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Stochastic inflation at all order in slow-roll parameters: Foundations
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In this paper we develop the formalism for the stochastic approach to inflation at all order in slow-roll
parameters. This is done by including the momentum and Hamiltonian constraints into the stochastic
equations. We then specialize to the widely used Starobinski approximation where interactions between IR

and UV modes are neglected. We show that, whenever this approximation holds, no significant deviations
are observed when comparing the two-point correlation functions (power spectrum) calculated with
stochastic methods, to the ones calculated with the Quantum Field Theory (QFT) approach to linear theory.
As a by-product, we argue that: (i) the approaches based on the Starobinski approximation, generically, do
not capture any loop effects of the quantum scalar-gravity system; (ii) correlations functions can only be
calculated in the linear theory regimes; thus, no nonperturbative statistics can be extracted within this

approximation, as commonly claimed.
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I. INTRODUCTION

The possibility that primordial black holes (PBHs)
can be a significant fraction (if not all) of the dark
matter (DM) has been a source of interest for almost
50 years [1].

A possible PBHs formation mechanism is through
the gravitational collapse of large (nonperturbative) over-
densities generated during an inflationary epoch of the
universe. Those perturbations are produced by the quantum
fluctuations of the inflaton and are exponentially rare [2].
Thus, in order to predict the abundance of PBHs, a precise
statistical knowledge of inflationary perturbations is
highly desirable.

The hope of the stochastic approach to inflation is that
it incorporates quantum corrections to the inflationary
dynamics in a nonperturbative way [3]. However, as we
shall see in this paper, the current realization of it
generically fails to achieve this goal.

In this approach, wavelengths that are well outside the
cosmological horizon (the horizon from now on) are
approximated in powers of spatial gradients rather than
on amplitudes (as in linear theory). At the same time
though, those modes are influenced by the quantum sector
by receiving quantum kicks from stochastic forces gen-
erated by the perturbative subhorizon modes. The success
of the stochastic formalism resides on the fact that it allows
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to reduce a quantum problem into a statistical one and it has
been widely used in the literature [4—11].

By exploring the foundation of the stochastic formalism,
we will identify two important limitation that the current
realization of it has:

(1) The use of the separate universe approach, which
makes the formalism generically valid only at
leading order in slow-roll parameters.

(i) The white noises construction, which is only pos-
sible in the linear regime.

While we will leave the issue related with the white noise
for future work, in this paper we will solve the first
limitation, improving the original formulation of the
stochastic approach to a novel one that leads to unprece-
dentedly precise predictions for the perturbative statistics of
inflation.

II. GRADIENT EXPANSION AT ALL ORDER
IN SLOW ROLL

In the Arnowitt-Deser-Misner (ADM) (3 + 1) decom-
position, the metric related to scalar sources is expressed as
[12]

ds? = g, dx'dx’ = —a?di* + y,;(dx" + p'dr)(dx/ + pdr),
(1)

where the spatial metric can be redefined as y,;; = a*¢*7,;
with det(7;;) = 1. Here a = a(t) is the scale factor.
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Using the metric (1), the Einstein-Hilbert action with a
minimally coupled scalar field takes the following form':

S = %/ \/E[MTI%L (R®) + a7 !(K;;K;j — K?)) — 2aV
+a (¢ - p09)? — ar0ipd;gp). (2)

513.) is the Ricci tensor of the spatial metric, K;; is its

extrinsic curvature, and M p; is the Planck mass. Explicitly,

where R

K= }’inij’ (3)

1
K = 2a (8%]' - Dif; —D;pi);
where D; represents the covariant derivative with respect to
the spatial metric y;;.
It is convenient to decompose the extrinsic curvature into
its trace and traceless part as

K, = %K + A, (4)
where yA;; = 0. We will also define A;; = e %A;; for
later purposes.

In the ADM formalism, y;; and ¢ are the dynamical
variables, whereas, a (the lapse) and ' (the shift vector) are
Lagrange multipliers for the action (2) which generate the
following Hamiltonian and momentum constraints of the
scalar-gravity system:

- o~ 2
R® — A, AU + 31(2 = 162GE, (5)
-2
DJAU—ngK: 87Z'GJ“ (6)
where E=T,n'n’ and J;=-T,n'y] and n, =

(—a,0,0,0) is the form orthogonal to the time slice.
For completeness the basic equations of this formalism
are written in Appendix A.

A. Inflationary scenarios and slow-roll parameters

As we have already mentioned, PBHs represent natural
candidates for DM (latest constraints on this idea can be
found in [13]). However, to statistically generate enough
PBHs for this to hold, one needs, at least, a power spectrum
of primordial curvature perturbations several orders of
magnitudes larger than the one observed in the cosmic
microwave background (CMB).

It is known that a period of slow roll (SR), of which the
predictions of the CMB are based upon, cannot lead to the
appropriate power spectrum necessary to generate enough

1 . .
We are using units ¢ = 1.

PBHs to match the DM abundance [14].2 Thus, one
necessarily needs an inflationary epoch evolving beyond
SR. A possibility is the introduction of an inflection point in
the inflationary potential [16]. This leads the inflaton to
undergo a so-called ultraslow-roll (USR) phase of inflation
[17,18]. Taking into account that the statistics of PBHs
from non-Gaussian fluctuations has yet to be fully devel-
oped, the single-field USR option with standard kinetic
term seems then to be the best [19].

The evolution of a scalar field (¢) in an exactly
homogeneous and isotropic universe described by a
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds* = —di* + a(1)*dx - dX, (7)

has the following equation of motion:

$+3Hp+V,(¢p) =0, (8)

where V= g—g, H = % is the Hubble parameter, and a dot

denotes a derivative with respect to the cosmic time ¢.
The Friedmann equation is

H? = ﬁ (% + V(¢)>. 9)

The SR parameters ¢; define the rate of change of the
Hubble parameter:

with

i@
¢ < 1;

1 .
— = € = i>1
H> 2H’M?,; 7 He,

€ =—

(10)

where, to write the final expressions, we have used the
Friedmann equation and the equation of motion of the field.

We can now define different inflationary regimes

depending on the values of the ¢;s:

(i) SR: The field is slowly rolling down a potential
with an almost constant velocity, which makes the
acceleration negligible. In this case the equation of
motion (8) is approximately

3H + V() ~0. (11)

The SR parameters are much smaller than 1 (¢; < 1)
and can be written in terms of the potential as

1 (V)2 2 1V,
R > MU I eng—z ¢ — 4R,
M2, \ V mz, v

(12)

’For the nonlinear relation between the inflationary power
spectrum and PBHs abundance, under the assumption of Gaus-
sianity, the interested reader can see [15].
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(i) USR: The field is moving along an exactly flat
potential (V, = 0), which makes the acceleration
relevant. In this case the equation of motion (8) is

é+3Hp=0. (13)

From (13) one can infer that the velocity of the field
(and hence €;) exponentially decreases, which
makes some ¢; ~ O(1). More precisely,

ePSR = —6 + 2¢YSR - when i even.

eVSR = 2¢USR - when i > 1 and odd.  (14)

An exponential decrease of e¢; makes the power
spectrum of curvature perturbation increase.
(iii) Both SR and USR are, at least approximately,

subcases of constant roll (CR). Here H%) = k, where

K is a constant. SR is realized when x = 0 while
USR when « = —3. We will not analyze further this
generic case.

It is important to remark that, given a potential related to
PBH formation, the SR and USR phases alternate. Thus,
the equations of motion (11) and (13) will always be an
approximation of the system.

B. Gradient expansion

The gradient expansion approximation [20,21] consists
of considering small patches of the Universe which can be
approximately described by a local Friedmann geometry.
By choosing some local coordinates (1, X;), this geometry
may be described by a FLRW metric:

ds? = —di} + a)(1;)*5,;dxidx]. (15)

We define the local Hubble expansion as H;, = B’a’—:”.

The patch is chosen in a way that the characteristic
scale of inhomogeneities, which we call it L, is much larger
than H;'. One can then define an expansion parameter
c=(HL)™"<1.

Reversing the argument, at leading order in o, each patch
of the universe of size (¢H,;)~! (the coarse-grained scale) is
approximately described by a homogeneous Friedmann
universe. Higher-order terms in ¢ expansion will instead
capture local inhomogeneities.

Contrary to the linear theory approach to cosmological
perturbations, the gradient expansion is valid for any
amplitude of local overdensities, as long as the patch is
taken small enough for the gradients to be negligible. This
aspect led many authors to claim that the stochastic
approach to cosmological perturbations may give non-
perturbative information on scalar correlations functions
[9,22-25]. However, as we shall discuss, the way those
correlations are calculated via the stochastic methods can

only give information about the linear approximation
regimes.

We conclude this section by stressing that the
assumption of which the gradient expansion is based upon
is that a patch can be found such that any spatial gradient
would only introduce an order o. In other words, for any
generic function X, 0;,X ~ H,;X x O(c) in the patch chosen.

C. Background versus local metrics

In absence of quantum fluctuations of the scalar-metric
system (we have in mind inflation), one can define a global
background metric with coordinates ¢ and x':

ds; = —di* + a(1)*5,;dx'dx/, (16)

where generically a does not coincide with a;.

It is straightforward to show that in any local patch, by
considering only scalar perturbations and in isotropic
spatial coordinates, we can always rewrite the metric
(15) as

dsj = =gy odiy + o 1ij(dx}, + o f'dt,)(dx), + o fdt),
(17)

with the conditions

() ga = galty),

(2) (f' = b(1,)x),, and finally

(3) oVij = r(tp)0:).
In the metric (17) we have used the subscript (0) to remind
the reader that we are at zeroth order in gradient expansion
and (z,.%,) to define generic coordinates for the patch
chosen.

The functions  a(t,).7(1,), and b(z,) depend on the
gauge chosen and the solution of the Einstein equations.

There is no loss of generality in defining y(z,) =

a(t,,)zez(O)C(t”), where a(z,) has the same functional form
of the background scale factor and (O)C (t,) (called curva-

ture perturbation in linear theory) is a generically non-
vanishing function introduced because, generically,
7(tp) # a(tp)'

Note that the local and background metrics live on two
different spaces. Thus, there is no any coordinate trans-
formation relating them. However, to simplify notation,
from now on we will set x}, — x* being careful to treat a(r)
as the solution of the Einstein equations in the absence of
any quantum overdensity. With this, we also define the

“background” Hubble parameter H” () = %
With those definitions, the local patch metric reads
ardr?

dsl2 =~

+ a(1)?e*0°5;;(dx’ + ofdn(dx + o pdt). (18)
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Because of the overdensities, the metric (18) and (16) must
differ: Suppose that (18) was obtained by employing the
so-called spatially flat gauge, where (O)Z_,‘ = 0. Then, one
immediately sees that either (0)& Or b(t) (or both) must be
different from their background value. This is a well-known
result from perturbation theory: the perturbed lapse and
shift functions have, generically, a homogeneous time-
dependent part (see, e.g., [26]). Setting 0= 1, (O)C =0,
and (O)ﬂi =0, as they are in the local patch coordinates,
would then introduce errors which we will quantify
later on.

