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In this paper we develop the formalism for the stochastic approach to inflation at all order in slow-roll
parameters. This is done by including the momentum and Hamiltonian constraints into the stochastic
equations. We then specialize to the widely used Starobinski approximation where interactions between IR
and UV modes are neglected. We show that, whenever this approximation holds, no significant deviations
are observed when comparing the two-point correlation functions (power spectrum) calculated with
stochastic methods, to the ones calculated with the Quantum Field Theory (QFT) approach to linear theory.
As a by-product, we argue that: (i) the approaches based on the Starobinski approximation, generically, do
not capture any loop effects of the quantum scalar-gravity system; (ii) correlations functions can only be
calculated in the linear theory regimes; thus, no nonperturbative statistics can be extracted within this
approximation, as commonly claimed.
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I. INTRODUCTION

The possibility that primordial black holes (PBHs)
can be a significant fraction (if not all) of the dark
matter (DM) has been a source of interest for almost
50 years [1].
A possible PBHs formation mechanism is through

the gravitational collapse of large (nonperturbative) over-
densities generated during an inflationary epoch of the
universe. Those perturbations are produced by the quantum
fluctuations of the inflaton and are exponentially rare [2].
Thus, in order to predict the abundance of PBHs, a precise
statistical knowledge of inflationary perturbations is
highly desirable.
The hope of the stochastic approach to inflation is that

it incorporates quantum corrections to the inflationary
dynamics in a nonperturbative way [3]. However, as we
shall see in this paper, the current realization of it
generically fails to achieve this goal.
In this approach, wavelengths that are well outside the

cosmological horizon (the horizon from now on) are
approximated in powers of spatial gradients rather than
on amplitudes (as in linear theory). At the same time
though, those modes are influenced by the quantum sector
by receiving quantum kicks from stochastic forces gen-
erated by the perturbative subhorizon modes. The success
of the stochastic formalism resides on the fact that it allows

to reduce a quantum problem into a statistical one and it has
been widely used in the literature [4–11].
By exploring the foundation of the stochastic formalism,

we will identify two important limitation that the current
realization of it has:

(i) The use of the separate universe approach, which
makes the formalism generically valid only at
leading order in slow-roll parameters.

(ii) The white noises construction, which is only pos-
sible in the linear regime.

While we will leave the issue related with the white noise
for future work, in this paper we will solve the first
limitation, improving the original formulation of the
stochastic approach to a novel one that leads to unprece-
dentedly precise predictions for the perturbative statistics of
inflation.

II. GRADIENT EXPANSION AT ALL ORDER
IN SLOW ROLL

In the Arnowitt-Deser-Misner (ADM) (3þ 1) decom-
position, the metric related to scalar sources is expressed as
[12]

ds2 ¼ gμνdxμdxν ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ;
ð1Þ

where the spatial metric can be redefined as γij ¼ a2e2ζγ̃ij
with detðγ̃ijÞ ¼ 1. Here a ¼ aðtÞ is the scale factor.
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Using the metric (1), the Einstein-Hilbert action with a
minimally coupled scalar field takes the following form1:

S ¼ 1

2

Z ffiffiffi
h

p �
M2

PL

2
ðRð3Þ þ α−1ðKijKij − K2ÞÞ − 2αV

þ α−1ð _ϕ − βi∂iϕÞ2 − αγij∂iϕ∂jϕ

�
; ð2Þ

where Rð3Þ
ij is the Ricci tensor of the spatial metric, Kij is its

extrinsic curvature, andMPL is the Planck mass. Explicitly,

Kij ¼
1

2α
ð∂tγij −Diβj −DjβiÞ; K ¼ γijKij; ð3Þ

where Di represents the covariant derivative with respect to
the spatial metric γij.
It is convenient to decompose the extrinsic curvature into

its trace and traceless part as

Kij ≡ γij
3
K þ a2Aij; ð4Þ

where γijAij ¼ 0. We will also define Ãij ≡ e−2ζAij for
later purposes.
In the ADM formalism, γij and ϕ are the dynamical

variables, whereas, α (the lapse) and βi (the shift vector) are
Lagrange multipliers for the action (2) which generate the
following Hamiltonian and momentum constraints of the
scalar-gravity system:

Rð3Þ − ÃijÃ
ij þ 2

3
K2 ¼ 16πGE; ð5Þ

DjÃij −
2

3
DiK ¼ 8πGJi; ð6Þ

where E≡ Tμνnμnν and Ji ≡ −Tμjnμγ
j
i and nμ ¼

ð−α; 0; 0; 0Þ is the form orthogonal to the time slice.
For completeness the basic equations of this formalism

are written in Appendix A.

A. Inflationary scenarios and slow-roll parameters

As we have already mentioned, PBHs represent natural
candidates for DM (latest constraints on this idea can be
found in [13]). However, to statistically generate enough
PBHs for this to hold, one needs, at least, a power spectrum
of primordial curvature perturbations several orders of
magnitudes larger than the one observed in the cosmic
microwave background (CMB).
It is known that a period of slow roll (SR), of which the

predictions of the CMB are based upon, cannot lead to the
appropriate power spectrum necessary to generate enough

PBHs to match the DM abundance [14].2 Thus, one
necessarily needs an inflationary epoch evolving beyond
SR. A possibility is the introduction of an inflection point in
the inflationary potential [16]. This leads the inflaton to
undergo a so-called ultraslow-roll (USR) phase of inflation
[17,18]. Taking into account that the statistics of PBHs
from non-Gaussian fluctuations has yet to be fully devel-
oped, the single-field USR option with standard kinetic
term seems then to be the best [19].
The evolution of a scalar field ðϕÞ in an exactly

homogeneous and isotropic universe described by a
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 ¼ −dt2 þ aðtÞ2dx⃗ · dx⃗; ð7Þ

has the following equation of motion:

ϕ̈þ 3H _ϕþ VϕðϕÞ ¼ 0; ð8Þ

where Vϕ ≡ ∂V
∂ϕ, H ≡ _a

a is the Hubble parameter, and a dot
denotes a derivative with respect to the cosmic time t.
The Friedmann equation is

H2 ¼ 1

3M2
PL

�
_ϕ2

2
þ VðϕÞ

�
: ð9Þ

The SR parameters ϵi define the rate of change of the
Hubble parameter:

ϵ1 ≡ −
_H
H2

¼
_ϕ2

2H2M2
PL

≪ 1; ϵiþ1 ≡ _ϵi
Hϵi

with i ≥ 1;

ð10Þ
where, to write the final expressions, we have used the
Friedmann equation and the equation of motion of the field.
We can now define different inflationary regimes

depending on the values of the ϵis:
(i) SR: The field is slowly rolling down a potential

with an almost constant velocity, which makes the
acceleration negligible. In this case the equation of
motion (8) is approximately

3H _ϕþ VϕðϕÞ ≃ 0: ð11Þ

TheSRparameters aremuch smaller than1 (ϵi≪1)
and can be written in terms of the potential as

ϵSR1 ≃
1

2M2
PL

�
Vϕ

V

�
2

; ϵSR2 ≃
2

M2
PL

�
Vϕϕ

V

�
− 4ϵSR1 :

ð12Þ

1We are using units c ¼ 1.

2For the nonlinear relation between the inflationary power
spectrum and PBHs abundance, under the assumption of Gaus-
sianity, the interested reader can see [15].
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(ii) USR: The field is moving along an exactly flat
potential ðVϕ ¼ 0Þ, which makes the acceleration
relevant. In this case the equation of motion (8) is

ϕ̈þ 3H _ϕ ¼ 0: ð13Þ

From (13) one can infer that the velocity of the field
(and hence ϵ1) exponentially decreases, which
makes some ϵi ∼Oð1Þ. More precisely,

ϵUSRi ¼ −6þ 2ϵUSR1 when i even:

ϵUSRi ¼ 2ϵUSR1 when i > 1 and odd: ð14Þ

An exponential decrease of ϵ1 makes the power
spectrum of curvature perturbation increase.

(iii) Both SR and USR are, at least approximately,

subcases of constant roll (CR). Here ϕ̈
H _ϕ

¼ κ, where

κ is a constant. SR is realized when κ ¼ 0 while
USR when κ ¼ −3. We will not analyze further this
generic case.

It is important to remark that, given a potential related to
PBH formation, the SR and USR phases alternate. Thus,
the equations of motion (11) and (13) will always be an
approximation of the system.

B. Gradient expansion

The gradient expansion approximation [20,21] consists
of considering small patches of the Universe which can be
approximately described by a local Friedmann geometry.
By choosing some local coordinates ðtl; x⃗lÞ, this geometry
may be described by a FLRW metric:

ds2l ¼ −dt2l þ alðtlÞ2δijdxildxjl : ð15Þ

We define the local Hubble expansion as Hl ≡ ∂tl al
al
.

The patch is chosen in a way that the characteristic
scale of inhomogeneities, which we call it L, is much larger
than H−1

l . One can then define an expansion parameter
σ ≡ ðHlLÞ−1 ≪ 1.
Reversing the argument, at leading order in σ, each patch

of the universe of size ðσHlÞ−1 (the coarse-grained scale) is
approximately described by a homogeneous Friedmann
universe. Higher-order terms in σ expansion will instead
capture local inhomogeneities.
Contrary to the linear theory approach to cosmological

perturbations, the gradient expansion is valid for any
amplitude of local overdensities, as long as the patch is
taken small enough for the gradients to be negligible. This
aspect led many authors to claim that the stochastic
approach to cosmological perturbations may give non-
perturbative information on scalar correlations functions
[9,22–25]. However, as we shall discuss, the way those
correlations are calculated via the stochastic methods can

only give information about the linear approximation
regimes.
We conclude this section by stressing that the

assumption of which the gradient expansion is based upon
is that a patch can be found such that any spatial gradient
would only introduce an order σ. In other words, for any
generic function X, ∂iX ∼HlX ×OðσÞ in the patch chosen.

C. Background versus local metrics

In absence of quantum fluctuations of the scalar-metric
system (we have in mind inflation), one can define a global
background metric with coordinates t and xi:

ds2b ¼ −dt2 þ aðtÞ2δijdxidxj; ð16Þ

where generically a does not coincide with al.
It is straightforward to show that in any local patch, by

considering only scalar perturbations and in isotropic
spatial coordinates, we can always rewrite the metric
(15) as

ds2l ¼ −ð0Þα
2dt2p þ ð0Þγijðdxip þ ð0Þβ

idtpÞðdxjp þ ð0Þβ
jdtpÞ;
ð17Þ

with the conditions
(1) ð0Þα ¼ ð0ÞαðtpÞ,
(2) ð0Þβ

i ¼ bðtpÞxip, and finally
(3) ð0Þγij ¼ γðtpÞδij.

In the metric (17) we have used the subscript (0) to remind
the reader that we are at zeroth order in gradient expansion
and ðtp; x⃗pÞ to define generic coordinates for the patch
chosen.
The functions ð0ÞαðtpÞ; γðtpÞ, and bðtpÞ depend on the

gauge chosen and the solution of the Einstein equations.
There is no loss of generality in defining γðtpÞ ¼

aðtpÞ2e2ð0ÞζðtpÞ, where aðtpÞ has the same functional form
of the background scale factor and ð0ÞζðtpÞ (called curva-

ture perturbation in linear theory) is a generically non-
vanishing function introduced because, generically,
γðtpÞ ≠ aðtpÞ.
Note that the local and background metrics live on two

different spaces. Thus, there is no any coordinate trans-
formation relating them. However, to simplify notation,
from now on we will set xμp → xμ being careful to treat aðtÞ
as the solution of the Einstein equations in the absence of
any quantum overdensity. With this, we also define the

“background” Hubble parameter HbðtÞ≡ ∂taðtÞ
aðtÞ .

With those definitions, the local patch metric reads

ds2l ¼ −ð0Þα
2dt2

þ aðtÞ2e2ð0Þζδijðdxi þ ð0Þβ
idtÞðdxj þ ð0Þβ

jdtÞ: ð18Þ
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Because of the overdensities, the metric (18) and (16) must
differ: Suppose that (18) was obtained by employing the
so-called spatially flat gauge, where ð0Þζ ¼ 0. Then, one

immediately sees that either ð0Þα or bðtÞ (or both) must be

different from their background value. This is a well-known
result from perturbation theory: the perturbed lapse and
shift functions have, generically, a homogeneous time-
dependent part (see, e.g., [26]). Setting ð0Þα ¼ 1, ð0Þζ ¼ 0,

and ð0Þβ
i ¼ 0, as they are in the local patch coordinates,

would then introduce errors which we will quantify
later on.
At the next to leading order in gradient expansion, the

metric in the local patch can still be written in the ADM
form. With the identification γij ≡ aðtÞ2e2ζγ̃ij, we have

ds2l ¼−α2dt2þaðtÞ2e2ζγ̃ijðdxiþβidtÞðdxjþβjdtÞ; ð19Þ

where, as we have already discussed,

ð0ÞαðtÞ ∼Oðσ0Þ ð0ÞζðtÞ ∼Oðσ0Þ ð0Þ∂iβ
iðxi; tÞ ∼Oðσ0Þ

γ̃ij − δij ∼OðσÞ ð0Þϕ ∼Oðσ0Þ: ð20Þ

The last term has been added to take into account the
expansion of the scalar field, which is generically nonzero
at the background level.

D. The importance of constraints

In this section we will briefly justify why the momentum
constraint plays a very important role to capture slow-roll
suppressed terms.
Let us take a step back and consider the case of linear

perturbation theory. Suppose again we consider the spa-
tially flat gauge (γij ¼ a2δij for any order in gradient
expansion): the only remaining scalar degree of freedom is
δϕ. The Hamiltonian and momentum constraints are
simultaneously satisfied if and only if [26]

α ≃ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1

2M2
PL

r
δϕ ð21Þ

and

∂iβ
i ≃ −ðaHbÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1

2M2
PL

r �
δ _ϕ −Hb ϵ2

2
δϕ

�
; ð22Þ

which obviously contain long-wavelength terms which are
the would-be equivalent to ð0Þα and ð0Þ∂iβ

i.
Let us now go back to gradient expansion. At next to

leading order in σ the momentum constraint, as we shall
show later on, has the following functional form:

∂iðFðα; ∂iβ
i;ϕÞÞ ¼ ∂iðGðα; ∂iβ

i;ϕÞÞ þOðσ2Þ; ð23Þ

where F and G are generic functions that we do not specify
here. It would seem reasonable that the momentum
constraint, at zeroth order in σ, is automatically satisfied
leading to ð0Þα ¼ 1, ð0Þζ ¼ 0, and ð0Þβ

i ¼ 0 from the

Hamiltonian constraint. However, this would be in clear
contradiction to the results of perturbation theory and with
the fact that (18) and (16) must differ.
Thus, necessarily, the momentum constraint must con-

tain terms at order zero in gradient expansion. This is
what actually happens in perturbation theory. Generically,
the shift, entering in the momentum constraint, is non-
local [26].

