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We study the potential of Bayesian neural networks (BNNs) to detect new physics in the dark matter
power spectrum, concentrating here on evolving dark energy and modifications to general relativity. After
introducing a new technique to quantify classification uncertainty in BNNs, we train two BNNs on mock
matter power spectra produced using the publicly available code ReACT in the k range (0.01 — 2.5) hAMpc™!
and redshift bins (0.1, 0.478, 0.783, 1.5) with Euclid-like noise. The first network classifies spectra into five
labels including ACDM, f(R), wCDM, Dvali-Gabadadze-Porrati gravity and a “random” class, whereas
the second is trained to distinguish ACDM from non-ACDM. Both networks achieve a comparable
training, validation and test accuracy of ~95%. Each network is also capable of correctly classifying spectra
with deviations from ACDM that were not included in the training set, demonstrated with spectra generated
using the growth index y. To obtain an indication of the BNNs classification capability, we compute the
smallest deviation from ACDM such that the noise-averaged non-ACDM classification probability is at
least 95% according to our estimated error quantification, finding these bounds to be fgy < 1077,
Q. <1072, —1.05 <wy <095, =02 <w, <0.2, and 0.52 <y <0.59. The bounds on f(R) can be
improved by training a specialist network to distinguish solely between ACDM and f(R) power spectra
which can detect a nonzero f gy at O(107%). We expect that further developments, such as the inclusion of
smaller length scales or additional extensions to ACDM, will only improve the potential of BNNs to

indicate the presence of new physics in cosmological datasets, regardless of the underlying theory.
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I. INTRODUCTION

The scientific method is based upon the meticulous
comparison of theoretical hypotheses with observations. A
hypothesis can be promoted to a foundational theory once it
has rigorously satisfied a multitude of observational tests.
Such is the case with the concordance cosmological model
ACDM, named after the two dominant components that
contribute to the current energy density of the Universe: the
cosmological constant (A) and cold dark matter (CDM).
Despite their dominant contribution to the stress-energy
density of the Universe, the fundamental nature of both dark
matter and dark energy remains a mystery. Determining
the physical nature of these two components is a central
challenge in modern physics. Combined with the task of
furthering our understanding of dark energy and dark matter
is the requirement to test Einstein’s theory of general
relativity (GR) in the hitherto unexplored cosmological
regime. Potential modifications to gravitational dynamics
at cosmological length scales may also play a part in
providing an explanation for dark energy and dark matter.
A principal pursuit of contemporary cosmology is therefore
to stringently compare both GR and ACDM against a
considerable collection of alternative models [1-7].
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The large-scale structure (LSS) of the Universe provides
an ideal testing ground for competing hypotheses.
Assuming that CDM can be treated as a perfect fluid, it
undergoes gravitational collapse into localized overden-
sities, generating gravitational wells which the galaxy
distribution subsequently traces. By correlating galaxy
positions over a large volume, a statistical description of
how the underlying dark matter clusters can be obtained.
This is largely characterized by the two-point correlation
function or the power spectrum in Fourier space. Although
the distribution of dark matter is not directly observable,
modern cosmological surveys use observables such as
galaxy clustering [8] or weak lensing [9] to probe the
underlying dark matter distribution. The next generation of
galaxy surveys such as Euclid [10] and Legacy Survey of
Space and Time (LSST) [11] have the capability to measure
the cosmological galaxy distribution with extremely high
precision, especially at length scales where the cosmologi-
cal background becomes subdominant to baryonic and
nonlinear gravitational physics. Analytic methods are
impractical in this regime as the evolution equations do
not possess closed-form solutions. Cosmological N-body
simulations can provide highly accurate numerical predic-
tions, yet their computational cost renders them unsuitable
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for constraining model parameters in Markov chain
Monte Carlo (MCMC) analyses. Motivated by this issue,
Refs. [12—14] constructed emulators and nonlinear models
for the matter power spectrum, with extensions to include
deviations from ACDM developed in Refs. [15-17]. These
are fast and accurate methods which compute predictions
for the shape of the matter power spectrum but are limited
to an underlying hypothesis. Recently, Ref. [18] provided
a method to predict the shape of the nonlinear matter
power spectrum for a wide range of models which was
subsequently implemented into a code called ReACT in
Ref. [19]. Using this framework it is possible to generate a
large dataset of mock matter power spectra for a broader
class of extensions to ACDM with varying values of the
model parameters.

Such tools enable one to extract information from a large
range of length scales, substantially improving the con-
straining power. MCMC analyses are frequently employed
to determine whether physics beyond ACDM is present
in cosmological data. To consistently constrain beyond
ACDM physics in such analyses, one must choose a finite
set of parameters quantifying the new physics. It turns out
that the number of parameters needed to do this including
nonlinear scales while remaining agnostic to the underlying
fundamental physics is immense (see Ref. [20] for exam-
ple), making such an analysis currently unfeasible.
Consequently, current analyses either restrict themselves
to the linear regime of structure formation or perform a
model-by-model analysis. It is worth noting that even if
computational expense was not an issue, the simple
inclusion of such a large additional parameter space would
strongly penalize the extended modeling on the basis of the
Bayesian evidence. It is therefore of interest to examine
alternative approaches which do not rely on picking an
effective set of parameters and are less computationally
expensive.

With the ability to produce a large dataset consisting of
power spectra for a variety of models, it is natural to
consider the capability of deep neural networks (DNNs)
to classify power spectra according to their underlying
cosmological model. However, the prediction given by a
trained DNN can be subject to several sources of uncer-
tainty. Adding a slight perturbation to the input, passing the
input to a network with a different architecture or training
on a separate subset of the training set could all drastically
alter the result [21-23]. Taking these issues into account is
therefore crucial to obtaining statistically robust predictions
with neural networks. Quantifying the potential variability
of the prediction, and in turn the confidence, is extremely
difficult with DNNS.

Bayesian neural networks (BNNs) try to model the
uncertainty by replacing each weight in the network by
a distribution initialized to a prior [23-28]. Rather than
obtaining the same pointlike output for an example with
every pass through the network, the BNN’s prediction

varies as each pass draws a different sample from the
weight distribution. By repeatedly passing an example to
the BNN, one obtains a distribution of predictions con-
ditioned on the training data, the network architecture, and
the noise in the data along with other potentially unknown
sources of uncertainty. A quantitative estimate of the
classification uncertainty can be obtained in minutes once
the BNN has been trained. As an additional advantage,
BNNs naturally provide a regularization procedure for
preventing overfitting [29]. BNNs have recently been
applied in many fields such as gravitational waves [30-32],
the cosmic microwave background [33,34], autonomous
driving [35], cellular image classification [36] and the
detection and classification of supernovae [37,38].

In this paper we explore the potential of BNNs to classify
non-ACDM models from the matter power spectrum.
In particular, BNNs can be trained on as many deviations
from ACDM as can be implemented in numerical codes
such as ReACT. Even if none of these theories turn out to
be the correct model, they are all representative of possible
sources of new physics. We will therefore investigate
whether BNNs can identify general deviations from con-
cordance cosmology based on the observational features of
known models.

The goal is, at the very least, to develop a promising tool
to inform standard and more rigorous MCMC analyses by
providing a refinement of the theoretical parameter space
that needs to be explored. On the other hand, the possibility
of constructing a well-defined probability distribution
which accounts for all sources of uncertainty in the
prediction from a BNN is an open research question
[39-48]. Should this become possible, this method could
be promoted to a statistical tool competitive to MCMC.
Regardless of this possibility, DNNs can simply be used as
a tool to compress the information from the power spectrum
in a small set of numbers, that can be in turn combined with
other machine-learning (ML)-based methods in rigorous
statistical frameworks (such as approximate Bayesian
computation [49] or likelihood-free inference [50]) to
perform model selection in a fully ML-based fashion. In
any case, it it worthwhile to assess their potential, and this
work is a first step in this direction.

In Fig. 1 we show a schematic representation of the
method. Using ReACT to generate a training set of thousands
of example matter power spectra for both ACDM and
selected extensions, we train two BNNs to classify the
spectra according to the underlying model. A five-label
BNN is trained to classify an example spectrum as either
ACDM or one of four chosen extensions, while a two-label
network is trained simply to classify between ACDM and
non-ACDM. Following the introduction of a novel method
to construct a well-defined probability distribution from the
output of a BNN in order to take into account the effect of
the uncertainty in the final classification (thus preventing
the network from being overconfident), we evaluate the
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FIG. 1. Representation of the work flow presented in the paper
to study the presence of deviations from ACDM in the matter
power spectrum. The key elements of the method, namely the use
of a Bayesian neural network and a novel way to quantify the
confidence, are colored in red.

performance of each network on the training, validation
and test sets.

In addition, we determine the minimal deviation in the
model parameters for each chosen non-ACDM model such
that the five-label BNN classifies them as non-ACDM with
some specified probability before passing the same spectra
through the two-label BNN to compare their performance.
After studying how effective each BNN is at recognizing
spectra which do not belong to any class in the training set,
we compare their predicted classification probabilities
averaged over noise realizations for different values of
the model parameters. Finally, we examine the potential
benefits of training specialist networks on selected subsets
of the original classes in the training set. While we only
consider three well-studied dark energy and modified
gravity models in this work, this method can be extended
to general extensions to ACDM such as massive neutrinos
and Horndeski scalar-tensor theory as long as rapid and
accurate predictions for the shape of the matter power
spectrum can be computed. The effect of neutrino masses
and baryonic feedback can now be taken into account and
will be the subject of future work, given that it has been
recently implemented in ReACT [51].

This paper is laid out as follows. Section II presents a
concise theoretical background to both DNNs and BNNs.
Section III then describes the generation and preparation of
the training, validation and test data before they can be
passed to the BNN, followed by a discussion of the BNN’s

architecture. Section IV discusses the overall performance
of each BNN. We determine the values of the model
parameters in each non-ACDM model such that the five-
and two-label BNNs are confident that a spectrum deviates
from ACDM. After analyzing how sensitive each classi-
fication was to the noise in the power spectrum we also
discuss the notion of specialist networks. Section VI lays
out potential avenues that should be explored in future
studies before we conclude in Sec. VIL.

II. BAYESIAN NEURAL NETWORKS

Neural networks are becoming ever more widely
employed in physics. The interested reader can find a
review of the core concepts surrounding the use of neural
networks in supervised classification problems in
Appendix A, to which we refer for the basic concepts
used in the rest of the paper. For a thorough treatment see
Refs. [52-54]. In this section we discuss the aspects of
BNNs relevant to this work, in particular the quantification
of the classification uncertainty.

A. Uncertainty in BNN classifiers

Two principal sources of uncertainty can be identified in
the prediction given by a trained network for a new
example, namely aleatoric and epistemic uncertainty
[55]. The former encompasses any intrinsic, nonreducible,
uncertainty due to the stochasticity of the observations,
while the latter describes uncertainty in the model. High
epistemic uncertainty quantifies limitations in modeling
accuracy and could be reduced by, for example, choosing a
more appropriate model architecture, adjusting the hyper-
parameters, or training with more data.