At the next to leading order in gradient expansion, the
metric in the local patch can still be written in the ADM
form. With the identification y;; = a(r)*¢*7,;, we have

ds? = —a?di* + a(1)*e*7,;;(dx' + pidr) (dx/ + pldr),  (19)
where, as we have already discussed,

@)~ O(6%) o £1)~O(60) o 0 (3% 1) ~ Oo0)
7ij = 6ij~O(0) (¢~ O(c0). (20)

The last term has been added to take into account the
expansion of the scalar field, which is generically nonzero
at the background level.

D. The importance of constraints

In this section we will briefly justify why the momentum
constraint plays a very important role to capture slow-roll
suppressed terms.

Let us take a step back and consider the case of linear
perturbation theory. Suppose again we consider the spa-
tially flat gauge (y;; = a26,-j for any order in gradient
expansion): the only remaining scalar degree of freedom is
6¢. The Hamiltonian and momentum constraints are
simultaneously satisfied if and only if [26]

€1
~l4 [—El s 21
=1 e, ¢ (21)

€]
2M3y

and

0, ~ —(aH") [54& - Hb%(‘}qb] , (22)
which obviously contain long-wavelength terms which are
the would-be equivalent to & and (0)8,~ﬁi.

Let us now go back to gradient expansion. At next to

leading order in ¢ the momentum constraint, as we shall
show later on, has the following functional form:

0i(F(a, 0:4', ¢)) = 0:(G(a. 08", ¢)) + O(0?).  (23)

where F and G are generic functions that we do not specify
here. It would seem reasonable that the momentum
constraint, at zeroth order in o, is automatically satisfied
leading to g, a=1, (=0, and (O)ﬂi =0 from the
Hamiltonian constraint. However, this would be in clear
contradiction to the results of perturbation theory and with
the fact that (18) and (16) must differ.

Thus, necessarily, the momentum constraint must con-
tain terms at order zero in gradient expansion. This is
what actually happens in perturbation theory. Generically,
the shift, entering in the momentum constraint, is non-
local [26].

1. SR as an exception (separate universe approach)

The way the difference between (18) and (16) is usually
introduced in the literature [27] is by setting 8i(0)ﬂi =0
while allowing (0@ O be a homogeneous function of time.

As we have already said, this is at odds with (22).
Nevertheless, during a SR regime, one can check that
[see Egs. (B38)—-(B40) of Appendix B for details):

5p e
HYSp~ 2

+ O(e}).

which makes ai(())ﬂi to be of higher order in gradient

expansion up to an accuracy of next-to leading order in €.
Thus, in this case, the momentum constraint gives infor-
mation only at next-to-next-to leading order in €¢; and can
therefore be discarded within the SR approximation. The
same is not true in regimes beyond SR where 0; (O)ﬂi is of

the same order as 02~ 1.

Three very important aspects are worthy to remark here:

(1) Whenever we are setting 8,-(0),@ =0, we are also
discarding the momentum constraint. This is because
otherwise, momentum and Hamiltonian constraints
on superhorizon scales would be incompatible.

(2) Discarding the momentum constraint introduces an
error in the system that can be quantified in terms of
the slow-roll parameters and it depends on the
regime of inflation:

(a) During a SR regime, the error appears at next-to-
next-to leading order in €.

(b) During any other regime, the error appears at
leading order in €, which is equivalent to not
considering gravity backreactions.

(3) Discarding the momentum constraint also means
that we are not considering information about the
interaction between the different Hubble patches.
Neglecting the momentum constraint at leading
order in gradient expansion is then equivalent to
study an ensemble of Hubble patches that evolve as
separate FLRW universes. This approximation is the
so-called separate universe approach.
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Although it could seem that the separate universe
approach has nothing to do with the expansion in
slow-roll parameters, we have seen in this subsection
that they are closely related. This is because the
separate universe approach resides in two main
approximations: (a) leading order in gradient ex-
pansion and (b) discarding the momentum con-
straint. While the former is valid at all orders in
slow-roll parameters, the second is not. This state-
ment is not in disagreement with some previous
works remarking the wide applicability of the
separate universe approach [28,29]: the conclusions
of [28] are valid under the assumption of locality
while the conclusions of [29] can only be applied to
an attractor inflationary regime; both conditions are
not generically satisfied. Specifically, for example in
the spatially flat gauge, the shift vector is nonlocal
[26] and a USR (or CR) regime does not have an
attractor behavior. In slow roll, however, the non-
locality appears only at next-to-next-to leading order
in €.

III. STOCHASTIC FORMALISM: FOUNDATIONS

The idea of the stochastic approach to inflation is to
reduce the evolution of the full quantum scalar-gravity
system to an equivalent stochastic problem [30].
Considering the Fourier decomposition of the metric and
scalar field, this is done by splitting the variables of interest
(let us say X) into two parts: a long-wavelength part (also
called infrared (IR)] in which # < 1 (where k is the

Fourier mode of the function X), and a short-wavelength
|

1 o o 2 .. 2 2

- oz [0+ 94000, =304 [310,001 + w0, Bt = seuia | +F (35
2 [F  Ge(Be)'Oigpe | (Br) (Br)0ihi0¢p ' pe0ichs

ity e~ R v + S

part (also called ultraviolet (UV)]. The UV part evolves
well inside the Hubble radius and, in agreement with the
onset of inflation, is perturbatively small. Thus, one can use
linear perturbation theory for the UV.

The IR part instead can be large. It can be thought that
the IR part is a result of a “condensate” of UV modes.
However, because the IR part only contains long wave-
lengths, the gradient expansion can be there used. In
principle, the gradient expansion can give information at
all order in perturbation theory or even about nonpertur-
bative regimes (which are relevant for PBHs). This is the
reason why the local universe approach is so appealing.

A. An explanatory example: Stochastic formalism
in spatially flat gauge
The stochastic formalism is based on three main approx-
imations. To illustrate this we will consider the Hamiltonian
constraint (5) in spatially flat gauge where y;; = a25,~j.
We have

- - .2 2
—(Ap);;(Ap)"Y + gK% Vo (Tt)wn'n” =0, (24)
PL

where n* = ¢"n, = (Otif , —%} Note that we have intro-
duced a subindex “f” to specify that all quantities are
calculated in the spatially flat gauge.

Equation (24) can be written in terms of the metric
variables a; and (f;); and the scalar field ¢, using the
definitions of A; ; and K given in the Introduction. The

result is the following:

b 2
i lf akwf)")

a

= 0. (25)

Equation (25) is a bit cumbersome but it is very helpful to understand the way stochastic approach to inflation is
constructed. As anticipated at the beginning of this section, the first thing to do is to split the variables of interest into their

IR and UV parts.

In spatially flat gauge we have only three variables to split:

o = a%R + a}w,
(Be) = () + (BY)',
br = ¢+ ¢pY. (26)

We are now ready to construct the stochastic system:

(i) Due to the perturbative nature of the XYV variables, we will expand the Hamiltonian constraint keeping only linear
terms in UV and isolate them in the right-hand side of the equation, getting3

*We thank Aichen Li for pointing out a typo in Eq. (27).
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P [6”‘8/( )+ SR~ S0 | 500, + 3,08 - S,0, 08
2 Hb 2
+§< =3 }R'i- IR (ﬂf))
2 IR IR ai IR IR\ i ja a 81 a
_M%L |:2F(¢f¥R))2_¢f (((fx?z)z ¢f +( f ) ( 2() ¥R)425 ¢ + ¢ 5 ¢ V( ! ):|
O (BR), 54 (R, 6,0, (B + 5,0, (8] 120,y — 2P o gy,
2(aft)? o IR 3 (o) T
1 j i uUuv ik 5 ( UV 12(Hb) Hbai( IR)i uv 4Hba( UV)i
—Z(a—g{)z[akawf Dt SO0, Y -+ 00, Y+ (g =g ) + )
7IR 7IR IR i
Yi UV f 4t _( f )2(ZUV 1( #IR\ 4UV 2¢f (ﬂ%‘R)lain%Rauv_( ) ¢
T, {‘” O+ e~ (VO T Gl =
" IR IR j
_ (a( })R) VY — 452(18 9)1’21R< Vi 0,1 Eﬁmi( ) DV + a¢¥R(3a¢)( )/ (VY
f -~ i f f
LN PIUEY ). @)

(i) Secondly, since the IR variables are well outside the Hubble horizon, a gradient expansion can be performed over
them. Keeping ourselves at leading order in gradient expansion (see Sec. II B for details), Eq. (27) becomes

1
4((0)0’?2)2

2
X [5ik8j((o)ﬁ?{)k + 5jkai((()) )k _§5ij8k<(o)ﬂ¥R)k]

2 H’ 1 2
+_<_3< IR+ ak((o) }fR)k>

o o 2 ..
P, 0 (1), =3 o)

3 0) % (O)O‘f
2 {( LA, S O I, S O W S SIS
M3y 2((0)af )? ((o)a}R)z 2((0)0‘?{)2 ©
aV . o
:%[&kal((o)ﬂ?{)k+5lka']((o) %R)k}[‘sjlai((o) %R)l+5ilaj((0) %R)l]
((o)“f )’
1 . o
- 2((0)6(}1{)2 [5jlai((0) }R)l + 5ilaj((()) %R)l] [5jkal (ﬂ?v)k + 5lkaj (ﬂyv)k]
2(9i(g) %R)i)zaUv_gai( /)’%R)"a( o 4 (12(H”)2_8H”3( Wi ))a v, 4 B
3 ((O)a}R)3 3 ((0)0[}3)2 AUSH ((O)O‘%RP ((0)alltR) f ((o)“%R)z AUSH
7 IR i iy
L2 p gov_lo pie)? Y V(0 ) }N+2<0)¢f (Pt )3i(<o)¢§R)a}Jv_(<0) 1) 00 9") 0V
Mp, (() I‘R)2 ((0) o)’ ) ((Q)QIICRP ((O)a?{)z
LA, NN O Y. 0 PN g L OO, K
— Y "3 s "3 at |, (28)
((o)af )? ((o)af ) ((O)af )

where we have inserted an extra subindex (0) to indicate that we are at leading order in gradient expansion.
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Using Fourier analysis, we can now define more rigor-
ously the IR and UV modes. If we choose the Heaviside
theta as the window function to split these two modes (as
done in the stochastic approaches to inflation) we have

XR (1, x) = / ﬁ@(oal(t)H,(t) _ )X (x. 1),

XUV (1, x) = / ﬁ@(k—aa[(t)H,(t))Xk(x,t). (29)

Note that, in the spirit of gradient expansion, the splitting is
done on the local cosmological horizon a;H; which
generically differs from the one of the background.

1

Note also that in spatially flat gauge and at leading order
in gradient expansion we have the following:

— [10,(, fR)d HY 1 i
a; = a(t)e St tOH=——— 300 i)'

(30)

This has been obtained by noticing that the three-
dimensional scalar K = —3H,.