1. SR as an exception (separate universe approach)

The way the difference between (18) and (16) is usually
introduced in the literature [27] is by setting ∂ið0Þβ

i ¼ 0

while allowing ð0Þα to be a homogeneous function of time.

As we have already said, this is at odds with (22).
Nevertheless, during a SR regime, one can check that
[see Eqs. (B38)–(B40) of Appendix B for details):

δ _ϕ

Hbδϕ
≃
ϵ2
2
þOðϵ2i Þ;

which makes ∂ið0Þβ
i to be of higher order in gradient

expansion up to an accuracy of next-to leading order in ϵ1.
Thus, in this case, the momentum constraint gives infor-
mation only at next-to-next-to leading order in ϵ1 and can
therefore be discarded within the SR approximation. The
same is not true in regimes beyond SR where ∂ið0Þβ

i is of

the same order as ð0Þα − 1.
Three very important aspects are worthy to remark here:
(1) Whenever we are setting ∂ið0Þβ

i ¼ 0, we are also
discarding the momentum constraint. This is because
otherwise, momentum and Hamiltonian constraints
on superhorizon scales would be incompatible.

(2) Discarding the momentum constraint introduces an
error in the system that can be quantified in terms of
the slow-roll parameters and it depends on the
regime of inflation:
(a) During a SR regime, the error appears at next-to-

next-to leading order in ϵ1.
(b) During any other regime, the error appears at

leading order in ϵ1, which is equivalent to not
considering gravity backreactions.

(3) Discarding the momentum constraint also means
that we are not considering information about the
interaction between the different Hubble patches.
Neglecting the momentum constraint at leading
order in gradient expansion is then equivalent to
study an ensemble of Hubble patches that evolve as
separate FLRW universes. This approximation is the
so-called separate universe approach.
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Although it could seem that the separate universe
approach has nothing to do with the expansion in
slow-roll parameters, we have seen in this subsection
that they are closely related. This is because the
separate universe approach resides in two main
approximations: (a) leading order in gradient ex-
pansion and (b) discarding the momentum con-
straint. While the former is valid at all orders in
slow-roll parameters, the second is not. This state-
ment is not in disagreement with some previous
works remarking the wide applicability of the
separate universe approach [28,29]: the conclusions
of [28] are valid under the assumption of locality
while the conclusions of [29] can only be applied to
an attractor inflationary regime; both conditions are
not generically satisfied. Specifically, for example in
the spatially flat gauge, the shift vector is nonlocal
[26] and a USR (or CR) regime does not have an
attractor behavior. In slow roll, however, the non-
locality appears only at next-to-next-to leading order
in ϵ1.

III. STOCHASTIC FORMALISM: FOUNDATIONS

The idea of the stochastic approach to inflation is to
reduce the evolution of the full quantum scalar-gravity
system to an equivalent stochastic problem [30].
Considering the Fourier decomposition of the metric and
scalar field, this is done by splitting the variables of interest
(let us say X) into two parts: a long-wavelength part (also
called infrared (IR)] in which k

σaH < 1 (where k is the
Fourier mode of the function X), and a short-wavelength

part (also called ultraviolet (UV)]. The UV part evolves
well inside the Hubble radius and, in agreement with the
onset of inflation, is perturbatively small. Thus, one can use
linear perturbation theory for the UV.
The IR part instead can be large. It can be thought that

the IR part is a result of a “condensate” of UV modes.
However, because the IR part only contains long wave-
lengths, the gradient expansion can be there used. In
principle, the gradient expansion can give information at
all order in perturbation theory or even about nonpertur-
bative regimes (which are relevant for PBHs). This is the
reason why the local universe approach is so appealing.

A. An explanatory example: Stochastic formalism
in spatially flat gauge

The stochastic formalism is based on three main approx-
imations. To illustrate this we will consider the Hamiltonian
constraint (5) in spatially flat gauge where γij ¼ a2δij.
We have

−ðÃfÞijðÃfÞij þ
2

3
K2

f −
2

M2
PL

ðTfÞμνnμnν ¼ 0; ð24Þ

where nμ ¼ gμνnν ¼ ð 1αf ;−
ðβiÞf
αf
Þ. Note that we have intro-

duced a subindex “f” to specify that all quantities are
calculated in the spatially flat gauge.
Equation (24) can be written in terms of the metric

variables αf and ðβfÞi and the scalar field ϕf , using the
definitions of Ãij and K given in the Introduction. The
result is the following:

−
1

4α2f

�
δik∂jðβfÞk þ δjk∂iðβfÞk −

2

3
δij∂kðβfÞk

��
δik∂jðβfÞk þ δjk∂iðβfÞk −

2

3
δij∂kðβfÞk

�
þ 2

3

�
−3

Hb

αf
þ 1

αf
∂kðβfÞk

�
2

−
2

M2
PL

�
_ϕ2
f

2α2f
−

_ϕfðβfÞi∂iϕf

α2f
þ ðβfÞiðβfÞj∂iϕf∂jϕf

2α2f
þ VðϕfÞ þ

∂iϕf∂iϕf

2

�
¼ 0: ð25Þ

Equation (25) is a bit cumbersome but it is very helpful to understand the way stochastic approach to inflation is
constructed. As anticipated at the beginning of this section, the first thing to do is to split the variables of interest into their
IR and UV parts.
In spatially flat gauge we have only three variables to split:

αf ¼ αIRf þ αUVf ;

ðβfÞi ¼ ðβIRf Þi þ ðβUVf Þi;
ϕf ¼ ϕIR

f þ ϕUV
f : ð26Þ

We are now ready to construct the stochastic system:
(i) Due to the perturbative nature of the XUV variables, we will expand the Hamiltonian constraint keeping only linear

terms in UV and isolate them in the right-hand side of the equation, getting3

3We thank Aichen Li for pointing out a typo in Eq. (27).
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−
1

4ðαIRf Þ2
�
δik∂jðβIRf Þkþ δjk∂iðβIRf Þk−

2

3
δij∂kðβIRf Þk

��
δik∂jðβIRf Þkþ δjk∂iðβIRf Þk− 2

3
δij∂kðβIRf Þk

�

þ 2

3

�
−3

Hb

αIRf
þ 1

αIRf
∂kðβfÞk

�
2

−
2

M2
PL

� ð _ϕIR
f Þ2

2ðαIRf Þ2−
_ϕIR
f ðβIRf Þi∂iϕ

IR
f

ðαIRf Þ2 þðβIRf ÞiðβIRf Þj∂iϕ
IR
f ∂jϕ

IR
f

2ðαIRf Þ2 þ ∂iϕIR
f ∂iϕ

IR
f

2
þVðϕIR

f Þ
�

¼ αUVf
2ðαIRf Þ3 ½δ

jk∂iðβIRf Þkþ δik∂jðβIRf Þk�½δjl∂iðβIRf Þlþ δil∂jðβIRf Þl� þ 2

3

αUV

ðαIRf Þ3 ð∂iðβIRf ÞiÞ2 − 2

3

∂iðβIRf Þi
ðαIRf Þ2 ∂jðβUVf Þj

−
1

2ðαIRf Þ2 ½δ
jk∂iðβUVf Þkþ δik∂jðβUVf Þk�½δjl∂iðβIRf Þlþ δil∂jðβIRf Þl� þ

�
12ðHbÞ2
ðαIRf Þ3 −

8Hb∂iðβIRf Þi
ðαIRf Þ3

�
αUVf þ 4Hb∂iðβUVf Þi

ðαIRf Þ2

þ 2

M2
PL

�
∂jϕIR

f ∂jϕ
UV
f þ

_ϕIR
f

ðαIRf Þ2
_ϕUV
f −

ð _ϕIR
f Þ2

ðαIRf Þ3 α
UV
f þV 0ðϕIR

f ÞϕUV
f þ 2 _ϕIR

f ðβIRf Þi∂iϕ
IR
f

ðαIRf Þ3 αUVf −
ðβIRf Þi∂iϕ

IR
f

ðαIRf Þ2
_ϕUV
f

−
_ϕIR
f ðβIRf Þi
ðαIRf Þ2 ∂iϕ

UV
f −

_ϕIR
f ∂iϕ

IR
f

ðαIRf Þ2 ðβUVf Þiþ ∂jϕ
IR
f ðβIRf ÞiðβIRf Þj
ðαIRf Þ2 ∂iϕ

UV
f þ ∂iϕ

IR
f ∂jϕ

IR
f ðβIRf Þj

ðαIRf Þ2 ðβUVf Þi

−
∂iϕ

IR
f ∂jϕ

IR
f ðβIRf ÞiðβIRf Þj
ðαIRf Þ3 αUVf

�
: ð27Þ

(ii) Secondly, since the IR variables are well outside the Hubble horizon, a gradient expansion can be performed over
them. Keeping ourselves at leading order in gradient expansion (see Sec. II B for details), Eq. (27) becomes

−
1

4ðð0ÞαIRf Þ2
�
δik∂jðð0ÞβIRf Þ

k
þ δjk∂iðð0ÞβIRf Þ

k
−
2

3
δij∂kðð0ÞβIRf Þ

k

�

×

�
δik∂jðð0ÞβIRf Þkþ δjk∂iðð0ÞβIRf Þk− 2

3
δij∂kðð0ÞβIRf Þk

�

þ 2

3

�
−3

Hb

ð0Þα
IR
f
þ 1

ð0Þα
IR
f
∂kðð0ÞβIRf Þk

�
2

−
2

M2
PL

� ðð0Þ _ϕIR
f Þ2

2ðð0ÞαIRf Þ2 −
ð0Þ _ϕ

IR
f ðð0ÞβIRf Þi∂iðð0ÞϕIR

f Þ
ðð0ÞαIRf Þ2 þ

ðð0ÞβIRf Þiðð0ÞβIRf Þj∂iðð0ÞϕIR
f Þ∂jðð0ÞϕIR

f Þ
2ðð0ÞαIRf Þ2 þVðð0ÞϕIR

f Þ
�

¼ αUVf
2ðð0ÞαIRf Þ3 ½δ

jk∂iðð0ÞβIRf Þkþ δik∂jðð0ÞβIRf Þk�½δjl∂iðð0ÞβIRf Þlþ δil∂jðð0ÞβIRf Þl�

−
1

2ðð0ÞαIRf Þ2 ½δjl∂iðð0ÞβIRf Þlþ δil∂jðð0ÞβIRf Þl�½δjk∂iðβUVf Þkþ δik∂jðβUVf Þk�

þ 2

3

ð∂iðð0ÞβIRf ÞiÞ2
ðð0ÞαIRf Þ3 αUV−

2

3

∂iðð0ÞβIRf Þi
ðð0ÞαIRf Þ2 ∂jðβUVf Þjþ

�
12ðHbÞ2
ðð0ÞαIRf Þ3 −

8Hb∂iðð0ÞβIRf Þi
ðð0ÞαIRf Þ3

�
αUVf þ 4Hb

ðð0ÞαIRf Þ2 ∂iðβUVf Þi

þ 2

M2
PL

�
ð0Þ _ϕ

IR
f

ðð0ÞαIRf Þ2
_ϕUV
f −

ðð0Þ _ϕIR
f Þ2

ðð0ÞαIRf Þ3 α
UV
f þVϕðð0ÞϕIR

f ÞϕUV
f þ

2ð0Þ _ϕ
IR
f ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ3 αUVf −
ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ2
_ϕUV
f

−
ð0Þ _ϕ

IR
f ðð0ÞβIRf Þi
ðð0ÞαIRf Þ2 ∂iϕ

UV
f þ

∂jðð0ÞϕIR
f Þðð0ÞβIRf Þiðð0ÞβIRf ÞjÞ
ðð0ÞαIRf Þ2 ∂iϕ

UV
f −

∂iðð0ÞϕIR
f
Þ∂jðð0ÞϕIR

f
Þðð0ÞβIRf Þiðð0ÞβIRf Þj

ðð0ÞαIRf Þ3 αUVf

�
; ð28Þ

where we have inserted an extra subindex (0) to indicate that we are at leading order in gradient expansion.
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Using Fourier analysis, we can now define more rigor-
ously the IR and UV modes. If we choose the Heaviside
theta as the window function to split these two modes (as
done in the stochastic approaches to inflation) we have

XIRðt;xÞ≡
Z

dk

ð2πÞ3=2ΘðσalðtÞHlðtÞ − kÞXkðx; tÞ;

XUVðt;xÞ≡
Z

dk

ð2πÞ3=2Θðk − σalðtÞHlðtÞÞXkðx; tÞ: ð29Þ

Note that, in the spirit of gradient expansion, the splitting is
done on the local cosmological horizon alHl which
generically differs from the one of the background.