Differently from traditional NNs, BNNs can give an
estimate of both sources of uncertainty. Technical details,
including a discussion on the difference with traditional
NNs, are given in Appendix B. The key concept is the
replacement of the networks’ weights w with distributions,
so that an approximate posterior distribution of the weights,
gp(w), can be learned by variational inference, instead of
learning a single value for each weight as in traditional
NNs. This means that after training the learned distribution
can be used to obtain predictions marginalized over the
weights, rather than pointlike prediction. This in turn
allows one to take into account potential variability in
the network’s output and the relative uncertainty as we will
now show.

In the case of a classification problem with N classes, the
final layer of the network outputs an N-dimensional vector
with components that sum to one and can therefore be
interpreted as probabilities. We denote these components
by p(y! = 1|1X*,w,D) (i € {1,...,N}) for a new example
with features X* and one-hot encoded label y*, for a given
realization of the weights w and conditioned on the training
data D. Marginalization over the weights can be obtained

023531-3



MANCARELLA, KENNEDY, BOSE, and LOMBRISER

PHYS. REV. D 105, 023531 (2022)

via Monte Carlo sampling from g,(w), giving for each
component of the one-hot encoded label vector

1 Js
= p(y* = 1|X*. D) ~— ,
ui=p(yr = 11x*.D) NS;pa

Pa=p0; =1X*we. D). wa~qo(w|D). (1)
where Ng is the number of samples and throughout
this paper we use Greek indices to denote MC samples
and Latin indices to denote vector components.
Equation (1) is the Monte Carlo approximation of the
exact expression in Eq. (B7). A prediction for the label
for a new example with features X* is obtained by
assigning the label to the maximum output probability
Yhed = argmaxyy; (i =1...N), if this exceeds a chosen
threshold probability py,.

Defining p to be the vector with components yu; from
Eq. (1), the full covariance of the classification is given
by [56]

2‘19 = [E% [Covp(yi'il |X*w,D) (y* )]
+ Covg, UEP()’,"ZI |X*,w,D) )]

1 Ny 1 Ny
= (diag(p,) = p$*) +— > (Pa—1)*®
N, ; (diag(p,) ) Ny 2 )
= diag(p) — u®*, (2)

where the first line follows from the definition of the
covariance and the second from the use of Eq. (1) with the
following property of a multinomial distribution (which is
used as the likelihood of the optimisation problem as
customary in classification tasks; see Appendix B):
Epir=1x-wp) (V") = p(yf = 1|X*, w, D). This shows that
the covariance is simply the standard multinomial covari-
ance over the distribution of MC averages u. The second
term in the sum is the standard mean-squared error coming
from the fact that the weights have a distribution gy(w|D);
hence, it corresponds to the epistemic uncertainty. The first
term encodes the contribution to the variance marginalizing
over gg(w|D), and as such it describes the aleatoric
uncertainty. In order not to yield overconfident estimates
of whether a given power spectrum is classified as ACDM
or not it is important to accommodate both sources of
uncertainty into the analysis. When training on data coming
from real-world observations, one has no means to reduce
the aleatoric uncertainty (this is why this is sometimes
referred to as “uncertainty in the data”). In this paper we
train a network on simulated noisy data, as described in
Sec. IIT A. In principle, the knowledge of the model from
which the noise is drawn could be incorporated in the loss.
Here we rather make the choice of treating noise as an
effective aleatoric uncertainty and including its effect in the
classification uncertainty. Of course, a dependence on the

noise model will be inherited during training. We note
however that any data analysis tool relies on a model of
the noise.

In order to compute the uncertainty, it must be kept in
mind that despite y; being a probability by construction, it
still does not represent an inferred “true probability” for the
resultant classification as occurs in a likelihood or MCMC
analysis. The quantity y; should rather be interpreted as a
parameter in itself used to classify a given spectrum if the
magnitude exceeds the chosen threshold probability py,.
Constructing a confidence in the classification at test time
requires a joint distribution on g, to compute the subvolume
where y; > py,. We shall detail in the following subsection
how we utilize the uncertainty in Eq. (2) to estimate the
confidence in a particular classification. We stress here that
while it is tempting to view BNNs as being able to provide
a clear and statistically rigorous definition of probability in
the classification, we should keep in mind that the model
of the error is still subject to approximations, such as the
variational approach described in this section and the
choice of the parametric distribution gy(w). For these
reasons, it is also important to point out that the use of
the definition “Bayesian” neural networks in the formu-
lation used in this work comes from the machine-learning
literature, and the estimated classification probabilities
should not be confused with the result of a truly
Bayesian model selection as resulting, for example, from
the computation of Bayesian evidences with a nested
sampling algorithm. Rather, at the current state of the art
BNNs should be viewed as tools that at least enable one to
introduce a model of the uncertainty, preventing overly
optimistic interpretations of the results as well as providing
an effective regularization procedure.

B. Quantifying the classification confidence

Currently there is no well-established method of quanti-
fying the confidence in a prediction from a BNN. In
general, obtaining a classification confidence requires the
definition of a probability distribution over the softmax
output of the network. One possibility is the Dirichlet
distribution which is both analytic and possesses a natural
interpretation as a distribution over probabilities being
defined on the N-simplex. Possible approaches include
mapping the variance of the presoftmax network output to
Dirichlet parameters [48], directly including a Dirichlet
distribution in the loss function definition [46], or training
“prior networks” that directly output the parameters of the
Dirichlet distribution [57]. Another approach is to empiri-
cally define a “confidence score” using y and the covari-
ance in Eq. (2) [31,36].

In this work we introduce a novel approach which also
directly utilizes the covariance in Eq. (2). We consider a
random variable x € RV distributed as a multivariate
Gaussian truncated to lie between 0 and 1 with mean u

and covariance X, and compute the volume where
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x; > pyn Yi=1...N to obtain the confidence. In practice,
the definition of such a distribution is complicated by the
fact that the components x; are not independent as both they
and the means y; must sum to one. This interdependency of
the components x; implies one cannot define a multivariate
Gaussian directly with the covariance Eq. (2). The full
derivation of the resulting probability distribution we
denote as F(x;u,Z,,) is outlined in Appendix C with
the final result being

F(xuZ,) :5(1 —]z:xj) x VN

N-1
< [ M8~ (=) 0.1B7'5,B],). ()

ii
i=1

where B is the matrix which diagonalizes %, and N
denotes a Gaussian truncated between 0 and 1. The
Dirac delta function enforces the constraint that the
components must sum to one with the remaining terms
being the product of N —1 one-dimensional Gaussians
each with a variance given by the non-null eigenvalues
of X, . By using the threshold probability py, and margin-
alizing over the remaining labels, the probability an
example is assigned the label I can then be defined as

1 1 —
P]E/ dx,/ dxy...dx;..dxyF(x;u.Z,,),  (4)
P 0

where dx; denotes that the integration on the Ith variable is
omitted. In practice, to compute the integrals in Eq. (4) we
sample Eq. (3) as outlined in Appendix C and determine the
fraction of samples which satisfy x; > py,. If no compo-
nents of a sample exceed py,, then it is not assigned a label
and the total fraction of such samples gives the probability
the example is unclassifiable.

The probability P; encodes an estimate of the uncertainty
in the classification and can be used to construct a
first approximation of the confidence in the following
manner. Denoting P,,(76) to be the usual volume of a
Gaussian distribution in the interval centered on a mean
value with width n x ¢ we define there to be a no detection
of a deviation from ACDM if Pycpy = 1 = Pgyss(n0).
For example, a 20 detection corresponds to Pacpym =
1 = Pgyss(26) = 1 —0.9545 = 0.0455. Moreover, if an
example is classified with the label 7 at less than lo
confidence such that P; < 0.68, we shall not consider this
adetection even if y; > py,. Note that 1 — P cpy represents
the probability of an example not being ACDM, including
the probability of the example being unclassifiable. It there-
fore does not strictly represent the probability of a non-
ACDM detection but also includes the probability that the
BNN is not able to determine which class from the training
set the example belongs to.

III. TRAINING THE NETWORK

In this section we discuss the procedure of preparing
the training, validation and test data, designing the
network architecture and the subsequent hyperparameter
optimization.

A. Generating and preparing matter power spectra

We consider three well-studied modifications to ACDM:
the f(R) gravity model described in Ref. [58], the Dvali-
Gabadadze-Porrati (DGP) brane-world model of Ref. [59]
and an evolving dark energy model as parametrized in
Refs. [60,61] (wCDM). We compute dark matter power
spectra for these theories utilizing the recently developed
code ReACT [19] which calculates modified power spectra
using the halo-model reaction method developed in
Ref. [18]. We sample the parameter space defining each
model and pass the values to ReACT, which generates power
spectra in four redshift bins z € {1.5,0.785,0.478,0.1}
and one hundred & bins in the range 0.01 < k < 2.5 h/Mpc
at equal intervals in log space, according to that expected
from a Euclid-like survey [10,62]. Details about the choices
of the parameter space, redshift and k ranges are given in
Appendix D.

In addition to the aforementioned well-studied exten-
sions to ACDM we also include an additional class to
represent potential “unknown” models. Such models would
imprint various signatures in the power spectrum that
would be correlated in both space and time. Since a priori
we have no way of knowing what these signals are, we
produce a dataset of filters with randomly generated
features correlated in k£ and z before applying these to
randomly selected spectra from the set of ACDM, wCDM,
f(R) and DGP model spectra. We describe the method to
generate this dataset in Appendix E.

For each of the five models considered, ACDM, wCDM,
f(R), DGP and random, we use 18 475 examples resulting
in a total training dataset size of 92 375 examples. Every
example is a matrix of dimension 100 x 4 with each entry
given by the value of the power spectrum in the particular k
and z bin. Of the 92375 generated power spectra we set
aside 15% for the validation set with the remainder used in
training the BNN. Furthermore we generate a test set
composed of 2500 examples per class. Gaussian noise is
then added to each spectrum in accordance to what one
would expect from a Euclid-like survey [17,62—-64]:

Ar? 1 \2 )
o,(k) = \/Wl/(z) X (P(k) +%> + o055 ()

The redshift-dependent survey volume V(z) and the shot
noise 71(z) are presented in Table II. In addition, a constant
systematic error of o2, =25 Mpc®/h® is included to
represent potential modeling inaccuracies. This value of
O,ys 18 chosen such that we are able to recover the fiducial
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TABLE I. Mean model parameter values (u#) and standard deviations (o) used in ReACT for generating ACDM,
wCDM, f(R) and DGP matter power spectra for the training, validation and test data.

ACDM Extensions
Parameter H, ng Q.. Q, o3(z=0) wo w, | £ rol Q.
Mean () 67.3 0.966 0.316 0.0494 0.766 -1 0 0 0
Variance (o) 0.4 0.007 0.009 0.032 0.004 0.097 0.32 10752 0.173

TABLE 1II. Chosen redshift bins, cosmological volume and
number density parameters used to construct the Gaussian errors
for each redshift bin in Eq. (5).

z 0.1 0478 0.783 15
V(z) [Gpc3/h?] 0283 334 6.27 10.43
ii(z) [A*/Mpc’]  0.0013  0.0010 83 x 10~ 3.6x 10~

Planck parameters with 26 confidence when performing an
MCMC analysis using the nonlinear halofit Planck spec-
trum as our data vector and Eq. (5) as our errors, with a y?
likelihood. We leave a thorough analysis of how much this
choice affects the results to future work.

