anti–de Sitter (AdS) asymptotics have
also been discussed [14] in an attempt to describe the
physics of closed universes. Canonical scalar fields in the

Horndeski scenario have also been used to construct
wormhole geometries [15–17]. In these theories, their
gravitational echoes have been recently investigated [18],
while the formation of bound states of scalar fields in AdS-
asymptotic wormholes were studied in [19]. A phantom
scalar field was introduced in the Einstein-Hilbert action
and wormhole solutions have been found by Ellis in [20],
known as Ellis wormholes. Lately, several generalizations
were obtained [21–25]. Phantom matter was considered in
Einstein-Maxwell dilaton theory and wormholes have been
constructed in [26].
The need to describe the early and late cosmological

history of our Universe promoted the study of fðRÞ
theories of gravity [27–35]. The main motivation to study
these theories were the recent cosmological observational
results on the deceleration-acceleration transition of late
Universe. This requirement imposed constraints on the
fðRÞ models allowing viable choices of fðRÞ [36]. These
theories exclude contributions from any curvature invari-
ants other than R and they avoid the Ostrogradski insta-
bility [37,38].
Black holes in fðRÞ gravity theories with constant and

nonconstant Ricci curvature in vaccum or coupled to electro-
dynamics have been found [39–53] while in [54–56] scalar
fields are introduced as matter in (2þ 1)- and (3þ 1)-
dimensional fðRÞ gravity and the corresponding black hole
solutions are investigated. This particular type of theory,
fðRÞ gravity and nonminimally coupled scalar fields as
matter has been previously considered for cosmological
purposes [57,58].
In [55] an exact black hole solution in (2þ1)-dimensions

of a scalar field minimally coupled to gravity in the context
of fðRÞ gravity was found. Without specifying the form of
the fðRÞ function, an exact black hole solution was
obtained dressed with a scalar hair and the scalar charge
to appear both in the metric and in the fðRÞ function. It was
showed that thermodynamical and observational con-
straints required that the pure fðRÞ theory should be built
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with a phantom scalar field. The reason for this behavior is
that the entropy in the fðRÞ theories receives an extra
contribution and to have a positive entropy a contribution
from phantom scalar field is required. Then, computing
the Hawking temperature and the Bekenstein-Hawking
entropy it was found that they are both positive, with
the temperature getting smaller with the increase of the
scalar charge while the entropy behaves the opposite way,
growing with the increase of the scalar charge.
Wormhole solutions in fðRÞ theory have been con-

structed in [59], where the matter threading the wormhole is
a fluid that satisfies the energy conditions, so the violation
of the energy conditions comes from the higher-order terms
that the fðRÞ theory possesses. Thin-shell wormholes with
circular symmetry in (2þ 1)-dimensional fðRÞ theories of
gravity, with constant Ricci scalar have been investigated
[60], while (3þ 1)-dimensional thin-shell wormholes in
fðRÞ gravity with charge and constant curvature were
discussed in [61], where their stability was also inves-
tigated. In quadratic fðRÞ ¼ Rþ αR2 gravity, spherically
symmetric Lorentzian wormholes have been found with a
constant scalar curvature [62]. Using the Karmarkar con-
dition, wormhole geometries have been investigated in
several fðRÞmodels [63]. In [64] wormholes with a kinetic
curvature scalar were considered and in [65] traversable
fðRÞ gravity wormholes with constant and dynamic red-
shift functions were found. Finally, in [66] wormholes in
fðRÞ-massive gravity were investigated employing several
behaviors for the redshift function, and wormholes in
generalized hybrid metric-Palatini gravity that satisty the
NEC were obtained [67].
In fðRÞ gravity theories if a conformal transformation is

applied from the Jordan frame to the Einstein frame then, a
new scalar field appears and a scalar potential is generated.
The resulting theory can be considered as a scalar-tensor
theory with a geometric (gravitational) scalar field which
however cannot dress a fðRÞ black hole with hair [68–70].
In our previous work [55,56] the motivation for construct-
ing hairy black hole solutions in fðRÞ gravity theories was
to introduce a scalar field in the action as a matter field in
the way it was done in the GR context and study its effect
on a metric ansatz solving the field equations. In these
models the scalar field was a canonical scalar field with
positive kinetic energy.
In this work we follow a similar approach. We would like