Inserting the definition of XYV of Eq (29) into (28) we
get the following expression:

ik §)J ik i 2 ..
a2 )|

(0)7f

2
X |:5ikaj((0) R+ 8jx0; () A —§5ijak((o) %R)k}

©% (%

> Hb 1 2 2 ((o)qb}R)
#3 (3 S o) = e V)

(0) %

S IR IR )i IR
dk 2 (0%t ((0) f )8i((0)¢f )
=-0 (oaH)/—é(k—aaH)(quV){ -
D (27)*? PR M3, ((o)a%R)z ((o)a%R)z
dk (670" ()P )i + 8% (1))l [8,10i (1) BT)' + 80, ((0)P1°)'] v
+ W(a(k—ﬁaﬂ{z) 2 o)) (o )y
610 (o) + 640, (0 PR)] o 2 (0:(,BR))?
- e B+ SO B+ e (@)
(0) % (0%
2ai((0) R’ , 12(H")? - SHbai((o) )’ 4Hb 4
-3 o+ )@+ o )
3 ((o)a%R)Q SR ((0)0411)3 ko ((o)"‘}R)2 e
. . JIR( QIR IR
2 [ oot vy _ (@ r)’ uv wyovy L 20 (0f )0 d)
+— @ - a ) +V @ + ag’);
M%’L ((0>a}R)2( k )f ((O)a}RP ( k )t ¢((0) f )( k )f ((o)a}RP ( k )t
_ ((o)/}}l{)iai((o)(p?) ('Ev)f _ (0) }R((o) %R)i a-((va)f i 8]‘((0) {'R)((o)/ﬂR)i((o) %‘R)j) a-(QDEV)f
((o)a%R)z ((o)a%R)z ((o)a%R)z

8i((0)¢1~R)8j((0)¢1~R)((0) %R)i((()) %R)j uv
B R)3 (o )y

(0%

where (¢ ). (a)"); and 9, ((BYV);)* are operators defined
as in (35).
The right hand side of (31) has two different terms:
(i) The second integral [terms  multiplying
O(k—oa;H,)] is the Hamiltonian constraint at
subhorizon scales. Assuming it is satisfied once

(31)

the Bunch-Davies vacuum is chosen, it can be
consistently set to zero.

(i1) In this respect, the first integral, proportional to a
Dirac delta, can be seen as a boundary condition for
the IR Hamiltonian.

We then get
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~4{ ) [5Zka’((0>ﬁ?)k+5’kal(<0> 1) =390 }R)k]

(0) %

2
X {51‘1(3]'((0)/}%1{)" + 8,0; (A1) = g‘sijak<(0)/}¥'R)k:|

2 ( Hb 1 22 T (o )
R o e L s
3 (O)a}R (O)a}R (0)Ff M%’L 2((0)0[?1)2 (0)¥¢
“ IR IR\ i IR
dk 2 (09t (0P 0i((0) ")
—-0foart) [ 5ok = ot )] - . (32)
t (22)*2 e My, ((0>a¥R)2 ((o)a{’R)z

In order to interpret (32) as a stochastic equation, the right-
hand side should be, at least approximately, a white noise.

The IR and UV modes are coupled in the Hamiltonian
constraint of (¢ ). Thus, at least at the exact level, one
cannot interpret (pf "), as a quantum Gaussian variable, as
it would be in linear theory.

More technically, the dynamics of the system becomes
non-Markovian, namely, the noises themselves modify the
local background in which they are computed. This is very
difficult to treat and, as far as we know, the only attempt to
do that has been done in [31].

To circumvent this problem, it is commonly assumed
(we will call this the Starobinski approximation [30]) that
YRYUV = yPXUV + O((XUV)?). Here, X"W and YR are
any UV and IR functions. We then define Y? as the
equivalent background function of YR, As an example,
under this assumption, the Hamiltonian term

21 Ry = Ve(@")prY + O(d7V)?),

where V,,(¢") is calculated in the global background (16).
|

1

|
The Starobinski approximation is equivalent to state that
any YR — y» = O(XUV). Thus, we immediately see that if
this approximation holds, stochastic inflation can only
exactly reproduce the results of linear theory in the linear
regime. We will discuss specific examples later on.

1. White noise

Having adopted the Starobinski approximation we are
now ready to interpret (32) as a stochastic equation. First of
all we now define “the noise” as

&k

Wé(k - aaHb)(S(pk |f,

G0l = —oalH" (1 =) [
(33)
where S¢|; is the fluctuation of the scalar field on the

background calculated in the spatially flat gauge. With this
we have that (32) can be approximately written as

ki . 2
4(gal)? [&ka]((‘”ﬂ )y 80 (), =3 8"((o>ﬂ§R)k]

4((0)05}

o o 2 ..
|70+ 50 o), 5 o)

2( H 1 2 9
#3 (-0 — O
3\ T Al gt O

Because we are in inflation, the UV modes evolve fully
quantum mechanically and the IR ones do it stochastically.
The reason is the well-known fact that at superhorizon
scales the quantum system is in a squeezed state [32,33].

The noise can then be calculated by considering that the
quantum evolution of the UV modes is generically defined
by the Hermitian operator X7 (x,7):

T2
Mp,

((O)gb%R)z B 2 (0)¢¥R
W + V((O)‘ﬁ;R)} = Miﬁmfl (1)l (34)

XL (%) = e Xy (Hay + e*3XG (Naf,  (35)

where @, and a; are the usual creation and annihilation
operators related to X} (x, ). Finally, X, (7) is the solution
of the evolution equations in the global background and at
deep subhorizon scales.
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The integral of (33) evaluates the field fluctuations
at the coarse-grained scale. Here, the UV perturbations,
that started from a coherent vacuum state, have evolved
into a highly squeezed state in which the variable
(pXV); can take any value with corresponding probability
(V)2 132,331

We would like to end this section by warning the reader
that the stochastic equation (34) is still slightly inconsistent.
The point is that, by the same Starobinski approximation
adopted on the right-hand side, the left-hand side should
also be linearized. We will nevertheless bear this incon-
sistency as long as the correlations functions calculated
with stochastic means will coincide, up to second order in
perturbation theory, to the ones calculated in linear per-
turbation theory with QFT methods. On the contrary, while
the result of the stochastic method will be unphysical,
inconsistencies between the two approaches will signal the
breakdown of perturbation theory.

From now on, the rest of the paper is devoted to check
whether, in all cases of interest, the stochastic formalism is
equivalent to linear perturbation theory at all order in slow-
roll parameters.

By the help of the momentum constraint, we will then
construct a stochastic formalism which is valid at all orders
in ¢; and will call this the “new” stochastic formalism. Our
new stochastic formalism can be thought of as a nontrivial
check of the linear QFT results and, at the same time, it is
easier to implement numerically, especially for the calcu-
lation of higher correlations functions.

Before doing so, we will illustrate the stochastic method
to inflation used so far and call it the “old” stochastic
formalism. As we shall see, this method makes use of the
separate universe approach and hence it is generically only
valid at leading order in € as explained in Sec. II D 1.

B. Old stochastic formalism: Spatially
flat gauge with 8,-(<0)ﬂf)’ =0

The fact that, under the Starobinski approximation,
stochastic inflation can only reproduce linear perturbation
theory has not been made explicit until now, as far as we
know. This lack of awareness has made the stochastic
formalism one of the most used frameworks to study
nonlinear effects during inflation. It has been used in the
cases of slow roll [8,9] and beyond slow roll [4-7] for
single-field inflationary models, or in multifield infla-
tion [10,11].

The gauge typically used for the stochastic approach to
inflation is the spatially flat gauge [24,34] with the further
approximation 8,»(<0)ﬂf)i = 0. As we have already men-

tioned in Sec. IID 1, this further approximation is only
consistent in a SR regime up to next-to leading order in ¢,
although it has been used, inconsistently, also in other
contexts. Another approach used in the literature has been
to compute the noises within spatially flat gauge while

using the uniform N (number of e-foldings for the
perturbed system) gauge in the IR part [35]. This is
consistent only at zeroth order in €;, where the uniform
N and spatially flat gauges coincide. Thus, we can simply
consider the spatially flat gauge with 8,-((0)ﬂf)i =0.
Using the background number of e-folds dN = H’dt as
a time variable and neglecting all terms proportional to €,
[in order to be consistent with 8i((0)ﬁf)i = 0], we will

arrive at the following SR stochastic equation (see
Appendix C for the derivation):

O L Ve(#®)  H
where (6(N1)|¢E(N2)|g) = 6(N; — N»). Note that, in order
to be consistent with the Starobinsky approximation, the
noise has been calculated at leading order in €.

We would like to stress once more that this equation is
only valid in the linear regime in which @R — ¢, =
O(8¢|;) and at leading order in slow roll. Thus it is less
precise than perturbation theory, contrary to what com-
monly stated.

At zeroth order in ¢, for the lapse, i.e., taking 0% = 1,

the approximation 8i((0)ﬂf)i = 0 is also always consistent.
In this respect, one can write the stochastic USR system as

IR

0 Hb
R _ _(0FF
O©F T THN Zf(Nva
Ot
(8)1\/ = =37, (37)

In the next section we will construct a new stochastic
formalism which is valid at all order in €,. This, as we have
already mentioned, will be achieved by making use of the
momentum constraint. It turns out that the simplest gauge
to study the momentum constraint is the uniform Hubble
gauge; thus, our stochastic equations will be written in this
gauge rather than the spatially flat one, as used until now in
the literature.

IV. NEW STOCHASTIC FORMALISM

In this section we will use the so-called uniform Hubble
gauge [36], where K = —3% = —3HP". This gauge does not
fix the coordinates uniquely and one can further impose
B = 0. Note that this gauge bypasses immediately all the
issues related to the correct estimation of the gradient order
of the shift vector.

The procedure to follow is exactly the same as the one
explained in Sec. IIl A and the details can be found in
Appendix D. Here we will only write the main results.
Moreover, to make reading easier, we are also going to
suppress the subindices and superindices indicating the
gauge and the gradient expansion orders. This means that
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an a here will mean g aj}, where K =K +3H" =0
specifies the gauge, and so on. Moreover, as a further
simplification of notation we will now use H = H"”

The full stochastic system is the following set of coupled
equations:

(i) The evolution equation for the spatial metric (A4):

av = @D =&MWk (38)

where &,(N)|sx_o is given in Appendix D.
(i1) Scalar field equation for the field (Al):

on ¢ V()

a—N+(3a_ )8_N+a H?