For each of the original set of 92375 examples we
generate ten spectra each with a different realization of
the Gaussian noise, ensuring that on top of recognizing
deviations from particular models, the network is more
robust to different noise realizations for the same model. In
total, the number of training and validation examples is
given by 923 750.

Finally, to ensure the data passed to the BNN are of
comparable orders of magnitude across all scales and
redshift bins we normalize each training example to a
reference ACDM power spectrum with a cosmology given
by the mean values in Table I.

Example f(R) spectra with fry = 8.34 x 10~°

gﬁ’ﬁ*"f’“i“'-"z..i\

o \

P(k) 103

10% Theoretical: z=0.1
—— Theoretical : z=1.5
t  P.(k): Theoretical + Gaussian noise: z=0.1

10! +  P.(k): Theoretical + Gaussiannoise: z= 1.5 ‘I‘

102 101 100
k [hMpc~]

In Fig. 2 we display the process of how spectra generated
with ReACT are transformed before being passed to the
BNN, including the addition of Gaussian noise followed by
normalization by a fiducial Planck spectrum. Therefore the
network is trained to detect deviations from ACDM for
different noise realizations and choice of standard cosmo-
logical parameters.

B. Training and optimization

In this work we are concerned with the capability BNNs
possess in tackling two questions. The first is how effective
BNNs can be in recognizing the distinct features in the
power spectrum for a particular modification to ACDM,
such as f(R) or DGP. The second is the ability of BNNs to
detect a deviation from ACDM in the power spectrum
irrespective of the particular modification. In practice, we
train two BNNSs with the same architecture, the first for five
labels divided between ACDM and the four extensions and
the second trained to distinguish between the two labels
ACDM and non-ACDM. Due to the fact that there are only
four redshift bins it is beneficial to treat the data as four
separate time series and use one-dimensional convolutional
layers. Treated this way, the spectra are passed to the
network with dimension 100 x 1 x 4, or in analogy with
image classification tasks, as 100 x 1 pixel images with
four channels. The architecture of the network used to train

Input to BNN for an f( R) example with fry = 8.34 x 108

0.4
0.3
0.2
0.1

0.0+ H.r s

(k)/ Py (k) =1

$ -0.1

P,

-0.2

-0.3

102 10! 100
k [hMpc ™!

FIG. 2. Left: a pair of example f(R) spectra with fro = 8.34 x 1073 at redshifts z = 1.5 and z = 0.1 generated using ReACT with the
additional Gaussian noise. Note that at low redshift cosmic variance dominates at low k and at high redshift the shot noise dominates at
high k. Right: After normalizing the noisy spectrum P, (k) by a fiducial Planck spectrum P, (k) and centering around zero the spectra
are ready to be passed to the BNN. Due to this normalization choice the BNN is trained to detect deviations from this fiducial Planck
spectrum. Note that in practice all four redshift bins are passed to the BNN. Despite the presence of such a small modification, the five-
label BNN classifies this spectrum as ACDM with only 5% confidence, favoring the presence of a modification (see Fig. 7).
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Input Shape = (100,1,4)

ConvlD Flipout (8)

Depiction of the BNN architecture employed for both the five-label and two-label classification tasks. The height of each block

illustrates the dimension size for each layer, while the number of blocks per layer corresponds to the number of filters. Additionally the
dense blocks embedded in the first three transparent layers indicate the kernels for the first three one-dimensional convolutional layers

scaled by their respective size.

both the five-label and two-label networks is displayed in
Fig. 3. Initially the structure consists of three 1D convolu-
tional flip out layers with 8, 16 and 32 filters, kernel sizes of
10, 5 and 2 with strides of 2, 2 and 1, respectively. Each of
the first two 1D convolutional layers are followed by a max
pooling layer with a pool size of 2 and a pooling stride of
2 for the first max pooling layer and a pooling stride of 1 for
the second max pooling layer. After both of these max
pooling layers there is a batch normalization layer.
Following the final convolutional layer there is a global
average pooling layer to reduce the filter size to one in order

to pass it to a dense layer with 32 nodes. Finally, after a
further batch normalization there is a softmax layer con-
sisting of five or two neurons for either the five- or two-
label networks, respectively. The network’s architecture is
summarized in Table III. The five-label and two-label
networks consist of 6605 and 6410 trainable parameters,
respectively. We set the initial learning rate Iry to be 0.01
with a decay rate 0.95 such that with a training set size M
and at each epoch e the learning rate is

Ir(e) = Iry x 0.95(/M), (6)

TABLE III. Description of the network’s architecture.

Operation layer Number of filters Size Stride Output size Number of parameters
Input 100 x 1 x4
Convolution 1D flip out 8 10 2 46 x1x38 648
Max pooling 1D 2 2 23 x1x8
Batch normalization e . e 23x1x8 32
Convolution 1D flip out 16 2 10 x1x16 1296
Max pooling 1D 1 2 I9x1x16
Batch normalization e e e 9x1x16 64
Convolution 1D flip out 32 2 1 8x1x32 2080
Batch normalization e . 8x1x32 128
Global average pooling 32 e
Dense flip out 32 2080
Batch normalization 32 128
Dense flip out 5/2 325/130
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FIG. 4. Left: evolution of the training and validation accuracy for the five-label network. The accuracy on both datasets stabilizes at
~94.4% indicating that the five-label network is relatively robust. Right: evolution of the training and validation accuracy for a network
trained to classify spectra between ACDM or non-ACDM, reaching 95.3% accuracy for both datasets. Note that the accuracy for both
networks is evaluated with the output from a single pass through the BNN for all the training and validation spectra and it therefore

simply gives an estimate of the network’s performance.

The batch size was set to 500 x 5. Each batch is composed
of an equal number of power spectra for each of the labels
in the training data. During training, we adjust the training
set size by dropping a random subset of the data in order
to have an integer number of batches of the same size. In
Fig. 4 we show the evolution of the accuracy for a network
trained to classify between ACDM, wCDM, f(R), DGP
and random spectra (top panel) and a network trained to
distinguish simply between ACDM from non-ACDM
(bottom panel). In each classification task for both the
training and the validation sets the five-label network
asymptotes to an accuracy of 94.4% and the two-label
network asymptotes to a training accuracy of 95.3%. Bear
in mind that the accuracy is evaluated by passing examples
once through the BNN with a single draw from the weight
distribution and therefore only approximates the BNN’s
overall performance. Note also that despite the fact the
overall accuracy of the two-label network is slightly
greater, it does not necessarily imply that it is generally
better at detecting deviations from ACDM in the power
spectrum (see Sec. V).

IV. RESULTS

In this section we determine the ability of both the five-
and two-label networks to classify previously unseen
matter power spectra and perform tests to determine the
robustness of the method. In Sec. IV A we study the overall
performance of the network on the test set, followed by a
calibration check in Sec. IV B as well as test the robustness
of the five-label BNN against variations in the training set
(Sec. IV C). We then evaluate the performance on individ-
ual spectra in Sec. IV D, including a study of the impact of
noise on the classification in Sec. IV E and a comparison of
the two- and five-label networks in Sec. IV F. We examine
the ability of each network to recognize out-of-distribution
examples which were not included in the training set in
Sec. IV G before studying the constraints each network is
capable of placing on the model parameters in Sec. IV H.

We finally comment on the relevance for future experi-
ments in Sec. IV L.

A. Performance on the test set

Now that the network has been trained, the next step is to
evaluate its performance on the test set in order to
determine how capable it is in classifying previously
unseen examples. To this end, ten copies of every test
example are made with different noise realizations added to
the same underlying spectra. By computing the average of
the output after 500 MC samples using Eq. (1), each
example’s label is assigned to be the maximum y; as long as
it exceeds the threshold value pg, = 0.5. If no y; is greater
than the threshold, the example is assigned the label “not
classified” (N.C.). The resulting overall test accuracies are
94.9% and 95.8% for the five- and two-label networks,
respectively. As these results are comparable to the training
and validation accuracies in Fig. 4 the network can be
considered to be robust. In Fig. 5 we show the confusion
matrices for each network which provide information on
the percentage of examples from each class that are
classified accurately and, if not, what class they were
erroneously classified into. Theories that show a greater
degree of degeneracy in their effects on the matter power
spectrum are more likely to be classified incorrectly. For the
five-label network, the strongest degeneracy exists between
wCDM and ACDM, likely because the signatures of
wCDM occur at length scales where the noise can domi-
nate. Indeed, wCDM modifications appear at the level of
the cosmological background. In contrast, the other theo-
ries considered here can affect the higher-order perturba-
tions which leave a direct imprint on the power spectrum.
Following ACDM, wCDM also possesses a slight degen-
eracy with DGP. By contrast, only 1% of f(R) examples
were misclassified which correspond to spectra with small
values of fr, that are noise dominated. The high efficacy
the BNN has in detecting f(R) models warrants a more
detailed analysis which we discuss in Sec. V.
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FIG. 5.

The confusion matrices for the five-label network (left) and the two-label network (right) display the percentage of examples

per class that are assigned to each class by the network. A classification is obtained by assigning the label to be the maximum
multinomial mean y; as long as it exceeds the threshold py,. If no y; exceeds py,, the example is considered to be “not classified” (N.C.).

B. Calibration

Another important test is to ensure the probabilities
given by the network represent the likelihood for a
prediction to be correct. If this holds, the network is said
to be well calibrated. By definition, a model is perfectly
calibrated if the accuracy on all examples classified with
probability p is p x 100%. Ensuring that DNNs are well
calibrated is a key step in assessing their reliability [65-67].

In Fig. 6 we present reliability diagrams for both the two-
and five-label networks which are constructed as follows.
First, we divide predictions for y into bins. The number of
bins for each class, or component y;, is chosen such that
each bin contains at least 0.5% of the total number of
examples in the test set in order to avoid a large variance.
We then compute the accuracy in every bin for each class.
Let B; denote the set of bins for the ith class, n;,; the number

Calibration for the five-label network

of predictions in bin b for class i and acc(b, i) and j(b, i)
the corresponding accuracy and average probability for
each b and i, respectively. Shown in Fig. 6 are the reliability
diagrams displaying how acc(b, i) varies with fi(b,i) for
both the five-label network and the two-label network. For
the f(R) and random examples in the test set we find the
probability is always either very close to 1 or 0, resulting in
only two bins. By construction, the reliability diagram
would result in a straight line for a perfectly calibrated
network. We can quantify the deviation from perfect
calibration by computing the static calibration error
(SCE), defined as [67]

1 N Ay,
SCE = —ZZ "bi lace(b, i) — (b, i)|. (7)
N = 7= Nt

Calibration for the two-label network

1.0
—e— BNN, DGP
& BNN, f(R)
0.8/ —= BNN, ACDM
BNN, rand
> BNN, wCDM
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FIG. 6. The reliability diagrams for both the five-label (left) and the two-label (right) BNNs display the predictions of u for examples
in the test set divided into bins containing at least 0.5% of the total test examples plotting against the resultant test accuracy evaluated on
each bin. A perfectly calibrated network corresponds to the bisector with the deviation from “perfect calibration” measured by the SCE
defined in Eq. (7) also reported.
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where N, is the total number of test examples and N is the
number of labels. From their values displayed in Fig. 6
we find that both networks are well calibrated with an
SCE of 0.3%. Furthermore, we verified this value remains
stable under changes in the number of bins and never
exceeds <0.5%.

