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In this paper, we extend the mimetic gravity to the multifield setup with a curved field space manifold.
The multifield mimetic scenario is realized via the singular limit of the conformal transformation between
the auxiliary and the physical metrics. We look for the cosmological implications of the setup where it is
shown that at the background level the mimetic energy density mimics the roles of dark matter. At the
perturbation level, the scalar field perturbations are decomposed into the tangential and normal components
with respect to the background field space trajectory. The adiabatic perturbation tangential to the
background trajectory is frozen while the entropy mode perpendicular to the background trajectory
propagates with the speed of unity. Whether or not the entropy perturbation is healthy directly depends on
the signature of the field-space metric. We perform the full nonlinear Hamiltonian analysis of the system
with the curved field space manifold and calculate the physical degrees of freedom verifying that the system
is free from the Ostrogradsky-type ghost.
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I. INTRODUCTION

Over the years, there have been interests in theories of
modified gravity as possible solutions to some unsolved
problems in cosmology and general relativity (GR) like the
dark matter, dark energy, the singularity problem, and so
on. Recently, the mimetic gravity has been proposed as a
modification of GR that may mimic the roles of dark matter
[1–4]. Mimetic gravity may be realized by performing a
noninvertible conformal transformation of the physical
metric gμν in the Einstein-Hilbert action from an auxiliary
metric g̃μν via gμν ¼ −ðg̃αβ∂αϕ∂βϕÞg̃μν in which ϕ is a
scalar field [5–7]. In this way, the scalar field satisfies the
constraint1

gμν∂μϕ∂νϕ ¼ −1: ð1:1Þ

With this constraint, the theory reproduces the behavior of a
pressureless fluid on a cosmological scale and therefore
yields a candidate of the dark matter. Alternatively, the
mimetic gravity can be equivalently constructed by adding
the above mimetic constraint via a Lagrange multiplier into
the action. For various studies on mimetic gravity setups,
see Refs. [8–42].

In spite of the fact that the original mimetic theory is free
from instabilities [43,44], there is no nontrivial dynamics
for scalar perturbations. This may result in caustic problem
in the mimetic dark matter scenario [45–49]. To remedy
this issue, the higher derivative term ð□ϕÞ2 may be added
to the action causing the scalar perturbations to propagate
with a nonzero sound speed [2,8]. Correspondingly, the
mimetic setup with a general higher derivative function in
the form fð□ϕÞ has also been studied in Refs. [3,4].
However, this extension of the mimetic setup with a higher
derivative fð□ϕÞ suffers from the ghost and the gradient
instabilities [50,51]. To find a way of resolving the above
problems, it was demonstrated in [52–54] that it is possible
to bypass both gradient and the ghost instabilities by
introducing direct couplings of the higher derivative terms
to the curvature tensor of the spacetime. In this respect,
more recently, the inflationary solutions in the healthy
setup of extended mimetic gravity with the inclusion of
higher derivative terms and the curvature tensor of space-
time were constructed in [55].
The two-field extension of the mimetic gravity in the

singular conformal limit of the disformal transformation
has been studied in [7]. By decomposing the perturbations
into the adiabatic and entropy modes, it was also shown
that, similar to the original single field mimetic model, the
adiabatic mode is frozen, whereas the entropy mode
propagates with the sound speed equal unity with no ghost
and gradient instabilities. In addition, the shift symmetry
condition imposed in two mimetic fields setup leads to the
Noether current, which provides a dark-matter-like energy
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density component at the cosmological background. By
imposing the shift symmetries on both scalar fields ϕ1

and ϕ2, the corresponding two-field mimetic constraint is
given by

c1gμν∂μϕ
1∂νϕ

1 þ c2gμν∂μϕ
2∂νϕ

2 ¼ −1; ð1:2Þ

in which c1 and c2 are positive constants [7]. Without a loss
of generality, these constants can be absorbed into the fields
through the field redefinitions ϕ1 → ϕ1=

ffiffiffiffiffi
c1

p
and

ϕ2 → ϕ2=
ffiffiffiffiffi
c2

p
, so the above mimetic constraint can be

written in the covariant form

δabgμν∂μϕ
a∂μϕb ¼ −1; with ϕa ¼ ðϕ1;ϕ2Þ: ð1:3Þ

Written in this form, one can think of δab as a metric
characterizing a flat geometry of the target space spanned
by the fields ϕa ¼ ðϕ1;ϕ2Þ. This was a consequence of the
shift symmetry imposed in field space.
In this work we build upon [7] and consider a setup of

multifield mimetic gravity with a curved field space metric
GabðϕcÞ. As such, the shift symmetry assumption is
violated. The dynamics of such multifield models with a
curved field-space manifold have been extensively studied
in recent years mainly in the context of inflation,
dark energy, primordial non-Gaussianity, and related
areas [56–65].
The rest of the paper is organized as follows. In Sec. II

we present the multifield extension of the original mimetic
scenario. In Sec. III we study the cosmological implications
of the setup both at the background and the perturbations
levels. In Sec. IV, we perform the Hamiltonian analysis at
the full nonlinear level using the Arnowitt-Deser-Misner
(ADM) decomposition [66]. The conclusions are presented
in Sec. V while some technicalities of the analysis are
relegated to the Appendixes.

II. THE MODEL

In this section, we build upon the analysis of [7] and
construct the mimetic setup for the general case of multi-
field with a curved field space metric Gab. We comment
that the setup of [7] was dealing with a two-field setup with
a flat field space, i.e., Gab ¼ δab, with the constraint given
by Eq. (1.2).
To do this, let us first assume a general conformal

transformation between the physical metric gμν and the
auxiliary metric g̃μν as

gμν ¼ Aðϕa; XÞg̃μν; ð2:1Þ

where X ¼ Gabg̃μν∂μϕ
a∂νϕ

b in which GabðϕcÞ is the
metric of the field-space manifold.2 Demanding that the
determinant of gμν to be nonzero, its inverse metric is given
by gμν ¼ A−1g̃μν. In order to find if the above trans-
formation is invertible, we need to look at the eigenvalue
equation for the determinant of the Jacobian [67], i.e.,

�∂gμν
∂g̃μν − κðnÞδαμδ

β
ν

�
ξðnÞαβ ¼ 0; ð2:3Þ

in which κðnÞ and ξðnÞμν are the eigenvalues and the associated
eigentensors, respectively. Therefore, the eigenvalues equa-
tion for the conformal transformation (2.1) can be obtained
to be

ðA − κðnÞÞξðnÞμν − A;XhξðnÞiXg̃μν ¼ 0; ð2:4Þ

where we have defined hξðnÞiX ≡Gab∂αϕa∂βϕbξðnÞαβ . The
above relation can be proved by using the following
identities:

∂gμν
∂g̃αβ ¼ Aδαμδ

β
ν þ g̃μν

∂A
∂g̃αβ ; ð2:5Þ

where

∂A
∂g̃αβ ¼ Gabδ

α
ρδ

β
σ∂ρϕa∂σϕbA;X: ð2:6Þ

There are usually two kind of solutions for this eigenvalues
that are known as the “conformal type solution” and the
“kinetic type solution.” In the case of conformal type
solution, the eigenvalues and eigentensor are given by

κðCÞ ¼ A with A;XhξðCÞiX ¼ 0: ð2:7Þ

Clearly, this kind of eigenvalue solution is degenerate with
a multiplicity of 9 since the eigentensors are limited by the
above (single) constraint. On the other hand, for the kinetic
type eigenvalues solution, we have

κðKÞ ¼ A − XA;X; ð2:8Þ

with the eigentensor being proportional to the metric tensor,

i.e., ξðKÞμν ¼ g̃μν.
Now we are interested in finding the singular limit of the

conformal transformation (2.1) by demanding that the

2The natural generalization of disformal transformation in the
case of multifield mimetic gravity can be expressed by

gμν ¼ Aðϕa; XÞg̃μν þ Cðϕa; XÞGab∂μϕ
a∂νϕ

b: ð2:2Þ

Note that we take C ¼ 0 in the conformal case.
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eigenvalues (2.8) and/or (2.7) to be zero. In the case of
conformal type solution, the singular limit gives us A ¼ 0,
which is not allowed. However, for the kinetic type
solution, the following constraint will be imposed on A
in the singular limit,

A ¼ XA;X: ð2:9Þ

The nontrivial solution of the above differential equation
for the conformal factor A is