= —( - €1)§1(N)|5k:0 - ‘52(N)|6K:0
O’

+—( 3(N)|sk=0 + 3&4(N)|sx=0)- (39)

where & (N)|sk—0, £2(N)sx—0> and &3(N)|sx—o are
again given in Appendix D. In (39) we have also
used the following redefinition:

1 9¢

ﬂfaa—N+§1(N)|5K=0

7

ON + &1 (N)lsg—o- (40)

(iii) Hamiltonian constraint (A2):

o V@)
3M3, -1 (g—f})z — S5 E (V) sk—o
V(¢®)
- 41
M~ () "

(iv) Evolution equation for the trace of the extrinsic
curvature (A6):

(5) -

This equation, together with the Hamiltonian
constraint (41), gives an exact solution for a:

g b
<§—£> +3 (2+ )(24;\, E1(N) sk =o-
(42)

3(%“)2— 8;75:1( N)lsko |
W) a2, (N) 5o
(43)

a=

18M3, (1-37

Making use of the Starobinski approximation
we get

023533-10
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N
(44)

Because of the novelty of the momentum constraint
in the stochastic framework we will here make all
steps explicit. We start from (A3). As explained in
Sec. IIC, the way of extracting some information
from the momentum constraint at leading order in
gradient expansion is by going to next-to leading
order in gradient expansion and then applying
the limit 6 — 0 (see [37]). This is the reason we
consider the exact momentum constraint valid at all
orders in o:

9

i X _ _gb__ 0N '
Ay =—H (,,)aM%La"">¢' (45)

The subindex (n) means that we are at all orders in
gradient expansion.

The momentum constraint can be written in a
more convenient way as

O

_3 . 3 ~
e i (e <n>¢(n>Aij):—Hb<)OM2 Oi(d-  (46)

Moreover, (n);li ;j can be written in terms of the time
derivative of (n);”/,- ; using (AS) getting

1 ; -
E 38](n)C8N((,,)7ij - 5ij)

o ai(,,)fp- (47)

We now split between IR and UV by at the same
time keeping only terms up to O(s). The result is

o9

1 L
5 1N ()71 = 635)] = Ang 9(9)
2
= 331‘55 (Nlsk=0 + O(c?), (48)

where &5(N)|sx_o is given in Appendix D

Note that in the previous computation
& ((1)7ij — 6ij) ~ O(o). At a first look this would
seem incorrect; however, it is correct. By using the
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definition of the logarithm of a matrix together with
the fact that dety;; = 1, we can write the following
identity:

((1)7ij 1/) IOg( 71]) - U

where M;; is a traceless matrix that can be written as
2(89,0,C —16,;V2C), where C is the scalar mode.

The order estimation of Eq. (20) implies
9;0;C —16;;V*C ~ O(c). However, this is not in
contradiction (once isotropic coordinates are
chosen) with V2C ~O(c°).* This last term is
precisely the contribution of the momentum con-
straint at leading order in gradient expansion and in
the 6K = 0 gauge. With this knowledge, (48) can be
written as’

o, 3%

0; V-C+= = —0,&5(N)|sk_o- (49

(G0 7+ 33 4) = -0s(W)lscor (49
The key point now is that the leading order in
gradient expansion is related to the longest wave-
length of the perturbations. In Fourier modes, this
means that we are considering the limit k — 0 while
keeping k # 0. Thus, (49) is not identically satisfied.
Because the k = 0 mode represents the background,
the solution of (49) is

9 39
o VC+ 520 (¢ = ¢") = =& (N) sk (50)
ON 2M3,

We will see that, although this information does
not enter in the evolution equations at zeroth order in
gradient expansion, it does in the calculation of the
perturbations correlators via the variable [38,39]:

V2C
ML—C+f;- (51)
The reason is that the correlators we want to

calculate, like the power spectrum, carry information

“Take for example C = x - xg(t,0x), where g is an arbitrary
function. In this case we have

1

L]

%vzc — 24(1,0) + O(o)

and hence both 9,0;C —
& (3V2C) are of order .

Note that, when talking about nonlinear variables, we cannot

.
write 37~ 0;(¢) as a total derivative; this is only true under the

Starobmsky approximation, where 2 Vo qS ~ %‘j’\f ¢.

about the long-wavelength limit of the curvature
perturbations, which is precisely the information
stored in the momentum constraint.

Equations (38), (39), (41), (42), and (50) represent a
closed and solvable system of stochastic equations. It is
interesting to note that in this gauge, contrary to the
spatially flat one, the momentum constraint is decoupled
from the rest of the stochastic system.

The new stochastic framework we have worked out is
now valid at all order in €;, which represents one of the
main results of this paper. In the spatially flat gauge, the
same would have been only achieved by considering
9,8 = O(c") # 0, whereas by fixing 9,4' = 0, one easily
gets the old stochastic formalism at leading order in €; as
shown in Appendix C.

A. Nonlinear curvature perturbation

Now that we managed to write the evolution equations
for the stochastic system we need to define an observable.

In linear perturbation theory where the scalarly perturbed
metric can be written in the form

ds? = —(1 + 2A)dP + 2ad;Bdx'dt

there exists a gauge-invariant variable that encompasses all
the scalar perturbations; this variable is called the
Mukhanov-Sasaki variable and it is defined as

. O?
lin — 2
oM = 6¢p + BN <D+ \Y E) (53)

A nonlinear gauge-invariant variable at leading order in
gradient expansion was defined in [40,41] as

oM = 8¢+ 8¢8C (54)

However, Eq. (54), in its linearization, does not include the
term « V2E.

One can however straightforwardly generalize (54) by
replacing ¢ — ¢V as suggested in [38,39,42] and define

1a¢

—p— 9"+ 0L

(55)
It is then straightforward to check that, once the back-
ground is subtracted, this new variable precisely matches
(53). Whether or not Q™® is the corresponding nonlinear
generalization of (53) is not our concern here. As stressed
many times, we can indeed only trust our stochastic
equations in the linear regime (or in the Starobinski
approximation) where (Q'"...Q'") ~ (QR...QR). Thus,
whenever this holds, the QW constructed from our
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nonlinear stochastic variables will be approximately the
same observable as (53).

In Sec. VI, we will apply this new stochastic formalism
to different regimes of inflation comparing it with the old
stochastic formalism and linear perturbation theory.

V. NUMERICAL IMPLEMENTATION

It is important to realize that we will be comparing two
different results from different theories: (a) linear pertur-
bation theory and (b) stochastic approaches. The results
coming from the old stochastic formalism must be com-
pared with linear perturbation theory at leading order in €,
whereas results coming from the new stochastic formalism
must be compared with linear perturbation theory at all
orders in €;.

The quantity we want to compute in both theories is the
real-space correlator of the long-wavelength scalar variable
O™ as a function of the number of e-folds N. In particular
in this paper we will focus on the two -point correlation
function (related to the power spectrum in Fourier space).

A. Linear perturbation theory

In linear perturbation theory we have

) . ca(N)H(N) dk
@mewmenz/ X py (k)

a(N=0)H(N=0) Kk

log(ca(N)H(N))
—/ Py(k,N)dlogk,
log(cH(0))

(56)

where we are introducing the power spectrum evaluated at
the same spatial point x.

X loump. (57)

Po(k,N) =
where Q) is the solution of the Mukhanov-Sasaki (MS)
equation for the scalar perturbations [see (B33) in
Appendix B]. The limits in (56) correspond to the selection
of modes inside the coarse-grained scale [defined by
k=oca(N)H(N)] from the beginning of inflation
(N = 0). This anti-Fourier transformation from the power
spectrum is needed in order to compare (56) with the real-
space correlator coming from the stochastic formalism.

In order to find (57) we numerically solve the MS
equation for many values of k between the two integration
limits in (56). After that, we perform a numerical integra-
tion in the k direction. In Fig. 1 this procedure is explained.

In the stochastic formalism, the IR part of the field
receives stochastic kicks from N = 0 onward. Thus the first
k mode from which the IR field receives a kick is the one
with k = 6a(N = 0)H(N = 0). Whenever P (k, N) does
not depend on N, one can do a very useful approximation,

3 75;
Log[—|02|1 55|
n \

35:.,

15':,

_5“r v

7log(e*° H o)
‘_;"Jlog(ezo Ho)

__Y'VI'og(ew Ho)Loglk]

10 35—t
N ~Vlog(H o)
20 o5

FIG. 1. Numerical procedure followed in order to compute
(56): each blue line corresponds to the solution of the MS
equation Q) (N) with fixed wave number k in a generic
slow-rolling background. The gray plane represents the plane
in which each k mode exits the coarse-grained scale. The idea
is to integrate from k=ocH(N =0) to k=oca(N)H(N) =
ceMH(N), i.e., in the direction followed by the gray arrow. This
means that the value of (Q""(N,)Q""(N,)) at time N, will be the
integral of the exponential of the blue surface (it is the
exponential because we have plotted the log of the power
spectrum for better visualization) from the log(cH(0)) plane
up to the gray plane along the line where N = N, . For example,
for N, = 10 we will be integrating the red line.

which consists of evaluating the power spectrum at coarse-
grained scale crossing, i.e., at k = caH, and assume that
this value does not change with time. This would allow us

to write (56) as
/ Pk

In this case one could write the power spectrum as the
derivative with respect to the number of e-folds N of the
correlator in real space:

(Q"(N)Q"™(N oa(N')H(N'))dN'".  (58)

Pl = 2O (NQ"(N).  (59)

Graphically, this would correspond to perform the
integral (58) in the direction N (x axis in Fig 1) by
calculating the value of the power spectrum only in the
point at which blue and gray surfaces of Fig. 1 cross.

However, this technique cannot be used if the power
spectrum evolves with time. Thus, unfortunately, the
approximation (59) cannot be used with the full numerical
result. However, it can be used at zeroth order in €; in SR
and USR but not in any transition between them.
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B. Stochastic evolutions

In the stochastic approach, where the variables are
statistical and nonlinear, we can define a nonlinear pertur-

bation as AQR = Q'R — QIR where Q'R is the mean value
of the variable Q'™R. With this definition it is clear that the
correlator in real space at the same time N is the statistical
variance of the stochastic variable Q'R.

We will compute Var(Q™(N)) by simulating the system
of stochastic equations many times where the noises will
take values distributed Gaussianly with variances defined in
(C4) (if we are using the old stochastic formalism) or the
corresponding ones in uniform Hubble gauge (if we are
using the new stochastic formalism).®

We will then run the system of stochastic equations many
times until we have enough statistics to give a trustworthy
value for Var(QR(N)).

Since with the new stochastic formalism we are able to
compute variables with precision €; <« 1, we will use a
Runge-Kutta method of third order adapted for stochastic
equations, which was first developed in [43]. Note that the
adaptation of Runge-Kutta methods to stochastic equations
is not trivial [44]. We write down in Sec. V Bl the
algorithm used in our simulation, where the noises are
always additive (meaning that their variance only depend
on the time variable and not on the stochastic variables
themselves) and completely correlated (which means that
there is eectively only one noise).

1. Numerical algorithm for the stochastic simulation

We denote by X = (X,),er (Where Z = [y, T] for some
0 <ty < T < o0) the solution of the d-dimensional system
of stochastic differential equations (60):

X, =X, /sX ds+Z/ (s,X,)dWi,  (60)
to

with an m-dimensional driving Weiner process (W) =
(Wh oo W) s

In our case we have completely correlated noises and
hence m = 1. A further simplification can be done to (60)
by imposing the additivity of the noises, which translates
into b(s,X,) = b(s). Under these simplifications, the
algorithm used in order to numerically solve (60) is an
order 1.5 strong stochastic Runge-Kutta (SRK) method
defined by Y, = X, and

Iy

®Within the new stochastic formalism, the variances of the
noises are calculated numerically. For example, the variance of
the noise &;|sx_o at time N is the (numerically obtained) power
spectrum of ¢y |sx—o evaluated at the wave number k =
ca(N)H(N) and at coarse-grained crossing time, i.e., when blue
and gray surfaces of Fig. 1 cross.