Note also that in spatially flat gauge and at leading order
in gradient expansion we have the following:

al ¼ aðtÞe−
R

1
3
∂iðð0ÞβIRf Þidt

; Hl ¼
Hb

ð0Þαf
−

1

3ð0Þαf
∂iðð0ÞβIRf Þi:

ð30Þ

This has been obtained by noticing that the three-
dimensional scalar K ≡ −3Hl.
Inserting the definition of XUV of Eq (29) into (28) we

get the following expression:

−
1

4ðð0ÞαIRf Þ2
�
δik∂jðð0ÞβIRf Þ

k
þ δjk∂iðð0ÞβIRf Þ

k
−
2

3
δij∂kðð0ÞβIRf Þ

k

�

×

�
δik∂jðð0ÞβIRf Þk þ δjk∂iðð0ÞβIRf Þk − 2

3
δij∂kðð0ÞβIRf Þk

�

þ 2

3

�
−3

Hb

ð0Þα
IR
f
þ 1

ð0Þα
IR
f
∂kðð0ÞβIRf Þk

�
2

−
2

M2
PL

� ðð0Þ _ϕIR
f Þ

2ðð0ÞαIRf Þ2 þ Vðð0ÞϕIR
f
Þ
�

¼ −∂tðσalHlÞ
Z

dk

ð2πÞ3=2 δðk − σalHlÞðφUV
k Þf

�
2

M2
PL

ð0Þ _ϕ
IR
f

ðð0ÞαIRf Þ2 −
ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ2
�

þ
Z

dk

ð2πÞ3=2Θðk − σalHlÞ
�½δjk∂iðð0ÞβIRf Þk þ δik∂jðð0ÞβIRf Þk�½δjl∂iðð0ÞβIRf Þl þ δil∂jðð0ÞβIRf Þl�

2ðð0ÞαIRf Þ3 ðαUV
k Þf

−
½δjl∂iðð0ÞβIRf Þl þ δil∂jðð0ÞβIRf Þl�

2ðð0ÞαIRf Þ2 ½δjk∂iððβUVk ÞfÞk þ δik∂jððβUVk ÞfÞk� þ
2

3

ð∂iðð0ÞβIRf ÞiÞ2
ðð0ÞαIRf Þ3 ðαUV

k Þf

−
2

3

∂iðð0ÞβIRf Þi
ðð0ÞαIRf Þ2 ∂jððβUVk ÞfÞj þ

�
12ðHbÞ2 − 8Hb∂iðð0ÞβIRf Þi

ðð0ÞαIRf Þ3
�
ðαUV

k Þf þ
4Hb

ðð0ÞαIRf Þ2 ∂iððβUVk ÞfÞi

þ 2

M2
PL

�
ð0Þ _ϕ

IR
f

ðð0ÞαIRf Þ2 ð _φ
UV
k Þf −

ðð0Þ _ϕIR
f Þ2

ðð0ÞαIRf Þ3 ðα
UV
k Þf þ Vϕðð0ÞϕIR

f ÞðφUV
k Þf þ

2ð0Þ _ϕ
IR
f ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ3 ðαUV
k Þf

−
ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ2 ð _φUV
k Þf −

ð0Þ _ϕ
IR
f ðð0ÞβIRf Þi
ðð0ÞαIRf Þ2 ∂iðφUV

k Þf þ
∂jðð0ÞϕIR

f Þðð0ÞβIRf Þiðð0ÞβIRf ÞjÞ
ðð0ÞαIRf Þ2 ∂iðφUV

k Þf

−
∂iðð0ÞϕIR

f
Þ∂jðð0ÞϕIR

f
Þðð0ÞβIRf Þiðð0ÞβIRf Þj

ðð0ÞαIRf Þ3 ðαUV
k Þf

��
ð31Þ

where ðφkÞζ, ðαUV
k Þf and ∂kððβUVk ÞfÞk are operators defined

as in (35).
The right hand side of (31) has two different terms:
(i) The second integral [terms multiplying

Θðk − σalHlÞ] is the Hamiltonian constraint at
subhorizon scales. Assuming it is satisfied once

the Bunch-Davies vacuum is chosen, it can be
consistently set to zero.

(ii) In this respect, the first integral, proportional to a
Dirac delta, can be seen as a boundary condition for
the IR Hamiltonian.

We then get
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−
1

4ðð0ÞαIRf Þ2
�
δik∂jðð0ÞβIRf Þ

k
þ δjk∂iðð0ÞβIRf Þ

k
−
2

3
δij∂kðð0ÞβIRf Þ

k

�

×

�
δik∂jðð0ÞβIRf Þk þ δjk∂iðð0ÞβIRf Þk − 2

3
δij∂kðð0ÞβIRf Þk

�

þ 2

3

�
−3

Hb

ð0Þα
IR
f
þ 1

ð0Þα
IR
f
∂kðð0ÞβIRf Þk

�
2

−
2

M2
PL

� ðð0Þ _ϕIR
f Þ

2ðð0ÞαIRf Þ2 þ Vðð0ÞϕIR
f
Þ
�

¼ −∂tðσalHlÞ
Z

dk

ð2πÞ3=2 δðk − σalHlÞðφUV
k Þf

�
2

M2
PL

ð0Þ _ϕ
IR
f

ðð0ÞαIRf Þ2 −
ðð0ÞβIRf Þi∂iðð0ÞϕIR

f
Þ

ðð0ÞαIRf Þ2
�
: ð32Þ

In order to interpret (32) as a stochastic equation, the right-
hand side should be, at least approximately, a white noise.
The IR and UV modes are coupled in the Hamiltonian

constraint of ðφUV
k Þf . Thus, at least at the exact level, one

cannot interpret ðφUV
k Þf as a quantum Gaussian variable, as

it would be in linear theory.
More technically, the dynamics of the system becomes

non-Markovian, namely, the noises themselves modify the
local background in which they are computed. This is very
difficult to treat and, as far as we know, the only attempt to
do that has been done in [31].
To circumvent this problem, it is commonly assumed

(we will call this the Starobinski approximation [30]) that
YIRXUV ¼ YbXUV þOððXUVÞ2Þ. Here, XUV and YIR are
any UV and IR functions. We then define Yb as the
equivalent background function of YIR. As an example,
under this assumption, the Hamiltonian term

Vϕðð0ÞϕIR
f ÞϕUV

f ¼ VϕðϕbÞϕUV
f þOððϕUV

f Þ2Þ;

where VϕðϕbÞ is calculated in the global background (16).

The Starobinski approximation is equivalent to state that
any YIR − Yb ¼ OðXUVÞ. Thus, we immediately see that if
this approximation holds, stochastic inflation can only
exactly reproduce the results of linear theory in the linear
regime. We will discuss specific examples later on.

1. White noise

Having adopted the Starobinski approximation we are
now ready to interpret (32) as a stochastic equation. First of
all we now define “the noise” as

ξ1ðtÞjf ¼ −σaðHbÞ2ð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞδφkjf ;

ð33Þ

where δφjf is the fluctuation of the scalar field on the
background calculated in the spatially flat gauge. With this
we have that (32) can be approximately written as

−
1

4ðð0ÞαIRf Þ2
�
δik∂jðð0ÞβIRt Þ

k
þ δjk∂iðð0ÞβIRt Þ

k
−
2

3
δij∂kðð0ÞβIRf Þ

k

�

×

�
δik∂jðð0ÞβIRf Þ

k
þ δjk∂iðð0ÞβIRf Þ

k
−
2

3
δij∂kðð0ÞβIRf Þ

k

�

þ 2

3

�
−3

Hb

ð0Þα
IR
f
þ 1

ð0Þα
IR
f
∂kðð0ÞβIRf Þk

�
2

−
2

M2
PL

� ðð0Þ _ϕIR
f Þ2

2ðð0ÞαIRf Þ2 þ Vðð0ÞϕIR
f
Þ
�
¼ 2

M2
PL

ð0Þ _ϕ
IR
f

ðð0ÞαIRf Þ2 ξ1ðtÞjf : ð34Þ

Because we are in inflation, the UV modes evolve fully
quantum mechanically and the IR ones do it stochastically.
The reason is the well-known fact that at superhorizon
scales the quantum system is in a squeezed state [32,33].
The noise can then be calculated by considering that the

quantum evolution of the UV modes is generically defined
by the Hermitian operator Xq

kðx; tÞ:

Xq
kðx; tÞ ¼ e−ik·xXkðtÞak þ eik·xX⋆

kðtÞa†k; ð35Þ

where ak and a†k are the usual creation and annihilation
operators related to Xq

kðx; tÞ. Finally, XkðtÞ is the solution
of the evolution equations in the global background and at
deep subhorizon scales.
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The integral of (33) evaluates the field fluctuations
at the coarse-grained scale. Here, the UV perturbations,
that started from a coherent vacuum state, have evolved
into a highly squeezed state in which the variable
ðφUV

k Þf can take any value with corresponding probability
jðϕUV

k Þf j2 [32,33].
We would like to end this section by warning the reader

that the stochastic equation (34) is still slightly inconsistent.
The point is that, by the same Starobinski approximation
adopted on the right-hand side, the left-hand side should
also be linearized. We will nevertheless bear this incon-
sistency as long as the correlations functions calculated
with stochastic means will coincide, up to second order in
perturbation theory, to the ones calculated in linear per-
turbation theory with QFT methods. On the contrary, while
the result of the stochastic method will be unphysical,
inconsistencies between the two approaches will signal the
breakdown of perturbation theory.
From now on, the rest of the paper is devoted to check

whether, in all cases of interest, the stochastic formalism is
equivalent to linear perturbation theory at all order in slow-
roll parameters.
By the help of the momentum constraint, we will then

construct a stochastic formalism which is valid at all orders
in ϵi and will call this the “new” stochastic formalism. Our
new stochastic formalism can be thought of as a nontrivial
check of the linear QFT results and, at the same time, it is
easier to implement numerically, especially for the calcu-
lation of higher correlations functions.
Before doing so, we will illustrate the stochastic method

to inflation used so far and call it the “old” stochastic
formalism. As we shall see, this method makes use of the
separate universe approach and hence it is generically only
valid at leading order in ϵ as explained in Sec. II D 1.

B. Old stochastic formalism: Spatially
flat gauge with ∂iðð0ÞβfÞi = 0

The fact that, under the Starobinski approximation,
stochastic inflation can only reproduce linear perturbation
theory has not been made explicit until now, as far as we
know. This lack of awareness has made the stochastic
formalism one of the most used frameworks to study
nonlinear effects during inflation. It has been used in the
cases of slow roll [8,9] and beyond slow roll [4–7] for
single-field inflationary models, or in multifield infla-
tion [10,11].
The gauge typically used for the stochastic approach to

inflation is the spatially flat gauge [24,34] with the further
approximation ∂iðð0ÞβfÞi ¼ 0. As we have already men-

tioned in Sec. II D 1, this further approximation is only
consistent in a SR regime up to next-to leading order in ϵ1,
although it has been used, inconsistently, also in other
contexts. Another approach used in the literature has been
to compute the noises within spatially flat gauge while

using the uniform N (number of e-foldings for the
perturbed system) gauge in the IR part [35]. This is
consistent only at zeroth order in ϵ1, where the uniform
N and spatially flat gauges coincide. Thus, we can simply
consider the spatially flat gauge with ∂iðð0ÞβfÞi ¼ 0.

Using the background number of e-folds dN ¼ Hbdt as
a time variable and neglecting all terms proportional to ϵ1
[in order to be consistent with ∂iðð0ÞβfÞi ¼ 0], we will
arrive at the following SR stochastic equation (see
Appendix C for the derivation):

∂ϕIR
f

∂N þ 3M2
PL

VϕðϕIR
f Þ

VðϕIR
f Þ ¼ Hb

2π
ξðNÞjf ; ð36Þ

where hξðN1ÞjfξðN2Þjfi ¼ δðN1 − N2Þ. Note that, in order
to be consistent with the Starobinsky approximation, the
noise has been calculated at leading order in ϵ1.
We would like to stress once more that this equation is

only valid in the linear regime in which ϕIR
f − ϕb ¼

OðδϕjfÞ and at leading order in slow roll. Thus it is less
precise than perturbation theory, contrary to what com-
monly stated.
At zeroth order in ϵ1 for the lapse, i.e., taking ð0Þαf ¼ 1,

the approximation ∂iðð0ÞβfÞi ¼ 0 is also always consistent.
In this respect, one can write the stochastic USR system as

ð0Þπ
IR
f ¼

∂ð0Þϕ
IR
f

∂N þHb

2π
ξðNÞjf ;

∂ð0Þπ
IR
f

∂N ¼ −3ð0Þπ
IR
f : ð37Þ

In the next section we will construct a new stochastic
formalism which is valid at all order in ϵ1. This, as we have
already mentioned, will be achieved by making use of the
momentum constraint. It turns out that the simplest gauge
to study the momentum constraint is the uniform Hubble
gauge; thus, our stochastic equations will be written in this
gauge rather than the spatially flat one, as used until now in
the literature.

IV. NEW STOCHASTIC FORMALISM

In this section we will use the so-called uniform Hubble
gauge [36], where K ¼ −3 _a

a ¼ −3Hb. This gauge does not
fix the coordinates uniquely and one can further impose
βi ¼ 0. Note that this gauge bypasses immediately all the
issues related to the correct estimation of the gradient order
of the shift vector.
The procedure to follow is exactly the same as the one

explained in Sec. III A and the details can be found in
Appendix D. Here we will only write the main results.
Moreover, to make reading easier, we are also going to
suppress the subindices and superindices indicating the
gauge and the gradient expansion orders. This means that
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an α here will mean ð0Þα
IR
δK, where δK ≡ K þ 3Hb ¼ 0

specifies the gauge, and so on. Moreover, as a further
simplification of notation we will now use H ≡Hb

The full stochastic system is the following set of coupled
equations:

(i) The evolution equation for the spatial metric (A4):

∂ζ
∂N − ðα − 1Þ ¼ −ξ4ðNÞjδK¼0; ð38Þ

where ξ4ðNÞjδK¼0 is given in Appendix D.
(ii) Scalar field equation for the field (A1):

∂π
∂N þ ð3α − ϵ1Þ

∂ϕ̃
∂N þ α

VϕðϕÞ
H2

¼ −ð3 − ϵ1Þξ1ðNÞjδK¼0 − ξ2ðNÞjδK¼0

þ ∂ϕb

∂N ðξ3ðNÞjδK¼0 þ 3ξ4ðNÞjδK¼0Þ; ð39Þ

where ξ1ðNÞjδK¼0, ξ2ðNÞjδK¼0, and ξ3ðNÞjδK¼0 are
again given in Appendix D. In (39) we have also
used the following redefinition:

π ≡ 1

α

∂ϕ
∂N þ ξ1ðNÞjδK¼0 ¼

∂ϕ̃
∂N þ ξ1ðNÞjδK¼0: ð40Þ

(iii) Hamiltonian constraint (A2):

H2 ¼ VðϕÞ
3M2

PL − 1
2
ð∂ϕ̃∂NÞ

2 − ∂ϕb

∂N ξ1ðNÞjδK¼0

¼ VðϕbÞ
3M2

PL − 1
2
ð∂ϕb

∂N Þ
2
: ð41Þ

(iv) Evolution equation for the trace of the extrinsic
curvature (A6):

�∂ϕb

∂N
�

2

¼ α

�∂ϕ̃
∂N
�

2

þ 2

3
ð2þ αÞ ∂ϕ

b

∂N ξ1ðNÞjδK¼0:

ð42Þ

This equation, together with the Hamiltonian
constraint (41), gives an exact solution for α:

α¼ 3ð∂ϕb

∂N Þ
2−4∂ϕb

∂N ξ1ðNÞjδK¼0

18M2
PLð1− VðϕÞ

VðϕbÞÞþ
VðϕÞ
VðϕbÞð∂ϕ

b

∂N Þ
2−4∂ϕb

∂N ξ1ðNÞjδK¼0

:

ð43Þ

Making use of the Starobinski approximation
we get

α ¼ 1þ
�
1 −

VðϕÞ
VðϕbÞ

�
−
6M2

PL

ð∂ϕb

∂N Þ
2

�
1 −

VðϕÞ
VðϕbÞ

�
:

ð44Þ

(v) Because of the novelty of the momentum constraint
in the stochastic framework we will here make all
steps explicit. We start from (A3). As explained in
Sec. II C, the way of extracting some information
from the momentum constraint at leading order in
gradient expansion is by going to next-to leading
order in gradient expansion and then applying
the limit σ → 0 (see [37]). This is the reason we
consider the exact momentum constraint valid at all
orders in σ:

Dj
ðnÞÃij ¼ −Hb

∂ðnÞϕ
∂N

ðnÞαM
2
PL

∂iðnÞϕ: ð45Þ

The subindex ðnÞ means that we are at all orders in
gradient expansion.