to investigate if we introduce a scalar field with negative
kinetic energy (phantom scalar field) with a self-interacting
potential, a wormhole configuration can be generated. In
the literature. in most of the studied models the phantom
matter is introduced in the energy-momentum tensor with a
phantom equation of state violating the NEC. In our study
we introduce explicitly a self-interacting phantom field, and
without specifying the form of the fðRÞ function we solve
the resulting field equations. To do that we have to specify
the form of the phantom field and we find a new wormhole

geometry sourced by the phantom scalar field, which is free
of ghosts and avoids the tachyonic instability, and we show
that the NEC is violated.
This work is organized as follows. In Sec. II we set up

our theory, derive the field equations and discuss the
restrictions a geometry has to obey to represent a wormhole
configuration. In Sec. III we briefly discuss the GR case of
a wormhole sourced by a phantom scalar field—the Ellis
Drainhole [20]—and we obtain a new wormhole geometry
sourced by a phantom scalar field in fðRÞ gravity discus-
sing the energy conditions. Finally, in Sec. IV we conclude
and we discuss possible extensions for further work.

II. THE SETUP DERIVATION OF THE
FIELD EQUATIONS

We consider the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðRÞ
2

þ 1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð1Þ

which consists of an arbitrary differentiable function of the
Ricci Scalar fðRÞ, a scalar field with negative kinetic
energy and a self-interacting potential.
The field equations that arise by variation of this

action are

RμνfRðRÞ−
1

2
gμνfðRÞþðgμν□−∇μ∇νÞfRðRÞ¼Tϕ

μν; ð2Þ

□ϕþ VϕðϕÞ ¼ 0; ð3Þ

where □ ¼ ∇μ∇μ is the d’Alembertian operator with
respect to the metric fRðRÞ ¼ dfðRÞ=dR, and the
energy-momentum tensor is given by

Tϕ
μν ¼ −∂μϕ∂νϕþ 1

2
gμν∂αϕ∂αϕ − gμνVðϕÞ: ð4Þ

We consider the following metric ansatz firstly used by
Morris and Thorne [5] in spherical coordinates

ds2 ¼ −e2ΦðrÞdt2 þ
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dΩ; ð5Þ

where ΦðrÞ is the redshift function and bðrÞ is the shape
function and dΩ ¼ dθ2 þ sinðθÞ2dφ2. In order to obtain
a wormhole geometry, these functions have to satisfy
the following conditions [5,71], namely:
(1) bðrÞ

r ≤ 1 for every ½rth;þ∞Þ, where rth is the radius of
the throat. This condition ensures that the proper
radial distance defined by lðrÞ¼�R

r
rth
ð1−bðrÞ

r Þ−1dr
is finite everywhere in spacetime. Note that in the
coordinates ðt; l; θ;ϕÞ the line element (5) can be
written as
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ds2¼−e2ΦðlÞdt2þdl2þr2ðlÞðdθ2þsin2θdφÞ: ð6Þ

In this case the throat radius would be given
by rth ¼ minfrðlÞg.

(2) bðrthÞ
rth

¼ 1 at the throat. This relation comes from
requiring the throat to be a stationary point of rðlÞ.
Equivalently, one may arrive at this equation by
demanding the embedded surface of the wormhole
to be vertical at the throat.

(3) b0ðrÞ < bðrÞ
r which reduces to b0ðrthÞ ≤ 1 at the

throat. This is known as the flare-out condition
since it guarantees rth to be a minimum and not
any other stationary point.

Moreover, to simplify the calculations and to ensure the
absence of horizons we will consider the case ΦðrÞ ¼ C as
in [59], where C is a constant. Computing tt; rr; θθ, and the
Klein-Gordon equations we find

rb0f0R þ 3bf0R þ 2rðb − rÞf00R − rbϕ02 − 4rf0R
þ r2f − 2r2V þ r2ϕ02 ¼ 0; ð7Þ

2fRðb − rb0Þ þ 4rðb − rÞf0R þ r2ðb − rÞϕ02

þ r3ðf − 2VÞ ¼ 0; ð8Þ

rðrððb0 − 2Þf0R þ rð−2f00R þ f − 2V þ ϕ02ÞÞ − fRb0Þ
− bðrð−f0R − 2rf00R þ rϕ02Þ þ fRÞ ¼ 0 ð9Þ