TABLE 1. Butcher tableau for a generic SRK method with

additive noises.

¢ A0) BO) cM
al s’ s

s
0 0
Yn+l =Y,+ Zaia(t;1 + CS )hn’Hz( ))
i=1

+Z< Ty + B 210 °)>b(zn+c§”hn), (61)

n

forn=0,1,....N
=Y, +ZAU
+ZBU

fori =1,...,s. In the algorithm described above £, is the
time step, /(1) and /(; o) are some stochastic integrals that

will be specified in (63), and a;, ¢\”, ¢, gV, g% A

i o Fi oo o

— 1 with stages

(1, + n,. H)h,

(62)

and Bg.)) are some constants that characterize the method;
they are usually written in a compact way using the so-
called Butcher tableau:

The specific entries of the Butcher tableau of Table I
used in the SRK method of order 3 (in the deterministic
part) are written in Table II:

Once the Butcher tableau is specified, the only thing left
is to define the stochastic to integrals /(;) and /(o).

le» s
Ing) = / ] / dW,ds.  (63)
1, 1,

One can easily compute the expected value, the variance,
and the correlation of the integrals defined in (63) getting

E(I) =0 E(I},) =h;
1 1

TABLE II.  Specific entries for the Butcher tableau of Table I
that characterize the algorithm used.
0 1
1 1 0 0
1 4 4 L 0

% é % 1 0 0 1 -1 0
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FIG. 2. Analytical solution (in magenta) of the stochastic equation dX(¢) = AX(t)dt + vX(t)dW,, where A = 2,v = 1, and X(0) = 1,
W, represents a Brownian motion. The dashed lines represent numerical simulations of the same equation. One can clearly see that both
the Euler-Maruyama method (red line) and a naive stochastic extension of the Runge-Kutta of third order for deterministic equations
(blue line) give a similar precision. The precision is highly improved if we use the stochastic Runge-Kutta method proposed in [43],

which is the method used in this paper.

The statistical behavior of (64) can be implemented
numerically by defining two independent N (0; 1)7 random
variables U, and U,. In this case we have

B Y 1
1(1)—U1\/hn 1(1,0>—§hn U1+—

V3

It is important to remark that if one does a naive
extension of the Runge-Kutta method from deterministic
equations to stochastic equations one would get a precision
similar to the Euler-Maruyama method, which is of weak
order 1. This was firstly noticed in [45] and it can be
numerically seen in Fig. 2.

U2>. (65)

VI. COMPARISONS

In this section we will compare the real-space power
spectrum of the old and the new stochastic frameworks with
linear perturbation theory.

For each model of inflation we consider, which are
characterized by the inflationary potential, we will show at
least the following two figures: (a) the comparison between
the four different real-space correlators; and (b) the relative
difference between the real-space correlator calculated
using the new stochastic formalism and the one using
numerical linear perturbation theory for two different M,
where M is the number of stochastic realizations to be
averaged. This plot has the goal of showing that the more
precise is the stochastic correlator (higher M), the closer we
are to the linear perturbation theory correlator.

'N (0;1) refers to a random variable that follows a normal
distribution with mean 0 and variance 1.

A. Quadratic slow roll

The first model is the prototype of SR inflation in which
the potential is

1
— _m2¢2'

Vig) =

(66)
In the numerical implementation we have chosen
m? =1 x 1077, and, from now on, we use units Mp;, = 1.

In this case the real-space correlator (5¢?) calculated
using the old stochastic formalism (purple line of Fig. 3) is
simulated using Eq. (36). The real-space correlator (5¢5 )
calculated using linear perturbation theory at zeroth order
in €; (green dashed line of Fig. 3) is

(8¢5 (N))

caN)H  dk
—Polk, N
Lu(NO)H k olk.N)

ca(N)H dk k3
- / LN PRI

ca(N=0)H 7 2r

-
(67)

where H is taken as a constant, consistently to the zeroth
order in ¢;. In passing we note that the solution (67) is valid
for any slow-roll potential (like the Hilltop potential studied
in Sec. VIB), but also for a USR regime.

In Figs. 3 and 4 we show that there are no appreciable
differences between the three different approaches.

B. Absence of quantum diffusion

In this section we will study the model of Hilltop
inflation [46], in which inflation is supposed to take place
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o %x10®  QUADRATIC POTENTIAL
——New stochastic
1.2 F|——o0lId stochastic

Linear
- - -Linear zeroth order

-—~0.8Ff

06F
0.4

0.2

FIG. 3. During quadratic slow roll, no important differences are
seen between linear perturbation theory at all orders in €; (yellow
dashed line) and new stochastic formalism (blue solid line).
Stochastic correlator at zeroth order (purple line) and linear
correlator at zeroth order (dashed green line) both slightly differ
from the two correlators at all orders in € ; this difference is due to
the dependence of numerical noises on the coarse-grained scale &
and it will be studied in Sec. VIB 1. Finally, one can observe a
tiny difference between the purple and the dashed green lines,
which will be also studied later on, in Sec. VIB 2.

near a maximum of a potential. The potential can then be
written as follows:
1 50
V($) = Vo -5 m e, (68)
where we have chosen V, = 0.1 and m? = 0.001.
The reason we want to study a potential like (68) is

because it was claimed in [22] that whenever s = % [2V—
vM,v

| > 1, stochastic effects will be important. With the

10-1 F T P

100000,/ W A, At N AN ,...‘/‘":
\l mm | e P v
A
b 1 f\
,‘ Wiy
" “' LY a f».
- ﬁ VJ M I& Tqul , ! \l \ v
2103 \V M‘
; \* H n{
!
Y
104 |
10°° )
0 5 10 15 20 . -

FIG. 4. During quadratic slow roll, the relative difference
between the real-space correlator at all orders in e; calculated
with the stochastic formalism and with the linear theory decreases
as the number of statistics increases. We expect these two theories
to exactly coincide at M — oo.

HILLTOP POTENTIAL

0.015 T
— New stochastic s
—— Old stochastic P
Linear g
0.01F Linear zeroth order

0.005
0
FIG. 5. During Hilltop inflation, no important differences are

seen between linear perturbation theory at all orders in ¢ (yellow
dashed line) and new stochastic formalism (blue line). Stochastic
correlator at zeroth order (purple line) and linear correlator at
zeroth order (dashed green line) both slightly differ from the two
correlators enumerated at the beginning of the caption; this
difference is due to the dependence of numerical noises on the
coarse-grained scale o. Finally, the difference between the purple
and the dashed green lines is due to the dynamics of the IR field
as explained in the main text.

initial value of the field at ¢»(0) = 0.1, s ~ O(10). Note that
this is still SR.

In Figs. 5 and 6 we show the comparisons between the
different approaches. As we can see, the correlator from the
new stochastic formalism exactly coincides with linear
perturbation theory at all order in SR parameters. Figure 5
presents some notable differences between the rest of the
correlators; we will explore those differences in the
following showing that none of them are due to something
that could be interpreted as a signal of quantum diffusion.

10.1 ’ ! i T . P e N
102F ./
L ‘,,”A'\ﬂ\_“
Ly
"l"'f |
v A
i
' l |
10°°
10°® -
1 2 3 4 5 6 7 8 9 10

FIG. 6. During Hilltop inflation, the relative difference between
the real-space correlator at all orders in €; calculated with the
stochastic formalism and with the linear theory decreases as the
number of statistics increases. We expect these two theories to
exactly coincide at M — oo.
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1. Perturbation theory: Leading order versus
all orders in ¢;

The difference between the correlators calculated with
the full numerical solution of Q) (blue and yellow dashed
lines) and the correlators at zeroth order in ¢; is mainly due
to the coarse-grained scale o.

Schematically, the analytical expression for the power
spectrum in the slow-roll approximation is

H? k O\ Ol

The real-space correlator is then calculated as

ca(NH dk H? [ k \Ole)
543 (N, = —— | — , 70
oy = [ () (70)
leading to
2 — 2
|<5¢lin (N’ g)>| <5¢lm (N)> ~1— 60(6') , (71)

(6¢5,(N. 0))

where (5¢?% (N)) is the correlator calculated at leading
order in ¢;, i.e.,

ca(N)H 2
6 = [ ki (72)

ca(N=0)H 74—7[2 .

It is easy to prove that the difference in (71) is much larger
than ¢;, which is what it is shown in Fig. 5. In fact, 69(¢1) —
1 > ¢; is equivalent to |log(o)| > O(1), which is always
satisfied.

One could be led to think that a result strongly dependent
on o is nonphysical. However, both linear theory and the
new stochastic approach have the exact same dependence
on ¢ which is removed in Fourier space. In other words, the
o dependence in real space simply translates to a k
dependence in Fourier space.

2. Linear perturbation theory versus stochastic
Jormalism at leading order in ¢;

The difference between the linear theory at zeroth order
and the old stochastic formalism (purple solid and green
dashed lines, respectively, observed in Fig. 5) is once again
rooted in the k& dependence of the power spectrum. We will
see that the old stochastic formalism captures, in the cor-
relator, the next-to leading order in ¢€; with respect to linear
theory. Thus, no nonperturbative effects from the stochastic
inflation should be searched to explain this difference.

We can define, in our model, the parameter x = $—Z =
0.01 <« 1 and compute the real-space correlators in linear
theory and in the old stochastic approach, to first order in x.

Within this approximation, the background equations are

o’

b
aN =0

€, ~0; e ~2x.  (73)
Using (73), the old stochastic equation (36) reduces to

g
ON

H

SEV), (74)

IR __

where (£(N,)E(N,)) = 8(N; — N,). From (74), Var(pR)
is then straightforwardly computed:

H2

Equation (75) corresponds to the purple solid line
of Fig. 5.

The real-space correlator in linear theory, at zeroth order
in x, would instead give

ca(N)H dk H>  H?
5% Vg = ——=—N, 76
< ¢11n>|x70 [a(NO)H k 4”2 471.2 ( )

missing the additional term « xN? in (75).
If we now instead use the definition of the real-space
correlator (56), and compute it up to first order in x, we get

ca(N)H dk H? k \-2x H?
52 Y = BT (LN 2N+,
(00 lawo)y k 4n> (cmH) 47 (I+xN)

(77)

which precisely matches the result of the old stochastic
framework.

C. Ultraslow roll

In an ultraslow-roll phase, the inflaton moves in an
exactly flat potential (V = V)); this means that its velocity
decreases exponentially and so €. Due to this exponential
decreasing, the procedure explained in Sec. VA leads to
large numerical errors. Thus, in this section we will only
use the approximate analytical solutions for Q) both at
zeroth- and a first order in ¢;. Because of the smallness of
€, those approximations will be exponentially precise. The
way of solving the MS equation up to ¢; precision in a USR
regime is explained in Appendix E.