The momentum constraint can be written in a
more convenient way as

e−3ðnÞζ∂jðe3ðnÞζðnÞÃijÞ ¼ −Hb

∂ðnÞϕ
∂N

ðnÞαM
2
PL

∂iðnÞϕ: ð46Þ

Moreover, ðnÞÃij can be written in terms of the time
derivative of ðnÞγ̃ij using (A5) getting

1

2

�
3∂j

ðnÞζ∂NððnÞγ̃ij − δijÞ

−
∂j

ðnÞα

ðnÞα
∂NððnÞγ̃ij − δijÞ þ ∂N∂jððnÞγ̃ij − δijÞ

�

¼
∂ðnÞϕ
∂N
M2

PL
∂iðnÞϕ: ð47Þ

We now split between IR and UV by at the same
time keeping only terms up to OðσÞ. The result is

1

2
½∂N∂jðð1Þγ̃ij − δijÞ� −

∂ϕ
∂N
M2

PL
∂iðϕÞ

¼ 2

3
∂iξ5ðNÞjδK¼0 þOðσ2Þ; ð48Þ

where ξ5ðNÞjδK¼0 is given in Appendix D.
Note that in the previous computation

∂jðð1Þγ̃ij − δijÞ ∼OðσÞ. At a first look this would
seem incorrect; however, it is correct. By using the
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definition of the logarithm of a matrix together with
the fact that det γ̃ij ¼ 1, we can write the following
identity:

ðð1Þγ̃ij − δijÞ ≃ logðð1Þγ̃ijÞ ¼ −Mij;

whereMij is a traceless matrix that can be written as
2ð∂i∂jC − 1

3
δij∇2CÞ, where C is the scalar mode.

The order estimation of Eq. (20) implies
∂i∂jC − 1

3
δij∇2C ∼OðσÞ. However, this is not in

contradiction (once isotropic coordinates are
chosen) with ∇2C ∼Oðσ0Þ.4 This last term is
precisely the contribution of the momentum con-
straint at leading order in gradient expansion and in
the δK ¼ 0 gauge. With this knowledge, (48) can be
written as5

∂i

� ∂
∂N∇2Cþ 3

2

∂ϕb

∂N
M2

PL
ϕ

�
¼ −∂iξ5ðNÞjδK¼0: ð49Þ

The key point now is that the leading order in
gradient expansion is related to the longest wave-
length of the perturbations. In Fourier modes, this
means that we are considering the limit k → 0 while
keeping k ≠ 0. Thus, (49) is not identically satisfied.
Because the k ¼ 0 mode represents the background,
the solution of (49) is

∂
∂N∇2Cþ 3

2

∂ϕb

∂N
M2

PL
ðϕ − ϕbÞ ¼ −ξ5ðNÞjδK¼0: ð50Þ

We will see that, although this information does
not enter in the evolution equations at zeroth order in
gradient expansion, it does in the calculation of the
perturbations correlators via the variable [38,39]:

ζNL ≡ ζ þ∇2C
3

: ð51Þ
The reason is that the correlators we want to
calculate, like the power spectrum, carry information

about the long-wavelength limit of the curvature
perturbations, which is precisely the information
stored in the momentum constraint.

Equations (38), (39), (41), (42), and (50) represent a
closed and solvable system of stochastic equations. It is
interesting to note that in this gauge, contrary to the
spatially flat one, the momentum constraint is decoupled
from the rest of the stochastic system.
The new stochastic framework we have worked out is

now valid at all order in ϵi, which represents one of the
main results of this paper. In the spatially flat gauge, the
same would have been only achieved by considering
∂iβ

i ¼ Oðσ0Þ ≠ 0, whereas by fixing ∂iβ
i ¼ 0, one easily

gets the old stochastic formalism at leading order in ϵi as
shown in Appendix C.

A. Nonlinear curvature perturbation

Now that we managed to write the evolution equations
for the stochastic system we need to define an observable.
In linear perturbation theory where the scalarly perturbed

metric can be written in the form

ds2 ¼ −ð1þ 2AÞdt2 þ 2a∂iBdxidt

þ a2½ð1þ 2DÞδij − 2Es
ij�dxidxj; ð52Þ

there exists a gauge-invariant variable that encompasses all
the scalar perturbations; this variable is called the
Mukhanov-Sasaki variable and it is defined as

Qlin ≡ δϕþ ∂ϕb

∂N
�
Dþ 1

3
∇2E

�
: ð53Þ

A nonlinear gauge-invariant variable at leading order in
gradient expansion was defined in [40,41] as

QNL
i ¼ ∂iϕþ 1

α

∂ϕ
∂N ∂iζ: ð54Þ

However, Eq. (54), in its linearization, does not include the
term ∝ ∇2E.
One can however straightforwardly generalize (54) by

replacing ζ → ζNL as suggested in [38,39,42] and define

QIR ¼ ϕ − ϕb þ 1

α

∂ϕ
∂N ζNL: ð55Þ

It is then straightforward to check that, once the back-
ground is subtracted, this new variable precisely matches
(53). Whether or not QIR is the corresponding nonlinear
generalization of (53) is not our concern here. As stressed
many times, we can indeed only trust our stochastic
equations in the linear regime (or in the Starobinski
approximation) where hQlin…Qlini ≃ hQIR…QIRi. Thus,
whenever this holds, the QIR constructed from our

4Take for example C ¼ x · xgðt; σxÞ, where g is an arbitrary
function. In this case we have

∂i∂jC −
1

3
δij∇2C ¼ OðσÞ

1

3
∇2C ¼ 2gðt; 0Þ þOðσÞ

and hence both ∂i∂jC − 1
3
δij∇2C and ∂jð∂i∂jC − 1

3
δij∇2CÞ ¼

∂jð2
3
∇2CÞ are of order σ.

5Note that, when talking about nonlinear variables, we cannot

write
∂ϕ
∂N
M2

PL
∂iðϕÞ as a total derivative; this is only true under the

Starobinsky approximation, where ∂ϕ
∂N ϕ ≃ ∂ϕb

∂N ϕ.
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nonlinear stochastic variables will be approximately the
same observable as (53).
In Sec. VI, we will apply this new stochastic formalism

to different regimes of inflation comparing it with the old
stochastic formalism and linear perturbation theory.

V. NUMERICAL IMPLEMENTATION

It is important to realize that we will be comparing two
different results from different theories: (a) linear pertur-
bation theory and (b) stochastic approaches. The results
coming from the old stochastic formalism must be com-
pared with linear perturbation theory at leading order in ϵ1,
whereas results coming from the new stochastic formalism
must be compared with linear perturbation theory at all
orders in ϵi.
The quantity we want to compute in both theories is the

real-space correlator of the long-wavelength scalar variable
QIR as a function of the number of e-folds N. In particular
in this paper we will focus on the two -point correlation
function (related to the power spectrum in Fourier space).

A. Linear perturbation theory

In linear perturbation theory we have

hQlinðN;xÞQlinðN;xÞi ¼
Z

σaðNÞHðNÞ

σaðN¼0ÞHðN¼0Þ

dk
k
PQðk; NÞ

¼
Z

logðσaðNÞHðNÞÞ

logðσHð0ÞÞ
PQðk; NÞd log k;

ð56Þ

where we are introducing the power spectrum evaluated at
the same spatial point x.

PQðk; NÞ ¼ k3

2π2
jQkðNÞj2; ð57Þ

where Qk is the solution of the Mukhanov-Sasaki (MS)
equation for the scalar perturbations [see (B33) in
Appendix B]. The limits in (56) correspond to the selection
of modes inside the coarse-grained scale [defined by
k ¼ σaðNÞHðNÞ] from the beginning of inflation
(N ¼ 0). This anti-Fourier transformation from the power
spectrum is needed in order to compare (56) with the real-
space correlator coming from the stochastic formalism.
In order to find (57) we numerically solve the MS

equation for many values of k between the two integration
limits in (56). After that, we perform a numerical integra-
tion in the k direction. In Fig. 1 this procedure is explained.
In the stochastic formalism, the IR part of the field

receives stochastic kicks fromN ¼ 0 onward. Thus the first
k mode from which the IR field receives a kick is the one
with k ¼ σaðN ¼ 0ÞHðN ¼ 0Þ. Whenever PQðk; NÞ does
not depend on N, one can do a very useful approximation,

which consists of evaluating the power spectrum at coarse-
grained scale crossing, i.e., at k ¼ σaH, and assume that
this value does not change with time. This would allow us
to write (56) as

hQlinðNÞQlinðNÞi ¼
Z

N

0

Pðk ¼ σaðN0ÞHðN0ÞÞdN0: ð58Þ

In this case one could write the power spectrum as the
derivative with respect to the number of e-folds N of the
correlator in real space:

PðkÞ ¼ d
dN

hQlinðNÞQlinðNÞi: ð59Þ

Graphically, this would correspond to perform the
integral (58) in the direction N (x axis in Fig 1) by
calculating the value of the power spectrum only in the
point at which blue and gray surfaces of Fig. 1 cross.
However, this technique cannot be used if the power

spectrum evolves with time. Thus, unfortunately, the
approximation (59) cannot be used with the full numerical
result. However, it can be used at zeroth order in ϵ1 in SR
and USR but not in any transition between them.

FIG. 1. Numerical procedure followed in order to compute
(56): each blue line corresponds to the solution of the MS
equation QkðNÞ with fixed wave number k in a generic
slow-rolling background. The gray plane represents the plane
in which each k mode exits the coarse-grained scale. The idea
is to integrate from k ¼ σHðN ¼ 0Þ to k ¼ σaðNÞHðNÞ ¼
σeNHðNÞ, i.e., in the direction followed by the gray arrow. This
means that the value of hQlinðN⋆ÞQlinðN⋆Þi at time N⋆ will be the
integral of the exponential of the blue surface (it is the
exponential because we have plotted the log of the power
spectrum for better visualization) from the logðσHð0ÞÞ plane
up to the gray plane along the line where N ¼ N⋆. For example,
for N⋆ ¼ 10 we will be integrating the red line.
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B. Stochastic evolutions

In the stochastic approach, where the variables are
statistical and nonlinear, we can define a nonlinear pertur-

bation as ΔQIR ¼ QIR −QIR, where QIR is the mean value
of the variable QIR. With this definition it is clear that the
correlator in real space at the same time N is the statistical
variance of the stochastic variable QIR.
We will compute VarðQIRðNÞÞ by simulating the system

of stochastic equations many times where the noises will
take values distributed Gaussianly with variances defined in
(C4) (if we are using the old stochastic formalism) or the
corresponding ones in uniform Hubble gauge (if we are
using the new stochastic formalism).6

Wewill then run the system of stochastic equations many
times until we have enough statistics to give a trustworthy
value for VarðQIRðNÞÞ.
Since with the new stochastic formalism we are able to

compute variables with precision ϵ1 ≪ 1, we will use a
Runge-Kutta method of third order adapted for stochastic
equations, which was first developed in [43]. Note that the
adaptation of Runge-Kutta methods to stochastic equations
is not trivial [44]. We write down in Sec. V B1 the
algorithm used in our simulation, where the noises are
always additive (meaning that their variance only depend
on the time variable and not on the stochastic variables
themselves) and completely correlated (which means that
there is eectively only one noise).

1. Numerical algorithm for the stochastic simulation

We denote by X ¼ ðXtÞt∈I (where I ¼ ½t0; T� for some
0 ≤ t0 < T < ∞) the solution of the d-dimensional system
of stochastic differential equations (60):

Xt ¼ Xt0 þ
Z

t

t0

aðs; XsÞdsþ
Xm
j¼1

Z
t

t0

bjðs; XsÞdWj
s; ð60Þ

with an m-dimensional driving Weiner process ðWtÞt≥0 ¼
ððW1

t ;…;Wm
t ÞTÞt≥0.