A ¼ −Ω−1X; ð2:10Þ

in which Ω is a constant. Therefore, A is obtained to be a
linear function of X. There are two options for the sign of
Ω. If we assume that the mimetic fields are timelike, which
is the case for the cosmological background, then X < 0, so
we needΩ > 0. On the other hand, if the mimetic fields are
spacelike, as for example in the black hole background
studied in [68], then Ω < 0. We are interested in cosmo-
logical implications of the multifield mimetic gravity, so we
assume Ω > 0.
It is worth mentioning that one cannot write down g̃μν as

a function of gμν due to the nature of the above singular
limit. By contracting both sides of the inverse metric
relation, gμν ¼ −ΩX−1g̃μν with Gab∂μϕa∂νϕ

b, one obtains

gμνGab∂μϕ
a∂νϕ

b ¼ −
ΩGab∂μϕ

a∂νϕ
bg̃μν

X
; ð2:11Þ

which yields

gμνGab∂μϕ
a∂νϕ

b ¼ Gab∂μϕ
a∂μϕb ¼ −Ω: ð2:12Þ

This is nothing but the mimetic constraint extended to
curved multifield manifold.
The above constraint can be applied to the theory via a

Lagrange multiplier. For the single field mimetic gravity
setup, it has been shown that the conformal transformation
of the metric to an auxiliary metric is equivalent to adding a
Lagrange multiplier to the action [69]. But for the multi-
field case in curved space, this conclusion might be unclear.
In the next subsection, we demonstrate that these two
approaches are equivalent in the multifield case as well.

A. Equivalent action with a Lagrange multiplier

Here, our aim is to show that the action constructed from
the physical metric (2.1) is equivalent with the action in
which the mimetic constraint (2.12) is added to it through a
Lagrange multiplier in the following form

S ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
Rþ λðGab∂μϕ

a∂μϕb þ ΩÞ − VðϕaÞ
�
;

ð2:13Þ

in which MP is the reduced Planck mass, λ is the
Lagrange multiplier, and VðϕaÞ is the potential added
for the later cosmological purposes. As mentioned, the
equivalency of the two actions for the case of single field
mimetic scenario was shown in [69] and we follow its logic
here (with some new technicalities coming from multifield
effects).
From Eqs. (2.1) and (2.10), we consider the physical

metric gμν as a function of auxiliary gμν and scalar
fields ϕa as

gμν ¼ −Ω−1ðGabg̃αβ∂αϕ
a∂βϕ

bÞg̃μν ≡ −Ω−1Xg̃μν: ð2:14Þ

Clearly, the metric gμν is invariant under the conformal
transformation of the auxiliary metric g̃μν.
The action constructed from the physical metric gμν can

be considered as a function of scalar fields ϕa and the
auxiliary metric g̃μν as follows

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðg̃μν;ϕaÞ

q �
M2

P

2
Rðgμνðg̃μν;ϕaÞÞ þ Lm

�
;

ð2:15Þ

where Lm represents the Lagrangian density of the matter
sector, which for our case is just the potential VðϕaÞ.
By taking the variation of the action with respect to the

physical metric gμν, we arrive at

δS ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðM2
PG

μν − TμνÞδgμν; ð2:16Þ

in which Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor associated to Lm.
From Eq. (2.14) the variation δgμν can be written in terms

of the variation of the auxiliary metric δg̃μν and the variation
of scalar field δϕa as follows

δgμν ¼ −
X
Ω
δg̃μν −

δX
Ω

g̃μν; ð2:17Þ

¼ −
X
Ω
δg̃μν −

g̃μν
Ω

ðXGab;cδϕ
c

þ Gab½−g̃καg̃ρβδg̃αβ∂κϕ
a∂ρϕ

b þ 2g̃κρ∂κδϕ
a∂ρϕ

b�Þ;

¼ −
X
Ω
δg̃αβ

�
δαμδ

β
ν þ Gab

Ω
gμνgκαgρβ∂κϕ

a∂ρϕ
b

�

−
gμν
Ω

ðGab;cXabδϕc þ 2Gabgκρ∂κδϕ
a∂ρϕ

bÞ; ð2:18Þ

where Xab ≡ gαβ∂αϕ
a∂βϕ

b.
Thus the corresponding equations of motion from the

variation in Eq. (2.16) are obtained to be
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Gμν − Tμν þ Ω−1ðG − TÞGab∂μϕ
a∂νϕ

b ¼ 0;

ðG − TÞGab;cXab − 2∇κððG − TÞGac∇κϕaÞ ¼ 0: ð2:19Þ

By taking the trace of Eq. (2.18), we have

ðG − TÞðGab∂μϕ
a∂μϕb þΩÞ ¼ 0: ð2:20Þ

When G − T ≠ 0, this equation yields the mimetic con-
straint (2.12).
On the other hand, instead of working with the action

(2.15) with the physical metric gμν treated as a function of
the auxiliary metric g̃μν and the scalar fields ϕa, we can
equivalently implement the relation (2.14) to the total
action with a set of Lagrange multipliers and treat gμν as
an independent field, i.e.,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ Λμνðgμν þΩ−1Xg̃μνÞ þ Lm

�
:

ð2:21Þ

Here Λμν is a set of Lagrangian multipliers added to
incorporate the condition (2.15) for all components of
metric field. Consequently, the variation of action with
respect to Λμν yields the constraint (2.14). Note that despite
the apparent similarity, the constrained action (2.21) is
different than the constrained action (2.13). More specifi-
cally, the single Lagrange multiplier λ in action (2.13)
enforces the single constraint Eq. (2.12) while the Lagrange
multipliers Λμν implement the relation (2.14) for all
components of the physical metric.
Now the variation of action (2.21) is given by

δS ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðGμν − Tμν þ ΛμνÞδgμν þ Ω−1Λμνδg̃μνX þΩ−1Λμνg̃μνδX�;

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðGμν − Tμν þ ΛμνÞδgμν þ Ω−1ðΛGab;cXab − 2∇κðΛGac∇κϕaÞÞδϕc�

þ Ω−1ΛμνXðδαμδβν þ Ω−1Gabgμνgκαgρβ∂κϕ
a∂ρϕ

bÞδg̃αβ; ð2:22Þ

where Λ≡ Λμνgμν and we have set the boundary contribution to zero by demanding that the variation of δϕb vanishes at
infinity. In addition, use was made from the following relation,

δX ¼ Gab;cg̃αβ∂αϕ
a∂βϕ

bδϕc þ Gabð−g̃καg̃ρβδg̃αβ∂κϕ
a∂ρϕ

b þ 2g̃κρ∂κδϕ
a∂ρϕ

bÞ;
¼ −Ω−2X2Gabgκαgρβ∂κϕ

a∂ρϕ
bδg̃αβ −Ω−1XðGab;cXabδϕc þ 2Gabgκρ∂κδϕ

a∂ρϕ
bÞ: ð2:23Þ

Now the variations in Eq. (2.22) with respect to the physical
metric gμν, the auxiliary metric g̃μν and the scalar fields ϕa,
respectively, lead to

Gμν − Tμν þ Λμν ¼ 0; ð2:24Þ

Λμν þ Ω−1ΛGab∂μϕ
a∂νϕ

b ¼ 0; ð2:25Þ

ΛGab;cXab − 2∇κðΛGac∇κϕaÞ ¼ 0: ð2:26Þ

Interestingly, the trace of Eq. (2.25) leads to the mimetic
constraint (2.12). Moreover, by taking the trace from
Eq. (2.24), we find that Λ ¼ T − G. Therefore, using this
finding and substituting Eq. (2.25) into (2.24), the equation
of motion (2.18) can be reproduced. In addition, it’s
straightforward to confirm that Eq. (2.26) coincides with
(2.19).
Now, solving forΛμν from Eq. (2.25) and plugging it into

the action (2.21) yields

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ λðGab∂μϕa∂μϕ

b þΩÞ þ Lm

�
;

ð2:27Þ

which is the same as action (2.13) with L ¼ −VðϕaÞ
and λ≡Ω−1Λ.
It is worth mentioning that the action (2.13) reduces to

that of [7] when Gab is constant. Now, by rescaling the
fields via ϕa →

ffiffiffiffi
Ω

p
ϕa, we can absorb the effects of the

constant Ω into the Lagrange multiplier. Therefore, from
now on we set Ω ¼ 1 without a loss of generality.
Note that in Ref. [7] the shift symmetry for two

scalar fields in the absence of the potential function was
imposed so the metric Gab was diagonal with constant
elements. However, here we work in a curved field space
manifold with the metric GabðϕcÞ so the shift symmetry is
explicitly broken. Furthermore, in the absence of shift
symmetry, we have allowed for the potential term VðϕaÞ
as well.
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III. MULTIFIELD MIMETIC COSMOLOGY

The goal of this section is to write down the background
equations and the quadratic action of cosmological pertur-
bations in a covariance form. The value of the scalar fields
ϕaðxμÞ at a given location in spacetime consists of the
homogeneous background value, ϕa

0 , and the gauge de-
pendent fluctuations, δϕa. The fluctuations δϕa describe a
finite coordinate displacement from the classical trajectory
so they are not covariant. This motivates the construction of
a vector field Qa in order to write down the field fluctua-
tions in a covariant form.
The two points like ϕa

0ðtÞ and ϕa ¼ ϕa
0 þ δϕa are

connected by a unique geodesic with respect to the field
space metric Gab [56,70]. This geodesic is parametrized by
ε, such that ϕaðε ¼ 0Þ ¼ ϕa

0 and ϕaðε ¼ 1Þ ¼ ϕa
0 þ δϕ.