C. Robustness against variations in the training set

In this subsection we evaluate the impact of using the
confidence introduced in Sec. II B to detect extensions to
ACDM in the matter power spectrum and its usefulness in
taking into account uncertainty due to the presence of noise
in the training set. Recall that, even when marginalized over
the weights, the network’s output is still conditioned on the
training data [see Eq. (1)]. Despite the fact we include
multiple realizations of the noise for each clean spectrum to
ensure the BNN is more robust to variations in the training
set, there is no guarantee this eliminates significant fluc-
tuations in the result with slight variations in the training
set. However, if the resulting classification of a particular
example is highly dependent on the specific realization of
the noise during training, the associated uncertainty will be
large for a similar example at test time. As the covariance
matrix in Eq. (2) contains an estimate of the aleatoric
uncertainty, the classification confidence in Eq. (4) should
be lower for such noise-dependent examples.

To explore this issue we train a second five-label
network with an alternate partitioning of the data into
training and validation sets before evaluating the proba-
bility u for every example in the test set for both networks.
Note that the same realization of the noise was added to
each test example to ensure any variation in the result
cannot be accounted for by the variation in the noise at test
time. We find that for 243 test examples, or 2% of the
test set, each network gives different predictions. When
considering our estimated confidence, however, in 217 of
these cases, or 89% of the discrepancies, both networks
yield a classification confidence of < 1s. Of the remain-
ing 26 discrepancies, only three give inconsistent pre-
dictions and in 23 cases one of the two network
predictions has a confidence of < lo. Since each discrep-
ancy involves spectra with very small deviations from
ACDM, we generate an additional dataset of 200 example
spectra for each of the three extensions DGP, f(R) and
wCDM with narrower ranges for the model parameters in
the regime where each network may give different
predictions, namely fro€[3x1078,1x1077], Q,. €[0.002,
0.06], wy € [-1.025,-0.975] and w, € [-0.1,0.1]. In this
case, we find a discrepancy in 10% of the dataset but in all
these cases at least one network has a confidence of < 1e.
In 94% of these discrepant examples both networks yield
a classification confidence of < 1o while only in a single
case does one network incorrectly classify an example
with a confidence > 1o. This analysis suggests that the

confidence in Eq. (4) is a more realistic indicator of a
prediction’s reliability with respect to u.

D. Illustration on explicit examples

In this subsection we illustrate the new method to
compute the confidence, as introduced in Sec. IIB, on
explicit examples.

We choose three underlying noiseless spectra belonging
to the f(R), DGP and wCDM classes and add a fixed
realization of the noise to each of them, thus mimicking an
actual observational situation where the network is given
some noisy spectrum to classify. We choose the parameters
and the noise realization so that the probability of being
non-ACDM is around 95% for each example. We will
investigate the role of the noise and dependence on
the strength of the modifications more extensively in
Secs. IV E and IV H, respectively. Following the procedure
outlined in Sec. Il B, we compute y and X, with the five-
label network for each spectrum. These are used to
construct the distribution F using Eq. (3). This represents
the distribution of possible outcomes of the network, taking
into account the epistemic and aleatoric uncertainties.
Then, according to the algorithm described in
Appendix C to compute the probabilities in Eq. (4),
samples are drawn from F, each sample being a vector
of dimensions equal to the number of classes (5) with
values between 0 and 1, and where the dimensions
{0, ...,4} correspond, respectively, to the classes DGP,
f(R), ACDM, random, and wCDM. The fraction of
samples where the /th component (with 7 € {0, ...,4})
lies above py, = 0.5 is determined V I, which gives the
integral in Eq. (4). If a sample has no component above
pm = 0.5, it is considered as unclassified. The fraction of
samples for which this happens gives Pypclassificd-

In Fig. 7 we display the results. Samples from F are
shown in green.

The first spectrum we consider (top panel) is an f(R)
spectrum with fgo = 8.34 x 1078, We find it is correctly
classified as f(R) with a probability of 88%, with the
remaining probability falling into ACDM with 5% and
unclassified with 7%. This remains consistent with the
evaluation of the confusion matrix on the test set which
showed there were no f(R) spectra classified as DGP or
wCDM. In contrast, a DGP spectrum with Q. = 0.0072
(mid panel) is classified as DGP with only 54% probability
with 11% wCDM, 30% unclassified and 4% ACDM
showing the stronger degeneracy between DGP and
wCDM. Classifying wCDM spectra with small deviations
in wy and w, is particularly difficult for the BNN due to
their high degree of degeneracy with ACDM and the fact its
features appear in noise-dominated regions of the power
spectrum. In this case, a spectrum with a deviation of
(wg,w,) = (—1.03,-0.04) (lower panel) is classified as
wCDM with 78% probability, 17% unclassified and 4%
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FIG. 7. Examples of a wCDM, f(R) and DGP model which the BNN can correctly identify as non-ACDM at our chosen confidence
level. We compute p and X, as described in Sec. I B, use them to construct the probability 7 defined in Eq. (3), and then sample from
this distribution. The corresponding samples are shown in green. The probabilities denoted by P; (I = DGP, fr, ACDM, random,
wCDM) correspond to the fraction of samples where the /th component of the sample lies above 0.5, i.e., Eq. (4). If a sample has no

component above 0.5, it is considered as unclassified. The fraction of samples for which this happens gives Pypeiassified-

ACDM. These modifications represent the minimum devi-
ations from ACDM in each of our chosen extensions before
the modifications become noise dominated and the five-
label network determines the spectra to either be unclassi-
fiable or ACDM.

We then repeat the procedure for the same noisy spectra
with the two-label network. The result is shown in Fig. 8.
Note that in the case of two labels the probability of “not
classified” is always zero as it is not possible to have two
samples which are simultaneously above 0.5. We find that
for DGP and wCDM the two-label network classifies the
examples correctly with a higher probability than the five-
label network. However the f(R) spectrum is not correctly
classified with a high probability.

E. Dependence on the noise

It is important to emphasize the role noise plays in
determining the eventual classification probability for each
example in Fig. 7. In particular, it is possible that a different
draw from the Gaussian noise in Eq. (5) on top of the same

underlying clean spectrum could change the resulting
classification. In order to obtain a measure on how much
the noise affects the resulting classification for a given
underlying spectrum, we compute x4 and ¥, again starting
from the same underlying noiseless f(R), DGP, and wCDM
spectra used for Fig. 7, but this time we further average the
result over different noise realizations for each spectrum.

In Fig. 9 we display the distribution of outputs from the
five-label BNN varying the noise realization. We stress that,
differently from Fig. 7, the histograms in Fig. 9 do not
represent samples from the distribution F in Eq. (3) but are
different realizations of u; defined in Eq. (1) corresponding
to different noise realizations on top of a given clean
spectrum. This is an illustration of the potential variability
of the network’s output with noise.

From the p and %, obtained from averaging over the
noise we compute P;, which now becomes a noise-
averaged classification probability. The corresponding
values are shown in Fig. 9. This probability gives a measure
on how likely it is the network will pick up a deviation from
ACDM given the distribution of Gaussian noise in Eq. (5).
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FIG. 8. We display the distributions constructed from the output of the two-label network for the same spectra and Gaussian noise
which were passed to the five-label network in Fig. 7 in order to compare their relative performance in detecting deviations from ACDM
in marginal examples. Both the wCDM and DGP examples are classified as non-ACDM with a higher confidence than the five-label
network; however, the f(R) spectrum is not correctly classified at high confidence.

For example, the f(R) spectrum with fgy = 8.34 x 1078
possesses an average detection probability of ~72%. In
contrast, the DGP and wCDM examples both have noise-
averaged detection probabilities of less than 50%. This
implies that, even though the BNN classified each indi-
vidual example correctly in Fig. 7, for our chosen model
parameter values a correct classification was more likely to
occur for the f(R) example than for the DGP and wCDM
examples given another realization of Gaussian noise. Note
that this noise-averaged detection probability can be
considered to be an invariant measure of the network’s
performance in classifying spectra with particular values of
the model parameters.

F. Performance of five- and two-label BNNs

To compare the performance of the two-label and five-
label networks more robustly, we compute the ACDM
classification probability on the test set in each network, as
well as compare the Py, rcpm from the two-label network
with 1 — P,cpym of the five-label network. We find that in
~98% of the cases where the example is correctly predicted
as non-ACDM, the five-label network can correctly classify
spectra at a higher confidence than the two-label network.
This is likely a result of the fact that the five-label network,

possessing more final classes, can tune its layers to pinpoint
specific features of each subclass, resulting in a higher
confidence. By contrast, the two-label network needs to
compress the information from any deviation into a single
class, which can result in lower confidence due to con-
tamination from the classes that are more difficult to
distinguish from ACDM.

Of the 2% of spectra where the two-label network was
more confident, the probability in the five-label network
was either split principally between two non-ACDM
classes, not classified, or belonged to wCDM. This indi-
cates that the two-label network may classify non-ACDM
spectra which do not belong to any of the classes in the
training set more confidently. Such spectra are more evenly
split by the five-label network between separate classes or
classified as random (see Sec. IV G). However, further
investigation is required to determine the necessary con-
ditions for the two-label network to outperform the five-
label network and vice versa.

G. Classification of out-of-distribution examples

To investigate how each BNN classifies examples that
do not belong to either the training, validation, or test
distributions, known as out-of-distribution examples, in this
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FIG.9. Taking the same clean wCDM, f(R) and DGP spectra as were passed through the network in Fig. 7, we now pass them through
the network 1000 times with each pass drawing a new sample from the weight distribution and with a new realization of Gaussian noise
added to the clean spectra. The resulting distributions therefore give a measure on how the network’s output varies when marginalizing

over the observational noise and the weights.

section we examine how each BNN classifies spectra
generated both from the growth-index parameter y [68—70]
and from a painting by Gregory Horndeski.

The growth index is a frequently used phenomenological
parametrization designed to pick up deviations in the
growth rate of structure from its ACDM value of 0.55
arising from extensions to ACDM. The parametrization is
defined by D'(a) = Q,,(a)’, where D(a) is the linear
density perturbation growth factor, Q,, is the cosmological
total matter density fraction and the prime denotes a
logarithmic scale factor derivative. To generate nonlinear
spectra with varying values of y we first modify the linear
power spectrum by applying the following parametrized
growth factor:

Dy = [ [t e ®

where a is the scale factor, H(a) is the ACDM Hubble rate
and a; = 0.0001 is the initial scale factor. The modified
linear spectrum is then simply P, (k,y;a) = D(y; a)*Py(k),
where P (k) is the primordial power spectrum. The modified
nonlinear spectrum is produced by supplying the modified
linear spectrum to the same halofit formula [13] used in
producing the training data.