In our case we have completely correlated noises and
hence m ¼ 1. A further simplification can be done to (60)
by imposing the additivity of the noises, which translates
into bðs; XsÞ ¼ bðsÞ. Under these simplifications, the
algorithm used in order to numerically solve (60) is an
order 1.5 strong stochastic Runge-Kutta (SRK) method
defined by Y0 ¼ Xt0 and

Ynþ1 ¼ Yn þ
Xs
i¼1

αiaðtn þ cð0Þi hn; H
ð0Þ
i Þ

þ
Xs
i¼1

�
βð1Þi Ið1Þ þ βð2Þi

Ið1;0Þ
hn

�
bðtn þ cð1Þi hnÞ; ð61Þ

for n ¼ 0; 1;…; N − 1 with stages

Hð0Þ
i ¼ Yn þ

Xs
j¼1

Að0Þ
ij aðtn þ cð0Þj hn; H

ð0Þ
j Þhn

þ
Xs
j¼1

Bð0Þ
ij bðtn þ cð1Þj hnÞ

Ið1;0Þ
hn

; ð62Þ

for i ¼ 1;…; s. In the algorithm described above hn is the
time step, Ið1Þ and Ið1;0Þ are some stochastic integrals that

will be specified in (63), and αi, c
ð0Þ
i , cð1Þi , βð1Þi , βð2Þi , Að0Þ

ij ,

and Bð0Þ
ij are some constants that characterize the method;

they are usually written in a compact way using the so-
called Butcher tableau:
The specific entries of the Butcher tableau of Table I

used in the SRK method of order 3 (in the deterministic
part) are written in Table II:
Once the Butcher tableau is specified, the only thing left

is to define the stochastic to integrals Ið1Þ and Ið1;0Þ∶

Ið1Þ ¼
Z

tnþ1

tn

dWs; Ið1;0Þ ¼
Z

tnþ1

tn

Z
s

tn

dWuds: ð63Þ

One can easily compute the expected value, the variance,
and the correlation of the integrals defined in (63) getting

EðIð1ÞÞ ¼ 0 EðI2ð1ÞÞ ¼ h2n

EðIð1;0ÞÞ ¼ 0 EðI2ð1;0ÞÞ ¼
1

3
h3n EðIð1;0ÞIð1ÞÞ ¼

1

2
h2n: ð64Þ

TABLE I. Butcher tableau for a generic SRK method with
additive noises.

cð0Þ Að0Þ Bð0Þ cð1Þ

αT βð1ÞT βð2ÞT

TABLE II. Specific entries for the Butcher tableau of Table I
that characterize the algorithm used.

0 1
1 1 0 0
1
2

1
4

1
4

1 1
2

0

1
6

1
6

2
3

1 0 0 1 −1 0

6Within the new stochastic formalism, the variances of the
noises are calculated numerically. For example, the variance of
the noise ξ1jδK¼0 at time N is the (numerically obtained) power
spectrum of δϕkjδK¼0 evaluated at the wave number k ¼
σaðNÞHðNÞ and at coarse-grained crossing time, i.e., when blue
and gray surfaces of Fig. 1 cross.
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The statistical behavior of (64) can be implemented
numerically by defining two independent Nð0; 1Þ7 random
variables U1 and U2. In this case we have

Ið1Þ ¼ U1

ffiffiffiffiffi
hn

p
Ið1;0Þ ¼

1

2
h3=2n

�
U1 þ

1ffiffiffi
3

p U2

�
: ð65Þ

It is important to remark that if one does a naive
extension of the Runge-Kutta method from deterministic
equations to stochastic equations one would get a precision
similar to the Euler-Maruyama method, which is of weak
order 1. This was firstly noticed in [45] and it can be
numerically seen in Fig. 2.

VI. COMPARISONS

In this section we will compare the real-space power
spectrum of the old and the new stochastic frameworks with
linear perturbation theory.
For each model of inflation we consider, which are

characterized by the inflationary potential, we will show at
least the following two figures: (a) the comparison between
the four different real-space correlators; and (b) the relative
difference between the real-space correlator calculated
using the new stochastic formalism and the one using
numerical linear perturbation theory for two different M,
where M is the number of stochastic realizations to be
averaged. This plot has the goal of showing that the more
precise is the stochastic correlator (higherM), the closer we
are to the linear perturbation theory correlator.

A. Quadratic slow roll

The first model is the prototype of SR inflation in which
the potential is

VðϕÞ ¼ 1

2
m2ϕ2: ð66Þ

In the numerical implementation we have chosen
m2 ¼ 1 × 10−9, and, from now on, we use units MPL ¼ 1.
In this case the real-space correlator hδϕ2i calculated

using the old stochastic formalism (purple line of Fig. 3) is
simulated using Eq. (36). The real-space correlator hδϕ2

lini
calculated using linear perturbation theory at zeroth order
in ϵ1 (green dashed line of Fig. 3) is

hδϕ2
linðNÞi ¼

Z
σaðNÞH

σaðN¼0ÞH

dk
k
PQðk; NÞ

¼
Z

σaðNÞH

σaðN¼0ÞH

dk
k

k3

2π2
jQkðNÞj2 ¼

�
H
2π

�
2

N;

ð67Þ

where H is taken as a constant, consistently to the zeroth
order in ϵ1. In passing we note that the solution (67) is valid
for any slow-roll potential (like the Hilltop potential studied
in Sec. VI B), but also for a USR regime.
In Figs. 3 and 4 we show that there are no appreciable

differences between the three different approaches.

B. Absence of quantum diffusion

In this section we will study the model of Hilltop
inflation [46], in which inflation is supposed to take place

FIG. 2. Analytical solution (in magenta) of the stochastic equation dXðtÞ ¼ λXðtÞdtþ νXðtÞdWt, where λ ¼ 2, ν ¼ 1, and Xð0Þ ¼ 1,
Wt represents a Brownian motion. The dashed lines represent numerical simulations of the same equation. One can clearly see that both
the Euler-Maruyama method (red line) and a naive stochastic extension of the Runge-Kutta of third order for deterministic equations
(blue line) give a similar precision. The precision is highly improved if we use the stochastic Runge-Kutta method proposed in [43],
which is the method used in this paper.

7Nð0; 1Þ refers to a random variable that follows a normal
distribution with mean 0 and variance 1.
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near a maximum of a potential. The potential can then be
written as follows:

VðϕÞ ¼ V0 −
1

2
m2ϕ2; ð68Þ

where we have chosen V0 ¼ 0.1 and m2 ¼ 0.001.
The reason we want to study a potential like (68) is

because it was claimed in [22] that whenever s≡ 1
24π2

j2V−
VϕϕV2

V2
ϕ

j > 1, stochastic effects will be important. With the

initial value of the field at ϕð0Þ ¼ 0.1, s ∼Oð10Þ. Note that
this is still SR.
In Figs. 5 and 6 we show the comparisons between the

different approaches. As we can see, the correlator from the
new stochastic formalism exactly coincides with linear
perturbation theory at all order in SR parameters. Figure 5
presents some notable differences between the rest of the
correlators; we will explore those differences in the
following showing that none of them are due to something
that could be interpreted as a signal of quantum diffusion.

FIG. 3. During quadratic slow roll, no important differences are
seen between linear perturbation theory at all orders in ϵ1 (yellow
dashed line) and new stochastic formalism (blue solid line).
Stochastic correlator at zeroth order (purple line) and linear
correlator at zeroth order (dashed green line) both slightly differ
from the two correlators at all orders in ϵ1; this difference is due to
the dependence of numerical noises on the coarse-grained scale σ
and it will be studied in Sec. VI B 1. Finally, one can observe a
tiny difference between the purple and the dashed green lines,
which will be also studied later on, in Sec. VI B 2.

FIG. 4. During quadratic slow roll, the relative difference
between the real-space correlator at all orders in ϵ1 calculated
with the stochastic formalism and with the linear theory decreases
as the number of statistics increases. We expect these two theories
to exactly coincide at M → ∞.

FIG. 5. During Hilltop inflation, no important differences are
seen between linear perturbation theory at all orders in ϵ1 (yellow
dashed line) and new stochastic formalism (blue line). Stochastic
correlator at zeroth order (purple line) and linear correlator at
zeroth order (dashed green line) both slightly differ from the two
correlators enumerated at the beginning of the caption; this
difference is due to the dependence of numerical noises on the
coarse-grained scale σ. Finally, the difference between the purple
and the dashed green lines is due to the dynamics of the IR field
as explained in the main text.

FIG. 6. During Hilltop inflation, the relative difference between
the real-space correlator at all orders in ϵ1 calculated with the
stochastic formalism and with the linear theory decreases as the
number of statistics increases. We expect these two theories to
exactly coincide at M → ∞.
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1. Perturbation theory: Leading order versus
all orders in ϵi

The difference between the correlators calculated with
the full numerical solution of Qk (blue and yellow dashed
lines) and the correlators at zeroth order in ϵi is mainly due
to the coarse-grained scale σ.
Schematically, the analytical expression for the power

spectrum in the slow-roll approximation is

PQðk; NÞ ¼ H2

4π2

�
k
aH

�
OðϵiÞ

: ð69Þ

The real-space correlator is then calculated as

hδϕ2
linðN; σÞi ¼

Z
σaðNÞH

σaðN¼0ÞH

dk
k

H2

4π2

�
k
aH

�
OðϵiÞ

; ð70Þ

leading to

jhδϕ2
linðN; σÞij − hδϕ2

linðNÞi
hδϕ2

linðN; σÞi ≃ 1 − σOðϵiÞ; ð71Þ

where hδϕ2
linðNÞi is the correlator calculated at leading

order in ϵi, i.e.,

hδϕ2
linðNÞi ¼

Z
σaðNÞH

σaðN¼0ÞH

dk
k

H2

4π2
: ð72Þ

It is easy to prove that the difference in (71) is much larger
than ϵi, which is what it is shown in Fig. 5. In fact, σOðϵiÞ −
1 ≫ ϵi is equivalent to j logðσÞj ≫ Oð1Þ, which is always
satisfied.
One could be led to think that a result strongly dependent

on σ is nonphysical. However, both linear theory and the
new stochastic approach have the exact same dependence
on σ which is removed in Fourier space. In other words, the
σ dependence in real space simply translates to a k
dependence in Fourier space.

2. Linear perturbation theory versus stochastic
formalism at leading order in ϵi

The difference between the linear theory at zeroth order
and the old stochastic formalism (purple solid and green
dashed lines, respectively, observed in Fig. 5) is once again
rooted in the k dependence of the power spectrum. We will
see that the old stochastic formalism captures, in the cor-
relator, the next-to leading order in ϵi with respect to linear
theory. Thus, no nonperturbative effects from the stochastic
inflation should be searched to explain this difference.
We can define, in our model, the parameter x ¼ m2

V0
¼

0.01 ≪ 1 and compute the real-space correlators in linear
theory and in the old stochastic approach, to first order in x.
Within this approximation, the background equations are

∂ϕb

∂N − xϕb ≃ 0; ϵ1 ≃ 0; ϵ2 ≃ 2x: ð73Þ

Using (73), the old stochastic equation (36) reduces to

∂ϕIR
f

∂N − xϕIR
f ¼ H

2π
ξðNÞ; ð74Þ

where hξðN1ÞξðN2Þi ¼ δðN1 − N2Þ. From (74), VarðϕIR
f Þ

is then straightforwardly computed:

VarðϕIR
f Þ ¼ H2

4π2
Nð1þ xNÞ: ð75Þ

Equation (75) corresponds to the purple solid line
of Fig. 5.
The real-space correlator in linear theory, at zeroth order

in x, would instead give

hδϕ2
linijx¼0 ¼

Z
σaðNÞH

σaðN¼0ÞH

dk
k

H2

4π2
¼ H2

4π2
N; ð76Þ

missing the additional term ∝ xN2 in (75).
If we now instead use the definition of the real-space

correlator (56), and compute it up to first order in x, we get

hδϕ2
lini ≃

Z
σaðNÞH

σaðN¼0ÞH

dk
k

H2

4π2

�
k

σaH

�
−2x

¼ H2

4π2
Nð1þ xNÞ;

ð77Þ

which precisely matches the result of the old stochastic
framework.

C. Ultraslow roll

In an ultraslow-roll phase, the inflaton moves in an
exactly flat potential (V ¼ V0); this means that its velocity
decreases exponentially and so ϵ1. Due to this exponential
decreasing, the procedure explained in Sec. VA leads to
large numerical errors. Thus, in this section we will only
use the approximate analytical solutions for Qk both at
zeroth- and a first order in ϵ1. Because of the smallness of
ϵ1 those approximations will be exponentially precise. The
way of solving the MS equation up to ϵ1 precision in a USR
regime is explained in Appendix E.
The real-space variances computed both in linear per-

turbation theory and within the stochastic formalism at
zeroth- and first order in ϵ1 are shown in Fig. 7. We see that
they give all approximately equal results.
At zeroth order in ϵ1, one can compute the correlator in

the old stochastic formalism analytically as follows:
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The stochastic system of equations to solve is

πIRf ¼ ∂ϕIR
f

∂N þ 1

2π

ffiffiffiffiffiffi
V0

3

r
ξðNÞ;

∂πIRf
∂N ¼ −3πIRf :

The second moments of the variables ϕIR
f and πIRf follow a system of stochastic equations:

 ∂hπIRf ðNÞπIRf ðNÞi
∂N

∂hπIRf ðNÞϕIR
f ðNÞi

∂N
∂hϕIR

f ðNÞπIRf ðNÞi
∂N

∂hϕIR
f ðNÞϕIR

f ðNÞi
∂N

!
¼
�−3 0

1 0

� hπIRf ðNÞπIRf ðNÞi hπIRf ðNÞϕIR
f ðNÞi

hϕIR
f ðNÞπIRf ðNÞi hϕIR

f ðNÞϕIR
f ðNÞi

!

þ
 
hπIRf ðNÞπIRf ðNÞi hπIRf ðNÞϕIR

f ðNÞi
hϕIR

f ðNÞπIRf ðNÞi hϕIR
f ðNÞϕIR

f ðNÞi

!�−3 1

0 0

�
þ
�
0 0

0 V0

12π2

�
: ð78Þ

Using that hϕIR
f ðNÞi ¼ ϕbðNÞ and hπIRf ðNÞi ¼ ∂ϕbðNÞ

∂N we
can easily obtain:

VarðϕIR
f ðNÞÞ ¼ V0

12π2
N: ð79Þ

The correlator (79) exactly coincides with (67) in a USR
regime as already shown in [47]. There is no doubt then
that, at zeroth order in ϵ1 and during a USR phase, both the
stochastic formalism and linear perturbation theory give the
exact same real-space correlator and hence the same power
spectrum. This fact also allows us to eliminate statistical
errors when comparing the new stochastic formalism with
linear perturbation theory at first order in ϵ1 as shown
in Fig 8.