These boundary conditions determine a unique vector Qa,
which connects the two scalar field values in such a way
that Dεϕ

ajε¼0 ¼ Qa where D is the covariant derivative
with respect to the field space metric Gab. Therefore, one
can expand δϕa as a power series of Qa as [56,70],

δϕa ¼ Qa −
1

2
Γa
bcQ

bQc

þ 1

6
ðΓa

deΓe
bc − Γa

bc;dÞQbQcQd þ � � � ; ð3:1Þ

in which Γa
bc represents the Christoffel symbol associated

with the metric Gab.
Note that at linear order, the field fluctuations δϕa and

the vector Qa are identical but at higher orders they are
different. Thus, in the covariant manner, we must write the
equations in terms of Qa. In addition to scalar fields’
perturbations, we need to perturb the metric components
and the Lagrange multiplier.
The cosmological background in the absence of pertur-

bations is given by the FLRW metric

ds2 ¼ −dt2 þ aðtÞ2dx2; ð3:2Þ

in which aðtÞ is the scale factor. Now denoting the
components of the full metric via g00 ¼ −N 2 þ βiβ

i,
g0i ¼ βi, gij ¼ γij, the scalar perturbation parts of the
metric at linear order are defined as

N ¼ 1þ α;

βi ¼ B;i;

γij ¼ a2e2ψδij ð3:3Þ

where in spatially flat gauge we take ψ ¼ 0 and therefore
γij ¼ a2δij. Furthermore,N is the lapse function while βi is
the shift vector
In addition, there is the scalar perturbation λ ¼ λ0ðtÞ þ

δλðt; x⃗Þ for the Lagrange multiplier. Substituting these
perturbations back into the action (2.13) and solving for

the constraint equations, we obtain the quadratic action for
the field fluctuations Qa.

A. Background solutions

In order to derive the background equations of motion,
we expand the action (2.13) up to the linear order of scalar
perturbations (3.3) and (3.1) by performing the analysis in
spatially flat gauge. Substituting these solutions back into
the action (2.13), the first order action becomes

S1¼V
Z

dta3½ðGabð6Hλ0þ2 _λ0Þ _ϕa
0−Vbþ2Gabλ0Dt

_ϕa
0ÞQb

þð−Vþ3M2
PH

2

þλ0ð1þGbc
_ϕb
0
_ϕc
0Þαþδλð1−Gbc

_ϕb
0
_ϕc
0ÞÞ�; ð3:4Þ

where Vb ≡Gab∂bV and V ¼ R
d3x is the spatial volume,

which will be assumed to be large enough but finite.
Clearly, the variation with respect to Lagrangian multi-

plier perturbation mode δλ gives us the mimetic constraint
at the background level, i.e.,

Gab
_ϕa
0
_ϕb
0 ¼ 1 or GabDt

_ϕa
0
_ϕb
0 ¼ 0; ð3:5Þ

in which the convenient derivative is given by

DtXa ¼ _Xa þ Γa
bcX

b _ϕc
0: ð3:6Þ

Here we have used DtGab ¼ 0, which follows from the
definition of the covariant differentiation.
Now, we can derive additional equations of motion

by varying with respect to the field fluctuation Qa

and α. Taking the variation of (3.4) with respect to Qb,
we arrive at

λ0Dt
_ϕa
0 ¼

Va

2
− ð3Hλ0 þ _λ0Þ _ϕa

0; ð3:7Þ

in which H ¼ _aðtÞ=aðtÞ is the Hubble expansion rate.
After contracting both sides of the above equation by _ϕb

0

and using Eq. (3.5), we obtain

_λ0 ¼
1

2
ðVa

_ϕa
0 − 6Hλ0Þ: ð3:8Þ

The other equation comes from the variation of the action
with respect to α, yielding,

3M2
PH

2 þ 2λ0 ¼ V: ð3:9Þ

As we take time derivative from both sides of the above
equation and compare with Eq. (3.8), we can immediately
find

λ0 ¼ M2
P
_H: ð3:10Þ

MULTIFIELD MIMETIC GRAVITY PHYS. REV. D 105, 023529 (2022)

023529-5



Now combining Eqs. (3.10) and (3.9) one obtains the
Friedmann equation,

M2
Pð3H2 þ 2 _HÞ ¼ V: ð3:11Þ

In the absence of the potential function, using Eqs. (3.10),
(3.11), and (3.8), one finds λ0 ∼ 1=a3 and HðtÞ ¼ 2=ð3tÞ
(see Fig. 1 for an example).
On the other hand, by varying the action (2.13) with

respect to the metric gμν, the effective energy momentum
tensor is given by

Tμ
ν ¼ −Vδμν − 2λGab∂μϕa∂νϕ

b: ð3:12Þ

Correspondingly, one can read the energy density and the
pressure as ρ ¼ T0

0 and P ¼ 1
3
Ti
i.

For the case with no potential, V ¼ 0, using the mimetic
constraint (3.5) and λ0 ∼ 1=a3 we obtain ρ ¼ 2λ0 ∝ a−3

and P ¼ 0. Therefore, similar to the standard single field
mimetic theory [1], the multifield generalization of the
setup mimics the role of dark matter.3

In order to understand the effect of the mimetic con-
straint (3.5) on the fields trajectory in the curved field
space, let us consider, for example, an interesting two-field
model proposed in [71] for axion inflation. In this model,
the axion field ϕ2 is characterized as the phase of a complex
scalar field Φ (Φ ¼ ϕ1eiϕ

2

) in a canonical Uð1Þ symmetry-
breaking model in which the complex scalar field Φ has a
nonminimal coupling to gravity in the Jordan frame, i.e.,
fðΦÞR. Moreover, the radial component ϕ1, as a second
scalar field, plays the role of the order parameter of the
symmetry breaking. The nonminimal coupling depends
only on the radial field, i.e., f ¼ fðϕ1Þ, and the kinetic
terms of these polar coordinates have the flat field space
metric in Jordan frame.
On the other hand, going to the Einstein frame by

performing a conformal transformation of the spacetime
metric such as gμν ¼ 2fðϕ1Þ=M2

pg̃μν, the field-space metric
becomes [71],

G11¼
M2

P

2f

�
1þ

3f2;ϕ1

f

�
; G22¼

M2
P

2f
ðϕ1Þ2; G12¼G21¼0;

ð3:13Þ

which describes a curved field space with the coupling f
given by fðϕ1Þ ¼ 1

2
ðM2 þ ξðϕ1Þ2Þ. Moreover, the potential

function takes the following form in the Einstein
frame [71]

Vðϕ1;ϕ2Þ ¼ ζM4
P

16

ððϕ1Þ2 − v2Þ2
f2

þM4
PΛ4

4f2
ð1 − cosðϕ2ÞÞ:

ð3:14Þ

Here M, ξ, ϵV , v, and Λ are parameters of the model. As
seen, the potential function consists of two terms. The first
term is related to the spontaneous symmetry breaking
(Higgs) potential of the radial field and the second term
comes from the nonperturbative effects that generate a
potential for the axion field.
As another example, we consider a two-field model with

a polar parametrization, ϕa ¼ ðϕ1;ϕ2Þ, with a shift sym-
metry through the angular direction ϕ2 → ϕ2 þ c [64]. In
this respect, the radial field space coordinate ϕ1 is orthogo-
nal to the isometry while the angular coordinate ϕ2 is
tangential to it. The simple form of a such field space in the
“orbital inflation” model [64] is defined as follows:

G11 ¼ 1; G22 ¼ fðϕ1Þ; G12 ¼ G21 ¼ 0; ð3:15Þ

in which one chooses fðϕ1Þ ¼ e2ϕ
1=R0 associated with a

hyperbolic field metric which has the Ricci curvature
R ¼ −2=R2

0. In addition, for a specific model of the orbital
inflation, the potential function takes the following form:

Vðϕ1;ϕ2Þ¼3A
�
ϕ2−

2

3f

��
1þβ

2
ðϕ1−φÞ2þα

6
ðϕ1−φÞ3

�
2

−2A2ðϕ2Þ2
�
βðϕ1−φÞþα

2
ðϕ1−φÞ2

�
2

: ð3:16Þ

Notice that inflation happens at constant radius ϕ1 ¼ φ in
the orbital inflation setup, but here we only consider this
model as a toy model with free parameters A, α, β, R0,
and φ.
In Fig. 1, we have presented the evolution of λ0ðtÞ in the

field space for the above two metrics for both cases V ¼ 0
and V ≠ 0. The left panel refers to the axion inflation
example with the metric (3.13), while the right panel
corresponds to the case of orbital inflation with the metric
(3.15) and potential (3.16). The red solid and blue dashed
curves represent the cases V ¼ 0 and V ≠ 0, respectively.
As we see for the case V ¼ 0, the curve for λ0 (or
equivalently ρ) scales like 1=a3, which describes the energy
density in matter-dominated era, whereas one observes a
deviation form 1=a3 when V ≠ 0. For the case of axion
inflation, the numerical parameters are ϕ1

0 ¼ 0.5,
ϕ2
0 ¼ 0.97π, _ϕ1

0 ¼ −0.025, M ¼ 10−2, λ0ð0Þ ¼ −0.375,

ξ ¼ 1, v ¼
ffiffiffiffiffiffi
99
100

q
, ζ ¼ 0.07, Λ ¼ 2.74 × 10−3 in units of

MP. In the case of orbital inflation, we choose ϕ1
0 ¼ 0.5,

ϕ2
0 ¼ 0.1, _ϕ1

0 ¼ 0, R0 ¼ 50, β ¼ 0.1, α ¼ 0.01, φ ¼ 1,
A ¼ 10−4.

3We comment that by expanding the mimetic cosmology to
models containing multiple gauge fields with a certain mimetic
constraint imposed on the gauge field strength tensor, the
Maxwell term can play the role of the cosmological constant
yielding to a de Sitter–like spacetime [19,20].
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In addition, Fig. 2 shows the background trajectory
in the field space for the above two examples. As illustrated
in first two rows of Fig. 2, one can observe sudden
turns in the trajectory where the potential function V is
nonzero.

B. Quadratic action

In this part, we present the cosmological perturbations
analysis in the spatially flat gauge. By expanding the action
(2.13) up to the second order of scalar perturbations (3.3)
and (3.1), the quadratic action takes the following form:

S2 ¼
Z

dt d3xa3
�
M2

PϵH
2GbcDtQbDtQc −

�
1

2
Vbc þM2

PϵH
2Rbdcf

_ϕd
0
_ϕf
0

�
QbQc

þ 2δλðα −DtQb
_ϕb
0Þ − αðVbQb þ 3M2

PH
2α −M2

PϵH
2αþ 2ϵH2DtQb

_ϕb
0Þ

− 2M2
PHðα − ϵHQb

_ϕb
0Þ∂i∂iB −

M2
P

a2
ϵH2Gab∂iQb∂iQc

�
; ð3:17Þ

where Vab ¼ V ;ab,

Ra
bd;c ≡ Γa

bd;c − Γa
bc;d þ Γa

ceΓc
bd − Γa

deΓe
bc ð3:18Þ

is the Riemann tensor associated with the curved field
space, and ϵ is the “slow-roll” parameter that is defined by
ϵ≡ − _H=H2.
From the above quadratic action, we see that the

quadratic Lagrangian is linear in terms of the nondynamical
mode B, from which its equation of motion yields

α ¼ ϵHQb
_ϕb
0: ð3:19Þ

It is worth mentioning that the linearity of the B mode
in the quadratic action causes the adiabatic perturbation
to be nondynamical in the two-field mimetic example
(see below).
Plugging the relation (3.19) in action (3.17), the reduced

action takes the following form

S2 ¼
Z

d3xdt a3
�
M2

PϵH
2GbcDtQbDtQc − 2M2

Pϵ
2H3QbDtQc

_ϕb
0
_ϕc
0 −M2

bcQ
bQc

−
M2

P

a2
ϵH2Gbc∂iQb∂iQc þ 2δλðϵHQb

_ϕb
0 −DtQb

_ϕb
0Þ
�
; ð3:20Þ

where the effective mass matrix is defined via

Mab ≡ Vab

2
þ 1

2
ϵHðVa

_ϕ0b þ Vb
_ϕ0aÞ þM2

Pϵ
2H4ð3 − ϵÞ _ϕ0a

_ϕ0b þM2
PϵH

2Racbd
_ϕc
0
_ϕd
0: ð3:21Þ

FIG. 1. The evolution of the Lagrange multiplier for two different cases V ≠ 0 (red solid curve) and V ¼ 0 (blue dashed curve). Left
panel: the axion inflation example with the metric (3.13) and potential (3.14). Right panel: the orbital inflation example with the metric
(3.15) and potential (3.16). The V ¼ 0 case corresponds to a matter dominated Universe in which λðtÞ ∝ aðtÞ−3 or equivalently ρ ∝ a−3

and H ¼ 2=ð3tÞ.
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Finally, taking the variation of the above action with
respect to δλ yields the following relation

DtQb
_ϕb
0 ¼ ϵHQb

_ϕb
0: ð3:22Þ

Our analysis so far was general, valid for any number of
fields. In the rest of this section we restrict ourselves to the
case of two-dimensional field space. This is because we
will work in a new coordinate in the field space where the
perturbations are decomposed into the parallel to the
background trajectory and perpendicular to it. While this
decomposition is valid for field space of any dimension, but
its geometric visualization is more simple in the case of 2D
field manifold.

In a 2D field space with the coordinate ϕa
0ðtÞ ¼

ðϕ1
0ðtÞ;ϕ2

0ðtÞÞ, any trajectory defined in this space is
parametrized by cosmic time t. To characterize this curve,
it is useful to construct a set of orthogonal unit vectors Ta

and Na such that at a given time t, TaðtÞ is tangent to the
path while NaðtÞ is normal to it [56,70]. In Fig. 3 we have
illustrated a schematic plot of the evolution of the this set of
orthonormal vectors along the background trajectory in the
field space. This set of vectors is defined as

Ta ¼
_ϕa
0

_ϕ0

; ð3:23Þ

Na ¼ ðsgnð�1ÞGÞ1=2ϵabTb; ð3:24Þ

FIG. 2. Illustration of the trajectory in field space and the evolution of the turning rate η⊥. Left panels: the axion inflation example with
the metric (3.13) and potential (3.14). Right panels: the orbital inflation example with the metric (3.15) and potential (3.16). The
parameters are the same as those used in Fig. 1. The oscillatory behavior of the trajectory (or changing sign in the tuning rate η⊥) is
due to the centrifugal force of the potential. This behavior can also be seen from the turning rate parameter η⊥ plotted in Fig. 4. Although
the trajectory for the case V ¼ 0 is curved, the rate of the turn is zero.
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where _ϕ2
0 ¼ Gab

_ϕa
0
_ϕb
0 , which equals to one according to

(3.5). Moreover, G is the determinant of the metric Gab, the
signum function sgnð�1Þ determines the signature of Gab,
for instance, sgnð−1Þ is for Lorentzian signature, whereas
sgnðþ1Þ is chosen for the Euclidean signature. In addition,
ϵab is the two dimensional Levi-Civita symbol with ϵ11 ¼
ϵ22 ¼ 0 and ϵ12 ¼ −ϵ21 ¼ 1. These definitions satisfy the
following conditions: TaTa ¼ 1, NaNa ¼ sgnð�1Þ and
TaNa ¼ 0 [56,70]. Notice that the mimetic constraint
(3.5) in term of this set of vectors can be written
as Gab

_ϕa
0
_ϕb
0 ¼ TaTa ¼ 1.