We find that, while a spectrum generated with a growth
index of y = 0.55 is correctly classified as ACDM, the
associated confidence lies between 1o and 2o reflecting the
fact that this parametrization is only an approximation of
ACDM. Passing spectra generated with y = 0.54 or y =
0.56 to the five-label BNN shifts the ACDM classification
probability to below 0.5. In Fig. 10 we display the sampled
classification probabilities and the multinomial mean for
each class for a spectrum generated with y = 0.52. With the
classification probability of ACDM being ~5%, this value
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If an example spectrum generated with a growth-rate parameter of y = 0.52 with a fixed noise realization is passed through

the five-label (top) BNN, this estimates this spectrum is not ACDM at the 2¢ confidence level. However, the remaining probability is
distributed between the other labels with no overall favored class, highlighting the utility BNNs possess in determining a spectrum does
not belong to any of the classes in the training set. If the same spectrum with the same noise realization is passed to the two-label network
(bottom), it is classified as non-ACDM with a higher confidence than the five-label network.

of y represents the smallest deviation from 0.55 such that
the network can confidently classify the spectrum as not
being ACDM. Nonetheless, as no probability exceeds 0.5,
no class is favored.

This ability to determine that a spectrum does not belong
to the training set distribution demonstrates a unique
capability of BNNs. Note also that the failure of the
five-label BNN to classify a spectrum generated from
the growth index as either wCDM, DGP, or f(R) further
highlights the limitations of the growth-index parametriza-
tion. Taking the same spectrum with y = 0.52 with the
same noise and passing it through the two-label network,
we find that it is classified as non-ACDM with a higher
confidence than the five-label network. Although this
suggests the two-label network is better suited to placing
constraints on the growth index, given the five-label net-
work did not confidently classify the spectrum into any of
the five labels, it is an open question how useful such
constraints would be in constraining more physically
motivated models. As a further test that the five-label
network can identify spectra that do not belong to any
known class of physical models, we pass the painting
Blustery mountain road on an autumn day by Gregory
Horndeski (see Fig. 11) to the BNN. Firstly, we convert it
into a gray-scale image with 100 x 4 pixels. This then acts
as a similar filter to those constructed in Appendix E which
we then apply to the fiducial Planck spectrum before finally
adding Gaussian noise [see Eq. (E1)]. The resulting matrix
is then equivalent to a normalized input for the network.

These deviations are large enough such that the network
can accurately determine that the painting is not a ACDM
power spectrum. However, it is also not “not classified.”
Rather, it is classified into the random class with 100%
probability, indicating that the random class is capable of
picking up examples that contain deviations which are not
comparable to any model included in the training set.

H. Dependence on the strength of the modification

We have seen in Sec. IV E that a more reliable estimator
of a BNN’s ability to classify a non-ACDM spectrum with a
particular modification strength is to pass the spectrum
through the BNN multiple times with different realizations
of the noise. The resultant probability distribution quanti-
fies not only whether a detection is possible, but also how
probable it is the noise will alter the classification. In this
section we repeat this procedure for multiple f(R), DGP
and wCDM power spectra in the parameter range defined
by the region where the five-label network transitions from
classifying spectra as non-ACDM at low confidence to high
confidence. Specifically, we build a batch of power spectra
composed of different noise realizations on top of the same
underlying spectrum and predict the average classification
likelihood p marginalized over the weights for all the
elements in the batch. By further averaging the result over
the batch, we obtain a noise-averaged classification like-
lihood for every example. Using this to construct the
probability distribution in Eq. (3), we then compute the
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FIG. 11.

If an example that does not belong to any of the pretrained classes is passed to the BNN, in this case the painting Blustery

mountain road on an autumn day by Gregory Horndeski (top), we find that both the five-label and two-label network classifies it as non-
ACDM with a confidence > 2¢. In addition, the five-label BNN classifies it as random with extremely high confidence. To pass the
painting to the BNN, the pixels were rebinned into a 100 x 4 pixels gray-scale image which was multiplied by the fiducial Planck
spectrum. Gaussian noise was then added and the resulting noisy spectra were normalized to the Planck spectrum at each redshift bin
(bottom). The final normalized spectrum has significant deviations from zero, consistent with the fact that the painting imprints large

random deviations from the ACDM spectrum.

corresponding average classification probability that the
spectrum belongs to its true class and the average prob-
ability it is non-ACDM, defined as 1 — P cpy for both the
five- and two-label networks. This process is then repeated
for spectra with different modification strengths.

In order to obtain an estimate on how much the noise can
shift the classification for particular values of the model
parameters, we also construct a confidence band around the
average classification probability as follows. First, we
remove the noise realizations such that any of the compo-
nents of its predicted y fall below the corresponding fifth or
above the corresponding 95th percentile of the batch. For
each network the upper bound is then obtained by selecting
the noise realization among those remaining such that the
probability y; [with i being f(R), DGP or wCDM for the
five-label network and non-ACDM for the two-label net-
work] is maximized. The minimum bound is obtained by
taking the noise realization that maximizes the difference
Uacpm — Hi- While for the two-label network this is
equivalent to minimizing p,,,_acpm. 1N the case of the
five-label network it ensures that the lower bound is the
minimum of both P; and P,,,_acpMm- This would not be
guaranteed by only taking the noise realization that
minimizes y;, due to the fact that we allow for an
unclassified probability.

In Figs. 12 and 13 we present the results for f(R), DGP
and wCDM. One can see that in the case of f(R) gravity the
five-label network’s non-ACDM classification probability
is more capable of recognizing small deviations in fgg,
on average classifying spectra as non-ACDM when
fro > 8 x 1078, The same network becomes more con-
fident that a spectrum specifically belongs to f(R) for
fro > 1x 1077, Conversely, the two-label network’s abil-
ity to confidently classify spectra as non-ACDM remains
highly sensitive to the noise up to fgy > 1.4 x 107",

In the case of DGP, while the five-label network’s non-
ACDM classification probability again provides the most
reliable predictions, the two-label network’s ability to
classify spectra as non-ACDM outperforms the five-label
network’s ability to classify the spectra as DGP. For values
of Q. > 0.016 both networks definitively determine all
spectra are not ACDM independently of the noise.

Turning our attention to each network’s ability to detect
evolving dark energy, we show in Fig. 13 the noise-
averaged classification probabilities for a range of
wCDM power spectra. In each case we vary either w, or
w, fixing the nonvarying parameter to their ACDM fiducial
values of (wy,w,) = (—1,0). Again we find that for both
wCDM parameters the five-label non-ACDM classification
probability is the most reliable indicator of a deviation from
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FIG. 12. Noise-averaged non-ACDM classification probabilities and associated confidence bands for f(R) (top) and DGP (bottom)
spectra for the five- and two-label networks as a function of fg and €,.. The five-label classification probabilities P gy and Ppgp are
also shown. One can see that the average non-ACDM classification probability for the five-label network provides the most robust
indicator of the presence of a modification, confidently classifying spectra as non-ACDM for fgo,~9 x 1078 and Q. ~ 0.008

independently of the noise for f(R) and DGP, respectively.
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Noise-averaged non-ACDM and wCDM classification probabilities for deviations of wy (top) and w, (bottom) around their

fiducial values. On average, the five-label network is better at detecting deviations from ACDM in each case. However the performance
of each network remains highly sensitive to the noise in the ranges —1.07 < wy < —0.94 and —0.25 <w, < 0.25.

ACDM. Despite both networks on average classifying
wCDM as non-ACDM for deviations of Awg ~ 0.05 and
Aw, ~ 0.2, the five-label network is less sensitive to the
noise. We leave a detailed analysis of how the degeneracies
between w, and w, affect the noise-averaged classification
probability to future work.

Having completed these tests for models belonging to
the training set, we repeat the procedure for spectra
generated with varying values of the growth index y as
outlined in Sec. IV G.

In Fig. 14 we show the noise-averaged classification
probability for deviations around the ACDM fiducial value
of y = 0.55. Due to the absence of a specific label for y, in
this case the lower and upper bounds for the confidence
bands are constructed by selecting the noise realizations
that maximize and minimize pcpy, respectively. Although
it appears that the two-label network can pick up smaller
deviations than the five-label network for y > 0.55, in this
case it is because the five-label network recognizes the
spectrum does not belong to the models in the training set

1.0

0.8

0.6

0.4

Pion - AcDM

0.2 — Five-label network
————— Two-label network

0.0
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FIG. 14. Noise-averaged five-label and two-label classification
probability for spectra generated using the growth index y. For
values of y > 0.6 the two-label network classifies the spectrum as
non-ACDM with a much higher confidence than the five-label
network. However, we attribute this to the fact that the five-label
network is better able to determine that this spectrum is an out-of-
distribution example.
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TABLE IV. Values of the minimum deviation in each of the model parameters such that both the five-label and
two-label networks classify a spectrum as non-ACDM at 95% confidence when averaged over Gaussian noise
realizations. In the case of wCDM, these bounds are obtained by fixing either wy or w, to their fiducial value and
allowing the other to vary. We refer the reader to Figs. 12—14 for estimates of the variance in the classification
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probability for each of these values.

Extensions
Parameter wo w, fro Q. y
Five-label (—1.05,-0.95) (—0.20,0.17) 8 x 1078 0.007 (0.52, 0.63)
Two-label (-1.05,-0.95) (-=0.20,0.19) 1077 0.008 (0.51, 0.59)

and thus assigns a lower classification probability. For
values of y < 0.55 the spectra are more degenerate with
DGP which may help each network recognize the spectrum
as non-ACDM. Even in this instance, however, the prob-
ability is split between DGP and other non-ACDM labels as
in Fig. 10. Note that the bounds on the growth index y were
obtained from a network which was not trained on spectra
generated from y. One would therefore expect these bounds
to improve if such spectra were included in the training set.

I. Impact on future experiments

In Table IV we summarize the values of the minimum
magnitude of each model parameter for every ACDM
extension such that the noise-averaged non-ACDM clas-
sification probability is approximately 95% for both the
five-label and the two-label networks. The uncertainty
estimated in our approach to the BNN output is of similar
order of magnitude of stage IV astronomical survey fore-
casts, despite the two methods not being directly compa-
rable, nor do we use the observational probes of upcoming
surveys, e.g., weak lensing and galaxy clustering. We note
the 1o cosmic shear forecasts of Ref. [19] were fro <
10772 and Q.. < 0.08 which assumes an LSST-like survey
and a multipole scale cut of £, = 1500. The official
Euclid Fisher forecast of Ref. [62] gives wy=
—1+0.097(0.077) and w, = 0 & 0.32(0.24), which com-
bines both galaxy clustering and weak lensing probes and
pessimistic (optimistic) scale cuts. The 2o constraints
estimated for Euclid on y are y = 0.55 4+ 0.036(0.026)
for the pessimistic (optimistic) analyses of Ref. [62] for
WL + GC,. This means that the method outlined here is
able to pinpoint deviations from ACDM down to a level
relevant for Euclid.