D. Transition between SR and USR

Finally, we will study the more realistic case in which a
SR phase is followed by a USR. The transition between
these two phases is quite interesting as it is the regime in
which we could expect some difference between the IR part
of old and new stochastic equations. This is because the
inflaton field is overshoot [16], making ϵ1 only slightly
smaller than 1.

FIG. 8. During an ultraslow-roll phase, the relative difference
between the real-space correlator at first order in ϵ1 calculated
with the new stochastic formalism and the real-space correlator at
first order in ϵ1 calculated with linear theory decreases as the
number of statistics increases up to the yellow line, where we
have used the fact that the old stochastic formalism and linear
theory must coincide at zeroth order to eliminate most of the
statistical fluctuations. We can see that the yellow line is
Oðϵ21ðN ¼ 0ÞÞ, which is expected since we are only computing
noises up to Oðϵ1ðN ¼ 0ÞÞ.

FIG. 7. During an ultra-slow roll phase, no important
differences are seen between linear perturbation theory and
stochastic formalism. Differences between zeroth- and first order
in ϵ1 correlators are just due to ϵ1ðN ¼ 0Þ terms. This dependence
on the value of ϵ1 at N ¼ 0 is explained (within the framework of
linear theory) in Appendix E.
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The potential used to simulate the SR-USR-SR transition
is a cubic potential containing an inflection point at
ϕ ¼ ϕ0 ¼ 1, i.e.,

VðϕÞ ¼ V0ð1þ βðϕ − ϕ0Þ3Þ; ð80Þ

where the parameters chosen are V0 ¼ 1 × 10−8 and
β ¼ 0.8.
In this regime, the zeroth-order solution for Qk (the one

obtained using the SR approximation) has quite poor
precision. We illustrate this in Fig. 9, where this bad
approximation would show huge stochastic effects. In
Fig. 10 we show instead that the fully numerical linear
perturbation theory correlator exactly coincides with the
correlator from the new stochastic formalism while dis-
agreeing with the old one. In Fig. 11, as we expect, we plot
the relative difference between linear theory and stochastic
formalism and show that it decreases with the number of
realizations.

FIG. 10. During the transition between SR and USR, the correlator coming from the new stochastic equations (blue solid line) exactly
coincides with the one gotten from linear perturbation theory (yellow line). The zeroth-order stochastic correlator of Fig. 9 has also been
plotted to better visualize the huge difference.

FIG. 9. At leading order in ϵ1 and during the transition between
SR and USR, there seem to be huge stochastic effects in the two-
point correlator (purple solid line) with respect to the one
computed within linear perturbation theory (green dashed line).
However, results at zeroth order are not a good approximation at
all in this case so they should not be trusted. We show this plot
just for completeness.
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VII. CONCLUSIONS

In this paper we have firstly elucidated that, under the
Starobinsky approximation or, equivalently, under the
white noise construction, a stochastic framework to
inflation might only be developed in the linear pertur-
bation regimes. Thus, the stochastic approach to inflation
is incapable to give more information than perturbation
theory.
In fact, in its standard form, it is even less precise than

perturbation theory. The reason is that what we called old
stochastic inflation is only consistent at leading order in
slow-roll parameters.
By introducing the momentum constraint of Einstein

equations in the stochastic framework, we have developed a
new stochastic formalism valid at all orders in ϵi. We have
shown that the new stochastic formalism exactly reprodu-
ces the power spectrum calculated via linear perturbation
theory in different inflationary scenarios. In particular, we
have shown that there are no “quantum diffusion’-domi-
nated regimes in the realm of slow-roll and ultraslow-roll
inflation and, in the case of a transition between a slow-roll
and an ultraslow-roll regime (a relevant case for primordial
black hole formation), the old stochastic formalism would
lead to largely unphysical results, while, once again, our
new stochastic formalism would reproduce linear theory
very accurately.
Finally, we would like to stress that our framework is

only valid whenever the perturbations are in the linear
regime. Nevertheless, any discordance between our new
stochastic inflation and linear theory would point out
nonperturbative effects that, unfortunately, cannot be cap-
tured by any stochastic methods.
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APPENDIX A: ADM EQUATIONS

Here we present the basic equations for nonlinear
quantities coming from the ADM formalism [12]. The
Klein-Gordon equation is

1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂ϕ
∂xν
�
− Vϕ ¼ 0; ðA1Þ

where Vϕ ¼ dVðϕÞ
dϕ .

As it is written in the main text, α and βi are Lagrange
multipliers; the constraints associated with them are the
energy and momentum constraints:

Rð3Þ − ÃijÃ
ij þ 2

3
K2 ¼ 16πGE; ðA2Þ

DjÃij −
2

3
DiK ¼ 8πGJi; ðA3Þ

where E≡ Tμνnμnν and Ji ≡ −Tμνnμγνi .
The evolution equations for the dynamic variable γij are

ð∂t − βk∂kÞζ þ
_a
a
¼ −

1

3
ðαK − ∂kβ

kÞ; ðA4Þ

ð∂t − βk∂kÞγ̃ij ¼ −2αÃij þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k:

ðA5Þ

Finally, the evolution equations for Kij are

ð∂t − βk∂kÞK ¼ α

�
ÃijÃ

ij þ 1

3
K2

�
−DkDkα

þ 4πGαðEþ SkkÞ; ðA6Þ

FIG. 11. During the transition between SR and USR, the
relative difference between the real-space correlator at all orders
in ϵ1 calculated with the stochastic formalism and with the linear
theory decreases as the number of statistics increases. We expect
these two theories to exactly coincide at M → ∞.
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ð∂t − βk∂kÞÃij

¼ e−2ζ

a2

�
α

�
Rð3Þ
ij −

γij
3
Rð3Þ

�
−
�
DiDjα −

γij
3
DkDkα

��

þ αðKÃij − 2ÃikÃ
k
jÞ þ Ãik∂jβ

k þ Ãjk∂iβ
k −

2

3
Ãij∂kβ

k

−
8πGαe−2ζ

a2

�
Sij −

γij
3
Skk

�
; ðA7Þ

where Sij ¼ Tij and Skk ¼ γklSlk.

APPENDIX B: LINEAR PERTURBATION
THEORY

In this Appendix we will explore the well-known linear
perturbation theory during inflation [48], paying special
attention to the uniform-Hubble gauge.

1. Linear perturbation theory in a generic gauge

The scalar sector of the perturbed FLRW metric is

ds2 ¼ −ð1þ 2AÞdt2 þ 2a∂iBdxidt

þ a2½ð1þ 2DÞδij − 2Es
ij�dxidxj; ðB1Þ

where

Es
ij ¼

�
∂i∂j −

1

3
δij∇2

�
E: ðB2Þ

We can now define the linear curvature perturbation as

ψ ≡Dþ 1

3
∇2E: ðB3Þ

The usual gauge-invariant MS variable is

Q≡ δϕþ
_ϕb

Hb

�
Dþ 1

3
∇2E

�
¼ δϕþ

_ϕb

Hb ψ : ðB4Þ

With metric (B1), perturbed Einstein equations in a
universe filled with a single scalar field in an arbitrary
gauge are

3HbðHbA − _DÞ þ∇2

a2

�
Dþ 1

3
∇2EþHbaB

�
¼ −

1

2M2
PL

½ _ϕbðδ _ϕ − _ϕbAÞ þ Vϕδϕ�; ðB5Þ

∂i

�
HbA − _D −

1

3
∇2 _E

�
¼ 1

2M2
PL

_ϕb∂iδϕ; ðB6Þ

�
Hb _Aþ 2 _HbAþ 3ðHbÞ2A − D̈ − 3Hb _D −Hb∇2 _Eþ 1

2

∇2

a2

�
AþDþ 1

3
∇2Eþ 2HbðaBþ a2 _EÞ þ a

d
dt

ðBþ a _EÞ
��

δji

−
1

2a2
∂i∂j

�
AþDþ 1

3
∇2Eþ 2HbðaBþ a2 _EÞ þ a

d
dt

ðBþ a _EÞ
�
¼ 1

2M2
PL

½ _ϕbðδ _ϕ − _ϕbαÞ − Vϕδϕ�δji : ðB7Þ

The perturbed Klein-Gordon equation is

δϕ̈þ 3Hbδ _ϕþ
�
Vϕϕ −

∇2

a2

�
δϕ ¼ −2VϕAþ _ϕb

�
_A − 3 _Dþ∇2

a
B

�
: ðB8Þ

After some manipulations, one can get an equation of motion for the MS variable (B4):

Q̈þ 3H _Qþ
�
−
∇2

a2
þH2

�
−
3

2
ϵ2 þ

1

2
ϵ1ϵ2 −

1

4
ϵ22 −

1

2
ϵ2ϵ3

��
Q ¼ 0: ðB9Þ

Finally, we will introduce the overall expansion rate (or trace of extrinsic curvature) as

K ¼ ∇μnμ ¼ 3

�
Hb −HbAþ _D −

1

3

∇2

a
B

�
; ðB10Þ

where n is the linearized unit timelike vector.
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2. Linear perturbation theory in δK = 0 gauge

Since the trace of the extrinsic curvature K is defined as
K ≡ 3H, it is now trivial to write the linear version for the
uniform-Hubble gauge (where H ¼ Hb):

HbAδK¼0 − _DδK¼0 þ
1

3

∇2

a
BδK¼0 ¼ 0: ðB11Þ

As also done when studying δK ¼ 0 gauge in gradient
expansion, we can use the residual gauge freedom to

set B ¼ 0. This is the so-called time-slice-orthogonal
threading [49]:

HbAδK¼0 − _DδK¼0 ¼ 0;

BδK¼0 ¼ 0: ðB12Þ

Once specified the gauge, Eqs. (B5)–(B7) are

∇2

a2

�
DδK¼0 þ

1

3
∇2EδK¼0

�
¼ −

1

2M2
PL

½ _ϕbðδ _ϕδK¼0 − _ϕbAδK¼0Þ þ VϕδϕδK¼0�; ðB13Þ

1

3
∇2 _EδK¼0 ¼ −

1

2M2
PL

_ϕbδϕδK¼0; ðB14Þ

_HbAδK¼0 −
1

3
∇2ËδK¼0 −Hb∇2 _EδK¼0 ¼ −

1

2M2
PL

½ _ϕbðδ _ϕδK¼0 − _ϕbAδK¼0Þ − VϕδϕδK¼0�; ðB15Þ

AδK¼0 þDδK¼0 þ
1

3
∇2EδK¼0 þ 3Hba2 _EδK¼0 þ a2ËδK¼0 ¼ 0; ðB16Þ

where (B15) and (B16) are the diagonal and nondiagonal part of (B7), respectively. Now we can use _Hb ¼ − ð _ϕbÞ2
2M2

PLin (B15) and after manipulating (B13), (B15), and (B16) we arrive at a result for AδK¼0:

∇2

a2
AδK¼0 ¼

1

2M2
PL

ð4 _ϕbδ _ϕδK¼0 − 2VϕδϕδK¼0 − ð _ϕbÞ2AδK¼0Þ; ðB17Þ

which can be written in Fourier space as [36]

AkjδK¼0 ¼
1

2M2
PL
ð4 _ϕbδ _ϕkjδK¼0 − 2VϕδϕkjδK¼0Þ

ðϕbÞ2
2M2

PL
− k2

a2

: ðB18Þ

It is also convenient to use the gauge condition (B12) in the perturbed KG equation:

δϕ̈δK¼0 þ 3Hbδ _ϕδK¼0 þ
�
Vϕϕ −

∇2

a2

�
δϕδK¼0 ¼ −2VϕAδK¼0 þ _ϕb½ _AδK¼0 − 3HbAδK¼0�: ðB19Þ

Finally, and for completeness, we will write an evolution
equation for ψ using (B12) and (B14):

_ψδK¼0 ¼ −
1

2M2
PL

_ϕbδϕδK¼0 þHbAδK¼0: ðB20Þ

3. Linear gauge transformation between spatially
flat and δK = 0 gauges

In this Appendix we will also calculate the variables
δϕδK¼0 and ψδK¼0 that we use in new stochastic formalism.
In order to do so, we will make a gauge transformation

between spatially flat gauge and uniform-Hubble gauge.
The reason is that we know that δϕf ¼ Q [because of
(B4)].This means that to perform the gauge transformation
δϕf → δϕδK¼0 allows us to write δϕδK¼0 in terms of the
gauge-invariant quantity Q, as we will see.
In order to do so we define an infinitesimal vector as

λ ¼ ðλ0; λiÞ, where we decompose λi ¼ λi⊥ þ ∂iη, where λi⊥
is a 3-vector with zero divergence and η is a scalar function;
then, a scalar quantity transforms under an infinitesimal
gauge transformation as

δϕ → δ̃ϕ ¼ δϕþ ϕ0λ0: ðB21Þ
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Imposing gauge invariance of (B1) we get the trans-
formation rules for the different parameters in the metric

D → D̃ ¼ DþHλ0 þ 1

3
∇2η;

A → Ã ¼ AþHλ0 þ λ00

E → Ẽ ¼ E − η;

B → B̃ ¼ Bþ η0 − λ0; ðB22Þ
where, as before, ð 0Þ means a derivative with respect to the
conformal time (dt ¼ adτ), and H ¼ a0

a ¼ aHb.
From the definition of the overall expansion rate θ ¼

Hb þ δK and (B10) we deduce that δK ¼ −HbAþ _D −
1
3
∇2

a B or δH ¼ −HAþD0 − 1
3
∇2B. Performing a gauge

transformation we get

δH → ˜δH ¼ δH −H2λ0 þH0λ0 þ 1

3
∇2λ0: ðB23Þ

In order to find the gauge transformation parameter
λ0f→δK¼0 between flat (f) and δK ¼ 0 gauges we need to set
˜δH ¼ 0 and δH ¼ δHf ¼ −HAf − 1

3
∇2Bf [spatially flat

gauge, or ψ ¼ 0, implies, from (B3), that both D and E are
0] in (B23), obtaining