The real-space variances computed both in linear per-
turbation theory and within the stochastic formalism at
zeroth- and first order in €; are shown in Fig. 7. We see that
they give all approximately equal results.

At zeroth order in ¢, one can compute the correlator in
the old stochastic formalism analytically as follows:
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The stochastic system of equations to solve is

R — opit
b oN
aJTIR
—a]i, = —3zR.

1 v,
_ _ Y N’
+5-4/55W)

The second moments of the variables ¢ and zIR follow a system of stochastic equations:

IR IR

f f f f 1 O <

APt (MR (N)) - IR (V)P (V)
ON ON

8<”f (](\;fo (N)) 0<”IfR(A8/3\‘{’¥‘R(N)> B <_3 O) <71'¥R<N)7T¥R(N >
(N7 (N)) (PR (V)R (N))

(i (N)@i* (N)) )

+<<n}f<<zv>n}R<zv>> (e (V) £R<N>>><—3 )+ (o v @
R 0 )

(@ (N)m}

Using that (p{R(N)) = ¢*(N) and (z[R(N)) = 0¢5I(VN) we
can easily obtain:

Var(pR(N)) = %;ZN. (79)

The correlator (79) exactly coincides with (67) in a USR
regime as already shown in [47]. There is no doubt then
that, at zeroth order in ¢; and during a USR phase, both the
stochastic formalism and linear perturbation theory give the
exact same real-space correlator and hence the same power
spectrum. This fact also allows us to eliminate statistical
errors when comparing the new stochastic formalism with
linear perturbation theory at first order in e; as shown
in Fig 8.

«10710 ULTRA SLOW ROLL

——New stochastic

1.5 F|—Old stochastic
Linear first order

- - ~Linear zeroth order

(Q%

05f

FIG. 7. During an ultra-slow roll phase, no important
differences are seen between linear perturbation theory and
stochastic formalism. Differences between zeroth- and first order
in ¢, correlators are just due to ¢; (N = 0) terms. This dependence
on the value of €; at N = 0 is explained (within the framework of
linear theory) in Appendix E.

(V) (o

N)$*(N)) )\ 00 27

D. Transition between SR and USR

Finally, we will study the more realistic case in which a
SR phase is followed by a USR. The transition between
these two phases is quite interesting as it is the regime in
which we could expect some difference between the IR part
of old and new stochastic equations. This is because the
inflaton field is overshoot [16], making e; only slightly
smaller than 1.

10

M = 100000 ] VNN

M = 1000 N4
M = 100000 with {3¢%) = {307} -
SN =0)

1073

2 22 24 26 28 3 32 34 36 38 4
N

FIG. 8. During an ultraslow-roll phase, the relative difference
between the real-space correlator at first order in €; calculated
with the new stochastic formalism and the real-space correlator at
first order in €; calculated with linear theory decreases as the
number of statistics increases up to the yellow line, where we
have used the fact that the old stochastic formalism and linear
theory must coincide at zeroth order to eliminate most of the
statistical fluctuations. We can see that the yellow line is
O(e2(N = 0)), which is expected since we are only computing
noises up to O(e; (N = 0)).
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FIG.9. Atleading order in ¢; and during the transition between
SR and USR, there seem to be huge stochastic effects in the two-
point correlator (purple solid line) with respect to the one
computed within linear perturbation theory (green dashed line).
However, results at zeroth order are not a good approximation at
all in this case so they should not be trusted. We show this plot
just for completeness.

The potential used to simulate the SR-USR-SR transition
is a cubic potential containing an inflection point at

¢ = ¢0 = 1, i.e.,

V() = Vo(l + (@ — o)), (80)

where the parameters chosen are V=1 x 107 and
p=0.38.

In this regime, the zeroth-order solution for Qy (the one
obtained using the SR approximation) has quite poor
precision. We illustrate this in Fig. 9, where this bad
approximation would show huge stochastic effects. In
Fig. 10 we show instead that the fully numerical linear
perturbation theory correlator exactly coincides with the
correlator from the new stochastic formalism while dis-
agreeing with the old one. In Fig. 11, as we expect, we plot
the relative difference between linear theory and stochastic
formalism and show that it decreases with the number of
realizations.

«10% TRANSITION
6 I T T T T T T T
—— New stochastic /\
— Old stochastic ,' \ %10
Linear I 6
| |
]
5 i 5 1
| |
|
; | 4 \
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,I i 3 \
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4+ |' | 2 \\ H
1 ] \\
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!
| : 13.5 14 14.5
— { |
6‘ 3 1’ : .
A | |
| |
| |
/ | %10
/ { 12
/ | \
— / 1
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/ \ 8 \
/l l, \
1 6 \
/ ', N
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pd \ ~—
~ | T
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FIG. 10. During the transition between SR and USR, the correlator coming from the new stochastic equations (blue solid line) exactly
coincides with the one gotten from linear perturbation theory (yellow line). The zeroth-order stochastic correlator of Fig. 9 has also been

plotted to better visualize the huge difference.
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104F
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FIG. 11. During the transition between SR and USR, the
relative difference between the real-space correlator at all orders
in €; calculated with the stochastic formalism and with the linear

theory decreases as the number of statistics increases. We expect
these two theories to exactly coincide at M — oo.

VII. CONCLUSIONS

In this paper we have firstly elucidated that, under the
Starobinsky approximation or, equivalently, under the
white noise construction, a stochastic framework to
inflation might only be developed in the linear pertur-
bation regimes. Thus, the stochastic approach to inflation
is incapable to give more information than perturbation
theory.

In fact, in its standard form, it is even less precise than
perturbation theory. The reason is that what we called old
stochastic inflation is only consistent at leading order in
slow-roll parameters.

By introducing the momentum constraint of Einstein
equations in the stochastic framework, we have developed a
new stochastic formalism valid at all orders in ¢;. We have
shown that the new stochastic formalism exactly reprodu-
ces the power spectrum calculated via linear perturbation
theory in different inflationary scenarios. In particular, we
have shown that there are no “quantum diffusion’-domi-
nated regimes in the realm of slow-roll and ultraslow-roll
inflation and, in the case of a transition between a slow-roll
and an ultraslow-roll regime (a relevant case for primordial
black hole formation), the old stochastic formalism would
lead to largely unphysical results, while, once again, our
new stochastic formalism would reproduce linear theory
very accurately.

Finally, we would like to stress that our framework is
only valid whenever the perturbations are in the linear
regime. Nevertheless, any discordance between our new
stochastic inflation and linear theory would point out
nonperturbative effects that, unfortunately, cannot be cap-
tured by any stochastic methods.
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APPENDIX A: ADM EQUATIONS

Here we present the basic equations for nonlinear
quantities coming from the ADM formalism [12]. The
Klein-Gordon equation is

1 0

Nl (Al)

0
gt - ve=o

where Vy= d‘;—ff).

As it is written in the main text, o and f; are Lagrange

multipliers; the constraints associated with them are the
energy and momentum constraints:

. e 2
RO —A,;AY + 3 K? = 161GE,

~ 2
Dinj —gDIK = SﬂGJi,

where E =T, nn" and J; = =T, n"y;.
The evolution equations for the dynamic variable y;; are

0~ PO + o= —L(ak -0, (Ad)

- 2
(0, = BLON)7i; = —20aA;; + 740" + 70" — g?ijakﬂk-

(AS)
Finally, the evolution equations for K;; are
|
(0, — Loy K = a<A,- AT + gI(2> - D;Dfa
+ 472Ga(E + SF), (A6)
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(at - ﬂkak)At]
e 3) _7ij Vij
= (R 1) = (e ?DkD"“ﬂ
+ a(KA;; — 24, A%) + A,,0,8" + A ;0,5 - A,,akﬁ
87Gae % Vii
- (S,] 3 Sk) (A7)

where S;; = T;; and S§ = y*Sy.
APPENDIX B: LINEAR PERTURBATION
THEORY

In this Appendix we will explore the well-known linear
perturbation theory during inflation [48], paying special
attention to the uniform-Hubble gauge.

1. Linear perturbation theory in a generic gauge
The scalar sector of the perturbed FLRW metric is

ds> = —(1 + 2A)dt* + 2a0;Bdx'dt

where
(B2)

1

We can now define the linear curvature perturbation as

1
l//ED"’szE. (B3)
The usual gauge-invariant MS variable is
¢ ! ¢
=6p+—|D+=VE) =6 +—— B4
Q=0¢+ 7 (D +3 ¢ty (B4)

With metric (B1), perturbed Einstein equations in a
universe filled with a single scalar field in an arbitrary

a*[(1+2D)s;; — 2E;|dx'dx/, (B1) gauge are
|
b(17b : v? 2 b 1 1D (s 1b
3HY(H'A = D) +— | D+ VE—l—H aB| = =525 [#7(6 = ¢"A) + V50, (BS)
PL
HPA — D——VZE B
a( ) 2Mh¢aw (B6)

. . . . . 1Vv2 1 . d . .
{HbA +2HA + 3(H")?A — D = 3H"D — HYV?E + A [A + D+ gV2E +2H%(aB + @*E) + a (B+ aE)] }5{
a

1 . 1 . d
- =—0,0 [A +D +§V2E+ 2H"(aB + a’E) + a 0 —(B+ aE)]
a

The perturbed Klein-Gordon equation is

. 2 . . . 2
8¢ + 3H 5 + <V¢¢ - v2> 8¢ = —2V,A+ " [A -3D+ vaB} :
a

After some manipulations, one can get an equation of motion for the MS variable (B4):

3 : V2o (3
O+3HO+ -5+ H(—Jer+

2

Finally, we will introduce the overall expansion rate (or trace of extrinsic curvature) as

K=V, = 3<Hb

where n is the linearized unit timelike vector.