V. TRAINING SPECIALIST NETWORKS

Given the promising performance of the five-label net-
work in detecting deviations in f(R) models down to
fro~O(107%), in this section we discuss the potential
gains that could be achieved by training additional net-
works on subsets of the original five classes in the training
set. Heuristically this follows the philosophy of an MCMC
analysis in that in order to constrain a specific model it is

beneficial to choose the most appropriate set of model
parameters in the MCMC. In the case of BNNS, if one is
only interested in constraining a single model beyond
ACDM, then in order to maximize the performance of
the BNN it is beneficial to only train the network on this
model alongside ACDM. Such a network would be
“specialized” to pick up any deviation from the particular
source of new physics one is interested in, at the expense of
losing information on potential degeneracies between
different models when trained on multiple theories. In this
subsection we discuss one such specialist network trained
on 18475 f(R) and 18 475 ACDM power spectra, each of
which is passed to the network during the training and
validation process with ten different realizations of the
noise for a total training and validation set of 369 500
power spectra. We use the architecture displayed in Fig. 3
where the final layer is now a binary classifier for the two
new labels f(R) and ACDM, finding that the training and
validation accuracies reach approximately 99.5%, exceed-
ing that of the five-label network. We now study how
capable this specialist network is in constraining fpq in
comparison with the five-label network. In Fig. 15 we
display a plot of how the noise-averaged f(R) classification

f(R)
1.0 e
/'lf-
0.8 ot
/
¥
5 0.6 .,.//
S~ g
R g4l
7
0.2 ’,—-"/"- ----- Five-label network
e f(R) vs ACDM network
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FIG. 15. We compare how the ability of both the five-label

network and a specialist f(R) network to correctly classify f(R)
spectra varies with the modification strength fr, when averaged
over noise realisations. It is clear that the specialist network
outperforms the five-label network, with f(R) spectra with frg >
8 x 1078 being correctly classified largely independently of the
noise realization.
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probability varies for power spectra generated with values
of fro € [3x 1078, 1 x 1077] with associated confidence
bands. We find that the performance of the specialist f(R)
network exceeds that of the five-label network’s f(R)
classification capability, retaining a noise-averaged detec-
tion confidence of lo for fry~5.5x 1078 where the
equivalent noise-averaged detection probability for the
five-label network is < 0.3. Furthermore, for values of
fro > 8 x 1078 the classification probability for the spe-
cialist BNN asymptotes to one with only a few noise
realizations, decreasing this probability to 85%. Spectra
with values of fgy > 9 x 1078 are classified at high
confidence regardless of the noise realization. By contrast,
the five-label network correctly classifies spectra independ-
ently of the noise when fgy > 1.2 x 1077, Given the
limited performance of the generic two-label ACDM vs
non-ACDM network and the enhanced performance of the
specialized ACDM vs f(R) network we conclude that
training a two-label network is principally beneficial when
trained between well-defined physical models. Tighter
constraints on model parameters can also be attained with
such a specialized network.

VI. OUTLOOK

The potential of BNNs to provide insights into whether
upcoming cosmological datasets contain signatures of
physics beyond ACDM motivates further exploration.
For example, BNNs could be used to identify high-priority
areas in the theory space by selecting the most likely known
theory or motivating the need for further model develop-
ment, before performing parameter estimation and
Bayesian model selection with standard techniques that
require specific benchmarks from which deviations can be
detected. Indeed, our analysis of how the five-label BNN
classified an example generated from the growth index y in
Fig. 10 demonstrates the advantages of using data from
specific models over more generic parametrizations.

With enough training examples from enough ACDM and
non-ACDM power spectra generated from a larger set of
model classes considered in this work, one may envision a
sequence of pretrained specialist networks such that the
first is trained on as many deviations as possible from
ACDM, with the latter networks trained on smaller subsets
of the total number of classes. When an unknown spectrum
is passed to the first network it would determine which of
the subsequently more specialized networks to pass the
spectrum onto. As the specialist networks are better at
recognizing the specific imprints of the models they are
trained on, they would further classify the spectra until it
falls into either a single class or is not confidently
classified. If a single model is indeed preferred following
such an analysis, one could then proceed to constrain the
model parameters, for example with a traditional MCMC
analysis. An additional advantage is that, once the network

has been trained, one has a tool to rapidly indicate the
presence of new physics in contrast to the many hours it
would take to obtain constraints with MCMC which must
be run on a theory-by-theory basis.

Importantly, however, an MCMC possesses a well-
defined notion of confidence such that for a given dataset
and a given parametrization it will converge to a unique set
of confidence intervals for each parameter if allowed to run
for a sufficient amount of time. Moreover, it allows the
computation of quantities such as the Bayesian evidence
that have a well-defined interpretation in terms of model
selection and a solid statistical ground, albeit being non-
trivial to compute in practice [71]. As we have seen,
defining a classification confidence from the output of a
BNN can prove challenging as it is by no means trivial to
account for the uncertainty arising in the training process,
the noise in the data or the chosen network architecture. In
particular, the notion of confidence introduced in this paper
ensures that the resulting classification is not “overconfi-
dent” by encoding the uncertainty due to the noise.
However, we stress that this quantity is not directly
comparable to the Bayesian evidence or other goodness-
of-fit tests. If and how these notions are comparable
remains an open question (see Appendix F). In conclusion,
performing a fair comparison between the two methods is
not a straightforward endeavor and a more thorough
analysis of their relative strengths and weaknesses in
performing cosmological analyses will be a subject of
future work. For now, we see the use of our BNN as a
supplementary and precursory tool to MCMC analyses that
accelerates the search for new fundamental physics.

While we have restricted ourselves to the matter power
spectrum in this work, it is not a directly observable
quantity. An additional study would therefore be to train
BNNs on mock galaxy clustering and weak lensing data for
a range of different theories to determine how capable
BNNs are in detecting deviations from ACDM directly
from observational data. An interesting study in this context
was performed in Ref. [72], using a convolutional neural
network trained on simulated convergence maps. More-
over, while we have restricted to a selected number of
popular extensions to ACDM, this process is generically
applicable to any nonstandard theory for which it is
possible to rapidly generate accurate power spectra. Of
particular interest would be to study the capability of BNNs
to pick up signatures in the power spectrum from the
presence of massive neutrinos and baryonic effects as well
as modifications arising from Horndeski scalar-tensor
theory. In the case of massive neutrinos, training a specialist
massive neutrino network in a similar manner to that
performed for f(R) gravity in Fig. 15 could yield an
estimate on how capable BNNs could be in indicating the
presence of a nonvanishing neutrino mass. This could be
achieved with the latest version of ReACT [51]. With the
ever-growing ability to model cosmological observables for
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a multitude of extensions to ACDM, in Sec. V we discussed
the possibility of training a hierarchy of increasingly more
specialist networks to obtain a more confident classification
for a spectrum belonging to an unknown class. Note that
one could also fine-tune an N-label BNN to distinguish
between subclasses by incorporating an additional layer on
top of a previously trained N-label network and retrain on a
smaller dataset containing the new labels. Although train-
ing a two-label network from scratch takes a few hours on a
GPU, we have included the option in BaCoN to fine-tune on
new data in the event one wishes to adapt the BNN to
classify new theories with a limited training set size.

With the capability of BNNs to extract the particular
features in the data that were important in the resulting
classification, it may also be possible to provide informa-
tion on the length scales or redshift bins which should be
probed to detect signatures of a particular theory. One can
then train a BNN on spectra from specific redshift or scale
bins. This may be especially useful for studying models
such as wCDM whose signatures can be noise dominated at
large scales and low redshift. It is also important to note
that in this paper we have restricted to a k range of
(0.01 —2.5) hMpc~'. We expect that the capability of
BNNs to accurately classify models such as f(R) will
only increase with improvements in the ability to rapidly
and accurately model power spectra at higher values of k.

Further avenues of exploration include studying the
potential benefits of different choices of network architecture
and hyperparameters. Itis also of interest to examine different
methods of constructing probability distributions to account
for various sources of uncertainty in the output of the BNN.
In this paper we have focused on the application of BNNs to a
classification problem. However, the question remains of
how capable neural networks are in obtaining cosmological
parameter constraints from unknown spectra in comparison
with more traditional approaches such as MCMC. Finally,
although we have trained the network on data which lie
within the bounds of Euclid errors, it is important to
determine how effective BNNs could be in detecting new
physics from other surveys such as LSST [11] or Dark
Energy Survey [73] as well as to investigate how the results
vary with different choices of systematic error.

VII. CONCLUSIONS

Over the coming years many new cosmological surveys
will provide vast datasets which will determine whether
ACDM remains concordance cosmology. In this paper we
have studied the ability of Bayesian neural networks to
determine if a matter power spectrum is representative of
ACDM or not. By constructing a mapping from the output
of a BNN to a well-defined probability distribution we were
able to define a classification confidence for an individual
spectrum that considers the uncertainty from the noise in
the data, variations in the training procedure, the modeling
uncertainty of the BNN and choice of hyperparameters.

We found that a five-label network trained to classify
between ACDM, f(R) gravity, DGP gravity, wCDM and a
“random” class provided more reliable predictions than a
two-label network trained to distinguish simply between
ACDM and non-ACDM. While generally being less
sensitive to variations in the noise distribution, it can also
determine whether a power spectrum does not belong to
any class included in the training set. Since the selection of
the correct model is crucial when performing conventional
statistical analyses such as with MCMCs, this ability could
prove beneficial in indicating prospective models to con-
sider. However, the network used in this work is currently
limited to classification tasks while the notion of model
selection on firm statistical grounds in the context of BNN's
remains an open problem. Nevertheless, we found that
when averaged over noise realizations the five-label BNN
was able to recognize spectra as not being ACDM down to
values of fgy <1077, Q. <1072, —1.05 <wy <0.95,
-0.2<w, <0.2, and 0.52 <y <0.59, all of which are
comparable with current forecasts, as discussed in
Sec. IV I. Specialist networks trained on specific subsets
of the classes in the training set have the potential to
improve such bounds even further.

We conclude that BNNs may provide a powerful new
means to search for hints of new physics in cosmological
datasets. In particular, we anticipate they will serve as a
powerful “filter,” allowing us to narrow down the theory
space before moving on to constrain model parameters with
MCMCs while perhaps even signaling the presence of new
physics that does not belong to any known model.

Alongside this paper we publish the publicly available
code Bayesian cosmological network (BaCoN) which can be
accessed at the github repository [74] with the training and
test data available [75].
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APPENDIX A: NEURAL NETWORKS FOR
SUPERVISED LEARNING

In this appendix we introduce some basic concepts on
neural network classifiers. Consider a dataset of the form
D = {(X,y)}, k €[1,..., M] where each element consists
of a pair of features X and an associated label y and M
denotes the size of the dataset. Let us further denote N to be
the number of possible labels. In a supervised classification
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task the aim is to use the labeled examples in D in such a
way to be capable of predicting y* for a previously unseen
X* & D. Note that, for our purposes, each X, consists of a
collection of matter power spectra in different redshift bins
with y, labeling the associated underlying physical model
(see Sec. IIT A).

Neural networks provide a powerful means to model
nonlinear features in labeled data by combining a hierarchy
of nonlinear functions in a succession of layers, each with
optimized parameters, which map given features to a
predicted label. Different choices can be made for the
number of layers and the type and size of each layer, all of
which constitute the network’s architecture. To begin, the
labeled dataset is split into a training set, validation set and
a test set. By passing the training data through the network,
usually in a series of batches, the network parameters are
tuned using an optimization algorithm to minimize a loss
function which quantifies how close the output of the
network matches the associated label of the input data. An
epoch occurs when every batch of data in the training set
has been passed through the network.

Central to the optimization procedure is gradient descent
which updates the parameters in the direction where the
derivative of the loss, computed using the backpropagation
algorithm, is maximally negative. Many modifications to
gradient decent have been developed in order to aid the
optimization efficiency and the choice of optimization
algorithm and its associated parameters, known as hyper-
parameters, is an important factor in determining the
performance of the network. In this paper we use the
adam optimization algorithm [76]. The most relevant
hyperparameter is the learning rate which sets the ampli-
tude of the step made in the direction of the gradient.