−3λ0f→δK¼0H
2ϵ1 þ∇2λ0f→δK¼0 ¼ S; ðB24Þ

where S ¼ −3δHf (we have used the definition of ϵ1 in
conformal time, i.e., ϵ1 ¼ 1 − H0

H2).
The only thing left to do is to specify S. In order to do so

we use energy and momentum constraints (B5) and (B6) in
spatially flat gauge (i.e., setting D ¼ 0 and E ¼ 0):

Hð3HAf þ∇2BfÞ ¼−
1

2M2
PL

½ϕb0ðδϕ0
f −ϕb0AfÞþa2Vϕδϕf �;

ðB25Þ

HAf ¼
1

2M2
PL

ϕb0δϕf : ðB26Þ

We now can see that the left-hand side of (B25) is
nothing more than HS. Using (B26) to substitute Af in
(B25) we get a solution for S:

S ¼ −
Q

2M2
PLH

�
a2Vϕ þ ϕb0 Q

0

Q
− ϕb0Hϵ1

�
; ðB27Þ

where we have already used δϕf ¼ Q.
The next step is to solve (B24) for λ0kjf→δK¼0 in

Fourier space:

λ0kjf→δK¼0 ¼ −
Sk

3H2ϵ1 þ k2
¼

Qk
2M2

PLH
ða2Vϕ þ ϕb0 Q0

k
Qk

− ϕb0Hϵ1Þ
H2ðð kHÞ2 þ 3ϵ1Þ

; ðB28Þ

where k ¼ jkj.
Finally, using (B21), the field perturbation in uniform-Hubble gauge is

δϕkjδK¼0 ¼ Qk þ ϕb0λ0kjf→δK¼0 ¼ Qk

�
1 −

3ϵ1 þ 1
2
ϵ1ϵ2 − ϵ1

Q0
k

HQk

ð kHÞ2 þ 3ϵ1

�
: ðB29Þ

This result, together with the definition of the MS variable, gives the value of ψkjδK¼0∶

ψkjδK¼0 ¼
H
ϕb0 ðQk − δϕkjδK¼0Þ ¼

HQk

ϕb0

�
3ϵ1 þ 1

2
ϵ1ϵ2 − ϵ1

Q0
k

HQk

ð kHÞ2 þ 3ϵ1

�
: ðB30Þ

In order to conclude this Appendix we are going to study some properties of (B29) and (B30) in the long-wavelength
limit, i.e., when k

H ¼ k
aH ¼ σ ≪ 1. We want to study this limit because, as one can clearly see, it is the same limit we have

used both in the gradient expansion as in the stochastic formalism.
In this limit we can use the expansion parameter σ2

3ϵ1
≪ 1.8 The result is

8The condition σ ≪ 1 is automatically satisfied as soon as our coarse-grained scale is big enough; however, ϵ1 is also very small
during inflation so this expansion could cease to be valid at some point. In order to use our stochastic formalism one has to be sure that
σ2

3ϵ1
≪ 1; this does not represent a problem since it is easy to check that one can always choose a value for σ such that

exp

�
−

1

4ϵ1

�
≪ σ ≪

ffiffiffiffiffiffiffi
3ϵ1

p
; ðB31Þ

where the lower limit was first obtained in [3] and later refined in [50].
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δϕkjδK¼0 ¼
Qk

6

��
2

Q0
k

HQk
− ϵ2

�
þ
�
6þ ϵ2 − 2

Q0
k

HQk

��
σ2

3ϵ1

��
;

ψkjδK¼0 ¼
QkH
6ϕb0

��
6þ ϵ2 − 2

Q0
k

HQk

�
þ
�
2

Q0
k

HQk
− 6 − ϵ2

��
σ2

3ϵ1

��
: ðB32Þ

Equation (B32) is enough for the numerical implemen-
tation of the stochastic formalism we present in the main
text. Note that the expansion done in (B32) requires ϵ1 ≠ 0;
indeed, if we impose ϵ1 ¼ 0 in (B29) and (B30), we get that
uniform-Hubble and spatially flat gauges are equivalent
and hence we recover the noises from the old stochastic
formalism.
As an example we can write an analytical expression for

δϕkjδK¼0 and ψkjδK¼0 in SR at first order in ϵ1.
If we write the MS equation (B9) using the conformal

time τ defined as ðτ ¼ R dt
aÞ as time variable, we get

Q00
k þ 2HQ0

k þ
�
k2 þH2ð2 − ϵ1Þ þ

z00

z

�
Qk ¼ 0; ðB33Þ

where ð 0Þ denotes a derivative with respect to τ and we have
defined z ¼ a ϕb0

Hb ¼ a
ffiffiffiffiffiffiffi
2ϵ1

p
MPL such that z00

z can be written
in terms of SR parameters:

z00

z
¼ a2H2

�
2 − ϵ1 þ

3

2
ϵ2 þ

1

4
ϵ22 −

1

2
ϵ1ϵ2 þ

1

2
ϵ2ϵ3

�
:

ðB34Þ
The solution of (B33) provided that ν2 ¼ 1

4
þ τ2 z00

z is
constant up to the level of precision we are looking for [in
our case ν must be constant up to Oðϵ1Þ] is

Qk ¼ δϕkjf ¼
e

i
2
πðνþ1

2
Þ

a

ffiffiffi
π

p
2

ffiffiffiffiffiffi
−τ

p
Hð1Þ

ν ð−kτÞ; ðB35Þ

where we have used the Bunch-Davies vacuum [51] as a

initial condition. Hð1Þ
ν is the Hankel function of first class.

Using the expansion of the Henkel function when
ð−kτÞ ≃ σ ≪ 1 and ν > 1 (always the case in SR) we have

Hð1Þ
ν ð−kτÞ ¼ i

π
2νð−kτÞ−ν

	
−Γ½ν� þ 1

4
Γ½ν − 1�ð−kτÞ2



;

ðB36Þ
and we obtain the following expression for Qk up to
ð−kτÞ2:

Qk ¼ δϕkjf ¼ −i
e

i
2
πðνþ1

2
Þ2ν−1

a
ffiffiffi
π

p ffiffiffiffiffiffi
−τ

p ð−kτÞ−ν
	
Γ½ν�

−
1

4
Γ½ν − 1�ð−kτÞ2



; ðB37Þ

and hence for Q0
k

HQk
up to ð−kτÞ2 is

Q0
k

HQk
≃
1 − 2ν − 2Hτ

2Hτ
þ 1

2Hτðν − 1Þ ð−kτÞ
2; ðB38Þ

Finally, one can integrate by parts τ ¼ R dt
a up to order ϵ1

as done in Appendix E. This gives a result in SR of

τSR ≃ −
1

H
ð1þ ϵ1Þ; ðB39Þ

which, together with the definition of ν, gives us the
expression of ν in SR up to OðϵiÞ:

νSR ¼ 3

2
þ ϵ1 þ

ϵ2
2
: ðB40Þ

After inserting (B38), (B39), and (B40) into (B32) one
gets

( δϕSR
k jδK¼0 ≃Oð σ2

3ϵ1
Þ

ψSR
k jδK¼0 ≃

HQðϵÞ
k

ϕb0 þOð σ2
3ϵ1
Þ
; ðB41Þ

where QðϵÞ
k stands for Qk but expanded at first order in ϵ1.

In a SR regime, comoving gauge (δϕ ¼ 0) and uniform-
Hubble gauge are equivalent up to OðϵiÞ and Oðσ2Þ,
provided that ϵ1 ≪ 1 but ϵ1 ≠ 0.
Note that in order to study analytical solutions in other

regimes like USR one must know the solution of Eq. (B33)
up to precision Oðϵ1Þ; however, there is no analytical
solution for (B33) when ν is not a constant. This is precisely
the case in USR up to precision Oðϵ1Þ; this is because in
USR we have dϵ1

dN ∼Oðϵ1Þ. In Appendix E we will present
an alternative approximation in order to get an analytical
solution for the MS equation for regimes beyond SR and up
to Oðϵ1Þ. Using results from Appendix E together with
ϵUSR2 ≃ −6, we can write (B32) in USR:

(
δϕUSR

k jδK¼0 ≃Qk þOð σ2
3ϵ1
Þ

ψUSR
k jδK¼0 ≃Oð σ2

3ϵ1
Þ

: ðB42Þ

APPENDIX C: DERIVATION OF THE OLD
STOCHASTIC FORMALISM

In this Appendix we will derive Eqs. (36) and (B37) by
using spatially flat gauge with the further assumption of
∂iðð0ÞβfÞi ¼ 0. In this case, the Hamiltonian constraint (34)

simplifies considerably:
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�
Hb

ð0Þα
IR
f

�
2

¼
Vðð0ÞϕIR

f Þ
3M2

PL − 1
2
ð∂ð0Þϕ

IR
f

∂N Þ2 − _ϕbξ1ðNÞjf
¼

Vðð0ÞϕIR
f Þ

3M2
PL −

ðð0ÞπIRf Þ2
2

; ðC1Þ

where in the last equality we have defined the auxiliary variable ð0Þπ
IR
f as

ð0Þπ
IR
f ≡ ∂ð0Þϕ

IR
f

∂N þ ξ1ðNÞjf : ðC2Þ

Once we have seen how the stochastic equation for the Hamiltonian constraint is derived we can follow the same
procedure to write the whole set of ADM equations of Appendix A. After a straightforward calculation, one can see that the
only equations of interest at leading order in gradient expansion are

(i) The Klein-Gordon equation for the field (A1):

∂ð0Þπ
IR
f

∂N ¼ −
�
3þ

∂
∂N ð Hb

ð0Þα
IR
f
Þ

Hb

ð0Þα
IR
f

�
ð0Þπ

IR
f −

Vϕðð0ÞϕIR
f Þ

ð Hb

ð0Þα
IR
f
Þ2 − ξ2ðNÞjf þ

∂ϕb

∂N ξ3ðNÞjf ; ðC3Þ

where, in the sameway as we did with ξ1 we define the white noises ξ2 and ξ3 (note that they are now written usingN
as time variable):

ξ2ðNÞjf ¼ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞδφk

∂N
����
f
;

ξ3ðNÞjf ¼ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞAkjf : ðC4Þ

(ii) Evolution equation for the trace of the extrinsic curvature K (A6):

∂
∂N ð Hb

ð0Þα
IR
f
Þ

Hb

ð0Þα
IR
f

¼ −
ðð0ÞπIRf Þ2
2M2

PL
: ðC5Þ

Note that we have not taken into account the momentum constraint because we are at leading order in ϵ1. It is now easy to
realize that (C1), (C3), and (C5) can be written in a compact way:

ð0Þπ
IR
f ¼

∂ð0Þϕ
IR
f

∂N þ ξ1ðNÞjf
∂ð0Þπ

IR
f

∂N ¼ −
�
3 −

ðð0ÞπIRf Þ2
2M2

PL

�
ð0Þπ

IR
f −

Vϕðð0ÞϕIR
f Þ

Vðð0ÞϕIR
f Þ
�
3M2

PL −
ðð0ÞπIRf Þ2

2

�
− ξ2ðNÞjf þ

∂ϕb

∂N ξ3ðNÞjf: ðC6Þ

In order to solve (C6) it is necessary to calculate the variance of the noises (33) and (C4):

hξ1ðN1Þjfξ1ðN2Þjfi ¼
ðσaHbÞ3

2π2
ð1 − ϵ1ÞjQkj2k¼σaHbδðN1 − N2Þ;

hξ2ðN1Þjfξ2ðN2Þjfi ¼
ðσaHbÞ3

2π2
ð1 − ϵ1Þ

���� ∂Qk

∂N
����2
k¼σaHb

δðN1 − N2Þ;

hξ3ðN1Þjfξ3ðN2Þjfi ¼
ðσaHbÞ3

2π2
ð1 − ϵ1ÞjAkjψ¼0j2k¼σaHbδðN1 − N2Þ ¼ ϵ1hξ1ðN1Þjfξ1ðN2Þjfi;

hξ1ðN1Þjfξ2ðN2Þjfi ¼
ðσaHbÞ3

2π2
ð1 − ϵ1Þ

�
Q⋆

k
∂Qk

∂N
�

k¼σaHb
δðN1 − N2Þ; ðC7Þ
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where the last equality in the third line comes from using
momentum constraint (B26) in spatially flat gauge. Note
that we have also written the correlators in terms of the

Mukhanov-Sasaki variable Qk ¼ δϕk þ ∂ϕb

∂N ψk because in
spatially flat gauge we have Qk ¼ δϕkjf .
Another important aspect to remark from (C7) is that they

are completely correlated [or completely anticorrelated,
depending on the values of the correlation matrix whose
entries are (C7)] noises. This is because they all come from
linear perturbation theory. Thismeans that the sign before the
noises in the stochastic formalism is important, which is a
crucial aspect to take into account when doing numerics with
the stochastic formalism as in Sec. VI.
Equation (C6) is not consistent because it should not

include any term of leading order in ϵ1. This is why we
should rewrite (C6) as

ð0Þπ
IR
f ¼

∂ð0Þϕ
IR
f

∂N þ ξ1ðNÞjf ;
∂ð0Þπ

IR
f

∂N ¼ −3ð0Þπ
IR
f − ξ2ðNÞjf ; in USR

3
∂ϕIR

f

∂N ¼ −3M2
PL

VϕðϕIR
f Þ

VðϕIR
f Þ − 3ξ1ðNÞjf − ξ2ðNÞjf ; in SR:

ðC8Þ

Finally, ξ1 and ξ2 must also be computed at leading
order in ϵ1, which results in hξ1ðN1Þξ1ðN2Þi ¼
ðHb

2πÞ2δðN1 − N2Þ and hξ2ðN1Þξ2ðN2Þi ¼ 0. This allows

us to perform the noise redefinition ξ1ðNÞjf → Hb

2π ξðNÞ,
where hξðN1ÞξðN2Þi ¼ δðN1 − N2Þ. Inserting the defini-
tion of ξðNÞ into (C8) we arrive at

ð0Þπ
IR
f ¼

∂ð0Þϕ
IR
f

∂N þ
�
Hb

2π

�
ξðNÞjf ;

∂ð0Þπ
IR
f

∂N ¼ −3ð0Þπ
IR
f ; in USR

∂ϕIR
f

∂N ¼ −M2
PL

VϕðϕIR
f Þ

VðϕIR
f Þ −

�
Hb

2π

�
ξ1ðNÞjf ; in SR; ðC9Þ

which are Eqs. (37) and (36), respectively.