ðrðb0 − 4Þ þ 3bÞϕ0 þ 2rðb − rÞϕ0

2r2
−
V 0

ϕ0 ¼ 0; ð10Þ

where primes denote the derivative with respect to the
argument, the radial coordinate is r and f ¼ fðRÞ ¼ fðrÞ,
the gravitational model as a function of the radial coor-
dinate r. Eliminating f from Eq. (7) we obtain

f¼ 2V−
ðrðb0−4Þþ3bÞf0Rþ rðr−bÞðϕ02−2f00RÞ

r2
: ð11Þ

Now substituting f back to Eqs. (8) and (9) we can obtain
the following equations

rðrðb0f0R − 2rf00R þ 2rϕ02Þ þ 2fRb0Þ
− bðrðf0R − 2rf00R þ 2rϕ02Þ þ 2fRÞ ¼ 0; ð12Þ

rðfRb0 − 2rf0RÞ þ bð2rf0R þ fRÞ ¼ 0: ð13Þ

As can be seen in Eq. (13), there is is a direct relation
between the geometry and the fðRÞ gravity, while the scalar
field will affect both the fðRÞ function and the geometry as
we can see in Eq. (12).

III. WORMHOLE SOLUTIONS

In this section we will discuss the wormhole solutions of
the field equations. We will first review the Ellis drainhole.

A. The Ellis drainhole

The Ellis drainhole [20] is a wormhole solution of an
action that consists of a pure Einstein-Hilbert term and a
scalar field with negative kinetic energy

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ 1

2
∂μϕ∂μϕ

�
: ð14Þ

Assuming the metric ansatz (5), setting in Eqs. (7)–(9)
calculated above fðrÞ ¼ RðrÞ, fRðrÞ ¼ 1, VðrÞ ¼ 0 we
obtain the following solution

bðrÞ ¼ A2=r; ð15Þ

ϕðrÞ ¼
ffiffiffi
2

p
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − A2

p

A

�
þ ϕ∞; ð16Þ

fðrÞ ¼ RðrÞ ¼ −
2A2

r4
; ð17Þ

where A;ϕ∞ are two constants of integration. The resulting
spacetime is asymptotically flat as it can be seen from both
bðrÞ and RðrÞ. The wormhole throat is the solution of the
equation

g−1rr ¼ 0 → rth ¼ �A: ð18Þ

The solution also satisfies the flaring-out condition and
b0ðrthÞ ¼ −1.
The scalar field takes a constant value at infinity

ϕðr → ∞Þ ¼ πffiffi
2

p þ ϕ∞, so one could set ϕ∞ ¼ − πffiffi
2

p to

make the scalar field vanish at large distances. However,
since only derivatives of the scalar field appear in the field
equations, its asymptotic value ϕ∞ does not change the
physical interpretation of the solution. The scalar field takes
the asymptotic value at infinity at the position of the throat
ϕðr ¼ rthÞ ¼ ϕ∞. As can be seen in Eqs. (15)–(17) the
integration constant A of the phantom scalar field plays a
decisive role in the formation of the wormhole geometry.
It has units [L], appears in the scalar curvature and at the
position of the throat takes the value Rr¼rthðAÞ ¼ −2=A2.
Also it controls the size of the throat; a larger charge A
gives a larger wormhole throat.
The above results indicate that the presence of the

phantom scalar field sources the wormhole geometry
defining the scalar curvature and specifying the throat of
the wormhole geometry. As we will see in the next section
if the scalar curvature is generalized to a general fðRÞ
function, the phantom scalar field sources the wormhole
geometry.
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B. f ðRÞ gravity phantom wormhole

A generalization of the Ellis drainhole solution is to
introduce a potential for the scalar field. Then we consider
the full action (1) from which we obtain the field Eqs. (2)
and (3). To solve them we consider the metric ansatz (5). As
we discussed in Sec. II, the field equations resulting from
Eq. (1) are (10), (12), and (13). These equations constitute a
system of three independent differential equations for the
four unknown functions: bðrÞ; fRðrÞ; VðrÞ;ϕðrÞ, therefore
in principle we have to fix one of the unknown functions to
solve for the others. One can also see that Eq. (10) can be
obtained by taking the covariant derivative of Eq. (2). We
found that for a particular scalar field configuration we can
obtain a rather simple solution. Therefore we fix