2M2, (0" (5 — P"a) = V4645 (B7)

(B8)

%6162—365—%€2€3>>Q—0_ (B9)
HbAJrD_%V_zB) (B10)
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2. Linear perturbation theory in 6K =0 gauge

Since the trace of the extrinsic curvature K is defined as
K = 3H, it is now trivial to write the linear version for the
uniform-Hubble gauge (where H = H):

set B=0. This is the so-called time-slice-orthogonal
threading [49]:

HAsg_o — Dsg—o = 0,

. 1V?
HbA5K=0 - D&K:O + 5735K=0 - 0 (Bll) B&K:O - O (B12)
As also done when studying 6K = 0 gauge in gradient
expansion, we can use the residual gauge freedom to Once specified the gauge, Eqgs. (B5)-(B7) are
|
vz 1 ) 1 b b
—5 | D=0 + 5 V°Esk—o| = =575 [¢" (6sk—0 — ¢"Ask—0) + V s0Psk—o) (B13)
a 3 2M%;
RvY ! P (B14)
3 SK=0 = "5, 5K=05
3 2M3%,
- 1o, o b -
H Ask—o — §V Esg—o— H"V Esg_y = EYVEn [@” (8psk—0 — " Ask—0) — V $0sk—o, (B15)
PL
1 . ..
Ask—0 + Dsg—o + §V2E5K=o +3Ha*Esg_g + a’Esg_o = 0, (B16)
where (B15) and (B16) are the diagonal and nondiagonal part of (B7), respectively. Now we can use H’ = —é‘f;f
in (B15) and after manipulating (B13), (B15), and (B16) we arrive at a result for Asg_q: -
v2 1 be 7b\2
—5 Ask—0 = 55— (44 0¢sk—0 — 2V y0hsk—o — (") Ask—0)- (B17)
a 2M%p;
which can be written in Fourier space as [36]
iz, (4070l o0 = 2V g0l ko)
Ak‘&K:O = TRCNE . (B18)
ML, T &
It is also convenient to use the gauge condition (B12) in the perturbed KG equation:
. e V2 b b
Opsk—o + 3H 6¢psg—o + | Vyp — Z Spsk—0 = =2V yAsk—0 + ¢ [Ask—0 — 3H" Ask—q]. (B19)

Finally, and for completeness, we will write an evolution
equation for y using (B12) and (B14):

1

- m P Shs—o + H Ask—o.

Wok—0 = (B20)

3. Linear gauge transformation between spatially
flat and 6K =0 gauges

In this Appendix we will also calculate the variables
Ohsk—o and ysx—o that we use in new stochastic formalism.
In order to do so, we will make a gauge transformation

|
between spatially flat gauge and uniform-Hubble gauge.
The reason is that we know that é¢py = Q [because of
(B4)].This means that to perform the gauge transformation
Oy — O¢hsk—o allows us to write d¢sx_o in terms of the
gauge-invariant quantity Q, as we will see.

In order to do so we define an infinitesimal vector as
A= (2%, 27), where we decompose A' = 1/ + O'n, where 1}
is a 3-vector with zero divergence and 7 is a scalar function;
then, a scalar quantity transforms under an infinitesimal
gauge transformation as

S — 6¢p = 6¢p + ¢/ 0. (B21)
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Imposing gauge invariance of (B1) we get the trans-
formation rules for the different parameters in the metric

- 1
D—>D=D+H/1°+§V2n,
A—A=A+HIO+
E—>E:E—;7,

B—-B=B+n -2, (B22)

where, as before, (') means a derivative with respect to the
conformal time (dt = adr), and H = % = aHP.

From the definition of the overall expansion rate 6 =
H” + 6K and (B10) we deduce that 6K = —H”A + D —
IV B or 6H = —HA + D' —1V?B. Performing a gauge
transformation we get

OH — 6H = 6H — H22° + H'2° + %v%‘). (B23)

In order to find the gauge transformation parameter
A sk—o between flat (f) and 6K = 0 gauges we need to set
§H =0 and 6H = 6H; = —HA; — 1 V2B [spatially flat
gauge, or iy = 0, implies, from (B3), that both D and E are
0] in (B23), obtaining
|

=30 sx—oMe1 + VPA 5o = S, (B24)

where S = —35H; (we have used the definition of ¢ in
conformal time, i.e., ¢, = 1 — Z—;).

The only thing left to do is to specify S. In order to do so
we use energy and momentum constraints (B5) and (B6) in
spatially flat gauge (i.e., setting D = 0 and E = 0):

1
H(3HA; + V?B;) = — IV (" (3¢ — pP' As) + PV 45¢b].
PL
(B25)
1
HA; = PP 5¢p;. (B26)
f ZM%,L f

We now can see that the left-hand side of (B25) is
nothing more than HS. Using (B26) to substitute A; in
(B25) we get a solution for S:

Q ( ) wQ

S =- a*Vy + ¢ = —¢p"He, |,  (B27)
AN 0

where we have already used d¢; = Q.

The next step is to solve (B24) for )| si_o in
Fourier space:

Ok (a2V¢+¢b/g_i_¢b/H€1)

/l(l)(|f—>§l(:0 = _3H2€1 + k2 -
where k = [K]|.

Finally, using (B21), the field perturbation in uniform-Hubble gauge is

This result, together with the definition of the MS variable, gives the value of wy|sx_o-

Sk 2M3, H

=L , B28
(T + 3e) (528)

361 + %6162 — €] %
5¢k|51<=0 =0+ ¢b%lo(|f—>61(:0 = Ok [1 - (%>2 1 3¢ k} (B29)

HO, [3€1+ Je16,— € %
b [ k\2 k} (B30)

¢ (3) + 3e

H
Wilsk—o = W(Qk — 8t |sx—0) =

In order to conclude this Appendix we are going to study some properties of (B29) and (B30) in the long-wavelength

k

limit, i.e., when % = - = 0 < 1. We want to study this limit because, as one can clearly see, it is the same limit we have

aH

used both in the gradient expansion as in the stochastic formalism.

. « . . 2 .
In this limit we can use the expansion parameter ;’71 < 1.} The result is

¥The condition ¢ < 1 is automatically satisfied as soon as our coarse-grained scale is big enough; however, ¢, is also very small
during inflation so this expansion could cease to be valid at some point. In order to use our stochastic formalism one has to be sure that

% < 1; this does not represent a problem since it is easy to check that one can always choose a value for ¢ such that

1
exp <— 4—€1> <K 0 <K +/3ey,

(B31)

where the lower limit was first obtained in [3] and later refined in [50].
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/ / 2
Spx|sg—0 = % {(2 HQQkk - 62) T <6 ter- 2HQQkk> <;_€1>] ’

OH
Wilsk—o = 7 {(6 +e—2

Equation (B32) is enough for the numerical implemen-
tation of the stochastic formalism we present in the main
text. Note that the expansion done in (B32) requires €; # 0;
indeed, if we impose €; = 0 in (B29) and (B30), we get that
uniform-Hubble and spatially flat gauges are equivalent
and hence we recover the noises from the old stochastic
formalism.

As an example we can write an analytical expression for
Sy |sx—o and wi|sx—o in SR at first order in €.

If we write the MS equation (B9) using the conformal
time 7 defined as (z = [4) as time variable, we get

"

O +2HQ} + <k2 +H*(2-¢€) +%> O =0, (B33)

where (/) denotes a derivative with respect to  and we have

bt " .
defined z = a% = ay/2e;Mpy such that < can be written

in terms of SR parameters:
1

Z 3 1 1 1
?: azH2<2—€1 —'—562 +Z€% —56162 +§€2€3>.

(B34)
The solution of (B33) provided that 1» =+ < is

constant up to the level of precision we are looking for [in
our case v must be constant up to O(e;)] is

e%ﬂ(l/"‘%) T
Ok = ok |s = £ vV —THZ(,I)(—/CT),

— (B35)

where we have used the Bunch-Davies vacuum [51] as a
initial condition. H,Sl) is the Hankel function of first class.
Using the expansion of the Henkel function when

(—kt) ~0 < 1 and v > 1 (always the case in SR) we have

HY (—ke) = éz%-m)-v (—F[u] + %F[u - 1](—k7)2>,
(B36)

and we obtain the following expression for Qj up to
(—k7)%:

e%ﬂ(zﬂr%) ov=1

Qx = 0yl = —i avm
—%r[y ~1)(ke)?).

9, :
Hoo up to (=ke) is

v=e(=ke) (I'ly]
(B37)

and hence for

HOx

O _«_ \(°
)+ (o) (5] @
[
Oy 1-2u-2Hr 1 o
HO.  2Hz +2HT(y—1)( ke’ (B38)

Finally, one can integrate by parts z = [ % up to order €
as done in Appendix E. This gives a result in SR of

1
‘[SR:’—ﬁ(l—i—Gl), (B39)

which, together with the definition of v, gives us the
expression of v in SR up to O(¢;):
3 €
VSR = 5 +e€ + 52 .
After inserting (B38), (B39), and (B40) into (B32) one
gets

(B40)

S5k -0 = O(%)
, (B41)

Ho® ,
Y lsg—o = -+ 0G)

where fo) stands for Q) but expanded at first order in €.
In a SR regime, comoving gauge (6¢ = 0) and uniform-
Hubble gauge are equivalent up to O(e;) and O(c?),
provided that ¢; < 1 but ¢; # 0.

Note that in order to study analytical solutions in other
regimes like USR one must know the solution of Eq. (B33)
up to precision O(e;); however, there is no analytical
solution for (B33) when v is not a constant. This is precisely
the case in USR up to precision O(e;); this is because in

USR we have % ~ O(ey). In Appendix E we will present
an alternative approximation in order to get an analytical
solution for the MS equation for regimes beyond SR and up
to O(e;). Using results from Appendix E together with
€JSR ~ —6, we can write (B32) in USR:

{ SR 5k = Ok + O(%) (B42)

(2

2
Wi sk = O(g)

APPENDIX C: DERIVATION OF THE OLD
STOCHASTIC FORMALISM

In this Appendix we will derive Eqgs. (36) and (B37) by
using spatially flat gauge with the further assumption of
6[(<O)ﬂf)" = 0. In this case, the Hamiltonian constraint (34)

simplifies considerably:
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H \? V((o) ) V((o)(f’%R)
(XIR = ) ] ¢IR ) = ) ( 0)”£R)2 s (Cl)
(0) f 3MPL_§( ON ) ¢§1( )l 3MPL_ ( 2
where in the last equality we have defined the auxiliary variable )n¥R as
a(0> r
0 = N & (N)];- (C2)

Once we have seen how the stochastic equation for the Hamiltonian constraint is derived we can follow the same
procedure to write the whole set of ADM equations of Appendix A. After a straightforward calculation, one can see that the
only equations of interest at leading order in gradient expansion are

(i) The Klein-Gordon equation for the field (Al):

(C3)

IR O (o IR
Q0 (3 PN e Velat®) 00
HP (0)*f ( I_ZI‘R)Q 2 f 8N fs
(0)%
where, in the same way as we did with £; we define the white noises &, and &5 (note that they are now written using N
as time variable):

&k 0
V)l = —oat"(1 ~e)) [ 5 ok a3
b d3k b
SV = —oat(1 =) [ 5ok a) A ()

(i) Evolution equation for the trace of the extrinsic curvature K (A6):

0 (H IR\2

oN ((0)”‘?) _ ((O)”f ) (CS)
I-{XbIR ZM%’L
%

Note that we have not taken into account the momentum constraint because we are at leading order in €. It is now easy to
realize that (C1), (C3), and (C5) can be written in a compact way:

IR

IR 8(
O = " aN +~fl( )t

9. 7R IR)2 Vv IR IR)2 b
o _<3 _ (<0>”f )(O)”F_M <3M%L _ ((0>’;f ) ) &(N )|f+a¢ E(N) (Co)

ON 2M3, V(o) #R ON

In order to solve (C6) it is necessary to calculate the variance of the noises (33) and (C4):

GO M) = S (1 )O3 - Vo).

e = I !