APPENDIX D: DERIVATION OF THE NEW
STOCHASTIC FORMALISM

In this Appendix we will derive each one of the equations
of the new stochastic formalism. Since we are always using
the Starobinski approximation we will directly write the
linear perturbation theory equation for theUV side. Wewill
follow the same order as in the main text:

(i) The evolution equation for the spatial metric (A4) in
uniform-Hubble gauge is

∂ðnÞζ

∂N − ððnÞα − 1Þ ¼ 0; ðD1Þ

where, as in the main text, a subindex ðnÞmeans that
we are at all orders in σ so the above equation is
exact. When we split it between IR and UV we get

∂ζ
∂N − ðα − 1Þ ¼ −

∂D
∂N þ A; ðD2Þ

where, as already noted, we have adopted the
notation of linear perturbation theory (D and A
instead of ζUV and αUV) because we are already
assuming Starobinski approximation.

Finally, when including the Fourier splitting (29)
into (D2) we get

∂ζ
∂N − ðα − 1Þ ¼ −ξ4ðNÞjδK¼0; ðD3Þ

where ξ4ðNÞjδK¼0 is defined as

ξ4ðNÞjδK¼0 ≡ −σaHbð1 − ϵ1Þ

×
Z

d3k

ð2πÞ3=2 δðk − σaHbÞDkjδK¼0:

ðD4Þ

(ii) The scalar field equation of motion (A1) in uniform-
Hubble gauge once the splitting between IR and UV
has been done is

1

α

�∂2ϕ

∂N2
þ
�
3 − ϵ1 −

1

α

∂α
∂N −

∂ζ
∂N
� ∂ϕ
∂N
�
þ α

Vϕ

H2

¼ ∂2δϕ

∂N2
þ ð3 − ϵ1Þ

∂δϕ
∂N þ

�
Vϕϕ −

∇2

a2

�
δϕ

þ 2VϕAþ ∂ϕb

∂N
�∂A
∂N − 3A

�
: ðD5Þ

If we now include the Fourier splitting (29) in
(D5) we get

1

α

�∂2ϕ

∂N2
þ
�
3 − ϵ1 −

1

α

∂α
∂N þ 3

∂ζ
∂N
� ∂ϕ
∂N
�
þ α

Vϕ

H2

¼ −ð3 − ϵ1Þξ1ðNÞjδK¼0 −
∂ξ1ðNÞjδK¼0

∂N
− ξ2ðNÞjδK¼0 þ

∂ϕb

∂N ξ3ðNÞjδK¼0; ðD6Þ

where ξ2ðNÞjδK¼0, ξ2ðNÞjδK¼0, and ξ3ðNÞjδK¼0 are
defined as
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ξ1ðNÞjδK¼0 ≡ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞδφkjδK¼0;

ξ2ðNÞjδK¼0 ≡ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞδφk

∂N
����
δK¼0

;

ξ4ðNÞjδK¼0 ≡ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞAkjδK¼0: ðD7Þ

Finally, we can use (D7) in order to eliminate ∂ζ
∂N and a redefinition of the velocity of the field in order to eliminate

∂ξ1ðNÞjδK¼0∂N in (D7), getting

∂π
∂N þ ð3α − ϵ1Þ

∂ϕ̃
∂N þ α

VϕðϕÞ
H2

¼ −ð3 − ϵ1Þξ1ðNÞjδK¼0 − ξ2ðNÞjδK¼0 þ
∂ϕb

∂N ðξ3ðNÞjδK¼0 þ 3ξ4ðNÞjδK¼0Þ; ðD8Þ

π ≡ 1

α

∂ϕ
∂N þ ξ1ðNÞjδK¼0 ¼

∂ϕ̃
∂N þ ξ1ðNÞjδK¼0: ðD9Þ

The Hamiltonian constraint (A2) already separated between IR and UV is

H2−
1

3M2
PL

�
VðϕÞþH2

1

2

�∂ϕ̃
∂N
�

2
�
¼−

2

3

∇2

a2

�
Dþ1

3
∇2E

�
þ 1

3M2
PL

�
H2

∂ϕb

∂N
�∂δϕ
∂N −

∂ϕb

∂N A

�
þVϕδϕ

�
: ðD10Þ

Using the splitting in Fourier space once again and using the fact that due to the gauge chosen, the Hamiltonian
constraint must coincide with the Hamiltonian constraint of the background system, we can write

H2 ¼ VðϕbÞ
3M2

PL − 1
2
ð∂ϕb

∂N Þ
2
¼ VðϕÞ

3M2
PL − 1

2
ð∂ϕ̃∂NÞ

2 − ∂ϕb

∂N ξ1ðNÞjδK¼0

: ðD11Þ

Now we do the same with the evolution equation for the trace of the extrinsic curvature (A6):

−3H
∂H
∂N − 3H2α −

α

M2
PL

�
H2

∂ϕ̃
∂N − VðϕÞ

�
¼ 1

M2
PL

�
3

2
H2

∂ϕb

∂N Aþ 2H2
∂ϕb

∂N
∂δϕ
∂N − Vϕ∂ϕ

�
: ðD12Þ

If we write the UV part in Fourier space we get the noise:

−3H
∂H
∂N − 3H2α −

α

M2
PL

�
H2

∂ϕ̃
∂N − VðϕÞ

�
¼ H2

M2
PL

∂ϕb

∂N ξ1ðNÞjδK¼0: ðD13Þ

Finally we can substitute ∂H
∂N by its background value and eliminate 3H2α using Eq. (D11). The result is

�∂ϕb

∂N
�

2

¼ α

�∂ϕ̃
∂N
�

2

þ 2

3
ð2þ αÞ ∂ϕ

b

∂N ξ1ðNÞjδK¼0: ðD14Þ

The last equation to derive is the momentum constraint. However, since we have derived it in the main text we will
only write here the value for the noise ξ5ðNÞjδK¼0:

ξ5ðNÞjδK¼0 ≡ −σaHbð1 − ϵ1Þ
Z

d3k

ð2πÞ3=2 δðk − σaHbÞk2EkjδK¼0: ðD15Þ
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APPENDIX E: SOLUTION OF THE MS
EQUATION FOR USR AND CR REGIMES

This Appendix is devoted to the study of solutions for the
MS equation for the cases in which ν2 ¼ 1

4
þ z00

z τ
2 cannot be

assumed to be a constant [see discussion below (B33)].
First of all, we will rewrite (B33) in terms of uk ¼ aQk,
where a is the scale factor and Qk is the MS variable
defined in (B4).

u00kðτÞ þ
�
k2 −

z00

z

�
ukðτÞ ¼ 0; ðE1Þ

where we have defined z ¼ a ϕb0

Hb ¼ a
ffiffiffiffiffiffiffi
2ϵ1

p
MPL such that z

00
z

can be written in terms of SR parameters:

z00

z
¼ a2H2

�
2− ϵ1þ

3

2
ϵ2þ

1

4
ϵ22−

1

2
ϵ1ϵ2þ

1

2
ϵ2ϵ3

�
: ðE2Þ

In order to have an analytical solution in terms of Henkel
functions as in (B35) we need ν2 ¼ 1

4
þ z00

z τ
2 to be a

constant. Let us study when this is the case.
First of all it is very convenient to write τ in terms of aH

or vice versa to see if the term z00
z τ

2 is a constant. We will do
this up to Oðϵ1Þ.
From the definition of ϵ1 ¼ − _Hb

ðHbÞ2 and ϵ2 ¼
Ḧb

_HbHb − 2
_Hb

ðHbÞ2 together with the background equation of

motion of the field, we can write

ϵ2 ¼ −6
�
1þ Vϕ

3H _ϕ

�
þ 2ϵ1; ðE3Þ

and since _ϵ1
ϵ1
¼ Hϵ2 we can write ϵ1 as

ϵ1 ¼ ϵ01a
−6 exp

�
−6
Z �

Vϕ

3 _ϕ
−
Hϵ1
3

�
dt

�
; ðE4Þ

where ϵ01 is the initial value of ϵ1 and we have
used N ¼ log a.
The next step is to use the definition of τ and integrate by

parts:

τ ¼ −
1

aH
þ
Z

da
a2H

ϵ1: ðE5Þ

We now have to integrate by parts again the last term in
(E5) taking into account the result (E4); after a straightfor-
ward computation we getZ

da
a2H

ϵ1 ¼ −
ϵ1

7Ha
−
6

7

Z
da
Ha2

�
Vϕ

3H _ϕ

�
ϵ1 þ

3

7

Z
da
Ha2

ϵ21:

ðE6Þ
The last term in (E6) is second order in ϵ1 so we will

neglect it. If we keep integrating by parts we will find terms

proportional to dn
dtn ð

Vϕ

3H _ϕ
Þϵ1. However, for the regimes of

interest (SR, USR, or CR) we have ð Vϕ

3H _ϕ
Þ ¼ κ

3
þOðϵ1Þ, so

we can neglect all these terms and write a formula for τ
valid up to first order in ϵ1.

τ ≃ −
1

Ha

�
1þ

�X∞
i¼0

ð−1Þi 6i

7iþ1

�
Vϕ

3H _ϕ

�
i
�
ϵ1

�

¼ −
1

Ha

�
1þ 1

7þ 6ð Vϕ

3H _ϕ
Þ
ϵ1

�
¼ −

1

Ha

�
1þ 1

7þ 2κ
ϵ1

�
:

ðE7Þ
Once we have the general expansion of τ it is easy to get

ν from (E2); the result is

ν ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9

Vϕϕ

H2

r
−
3ð15þ 12κ þ 2κ2Þ
j3þ 2κjð7þ 2κÞ ϵ1; ðE8Þ

where we have used the definition of ν2 ¼ 1
4
þ z00

z τ
2 together

with the following result:

Vϕϕ

H2
¼
�
6ϵ1 −

3

2
ϵ2 − 2ϵ21 þ

5

2
ϵ1ϵ2 −

1

4
ϵ22 −

1

2
ϵ2ϵ3

�
¼ −3κ − κ2 þOðϵ1Þ: ðE9Þ

Let us finally apply (E8) to SR and USR.
(i) SR: At leading order in SR κ ≃ −3 and

Vϕϕ

H2 ≃ 6ϵ1 − 3
2
ϵ2∶

νSR ¼ 3

2
þ ϵ1 þ

1

2
ϵ2 ¼

3

2
þ 2ϵ01: ðE10Þ

(ii) USR: The potential is exactly flat, i.e.,
κ ¼ Vϕϕ ¼ 0∶

νUSR ¼ 3

2
−
15

7
ϵ1 ¼

3

2
−
15

7
ϵ01τ

6H6: ðE11Þ

In the last equality of each regime we have used the results
(E3) and (E4) together with τ ¼ − 1

aH ð1þOðϵ1ÞÞ (where
H ¼ constant). These results obviously coincide with
known results (see for example [35]).
It is then obvious that the solution in terms of Henkel

functions is valid at zeroth- and first order in ϵ1 for SRbut it is
only valid at zeroth order in ϵ1 for USR and CR; this is
because at order ϵ1, νUSR is not a constant. The aim of this
Appendix is to give a solution for (E1) up to ϵ1 which is valid
for USR. The procedure to follow is very simple:
(1) First we write the MS equation (E1) at first order in

ϵ1 using (E7):

u00kðτÞ þ
�
k2 −

1

τ2

�
2 −

45

7
ϵ1

��
ukðτÞ ¼ 0: ðE12Þ
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(2) We then write explicitly the time dependence of ϵ1:

u00kðτÞ þ
�
k2 −

2

τ2
þ 45

7
ϵ01H

6τ4
�
ukðτÞ ¼ 0: ðE13Þ

(3) Equation (E13) does not have an analytical solution;
however, we know that the solution up to order ϵ1
must be of the form ukðτÞ ¼ uð0Þk ðτÞ þ ϵ01u

ð1Þ
k ðτÞ.

The equation that will follow each of the parts of the
solution is

ðuð0Þk Þ00ðτÞ þ
�
k2 −

2

τ2

�
uð0Þk ðτÞ ¼ 0;

ðuð1Þk Þ00ðτÞ þ
�
k2 −

2

τ2

�
uð1Þk ðτÞ þ 45

7
H6τ4uð0Þk ðτÞ ¼ 0:

ðE14Þ

(4) The final solution ukðτÞ for USR, with the Bunch-
Davies vacuum as initial condition, is

ukðτÞ ¼
eikτffiffiffiffiffi
2k

p
�
1þ i

kτ
þ 45

7
ϵ0H6

0τ
6

�
i

5kτ
−

7

10ðkτÞ2

−
7i

6ðkτÞ3 þ
7

6ðkτÞ4 þ
7

4ðkτÞ6 þ
7i

4ðkτÞ7
��

:

ðE15Þ

From (E15) we can write the solution for Qk ¼ uk
a as

QkðτÞ ¼ −
eikτHτffiffiffiffiffi

2k
p

�
1 −

1

7
ϵ0H6τ6

��
1þ i

kτ
þ 45

7
ϵ0H6τ6

×

�
i

5kτ
−

7

10ðkτÞ2 −
7i

6ðkτÞ3 þ
7

6ðkτÞ4

þ 7

4ðkτÞ6 þ
7i

4ðkτÞ7
��

: ðE16Þ

When evaluating k ¼ σaðN⋆ÞH and applying the limit
σ → 0 we are left with the following expression:

QkðN⋆Þ ¼ −
e−iσð1þ1

7
ϵ1ÞHffiffiffi

2
p ðσaHÞ3=2

�
1 −

1

7
ϵ1

��
iþ 45

4

ϵ1
σ6

�
:

Equation (E17) is written in terms of the time used for
the stochastic simulation N⋆; if we want to relate it with the
background we must shift the time variable according to
N ¼ N⋆ þ logðσÞ [see discussion below (69)]. The final
expression is

QkðNÞ ¼ −
e−iσHffiffiffi
2

p ðaHÞ3=2
�
iþ 45

4
ϵ1

�
:
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