ϕðrÞ ¼
ffiffiffi
6

p ffiffiffiffi
A

p

r
; ð19Þ

where A > 0 is a constant which has dimensions ½L�2. Then
solving Eqs. (12), (13), and (10) we get

bðrÞ ¼ c1r3

A2
þ 2r; ð20Þ

fRðrÞ ¼
A
r2
; ð21Þ

VðrÞ ¼ −
3c1
Ar2

; ð22Þ

fðrÞ ¼ 2A
r4

; ð23Þ

RðrÞ ¼ 6c1
A2

þ 4

r2
; ð24Þ

fðRÞ ¼ ðA2R − 6c1Þ2
8A3

; ð25Þ

VðϕÞ ¼ −
c1ϕ2

2A2
; ð26Þ

where c1 is a constant of integration with units ½L�2 in order
bðrÞ=r to be dimensionless. We can see that the resulting
potential is a mass term potential; hence we set c1 ¼
−A2m2 and now the configurations becomes

bðrÞ ¼ 2r −m2r3; ð27Þ

VðrÞ ¼ 3Am2

r2
; ð28Þ

RðrÞ ¼ 4

r2
− 6m2; ð29Þ

fðRÞ ¼ 1

8
Að6m2 þ RÞ2; ð30Þ

VðϕÞ ¼ 1

2
m2ϕ2: ð31Þ

To understand the physical meaning of the constants
entering the solution of the field equations we found, let
us rewrite Eq. (1) using the solution we found

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16
Að6m2 þRÞ2 þ 1

2
∂μϕ∂μϕ−

1

2
m2ϕ2

�
;

ð32Þ

where the scalar field is given by (19). We can see that the
constant Awhich enters in the choice of the scalar field (19)
is giving a mass to the scalar field and at the same time
modifies the Ricci scalar curvature by a nonlinear correc-
tion term. On the other hand it also contributes to the size of
the throat of the wormhole as can be seen in (20).
This solution is a generalization of the Ellis wormhole

solution discussed in the previous subsection. In this
solution the scalar curvature has been generalized to an
arbitrary fðRÞ function and a self-interacting potential is
present. If we choose a form of the phantom scalar field
ϕðrÞ ¼ ffiffiffiffiffiffi

6A
p

=r and we set fðRÞ ¼ R we have a system of
three independent equations with two unknown functions
bðrÞ, VðrÞ making the system over determined and a
solution satisfying the field equations for any r cannot
be found. We would also like to note that the obtained fðRÞ
model resembles the Starobinski model of inflation [35],
containing a Ricci scalar term, a cosmological constant
term given by the mass of the scalar field, and a quadratic
term of the Ricci scalar.
If one uses fR ¼ 1, solving the field equations, one finds

VðrÞ ¼ c2; ð33Þ

fðrÞ ¼ 2c2 − 2A2=r4; ð34Þ

fðRÞ ¼ 2c2 þ R; ð35Þ

where bðrÞ;ϕðrÞ, and RðrÞ are given by (15), (16), and (17)
respectively, and c2 is a constant. One can see that the scalar
field now does not have any self-interactions—the solution
is the Ellis wormhole and the whole action becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2c2 þ R

2
þ 1

2
∂μϕ∂μϕ − c2

�
→ S

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ 1

2
∂μϕ∂μϕ

�
; ð36Þ

which is the Ellis wormhole action as expected.
The obtained solution is supported by the scalar field

and, in particular, the integration constant A. For a
vanishing A the solution does not exist, which is also
the situation in the Ellis drainhole we discussed previously.
The fðRÞ model also satisfies the Dolgov-Kawasaki
stability criterion [27,72–74] which states that fRR > 0.
For our solution we have that fRR ¼ A=4 > 0. Another
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desired property of fðRÞ theories is the absence of ghosts in
the context of cosmological perturbations which corre-
sponds to the condition fR > 0. In our case, as we can see
in (21), this condition is satisfied since A > 0.
The Kretschmann scalar and the norm of the Weyl tensor

read

K ¼ RαβγδRαβγδ ¼ −
16m2

r2
þ 12m4 þ 16

r4
; ð37Þ

CαβγδCαβγδ ¼ 16

3r4
: ð38Þ

We can see that the only curvature singularity is for r → 0
which lies out of the range of the wormhole geometry,
hence the region of interest is free of singularities. Now we
proceed to check if our solution satisfies the aforemen-
tioned wormhole criteria.
(1) Condition bðrÞ

r ≤ 1 reduces to m2r2 ≥ 1 and is
satisfied for every r in ½1m ;þ∞Þ.