EODREMI) = P (12 )0l B0) = 2) = 11N (V)]
A e e N LI ) (©7)
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where the last equality in the third line comes from using
momentum constraint (B26) in spatially flat gauge. Note
that we have also written the correlators in terms of the

Mukhanov-Sasaki variable Q) = 6¢by +
spatially flat gauge we have Qi = ¢y |;-

Another important aspect to remark from (C7) is that they
are completely correlated [or completely anticorrelated,
depending on the values of the correlation matrix whose
entries are (C7)] noises. This is because they all come from
linear perturbation theory. This means that the sign before the
noises in the stochastic formalism is important, which is a
crucial aspect to take into account when doing numerics with
the stochastic formalism as in Sec. VI.

Equation (C6) is not consistent because it should not
include any term of leading order in €. This is why we
should rewrite (C6) as

aN z,uk because in

5(0 IR
0T = v TS Ml
07 |
= 3R =&Vl in USR
o V¢( %) :
3 ON = =3Mp, — V(q’;'R) = 3&(N)[s = & in SR.
(C8)

Finally, &, and &, must also be computed at leading
order in €, which results in (&(N{)E(N,)) =
()*5(N, = N,) and (&(N,)&(N,)) = 0. This allows
us to perform the noise redefinition & (N)|; — Hh —&(N),

where (&(N,)E(N,)) = 8(N| — N,). Inserting the "defini-
tion of £(N) into (C8) we arrive at

a IR Hb
R _ _(0)Ff
Of =N T <Z>§(N)|f’

a ﬂ'IR
(g)Nf 3,7, in USR
8¢IR V ( IR) Hb )
a—l\f’:—M%,L v¢( IfR> -5 £(N);, inSR, (C9)
I

which are Egs. (37) and (36), respectively.

APPENDIX D: DERIVATION OF THE NEW
STOCHASTIC FORMALISM

In this Appendix we will derive each one of the equations
of the new stochastic formalism. Since we are always using
the Starobinski approximation we will directly write the
linear perturbation theory equation for the UV side. We will
follow the same order as in the main text:

(i) The evolution equation for the spatial metric (A4) in

uniform-Hubble gauge is

= (= 1) =0, (D1)

where, as in the main text, a subindex (n) means that
we are at all orders in ¢ so the above equation is
exact. When we split it between IR and UV we get

oc oD
oy (a=1) =20 4A, (D2)

where, as already noted, we have adopted the
notation of linear perturbation theory (D and A
instead of ¢{YV and aVV) because we are already
assuming Starobinski approximation.

Finally, when including the Fourier splitting (29)
into (D2) we get

¢

av = @D =&MWk (D3)

where &4(N)|sx_o is defined as
&4(N)|sx—o = —oat"(1 —¢;)
y / %5@ — 6aH"Dy |5 o
(D4)
(i1) The scalar field equation of motion (A1) in uniform-

Hubble gauge once the splitting between IR and UV
has been done is

1[8245 <3_] 1 Oa 8@)84)]+ Vy

aN: T 20N “on)onN| T
825¢ 8545 V2

¢b
+2VyA+ o [a_ - 3A} : (D5)

If we now include the Fourier splitting (29) in
(D5) we get

[azqz+ <3 . 18a+33C> 8(,1)] iz

08, (V)51
= —(3=€)& (V)| 5x0 _%
b’
= &(N)|sg—o + 6(])?/ £5(N)|sx—o- (D6)

where & (N)|sx—0> &2(N)|sx—0, and & (N)|sx— are
defined as
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&k
& (N)|sx—o = —oaH"(1 —€;) / 22 8(k — oaH")6py | sk~
d3k 5(ﬂk
N = —caH"(1 - = 5(k — caH) 2k
a(W)lo = —oah(1 —er) [ 5 alk = oatMRE
b d3k b
W o0 = oa? (1= 1) [ s ok = at?) Ayl (D7)

Finally, we can use (D7) in order to ehmmate and a redefinition of the velocity of the field in order to eliminate
‘)5‘( )‘“ % in (D7), getting

) ¢ 1% op®
a—;\z, + (3a—¢) 819\‘; +a Z(gb) =—(3=€1)&1(N)lsg=0 — & (N)|sx—0 +ai;\,(53(N)|5K=o +384(N)lsk—0),  (D8)
10 5]
”E{—xa—ﬁ‘F&(N”&K:o af,'f'fl( )sx=o- (D9)

The Hamiltonian constraint (A2) already separated between IR and UV is

1 op . 2V? 1 opt (06¢p O¢®
gy (1003 (5) ) = o] g [ G (=) ] o0

Using the splitting in Fourier space once again and using the fact that due to the gauge chosen, the Hamiltonian
constraint must coincide with the Hamiltonian constraint of the background system, we can write

V(g® v
H? = 2 (¢1 )845" 27 1 (942 (¢)a¢b ) (D11)
3Mp, =5 (G8)" 3Mp —5(580) — Fn &1 (V) lsk—o
Now we do the same with the evolution equation for the trace of the extrinsic curvature (A6):
OH Bl 1 og? Op® 06¢p
—3H— —3H’«a H>—~— -V =— (H*Z—A+2H>———-V,0¢ ). D12
N M%L ( ON (4’)) M3, <2 aN AT Gy oy ~Ved?). (D12)
If we write the UV part in Fourier space we get the noise:
OH ) H? a¢>b
—3H— —3H«a H>—~— -V D13
oy~ =i (- V@)) = 1 S Wl D13)

Finally we can substitute ()H by its background value and eliminate 3H?a using Eq. (D11). The result is

) ¢b 2
The last equation to derive is the momentum constraint. However, since we have derived it in the main text we will
only write here the value for the noise &5(N)|sx_o:

b
—a(20) 20 B e Wl (D14

&k

Wé(k_ oaHh)k25k|§K:0. (DIS)

E5(N)|sko = —oaH? (1 - €) /
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APPENDIX E: SOLUTION OF THE MS
EQUATION FOR USR AND CR REGIMES

This Appendix is devoted to the study of solutions for the
MS equation for the cases in which 1> = % + Z;” 72 cannot be
assumed to be a constant [see discussion below (B33)].
First of all, we will rewrite (B33) in terms of u, = aQy,
where a is the scale factor and Qy is the MS variable
defined in (B4).

"
uy () + <k2 - %) uc(7) =0, (E1)
where we have defined z = a Z—],/ = a+/2¢,M p; such that 27”
can be written in terms of SR parameters:

L (-2 tatee 4 ) (E2)
—=da —€ —€ —€5 —<€1€ —€-€ .
2 16T 756060 T566

In order to have an analytical solution in terms of Henkel
functions as in (B35) we need 1* =+ 2'7”72 to be a
constant. Let us study when this is the case.

First of all it is very convenient to write 7 in terms of aH
or vice versa to see if the term 27” 72 is a constant. We will do
this up to O(ey).

r7b

From the definition of ¢ = —(5—,,>2 and €, =
H’;’—;ﬂ— Z(Il;l—fy together with the background equation of

motion of the field, we can write

1%
€ = —6(1 + —4’> + 2¢, (E3)
3H¢

and since Z—l = He, we can write €; as

€; = €la S exp [—6/ <:—; - %) dt] . (E4)

where € is the initial value of e; and we have

used N = loga.
The next step is to use the definition of 7 and integrate by
parts:

1 da

T =

We now have to integrate by parts again the last term in
(ES) taking into account the result (E4); after a straightfor-
ward computation we get

da er 6 [da [V, 3 [ da ,
3 € = — - = 3 — €] + = 7261.
aH THa 7 ) Ha 3H¢ 7 ) Ha

(E6)

The last term in (E6) is second order in ¢; so we will
neglect it. If we keep integrating by parts we will find terms

. a Ve .
proportional to W(ﬁ)el‘ However, for the regimes of

interest (SR, USR, or CR) we have (3‘;—‘”45) =5+ 0(€), so

we can neglect all these terms and write a formula for =
valid up to first order in €.

b Ser s G

1 1 1 1
= —_-— 1 — e 1 - .
Ha< +7+6(V—4’-)€1> Ha( +7+2K€1>

(E7)

Once we have the general expansion of 7 it is easy to get
v from (E2); the result is

3 1 4V¢¢ 3(15+ 12K+2K’2)
2o 1—2le €1,
2 9H>  [B+2«|(7T+2)
where we have used the definition of 12 = + £ z? together
with the following result:

UV =

(E8)

Vos 1

3 5 1
? = (661 —562 —26% +§€1€2 —Zé'% —E€2€3>

= 3k — K2 —+ 0(61). (E9)

Let us finally apply (E8) to SR and USR.
(i) SR: At leading order in SR x=~-3 and

Voo 3.
?—661 —562.
3

1 3
I/SR:_—"E] +—€2:—+2€(1).

El
2 2 2 (E10)

(ii)) USR: The
K = V¢¢ =0:

potential is exactly flat, i.e.,

3 15 3 15
VyUSR 25—761 = 5—76'(1)1'6[‘]6.

(E11)
In the last equality of each regime we have used the results
(E3) and (E4) together with 7 = — (1 + O(e;)) (where
H = constant). These results obviously coincide with
known results (see for example [35]).

It is then obvious that the solution in terms of Henkel
functions is valid at zeroth- and first order in € for SR butitis
only valid at zeroth order in ¢; for USR and CR; this is
because at order €, vysg 1s not a constant. The aim of this
Appendix is to give a solution for (E1) up to €; which is valid
for USR. The procedure to follow is very simple:

(1) First we write the MS equation (E1) at first order in

€, using (E7):

up (t) + <k2 —le <2—$€1>>uk(1) =0. (El12)
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(2) We then write explicitly the time dependence of ¢;:

2 45
uy (1) + (k2 - + 7€?H6r4> ug(z) =0. (E13)

(3) Equation (E13) does not have an analytical solution;
however, we know that the solution up to order ¢
must be of the form uy(7) = ug))(r) + e(l)uf(l)(r).
The equation that will follow each of the parts of the
solution is

(4) The final solution uy () for USR, with the Bunch-
Davies vacuum as initial condition, is

ot i 45 i 7
S o] e ——
i (7) w/—yi T T ot <5k1 10(kt)?

Ti 7 7 7i
"oy 6(ke)t (ke 4(k7)7)] '
(E15)

From (E15) we can write the solution for Qy = “7“ as

ike g 1 45
Qk(T) :—e T(l——€0H6T6> |:1+L+_€0H6T6

2k 7 kr 7
i 7 7i 7
% (% T 10(ke)?  6(ke)’ | 6(kr)?
7 7i
ik " 4(kf)7>} ‘ (E16)

When evaluating k = 6a(N, )H and applying the limit
o — 0 we are left with the following expression:

e~ioll+e) g ] . 45 ¢,
- |\l —ze || +——F]|.
V2(caH)3? 77! 4 o8

Equation (E17) is written in terms of the time used for
the stochastic simulation N, ; if we want to relate it with the
background we must shift the time variable according to
N =N, +1log(o) [see discussion below (69)]. The final
expression is

Qk(N*) =

e"°H

.45
M == i+ %),
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