These two unit orthogonal vectors may be used to project
the scalar field equation of motion (3.7) along these
directions. Projecting along Ta, we obtain Eq. (3.9),
whereas by projecting along Na one obtains the relation

Dt
_ϕa
0 ¼

DTa

dt
¼ VN

2λ0
Na; ð3:25Þ

where VN ≡ Na∂aV. Clearly, this relation satisfies the
mimetic constraint (3.5). Now, let us define the second
“slow-roll” parameter ηa as

ηa ≡ −
D _ϕa

0

dt
¼ −η⊥Na; ð3:26Þ

with its normal component given by η⊥ ¼ VN=2λ0.
Combining this relation with (3.25), we deduce the
following relations:

DTa

dt
¼ η⊥Na; ð3:27Þ

DNa

dt
¼ −η⊥Ta: ð3:28Þ

Therefore, if η⊥ ¼ 0, then the vectors Ta and Na remain
covariantly constant with respect toDt [but not with respect
to ∂t, see the definition (3.6)] along the path. If η⊥ > 0,
then the path turns to the left, whereas if η⊥ < 0, then the
turn is towards the right. The value of η⊥ therefore indicates
how quickly the angle determining the orientation of Ta

varies in time. Denoting this angle by θ we may therefore
do the identification4

_θ≡ η⊥: ð3:29Þ

In the last row of Fig. 2 and in Fig. 4, we have plotted the
evolution of η⊥ for the case V ≠ 0 with respect to the
number of e-folds N and fields ϕ1 and ϕ2, respectively. As
expected, the sudden turn in the field trajectory in Fig. 2 is
translated into the change of the sign of η⊥ in Fig. 2 and to
moving to the left or right in Fig. 4.
For the two-field case, the parallel and normal perturba-

tions with respect to the background trajectory are given,
respectively, by

uT ≡QT ≡ TaQa; ð3:30Þ

uN ≡QN ≡ NaQa: ð3:31Þ

In this transformation uT corresponds to the perturbations
parallel to the background trajectory while uN corresponds
to perturbations normal to the trajectory which represents
the entropy perturbations, i.e., the nonadiabatic mode
[56,70,72].
By using the above representations and replacing _ϕc

0 and
Dt

_ϕc
0 by the tangent and normal vectors Tc and Nc

according to Eqs. (3.23) and (3.25), the quadratic action
(3.20), after straightforward manipulations, reads

S2 ¼
Z

d3xdta3M2
PϵH

2

�
LuN þ LuT þ 2sgnð�1Þ_θuT _uN − 2_θuN _uT − 2

�
M2

NT

M2
PϵH

2
− ϵH _θ

�
uTuN

þ 2

M2
PH

δλ

�
uT −

_uT
ϵH

þ 1

ϵH
_θuN

��
; ð3:32Þ

with

LuN ≡ sgnð�1Þ
�
_u2N −

1

a2
ð∂uNÞ2

�
þ
�
_θ2 −

M2
NN

M2
PϵH

2

�
u2N; ð3:33Þ

FIG. 3. A schematic view of the evolution of the tangent vector
Ta and normal vector Na along the field space trajectory.

4Utilizing this definition, we see that the ratio of curvature κR characterizing the turning trajectory is defined as [56,70] κ−1R ≡ j_θj.
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and

LuT ≡ _u2T −
1

a2
ð∂uTÞ2 − 2ϵHuT _uT

þ
�
sgnð�1Þ_θ2 − M2

TT

M2
PϵH

2

�
u2T; ð3:34Þ

where ηH ≡ _ϵ=Hϵ and the symmetric matrix MIJ elements
are given by

M2
NN ≡ NaNbM2

ab ¼
1

2
ðVNN − sgnð�1ÞϵH2RÞ; ð3:35Þ

M2
TT ≡ TaTbM2

ab ¼
VTT

2
þ ϵHðVT þM2

PϵH
3ð3 − ϵÞÞ;

ð3:36Þ

M2
NT ≡M2

TN ¼ TaNbM2
ab ¼

1

2
ðVNT þ ϵHVNÞ; ð3:37Þ

where VNT ≡ NaTbV ;ab, VNN ≡ NaNbV ;ab, and VTT ≡
TaTbV ;ab. In particular, note the effect of the Ricci scalar
R associated with the field space manifold. Since we
consider a 2D field space here, the Riemann tensor can
be expressed in the terms of the Ricci scalar R as

Rabcd ¼
1

2
RðGacGbd −GadGcbÞ: ð3:38Þ

Finally, the equation of motion for δλ then yields

_uT ¼ ϵHuT þ _θuN: ð3:39Þ
Substituting the above result into Eq. (3.32), we arrive at

our final reduced quadratic action

S2 ¼
Z

d3xdta3M2
PϵH

2

�
sgnð�1Þ

�
_u2N −

1

a2
ð∂uNÞ2

�

−
M2

NN

M2
PϵH

2
u2N −

1

a2
ð∂uTÞ2

þ
�
sgnð�1Þ_θ2 − ϵ2H2 −

M2
TT

M2
PϵH

2

�
u2T

þ 2sgnð�1Þ_θuT _uN − 2
M2

NT

ϵH2
uNuT

�
: ð3:40Þ

From the above action, it is clear that the perturbation
mode perpendicular to background trajectory, uN , is excited
while the perturbation mode tangential to background
trajectory, uT , does not propagate. In other words, the
entropy mode propagates with the speed of unity, whereas
the sound speed for the adiabatic mode is zero. This is
consistent with the fact that the mimetic background
describes a fluid with no pressure. In addition, whether
the entropy perturbation is free from the gradient as well as
ghost instabilities directly depends on the signature of the
metric, i.e., sgnð�1Þ. In the case of the field space with an
Euclidean signature [sgnðþ1Þ ¼ 1], the entropy mode is
healthy, whereas in the case of the Lorentzian manifold
with sgnð−1Þ ¼ −1, the entropy perturbation is pathologi-
cal. As one turns off the potential function V in our setup
and consider the flat metric, i.e., Gab ¼ δab with an
Euclidean signature, this action converts to Eq. (53) in
[7] with the healthy entropy perturbation. However, when
one considersGab ¼ diagð1;−1Þ, the entropy mode always
suffers from the ghost and gradient instabilities [23]. In
Appendix B we confirm these conclusions in the comoving
gauge as well.

FIG. 4. The figure shows the evolution of turning rate η⊥ in terms of the mimetic fields ϕ1 and ϕ2. Left panel: the axion inflation
example with the metric (3.13) and potential (3.14). Right panel: the orbital inflation example with the metric (3.15) and potential (3.16).
The parameters are the same as those used in Fig. 1. This plot is consistent with Fig. 2 meaning that the turning toward left (right) in the
field space indicates that η⊥ increases (decreases).
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Now let us check the number of degrees of freedom
(DOFs) of the setup at the linear cosmological perturbation
level by performing the Hamiltonian analysis of the
quadratic action (3.32). It is evident that the time derivative
of δλ does not appear in the action (3.32) so one has the
primary constraint Ξ1 ≡ Πδλ ¼ 0, where Πδλ is the con-
jugate momentum associated with δλ. After imposing this
primary constraint, the total Hamiltonian is given by

HT ¼
Z

d3xðΠuT _uT þ ΠuN _uN − Lþ vΞ1Þ; ð3:41Þ

where v is the Lagrangian multiplier. By constructing the
conjugate momentum ΠuT ¼ ∂L=∂ _uT and ΠuN ¼ ∂L=∂ _uN
from the quadratic action (3.32), the total Hamiltonian in
the Fourier space is written as

HT ¼
Z

dx3
�

Π2
uN

4sgnð�1Þa3M2
PϵH

2
þ ðsgnð�1ÞaϵH2k2 þ a3M2

NNÞu2N þ Π2
uT

4a3M2
PϵH

2

þM2
PϵH

2

�
ak2 þ a3ϵ2H2 þ a3

M2
TT

ϵH2

�
u2T þ δλ

M2
PϵH

2
ðΠuT þ a3δλÞ þ 2a3M2

NTuNuT

þ ϵHΠuTuT þ _θðΠuTuN − ΠuNuTÞ þ vΞ1

�
: ð3:42Þ

Note that because we work in the Fourier space, all
coordinate and momentum variables are only functions
of time and the wave number k in which, for simplicity,
their dependence on k are dropped.
In order to derive the secondary constraint, we should

check the time evolution of the primary constraint Ξ1,
which amounts to examine the consistency relation.
Beginning with Ξ1, one obtains the following constraint:

Ξ2 ≡ fΞ1; HTg ¼ −
1

M2
PϵH

2
ðΠuT þ 2a3δλÞ ≈ 0: ð3:43Þ

The above constraint can be solved for δλ, yielding

δλ ¼ −
ΠuT

2a3
: ð3:44Þ

The next consistency relation gives

Ξ3≡fΞ2;HTg

¼ 1

M2
PϵH

2
ð−2a3v− _θΠuN þ ϵΠuT þ2a3M2

NT þ2a3M2
TTÞ

þ2ðak2þa3ϵ2H2ÞuT ≈0; ð3:45Þ

which determines the Lagrange multiplier v as a function of
the phase space variables and thus the chain of constraints
for primary constraint Ξ ends here. More precisely, both
constraints Ξ1 and Ξ2 are second class constraints and
therefore the physical number of DOFs is ð6 − 2Þ=2 ¼ 2.
Together with two tensor modes, the total DOFs of our two-
field setup is four. This is confirmed in next section where
we present the full nonlinear Hamiltonian analysis. In spite
of the fact that the adiabatic mode does not propagate at the
linear perturbation level, it contributes to the physical

DOFs of the model. The same result has been reported
in [23] for the flat two-field setup.
As seen, the adiabatic mode uT does not propagate in 2D

field space at linear order in perturbation. This is similar to
the simple single field mimetic model where the curvature
perturbation was nonpropagating at the linear order. To
remedy this issue, in the case of single field mimetic setup,
higher derivative terms such as ð□ϕÞ2 were added to the
theory yielding a nonzero sound speed for the curvature
perturbations. Motivated by this fact, we may also consider
adding higher derivative terms to our action. First consider
the term

Y ¼ XabXab ¼ GadGbcXdcXab; ð3:46Þ

where Xab ¼ ∂μϕa∂μϕ
b.5 This term is linear with respect to

the nondynamical mode B. In order to prove it let us write
down Xab by using ADM variables as

Xab ¼ −
1

N 2
ð _ϕa − βk∂kϕ

aÞð _ϕb − βk∂kϕ
bÞ þ γkl∂kϕ

a∂lϕ
b:

ð3:47Þ

By expanding the above relation up to the second order of
scalar perturbations, we arrive at

Xab ¼ − _ϕa
0
_ϕb
0 þ 2α _ϕa

0
_ϕb
0 − ð _ϕa

0
_Qb þ _ϕb

0
_QaÞ

− 3α2 _ϕa
0
_ϕb
0 þ 2αð _ϕa

0
_Qb þ _ϕb

0
_QaÞ

− _Qa _Qb þ ∂kBð∂kQa _ϕb
0 þ ∂kQb _ϕa

0Þ
þ a2δkl∂kQa∂lQb: ð3:48Þ

5Note that the term Gab□ϕa
□ϕb is not covariant in field space

nor in spacetime.

MULTIFIELD MIMETIC GRAVITY PHYS. REV. D 105, 023529 (2022)

023529-11



Clearly, the scalar Y is linear with respect to the non-
dynamical mode B up to the second order. This confirms
that the adiabatic mode does not propagate in our model
just by adding the Y term to the action. Therefore, one may
consider to couple nonminimally a function of Y term to the
spacetime Ricci scalar R. Since the Ricci scalar is linear
with respect to B, adding fðYÞR to the action can not
generate any nonlinear contributions of B as well. After
eliminating nondynamical modes in the corresponding
quadratic action, Eq. (3.22) is still satisfied and it prevents
the adiabatic mode uT to propagate.
Similar to the single field mimetic scenario, let us now

consider box terms such as

ð□LÞ2; ð3:49Þ

where L2 ≡Gabϕ
aϕb describes the length in the field

space. This box term is defined as

□L ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νLÞ ⊇ ∂kgk0 _Lþ L̈: ð3:50Þ

Correspondingly, its contribution to the quadratic action
yields

S2 ⊇
Z

dx3dtð□LÞ2

⊇
Z

d3xdtðð∂k∂kBÞ2 _̄L2 þ δL̈2Þ; ð3:51Þ

where L̄ ¼ Gabϕ
a
0ϕ

b
0 and δL ¼ L − L̄. It is obvious that the

quadratic action contains not only the gradient term ð∂2BÞ2,
but also the higher derivative term δL̈which is the source of
the Ostrogradsky ghost. As mentioned earlier, incorporat-
ing a nonlinear term for the B mode in the quadratic action
modifies the relation (3.22), causing the adiabatic modes uT
to propagate. However, this comes with the price that both
entropy and adiabatic modes develop Ostrogradsky-type
ghost. This kind of ghost can be removed by applying
explicit combinations of higher derivative terms used in
Horndeski theories [73] and the higher derivative inter-
actions coupled to gravity [74] as for example employed in
single field mimetic setup [52–54].

IV. NONLINEAR HAMILTONIAN ANALYSIS

In this section we present the full nonlinear Hamiltonian
analysis of the system to count the correct number of DOFs.
This is motivated in part from the fact that the adiabatic
mode is not propagating at the linear order of equation of
motion so one may wrongly conclude that there is only one
scalar degree of freedom. Although this issue is addressed
in previous section using the quadratic Hamiltonian analy-
sis, but here we confirm it employing full nonlinear
perturbation analysis.
We perform the nonlinear Hamiltonian analysis using the

ADM decomposition [66]. In fact, the ADM decomposition
is used to characterize the nature of gravity as a constrained
system. In accord with the ADM decomposition, the metric
components of spacetime take the following form:

g00 ¼ −N 2 þ βiβ
i; g0i ¼ βi; gij ¼ γij;

g00 ¼ −
1

N 2
; g0i ¼ βi

N 2
; gij ¼ γij −

βiβj

N 2
; ð4:1Þ

whereas before N is the lapse function and βi is the shift
vector. The spatial component γij is defined as a metric on
the three-dimensional spatial hypersurface embedded in the
full spacetime.
In the ADM framework, the action (2.13) can be

written as

S ¼ SG þ SM; ð4:2Þ

where SG is associated to the pure gravity part, i.e.,

SG ¼
Z

d4x
ffiffiffi
γ

p
N

M2
P

2
ðRð3Þ þ KijKij − K2Þ; ð4:3Þ

where Rð3Þ is the curvature of three-dimensional spatial
hypersurface, constructed from γij. Moreover, Kij is the
extrinsic curvature defined as

Kij ¼
1

2N
ð∂tγij − βi;j − βj;iÞ; K ≡ Ki

i; ð4:4Þ

with the covariant derivative being calculated with respect
to γij.
On the other hand, one can write the matter part of the

action as

SM¼
Z

d4x
ffiffiffi
γ

p
N
�
λ

�
−
Gab

N 2
ð∂tϕ

a−βk∂kϕ
aÞð∂tϕ

b−βl∂lϕ
bÞþGabγ

kl∂kϕ
a∂lϕ

bþ1

�
−V

�
:

Note that these actions do not depend upon the time derivative of N , βi, and λ. It means that these quantities are not
dynamical variables. Consequently the dynamical variables are γij and ϕa. The momentum canonically conjugate to γij and
ϕa, respectively, are
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Πij ¼ δSG
δ∂tγij

¼ M2
P

2

ffiffiffi
γ

p ðKij − γijKÞ; ð4:5Þ

Πa ¼
δSM
δ∂tϕ

a ¼ −
2

ffiffiffi
γ

p
N

λGabð∂tϕ
b − βi∂iϕ

bÞ: ð4:6Þ

Plugging the above expression of the conjugate momenta in the action (4.3), the total mimetic action can be expressed as

S ¼
Z

d4x½Πij∂tγij þ Πa∂tϕ
a −N ðHG þHMÞ − βiðHGi þHMiÞ�; ð4:7Þ

where

HG ≡ −
M2

P

2

ffiffiffi
γ

p
Rð3Þ −

2

M2
P

ffiffiffi
γ

p
�
1

2
Π2 − ΠijΠij

�
; Hi

G ≡ −2ð∂jΠij þ Γi
jkΠjkÞ; ð4:8Þ

and

HM ≡ −
Gab

4λ
ffiffiffi
γ

p ΠaΠb − λ
ffiffiffi
γ

p ðγijGab∂iϕ
a∂jϕ

b þ 1Þ þ ffiffiffi
γ

p
VðϕaÞ; Hi

M ≡ Πa∂iϕa; ð4:9Þ

with Π≡ Πi
i.