(2) bðrÞ
r ¼ 1 yields the throat location rth ¼ 1

m.
(3) Solving the flaring-out condition b0ðrÞ < bðrÞ

r we
arrive at m2r2>0 which is satisfied for every r>0
and m ≠ 0. Finally, it is easy to verify that
b0ðrthÞ ¼ −1 hence the relation b0ðrthÞ ≤ 1 always
holds true.

In Fig. 1 we plot the throat radius rth ¼ m−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A2=c1

p
as a function of A, where we can see their linear relation,
having set c1 ¼ −1. Wormholes exist only for negative c1.
To understand better what exactly happens at the throat of
the wormhole, we also plot the Ricci scalar RðrÞ at the
throat as a function of the parameter A; Rr¼rthðAÞ ¼
−2m2 ¼ 2c1=A2. A calculation of the Kretschmann scalar
at the wormhole throat yields K ¼ 12c21=A

4, which is in
agreement with the behavior of the Ricci scalar. We can see
that for larger A the Ricci scalar gets weaker at the
wormhole throat and so does the Kretschmann scalar.
Thus, by increasing A we obtain wormholes with larger
throat radii which in turn decreases the curvature in the

vicinity of the throat. Hence, A affects the properties of our
compact object in a similar manner as the Ellis drainhole.
Additionally, we can perform a coordinate transforma-

tion to a chart ðt; l; θ;ϕÞ where l is the proper radial
distance from the throat. In this chart the metric would be
given by (6). Hence, by confronting the metrics (5) and (6)
we can find the line element in this new coordinate system

ds2 ¼ −Cdt2 þ dl2 þ rðlÞ2dΩ2; ð39Þ

¼ −Cdt2 þ dl2 þ
�
e−lm þ elm

2m

�
2

dΩ2; ð40Þ

where, rðlÞ ¼ e−lmþelm
2m ¼ 1

m coshðlmÞ and l ∈ ð−∞;∞Þ cov-
ering both sides of the wormhole. In Fig. 2 we can see the
proper radial distance. The minimum represents the posi-
tion of the wormhole throat.

C. Energy conditions

Since we have obtained a wormhole configuration that
satisfies the relativewormhole criteria wewill briefly discuss
the energy conditions and their violation. Thereforewe recast
the Einstein Eq. (2) in the form

Gμν ¼ Tgrav
μν þ f−1R Tϕ

μν ¼ T total
μν ; ð41Þ

where, Tgrav
μν is given by

Tgrav
μν ¼1

2
gμνðf−1R fðRÞ−RÞ−f−1R ðgμν□fR−∇μ∇νfRÞ; ð42Þ

and can be regarded as the effective stress energy tensor that
nonlinear gravity generates. Now, we switch to a set of
orthonormal basis vectors. The proper reference framewhere
the basis vectors are expressed are [5]

et̂ ¼ expð−ΦÞet; er̂ ¼ ð1 − b=rÞ1=2er;
eθ̂ ¼ r−1eθ; eφ̂ ¼ ðr sin θÞ−1eφ: ð43Þ

FIG. 1. The wormhole throat rthðAÞ and the Ricci scalar RthðAÞ at the wormhole throat as a function of the scalar constant A, having set
c1 ¼ −1.
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In this reference frame, we can identify the energy density ρ,
the radial pressure pr, and the transverse pressure pθ;φ in the
following manner [71,75]

ρ ¼ Gt̂ t̂ ¼ T total
t̂ t̂ ; ð44Þ

pr ¼ Gr̂ r̂ ¼ T total
r̂ r̂ ; ð45Þ

pθ;φ ¼ Gθ̂ θ̂;φ̂ φ̂ ¼ T total
θ̂ θ̂;φ̂ φ̂

: ð46Þ

Now we will discuss the violation of the energy conditions
[76]. The weak energy condition (WEC) implies that any
timelike vector xμ satisfies the condition

T total
μν xμxν ≥ 0: ð47Þ

In the aforementioned reference frame this inequality takes
the form

ρ > 0: ð48Þ

In our case we have

ρ ¼ 2

r2
− 3m2 > 0: ð49Þ

The WEC is satisfied for any m ≠ 0 and 0 < r <
ffiffiffiffiffiffi
2

3m2

q
<

1
m ¼ rth. Therefore the WEC is violated for any r > rth.
The null energy condition states that

T total
μν kμkν ≥ 0; ð50Þ

for any null vector kμ. By continuity we expect that the
WEC imples the NEC. In the orthonormal frame the NEC
reads