Following each epoch a performance metric is computed
to evaluate how effectively the network maps features to
labels in both the training set and the validation set, the
latter giving a measure on how well the network generalizes
to previously unseen data. Note that this metric need not be
the same function as the loss. In particular, the loss function
must be differentiable with respect to the weights while the
metric does not. Different choices for the loss function and
the metric depend on the problem at hand and are a key
consideration in the network design. Typically in classi-
fication problems the performance metric is the accuracy
which is simply the fraction of correctly classified exam-
ples. This process is then repeated until the loss stabilizes to
aminimum. As the performance metric on the validation set
can remain biased, the final stage is to evaluate the network
performance on the test set which has not been used in the
training process. If the performance metric on the test set is
comparable to that on the training and validation sets, then
one can be confident the network is robust.

APPENDIX B: CLASSIFICATION IN BNNs

Evaluating the performance of a neural network cannot
be limited to evaluation of a performance metric on the test

set, especially if the network is to be used in a scientific
context. In this case it is imperative to assess its reliability
on any individual prediction and to define a probability that
quantifies how much the prediction can be trusted.

Using traditional DNNs to compute both aleatoric and
epistemic uncertainties (defined in Sec. II) would be both
computationally expensive and time consuming. This
appendix details why this is so before discussing how
BNNs are better suited to model classification uncertain-
ties. We define the labels to be one-hot encoded, such that
they are vectors of length N with a one at the position of the
true label and with zeros otherwise. For example, the vector

= (1,0,...) is a label for an example belonging to the
first class. Classification occurs when the final layer of the
network outputs an N-dimensional vector with components
that sum to one and can therefore be interpreted as
probabilities. Denoting f(X|w, a) the vector-valued output
of the final layer given the weights w and an architecture a,
a probability that X belongs to the ith class can be obtained
by passing it to the softmax function

e_fi(xlw'a)

SV g (B

p(yi=1X,w,a) =

We can then choose a multinomial probability distribution
as a likelihood such that

with the loss function being the negative log-likelihood.
From now on we shall drop the explicit dependence on the
architecture a but it should be kept in mind that all the
results are conditioned on the choice of a.

The training procedure yields a maximum likelihood
estimate set of weights w. When predicting the label for a
new example with features X* the network outputs the
probability

p(yr =1X*Ww,D) Vi=1,...,N, (B3)
where the conditioning on D and W indicates that the
training has been performed with this dataset resulting in a
particular maximum likelihood estimate for the weights.
Note however that W is not a unique value dependent on D
and the optimization process, due to the inherent stochas-
ticity of the training process. A prediction for the label is
obtained by assigning the label to the maximum output
probability yg. ., = arg max,;p(y} = 1|X*, W, D,a) if this
exceeds a chosen threshold probability pg. One must be
careful not to interpret Eq. (B3) as the confidence in the
prediction due to the explicit dependence on w, D,
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variations in the training procedure, choice of optimization
algorithm or initialization of the weights, and the presence
of aleatoric uncertainty. Estimating the uncertainty would
require the expensive procedure of averaging the results
from an ensemble of independently trained DNNS.

Fortunately, BNNs can quantify the uncertainty more
efficiently by replacing each weight in the network by a
parametrized distribution [24,25]. The training objective is
then to infer the posterior distribution of the weights
conditioned on the training data

L(D|w)p(w)
p(D)

In practice, p(w|D) is intractable and so approximations or
sampling techniques are employed. One such approxima-
tion approach is variational inference where the posterior is
approximated by a variational distribution g,(w) which
describes a family of distributions parametrized by the
parameter 0 [77-79]. In training the BNN, the objective is
to ensure the resulting variational distribution g4(w)
matches the posterior weight distribution p(w|D) as
accurately as possible. To achieve this it is necessary to
have a measure on the difference between two distributions
which could serve as a loss function. One such measure
capable of quantifying how much the two distributions
go(w) and p(w|D) differ is the Kiillback-Leibler (KL)
divergence given by [80]

p(w|D) = (B4)

qo(w)
p(w|D)’

Using Bayes theorem to reexpress the posterior p(w|D) in
terms of the likelihood £(D|w) and the prior distribution
over the weights p(w) this can be reexpressed as [26,81,82]

KL{go(w) || p(w|D)] = / dwy(w) log (B5)

KL{gg(w)|[p(w|D)] =KLlge(w)[|p(w)]

—Ey,(w) [log L(D|w)] +const,  (B6)
where the constant term arises from the Bayesian evidence
which does not affect the optimization process.

The KL divergence between the variational distribution
and the prior can be interpreted as a regularization term that
ensures the variational distribution does not become too
complex, potentially leading to overfitting, while the second
term is the usual negative log-likelihood. By sampling the
weights from the variational distribution w ~ go(w|D) one
can obtain a Monte Carlo (MC) estimate for the loss in
Eq. (B6). However, given that the weights w are now random
variables it is not possible to take derivatives directly to
perform gradient descent.

To circumvent this issue, Refs. [83,84] detail a repar-
ametrization trick which, rather than sampling directly from
the variational distribution, samples a new random variable
e from a standard Gaussian such that ¢ ~ p(e), where

p(e) = N(0,1). This in turn is related to the weights via a
deterministic function such that w = g(e, 8). Now that the
weights are expressed as a deterministic function, itself now a
function of the random variable ¢, it is possible to perform
backpropagation. The drawback of this approach is that the
resulting sampled weights are the same for each batch,
correlating the resulting gradients and slowing the conver-
gence of the optimization algorithm. In order to decorrelate
the gradients across the batch Ref. [85] proposed the flip out
method. Assuming the variational distribution can be
expressed as a mean plus a perturbation, by randomly
multiplying each perturbation by either {1, -1} one can
ensure that the weights across a batch are at least partially
decorrelated. This method has proven to be effective in recent
applications of BNNs [31,33], with the additional advantage
of being available as prebuilt implementations in popular
deep learning libraries like TensorFlow [86] for both dense
and convolutional layers [87]. In this paper we make use of
TensorFlow [88] and TensorFlow Probability [87] through-
out. Following training, the posterior weight distribution can
be used to obtain predictions by marginalizing over the
weights, generalizing Eq. (B3) to

Pyt = 1|x*.D) = / Pyt = 1|X*.w. D) p(w[D)d.
(B7)

In practise, this equation is evaluated by Monte Carlo
sampling from the distribution g,(w), yielding Eq. (1) in
the main text.

APPENDIX C: CONSTRUCTION OF A
PROBABILITY DISTRIBUTION
FROM THE OUTPUT OF A BNN

1. N-label distribution

In this appendix we shall detail the construction of the
probability distribution introduced in Eq. (3). We aim to
define a probability for a random variable x, with mean u
and covariance X, . The random variable x represents the
softmax output of the network. It is therefore subject to the
following conditions that each component of x lies between
0 and 1 and that the components sum to 1, namely:

N
Z.Xizl, Z//llzl
i i=1

i=1
If the components of x were independent, we could define
its distribution as a multivariate Gaussian

(C1)

N(xsu, Z,,), (C2)

truncated between 0 and 1. However, due to the constraint
in Eq. (Cl) the matrix %, as defined in Eq. (2) is
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degenerate so that det¥, = 0 implying the multivariate
Gaussian distribution is not defined. In particular, the
columns of the matrix satisfy [89]

=

-1

[ZCIQLk’
1

(Zglvi = = (C3)

~
I

and X, has a null eigenvalue. To circumvent this problem
we can introduce a small perturbation € such that Eq. (C1)
becomes

inzl—e,

i=1

(C4)

N
Z,uizl—e.
i=1

Defining iqé} to be the covariance obtained from the
definition in Eq. (2) with the perturbed constraint (C4),
the degeneracy condition (C3) becomes

N-1

Z qoli k+€:u1

k=1

(C5)

The matrix iqe is now invertible and the distribution in
Eq. (C2)is well defined. Now we take the limit e — 0. Since
%, is symmetric, there exists an orthogonal matrix B such
that £, = BUB™', with U = diag(u,, ..., uy_;,0), where
u; are the eigenvalues of £, , u; #0 V i=1,....N— L
The effect of the correction € is to shift the value of the
eigenvalues. In particular, the last eigenvalue becomes non-
zero, resulting in the following diagonal matrix:

U = diag(u; + aye, ..., uy_, + ay_i€, aye), (C6)
where the form of the coefficients ap,....ay is not relevant to
the present discussion. Defining B to be the matrix such that
2, = BUB™, the variable

Z=B"(x-u) (C7)
is distributed as
N(Z;0,0) (HN 50,0, ) X N (Zy: 0, \Jaye)
= j'-'(Z;O, U). (C8)
In the limit ¢ — 0 we have
Z 0 U (HN i , ” > XN(ZN;O,\/QNe)
N—1
- <HN(Z,~;0, ui)> x 8(Zy). (C9)
i=1

Hence, we can define the distribution of Z = B~!(x — u) as

F(Z;0,U) = lim F(Z;0,T) = 5(Zy) x lﬁ/\/(z,-;o, ;).
i=1

e—0

(C10)

From the definition in Eq. (C7), it follows the distribution of x
can be defined as

F(x;pu, 2, )fhm]-"( Yx—p);0,B7'S
= 8([B7! (x = )l
N-1
< TIN(B (5 )0 (815, B],).

i=1

Q()B)

(C11)
It can be shown that the matrix B has elements [90]
B = M;(u; —M;)™y;,
N -1/2
= [Z M3 (M, - u.,.)—2] , (C12)
k=1

where we remind the reader that u; is the jth eigenvalue of
%,,- Therefore, for the Nth element of the vector Z which has
a zero eigenvalue, we have

Zy =B (x—p)y = ZBjN(xj — Hj)

1 N
=—(1- . 1

vl 2 u) e
Substituting the above relation into Eq. (C11) and enforcing
the requirement that each value of x; must lie between 0 and
1, one finally obtains Eq. (3). Formally, this is accomplished
by multiplying the distribution (C11) by a multidimensional
indicator function of the interval [0, 1] and properly
renormalizing, which yields the truncated Gaussian distri-
bution denoted by A in (3). In practice, we are interested in
sampling from the distribution in order to compute the
probability P; in Eq. (4). In order to draw the samples we
proceed with the following algorithm: where goal is the
desired number of samples and 7,y 1S the total number of
valid samples obtained at each step.

2. Two-label distribution

It is instructive to consider the special case of N = 2,
where the derivation in Appendix C 1 results in a simple
analytic closed form. In particular, we find that
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Algorithm 1.