Now, we have five primary constraints ðΠN ;Πi;ΠλÞ ≈ 0
6 that are associated with nondynamical variables ðN ; βi; λÞ,

respectively. By taking into account these primary constraints and the action (4.7), we can construct the total Hamiltonian
function from the standard definition in [75] as follows:

HT ¼
Z

d3x½N ðHG þHMÞ þ βiðHGi þHMiÞ þ vNΠN þ viΠi þ vλΠλ�; ð4:10Þ

where vN ,vi and vλ are Lagrange multipliers which enforce the primary constraints. To identify the secondary constraints,
we should check the time evolution of the primary constraints using the Poisson brackets [76]. For gravity and matter parts,
the Poisson bracket is defined as

fX ;Yg≡
Z

d3x

�
δX

δN ðxÞ
δY

δΠN ðxÞ−
δY

δN ðxÞ
δX

δΠN ðxÞþ
δX

δβiðxÞ
δY

δΠiðxÞ
−

δY
δβiðxÞ

δX
δΠiðxÞ

þ δX
δλðxÞ

δY
δΠλðxÞ

−
δY
δλðxÞ

δX
δΠλðxÞ

þ δX
δγijðxÞ

δY
δΠijðxÞ−

δY
δγijðxÞ

δX
δΠijðxÞþ

δX
δϕaðxÞ

δY
δΠaðxÞ

−
δY

δϕaðxÞ
δX

δΠaðxÞ
�
: ð4:11Þ

Thus one can easily examine the following fundamental Poisson brackets that hold between the canonical coordinates and
momenta:

fλðxÞ;ΠλðyÞg ¼ δð3Þðx − yÞ;
fϕaðxÞ;ΠbðyÞg ¼ δabδ

ð3Þðx − yÞ;

fγijðxÞ;ΠklðyÞg ¼ 1

2
ðδki δlj þ δliδ

k
jÞδð3Þðx − yÞ: ð4:12Þ

Let us now consider the time evolution of the primary constraint ϒ1 ≡ Πλ ≈ 0 and check its consistency relations. We have

ϒ2 ≡ ∂tϒ1 ¼ fϒ1; HTg ¼ −
Gab

4λ2
ffiffiffi
γ

p ΠaΠb þ ffiffiffi
γ

p ðγijGab∂iϕ
a∂iϕ

b þ 1Þ ≈ 0; ð4:13Þ

which is exactly the mimetic constraint (2.12) written in the ADM decomposition.

6Following [75], the notation ≈0 stands for the constraint equations.
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From the above condition one immediately solves for the
function λ,

λ ¼
�
Gab

4
ffiffiffi
γ

p ΠaΠb

�
1=2

½ ffiffiffi
γ

p ðγijGab∂iϕ
a∂jϕ

b þ 1Þ�−1=2:

ð4:14Þ

The subsequent consistency relation gives

ϒ3 ≡ ∂tϒ2 ¼ fϒ2; HTg
¼ ϒ3ðγij;N ; βi; λ;Πij;ΠN ;Πi; vλÞ ≈ 0; ð4:15Þ

which determines the Lagrangian multiplier vλ in the terms
of phase space variables and then the chain of constraints
for primary constraint ϒ1 terminates here. This means that
the set of 2 constraintsϒ1 andϒ2 are second class. Now, by
eliminating λ and Πλ from the constraints ϒ1 ≈ 0 and
ϒ2 ≈ 0, the dimension of the phase space reduce and so the
reduced total Hamiltonian becomes

HR
T ¼

Z
d3x½N ðHG þHR

MÞ þ βiðHGi þHMiÞ

þ vNΠN þ viΠi�; ð4:16Þ

where

HR
M ≡ ffiffiffiffiffiffiffiffiffiffiffi

ΠaΠa
p

ðγij∂iϕ
a∂jϕa þ 1Þ12 þ ffiffiffi

γ
p

VðϕaÞ: ð4:17Þ

Now we need to determine the Dirac bracket between the
remaining phase space variables (γij, N , βi, Πij, ΠN , Πi).
The Dirac bracket between two phase space functions is
defined as

fX ;YgD≡fX ;Yg−
X
I;J

fX ;ΦIgðD−1ÞIJfΦJ;Yg ð4:18Þ

in which ΦI , I ¼ 1, 2 stand for the second class constraints
ϒ1 ≈ 0, ϒ2 ≈ 0, and DIJ is the matrix of the Poisson
bracket between these constraints, i.e.,

D11 ¼ fϒ1ðxÞ;ϒ1ðyÞg ¼ 0;

D12 ¼−D21 ¼ fϒ1ðxÞ;ϒ2ðyÞg ¼
ΠaðxÞΠaðxÞffiffiffi

γ
p

λ3ðxÞ δð3Þðx− yÞ;

D22 ¼ fϒ2ðxÞ;ϒ2ðyÞg

¼ 1

λ2ðxÞΠbðxÞγijðyÞ∂yiϕ
bðyÞ∂yjδ

ð3Þðx− yÞ;

−
1

λ2ðyÞΠbðyÞγijðxÞ∂xiϕ
bðxÞ∂xjδ

ð3Þðx− yÞ: ð4:19Þ

Therefore, the matrix D and its inverse D−1 can be written
schematically as [77]

D¼
�

0 A

−A B

�
; D−1 ¼

�
A−1BA−1 −A−1

A−1 0

�
: ð4:20Þ

Keeping the above forms in mind and considering the fact
that fγij;Πλg ¼ fΠij;Πλg ¼ fΠa;Πλg ¼ fϕa;Πλg ¼ 0,
one finds that the Dirac brackets coincides with the
Poisson brackets.
Now we proceed to the analysis of the consistency

relation for the primary constraints Ω1 ≡ ΠN ≈ 0 and
Γi
1 ≡ Πi ≈ 0. The time evolution of these constraints gives

the secondary constraints

Ω2 ≡ ∂tΩ1 ¼ fΩ1ðxÞ; HR
TðyÞg

¼ −ðHG þHR
MÞδ3ðx − yÞ ≈ 0;

Γi
2 ≡ ∂tΓi

1 ¼ fΓi
1ðxÞ; HR

TðyÞg
¼ −ðHG

iðxÞ þHM
iðxÞÞδ3ðx − yÞ ≈ 0: ð4:21Þ

Requiring these constraints to be time independent yields

Ω3 ¼ ∂tΩ2 ¼fΩ2ðxÞ;HR
TðyÞg

¼−N fΩ2ðxÞ;Ω2ðyÞg−βifΩ2ðxÞ;Γi
2ðyÞg≈0;

Γi
3 ¼ ∂tΓi

2 ¼fΓi
2ðxÞ;HR

TðyÞg
¼−N fΓi

2ðxÞ;Ω2ðyÞg−βjfΓi
2ðxÞ;Γj

2ðyÞg≈0; ð4:22Þ

where

fΩ2ðxÞ;Ω2ðyÞg ¼ Γi
2ðyÞ∂xiδ

ð3Þðx − yÞ
− Γj

2ðxÞ∂yjδ
ð3Þðx − yÞ ≈ 0;

fΩ2ðxÞ;Γi
2ðyÞg ¼ −Ω2∂xiδ

ð3Þðx − yÞ ≈ 0;

fΓi
2ðxÞ;Γj

2ðyÞg ¼ Γi
2ðyÞ∂xjδ

ð3Þðx − yÞ
− Γj

2ðxÞ∂yiδ
ð3Þðx − yÞ ≈ 0: ð4:23Þ

Clearly, the above Poisson algebras vanish on the constraint
surface (see Appendix A for more details). Indeed, the time
evolution of the secondary constraints Ω2 and Γi

2 determine
none of the Lagrangian multipliers and do not generate any
additional constraints. Consequently these eight constraints
Ω1, Ω2, Γi

1, and Γi
2 are all first class constraints, which are

interpreted as the generators of diffeomorphism.
Now the DOFs in phase space can be read off from the

master formula of the constrained system as [76]

DOF ¼ N − 2#1st Class − #2nd Class; ð4:24Þ
in which N is the total number of phase space variables.
In our model, we have 20 phase space variables
containing ðN ; βi; γij;ΠN ;Πi;ΠijÞ, two variables for
ðλ;ΠλÞ, and M total number of the conjugate pair
ðϕa;ΠaÞ. Correspondingly, the number of DOFs is
obtained to be
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DOF ¼ ð20þ 2þMÞ − 16 − 2 ¼ 4þM; ð4:25Þ

which corresponds to ð4þMÞ=2 physical degrees of
freedom in the configuration space.
Note that M=2 represents the dimension of the field

space manifold or equivalently the number of scalar fields.
Thus, in addition to the two gravitational degrees of
freedom of general relativity, there exists M=2 extra
physical degree of freedom. This finding implies that the
theory is free from the so-called Ostrogradsky ghost [78].
In fact, the Ostrogradsky ghost arises when the higher
derivative terms increase the number of degrees of freedom
for the system under consideration.
As an example, for two-field mimetic case spanning a 2D

curved field space (M ¼ 2), we have 4 DOFs correspond-
ing to one adiabatic mode, one entropy mode and two
tensor modes as verified perturbatively in previous section.