ρþ pr ≥ 0; ð51Þ

In our case the NEC gives

2 − 3m2r2

r2
þm2 −

2

r2
¼ −2m2 < 0: ð52Þ

Therefore NEC is always violated.
To have a better understanding on how the energy

conditions are violated we will discuss the energy con-
ditions of the scalar field and the modified gravity part
independently. For the scalar field we will only consider the
f−1R Tϕ

μν part of the energy-momentum tensor in Eq. (41). In
the aforementioned reference frame, we find that the energy
density and the pressure are respectively

ρϕ ¼ 3

r2
; ð53Þ

pϕ
r ¼ 3

r2
− 6m2: ð54Þ

TheWEC energy condition is satisfied for the scalar field
while for the NEC we have that

ρϕ þ pϕ
r ¼ 6

r2
− 6m2 > 0; ð55Þ

which is satisfied for r < 1
m ¼ rth (outside of the wormhole

region) and is violated outside and on the wormhole throat.
Now for the gravitational part of the energy-momentum

tensor we will only examine the Tgrav
μν term of (41). We find

that the energy and pressure of the higher order gravity
terms are respectively

ρgrav ¼ −3m2 −
1

r2
; ð56Þ

pgrav
r ¼ 7m2 −

5

r2
: ð57Þ

The WEC is violated by the higher order gravity terms,
while NEC yields

ρgrav þ pgrav
r ¼ 4m2 −

6

r2
> 0; ð58Þ

which holds for r >
ffiffi
3
2

q
1
m and is violated otherwise.

It is clear that if we add the energy densities of the matter
and gravity part we obtain the total energy density (49)
and the same happens with the pressures as expected.
We note here that the modified gravity part of the action is
responsible for the violation of the WEC, while the NEC is
violated by both matter and gravity for some range of the
wormhole region, r ≥ rth ¼ 1=m.

IV. CONCLUSIONS

We studied wormhole solutions in a modified gravity
theory in which the scalar curvature is generalized to a

FIG. 2. The function rðlÞ for different values of the mass of the
scalar field.
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fðRÞ function. In this theory we considered a scalar field
with negative kinetic energy—a phantom scalar field—that
has a self-interacting potential. Solving the field equations
by choosing a function for the phantom scalar field we find
a wormhole solution without specifying the form of the
fðRÞ function. The basic properties of this solution are that
the presence of the phantom scalar field influences the
scalar curvature and the size of the throat, and by increasing
the strength of the scalar field we obtain wormholes with
larger throat radii which in turn decreases the curvature in
the vicinity of the throat.
Our obtained gravitational model satisfies the Dolgov-

Kawasaki stability criterion, is tachyonically stable and it is
free of ghosts. We calculated the NEC and the WEC and we
showed that they are violated. We also investigated the
matter and gravity part of the effective energy-momentum
tensor independently to see their effects on the energy
conditions. We found that the scalar filed respects the WEC
and violated the NEC, while the gravity part of the effective
energy-momentum tensor violates both the WEC and the
NEC. We also note that the fðRÞ model we obtained
resembles the Starobinsky inflation model [35].
Our solution cannot be reduced to GR. To do that we

have to consider a more general metric ansatz such the one
in [77] and try to find a solution to the fðRÞ field equations
that reduces to the known solutions of GR [77–79]. In our
work, the scalar field is minimally coupled to gravity via

the volume element, so one could consider a more general
ansatz like a regular nonminimally coupled scalar field that
will violate the energy conditions and try to find wormhole
solutions. It would also be interesting to check the stability
of the obtained wormhole solution.
One can fix the fðRÞ function from the beginning and

then look for wormhole solutions. For example in [56] a
nonlinear correction term in the scalar curvature was
introduced fðRÞ ¼ R − 2α

ffiffiffiffi
R

p
where α has the dimensions

of jLj−1. In this modified gravity theory a new scale is
introduced. Therefore, to find a wormhole solution that
resembles the original Ellis wormhole [20,80] (or the
d-dimensional generalization [81]) another scale has to be
introduced to the theory to counterbalance the introduced
gravitational scale. The easiest way to do that is to introduce
a new scale via a self-interacting potential for the scalar field.
So, one can consider ourmetric ansatz (5) and the Ellis scalar
field (16) to find, at least in principle, a wormhole geometry
which will be reduced to the Ellis one, after parametrizing
the constants of the solution appropriately. Wormholes with
a dynamical redshift function supported by a phantom scalar
field might also be interesting to study.
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