- draw samples Z;,i = 1,...N — 1, from N (0, u;)
-set Zy =0
- compute x = BZ + u
if 0 <x; <1V i, then
accept sample

while 7,0, < goal do

else
reject sample
end if
end while
"= (M17M2)’ Hr = 1 — M1, (C14)
$ _( o’ —06% + € )
o\ =P e o*+e(l=2u—¢))
=y - i, (C15)
BZL(—H“;?')HO(&) 1+“;§é">e+0<e2>>,
V2 1 1
(C16)
. 26% 4+ (1 =2u)e + O(e? 0
:< o ( Hi) ( ) ) (C17)
0 €/2+ O(e?)
and
N 1 X\ +X+puy -+ 0
Z:—< 1 2T ML~ H2 (€)> (C18)
V2 \ Xi+ X5 —py =y + Oe)

After applying Eq. (C11) we obtain

) Xi+Xo—u — i
F(x;pu,Zy,) —5( 7 )

X N((=X1 + X+ 1 = p2)/V2:0,V20)
=V2x8X,+X,—1)
X N (V2(=X, + py);0,V20)

=5(X; + X, — 1) x N(X,: py0). (C19)

Using these relations it is then possible to verify that the
marginal probabilities are

px) = / ey F (v %) = N(xiuo). (C20)

pl) = [ dnFlen,) = Mo, (C21)

while the cumulative distribution functions satisfy

Pl = [ dvp(e) = 1-P(n). (€2)

APPENDIX D: GENERATING
MATTER POWER SPECTRA

In order to obtain the training, validation and test data,
we use the recently developed code ReACT [19] which
calculates modified power spectra using the halo-model
reaction method developed in Ref. [18]. This method has
been shown to be accurate to ~2% up to k ~ 2.5 h/Mpc at
z < 1 when compared to full N-body simulations in f(R),
DGP and wCDM models (see Figs. 3, 8 and 10 in
Ref. [18]). In this paper we model power spectra as
described in Ref. [18] with the exception that the pseudo
power spectrum is modeled using the halofit formula of
Ref. [13] which has the same level of accuracy as the
approach used in Ref. [18]. We refer the reader to
Refs. [19,91] for more details on the generation of the
training data. Power spectra are generated in four redshift
bins z € {1.5,0.785,0.478, 0.1} and one hundred k bins in
the range 0.01 < k < 2.5 h/Mpc at equal intervals in log
space. These binning choices are made according to that
expected from a Euclid-like survey [10,62]. The maximum
cutoff in k is chosen to maintain a ~2% accuracy between
the power spectrum generated from ReACT and simulations
as shown in Ref. [18]. Each power spectrum is then
generated by sampling the parameter space defining each
model and passing these values to ReACT. The ACDM
parameter space is sampled using a Gaussian distribution
centered on the Planck 2018 best fit parameters [92], with
each standard deviation given by the Euclid “pessimistic”
forecast results using weak lensing plus spectroscopic
galaxy clustering (WL + GCy) [62]. For f(R), DGP and
wCDM we use a Gaussian centered at the values which are
equivalent to ACDM, namely [93] fgry = Q. =w, =0
and wy = —1. The standard deviations for f(R) and DGP
parameters are given by the recent results of Ref. [19] and
are summarized in Table I. The standard deviation for the
wCDM parameters are taken again from the pessimistic
WL + GC, forecasts for Euclid of Ref. [62].

APPENDIX E: GENERATING
“RANDOM” POWER SPECTRA

In this appendix we describe how we generate power
spectra with random features representing potentially exotic
extensions to ACDM not encompassed by any of the wCDM,
f(R) or DGP models. The random features will be encoded
in a filter in the form of a 100 x 4 array such that each filter
has the same dimension as each example in the training set.
We denote the ith row and jth column filter entry as F[i, j],
where i corresponds to a k € [0.01,2.5] 2/Mpc and j to a
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z €{1.5,0.785,0.478,0.1}. F[i, j] assumes values centered
around 1 with a value of 1 indicating no modification in that k
and z bin. This filter can then be applied to an example from
our training set, P.[i, j], to obtain a randomly modified
power spectrum

Prandom[i’j] - F[l’]} X Pref[ihj]' (El)
The filter F[i, j] is constructed in the following manner:
(1) Randomly select an iy € [1,100] and j, € [1,4].
(2) Assign Flig, jo]=1+AkxR(-1,1),where R(—-1,1)
denotes a random real value between —1 and 1.
(3) For all integers j € [1,4], assign Fl[ip,j+ 1] =
Flig, j] + Az x R(—1, 1), starting with j.
(4) For all integers j € [1,4], assign F[ip£1,)] =
Flig, j] + 6k x R(—1,1).

(5) Repeat steps 3 and 4 for all i € [1,100] starting
The quantities Ak, Az and 6k denote the maximum initial
modification, the maximum difference between neighboring
columns and the maximum difference between neighboring
rows, respectively. These are free parameters which we set to
Ak = 0.1, Az = 0.2, and 6k = 0.005. Our initial modifica-
tion can therefore be no more than 10%, neighboring z points
cannot vary by more than 20% and neighboring k points
cannot vary by more than 0.5%.

Steps 1-5 alone generate a filter that is very noisy since
there is no smoothing. We thus apply a further step that
averages each entry along the k direction over a bin of
width Ny [94].

(6) For all j €[1,4] and i € [1,100], assign F[i, ] =

N Smeo Fli =5+ m. j).
Step 6 is then repeated N, times to further smooth the filter.
This leaves us with two additional free parameters: the bin
width N, and the smoothing step iterations N,. Changing
each of these parameters alters the scale in the & direction of
the induced features. Finally, the maximum deviation from
one in each component of the filter is then given by

5M = Ak+MaX[|4 —jo y jo —4|] X AZ
+ Max([|100 — iy, |ig — 100]] x k.

(E2)

With the selected values for Ak, Az and 6k, this means that
we can have d,; = 25.65 which corresponds to modifying a
power spectrum by 2500%. Any such modification would
naturally already be ruled out by observations at extremely
high confidence. In order to moderate the imposed mod-
ifications in order that they are more likely to be consistent
with current constraints we follow an additional procedure.
We begin by defining a new filter F[i, j] which conforms at
some level with current observations of the power spectrum

Fli. ] = eli J(Fli.j] = 1) + 1, (E3)

where e[i, j| is an array we shall calculate given some
observational constraints. In order for a modification
around one to be consistent with an observation at a
certain confidence level we use the reduced y? statistic
X2q defined as

L [Prandon () = Prer (ki)
2 random \"*; ref \/Vi
Xred — N_p; 62< (E4)

ki) ’

where P pqom and P are the randomly modified and
unmodified power spectra at scale k;, respectively. The
quantity N, is the number of degrees of freedom which in
this case is the number of k data points so that N, = 100
Finally, o(k;) is the error on the ith k data point. To
represent current knowledge about the LSS, we model
these errors based on recently completed surveys such as
the BOSS survey [95]. Assuming the errors are Gaussian
we have [64]

472 1 \2
Gp(k) = \/WV(Z) X (Pref(k) +%> + Ugysv (ES)

where Ak is the separation between k data points and P is
taken to be the halofit nonlinear spectrum with the
Planck 2018 best fit parameters [92]. We take V5 =
1.27 Gpc®/h? and it = 5 x 107* h3 /Mpc? as an approxi-
mate volume and number density of tracers for the BOSS
survey, respectively [96]. We also take 62,, = 25 Mpc®/h®
as our modeling systematic error as in the main text (see
Sec. III). Note we do not use the future survey specifica-
tions because these modifications should be within current
constraints. Substituting Eq. (ES) into Eq. (E4) and using
the definition of the filter in Eq. (E1) we get

) = g S I T LI IE g

where we perform the calculation for a fixed redshift z;.
Taking the ansatz ¢[i, j] = p(j)o(k;) we can write the
unknown p(j) as

)(rzele/
SN (Fli, ] = 1)2Pi. 12

Once we specify the level of deviation we want from the
true spectrum in terms of the y2,;, we can calculate p(;j) for
all j € [1,4]. Using Egs. (E5) and (E3), we can then obtain
our constrained random spectrum array [see Eq. (E1)]. We
select y2,, € [1, 3] to represent modifications which deviate
on average up to ~3¢ from the reference spectrum.
Finally, to construct the filters, we assume P = P,
i.e., a halofit-generated power spectra with the Planck
2018 best fit cosmology (see Table I). To enhance the

rol—

o) = | (E7)
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Example random spectra
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FIG. 16. Example of randomly generated matter power spectra
generated using the algorithm outlined in Appendix E. One can
see that, while deviations at high £ remain small, large deviations
are produced at low k due to the poorer constraining power at
these scales. The presence of such large deviations generally
allows the five-label and two-label BNNss to classify the majority
of such spectra at high confidence, enabling them to pick up
potential exotic theories that do not fall within the other
considered classes in the training set.

randomness of the random spectra, we then apply the filter to
a randomly selected reference spectrum in the training
dataset, i.e., from the classes f(R), DGP, wCDM and
ACDM. This assumes the approximation P~ Py in
Eq. (E6). We have a freedom to choose the level of deviation
of the random spectra from Planck and we produce many
thousand random spectra, making this approximation not of
significant consequence to our final results. Further, recall
our reference spectra are chosen within a Gaussian distri-
bution centered about the Planck best fits with standard
deviations using recent Euclid forecasts [62,92]. Examples
of the shape of random power spectra generated using this
algorithm can be seen in Fig. 16.

APPENDIX F: COMPARISON WITH MCMC

In this appendix we elaborate further on the comparison
and interplay among a classifier based on a BNN such as
the one presented in this work and the widely used
statistical inference method of MCMC. We already dis-
cussed in the main text the fact that a fair comparison
between the two methods presents some significant issues
and the related reasons. One may still wonder if an MCMC
analysis of mock data such as those used for our

classification examples would be able to correctly identify
the underlying theory and yield the corresponding Bayesian
evidence, should one be willing to pay the corresponding
much higher computational cost. It turns out that this is not
so straightforward. The first issue is that the Gaussian errors
associated with the data vector P(k;z) are minute at small
scales, making this analysis very sensitive to even the
smallest systematic modeling errors. We introduced oy, in
Eq. (5) for this very reason. Nevertheless, this error was
chosen for a very particular model and data vector, namely
ACDM with a Planck cosmology, and it is unclear how
much modeling inaccuracies and noise would bias other
MCMC analyses. Indeed, we explicitly checked this
issue by running MCMCs on the examples discussed in
Sec. IV D. The resulting constraints show significant biases
that make any attempt to compute a Bayesian evidence
meaningless. A meaningful result could only be obtained
by increasing oy until the final contours include the
fiducial values, a process that is clearly unjustified and
not applicable when considering observational data where
the true value is not known. These issues indicate the need
of a thorough investigation that goes beyond the scope of
this paper. Furthermore, in a realistic context where one
does not know the actual underlying theory, in order to run
an MCMC analysis to constrain extensions to ACDM it is
necessary to choose an appropriate parametrization which
picks up the modification via a deviation from the fiducial
parameter values. Typically generic parameters are pro-
posed such as the growth index which serve to account for
the presence of physics beyond ACDM should they deviate
from their fiducial value. A deviation in a non-ACDM
parameter could result in significant biases in the standard
ACDM cosmological parameters. Classifiers such as those
considered in this work possess an advantage over MCMC
in this regard as they do not rely on a well-chosen
parametrization to detect deviations, at least at test time.
This feature is particularly interesting if we consider the
possibility that signatures of new physics may be present in
the power spectrum that do not come from any theory for
which numerical codes are available. Detecting such
deviations with MCMCs may not be possible in the
absence of accurate modeling, while the method described
in this paper would still be able to provide hints of
deviations from ACDM.
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