V. CONCLUSIONS

In this paper we have extended the idea of mimetic
gravity to multifield setup with the curved field space
manifold. Motivated from the single field case, we have
constructed the multifield mimetic setup via the conformal
transformation between the physical and the original
auxiliary metrics. Solving the eigentensor equation for
the Jacobian of such a transformation, we have found the
associated eigentensors and eigenvalues. The multifield
generalization of the mimetic scenario can be interpreted as
the singular limit of the conformal transformation by
demanding that the kinetic type eigenvalues to be zero.
At the cosmological background, as expected, the energy

density of the multifield mimetic scenario indeed plays the
role of dark mater similar to the original single field setup.
At the perturbation level, we have employed the kinematic
basis in which the perturbations are decomposed into the
tangential and the perpendicular to the field space trajec-
tory. By considering the perturbations in the kinematic
basis, we performed explicit perturbation analysis in the
spatially flat gauge for two-field mimetic case. We have
found that the perturbation mode perpendicular to back-
ground trajectory in the field space manifold, uN , is excited,
whereas the perturbation mode tangential to the back-
ground trajectory, uT , does not propagate. More precisely,
the entropy mode, originated from the extra scalar field in
our model, propagates with the sound speed equal to unity,
whereas the sound speed for the adiabatic mode is zero.
This is consistent with the fact that the mimetic background
describes a dark-matter fluid. In addition, whether or not
the entropy perturbation is healthy directly depends on the
signature of the field-space metric Gab. In the case of the
field space with an Euclidean signature, the entropy mode
is healthy, whereas in the case of the Lorentzian manifold,
the entropy perturbation suffers from the ghost and gradient
instabilities.

Although one of the modes does not propagate at the
linear perturbation level but it contributes to the physical
DOFs of the model. We further confirmed this result by
performing the full nonlinear Hamiltonian analysis of the
multifield mimetic theory and verified the correct number
of DOFs necessary to prevent the presence of the
Ostrogradsky-type ghost.
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APPENDIX A: CONSTRAINT ALGEBRA

Using the Poisson bracket relations (4.11), here we check
the constraint Ω2 ≡ −HG −HR

M and Γi
2 ≡ −Hi

G −Hi
M in a

closed algebra [75,76]. The gravity part Hi
G are the

generators of three-dimensional diffeomorphism and the
other gravity part HG is a scalar with respect to spatial
diffeomorphism [58], then HG and Hi

G satisfy

fHGðxÞ;HGðyÞg ¼ Hi
GðyÞ∂xiδ

ð3Þðx − yÞ
−Hj

GðxÞ∂yjδ
ð3Þðx − yÞ;

fHGðxÞ;Hi
GðyÞg ¼ −HG∂iδ

ð3Þðx − yÞ;
fHi

GðxÞ;Hj
GðyÞg ¼ Hi

GðyÞ∂xjδ
ð3Þðx − yÞ

−Hj
GðxÞ∂yiδ

ð3Þðx − yÞ: ðA1Þ

For the matter part, i.e.,HR
M and Hi

M, similarly one obtains

fHR
MðxÞ;HR

MðyÞg ¼ Hi
MðyÞ∂xiδ

ð3Þðx − yÞ
−Hj

MðxÞ∂yjδ
ð3Þðx − yÞ;

fHR
MðxÞ;Hi

MðyÞg ¼ −HR
M∂xiδ

ð3Þðx − yÞ;
fHi

MðxÞ;Hj
MðyÞg ¼ Hi

MðyÞ∂xjδ
ð3Þðx − yÞ

−Hj
MðxÞ∂yiδ

ð3Þðx − yÞ: ðA2Þ

Therefore, the total constraintsΩ2 ≡ −HG −HR
M and Γi

2 ≡
−Hi

G −Hi
M also form the closed algebra,

fΩ2ðxÞ;Ω2ðyÞg ¼ Γi
2ðyÞ∂xiδ

ð3Þðx − yÞ
− Γj

2ðxÞ∂yjδ
ð3Þðx − yÞ;

fΩ2ðxÞ;Γi
2ðyÞg ¼ −Ω2∂xiδ

ð3Þðx − yÞ;
fΓi

2ðxÞ;Γj
2ðyÞg ¼ Γi

2ðyÞ∂xjδ
ð3Þðx − yÞ

− Γj
2ðxÞ∂yiδ

ð3Þðx − yÞ: ðA3Þ
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APPENDIX B: QUADRATIC ACTION IN THE
COMOVING GAUGE

In comoving gauge ψ is turned on in the scalar perturba-
tions (3.3). In this respect, the equation of motion for the
nondynamical mode B leads to the following constraint,

α ¼ _ψ

H
þ ϵHQa

_ϕa
0: ðB1Þ

By imposing the above relation in the corresponding quad-
ratic action, one obtains

S2 ¼
Z

d3xdta3
�
M2

PϵH
2GbcDtQbDtQc − 2M2

Pϵ
2H3QbDtQc

_ϕb
0
_ϕc
0 −M2

bcQ
bQc

−
M2

P

a2
ϵH2Gbc∂iQb∂iQc þ 2δλ

�
ϵHQb

_ϕb
0 −DtQb

_ϕb
0 þ

_ψ

H

�
þM2

Pϵ _ψ
2

− ψð3QbVb − 6M2
PϵH

2DtQb
_ϕb
0Þ −

M2
P

a2
ϵ∂2ψ

�
ψ þ 2HQb

_ϕb
0 þ 2

_ψ

H

�

− _ψ

�
VdQd

H
− 2M2

Pϵ
2H2Qb

_ϕb
0 þ 2M2

PϵHDtQb
_ϕb
0

��
; ðB2Þ

where the mass matrixMab was defined in Eq. (3.21). Now,
we can decompose the variableQa into the directions along
and orthogonal to time evolution [79] as

Qa ¼ Qa⊥ þ _ϕa
0 π̃; ðB3Þ

with the orthogonality condition Gab
_ϕa
0Qa⊥ ¼ 0. In the

comoving gauge we impose π̃ ¼ 0. It should be noted that
the π̃ mode is the fluctuation in the direction of the time
translation, and is interpreted as the Goldstone mode
appearing from the spontaneous breaking of time trans-
lation invariant [80]. Moreover, the orthogonal modes, Qa⊥,
are gauge invariant quantities and are usually called
“isocurvature” modes [72]. Similar to the single field
inflation, one can introduce the Mukhanov-Sasaki variable
as [57]

Q̃a≡Qa−
_ϕa
0

H
ψ ¼Qa⊥−

_ϕa
0

H
ðψ −Hπ̃Þ≡Qa⊥−

_ϕa
0

H
π ðB4Þ

or equivalently

Qa ≡Qa⊥ −
_ϕa
0

H
ðπ − ψÞ: ðB5Þ

In two-field case, due to the orthogonality condition, the
mode Qa⊥ is proportional to the normal vector Na, i.e.,
Qa⊥ ∝ Na, and one takes the amplitude of Q⊥ as the
isocurvature field F [57]. Moreover, in comoving gauge

(π̃ ¼ 0) in which ψ ¼ R, one can replace π simply with the
curvature perturbation R.
In this regard, the variation of the quadratic action (B2)

with respect to δλ, in comoving gauge, yields the constraint

_R ¼ −H _θF : ðB6Þ

By imposing the above constraint and Eq. (B5) into the
quadratic action (B2), finally we arrive at the quadratic
action in comoving gauge,

S2 ¼
Z

dx3 dta3M2
PϵH

2

�
sgnð�1Þ

�
_F 2 −

1

a2
ð∂F Þ2

�

−
�

M2
NN

M2
PϵH

2
þ 2_θ2

�
F 2

þ 2_θ

a2ϵH2
F∂2Rþ 1

ϵH2a2
ð∂RÞ2

�
: ðB7Þ

It implies that the curvature perturbation R does not
propagate in our setup. Clearly, the stability of perturba-
tions depends on the signature of the metric Gab. In the
case of the field space with an Euclidean signature
[sgnðþ1Þ ¼ 1], the isocurvature mode does not suffer from
ghost and gradient instabilities, whereas in the case of the
Lorentzian manifold with sgnð−1Þ ¼ −1, the isocurvature
perturbation is pathological. In 2D flat field space, our
results are in agreement with those in [23].
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