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We revisit the mechanism of helical magnetogenesis during inflation with a parity-violating interaction
using the formalism of stochastic inflation. One of the polarizations of the gauge field undergoes tachyonic
growth, leading to the generation of helical magnetic fields. We obtain the Langevin equations associated
with the electromagnetic fields, which are in the form of Ornstein-Uhlenbeck stochastic differential
equations. Consequently, the tachyonic growth of the helical magnetic fields is balanced by a mean-
reverting process of stochastic dynamics such that the magnetic fields settle down to an equilibrium state
with the amplitude smaller than what is obtained in the absence of the stochastic noises. Working in the
parameter space of the model where both the backreaction and the strong coupling problems are under
control, the model does not provide a large enough seed to be amplified by the galactic dynamo as the
source of the magnetic fields observed on cosmological scales.
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I. INTRODUCTION

Magnetic fields are present throughout the observable
Universe: in stars, in the interstellar medium, in galaxies,
and in clusters of galaxies. However, from an astrophysical
point of view, the origin of magnetic fields on large
cosmological scales is still mysterious. On all scales, an
initial magnetic seed with sufficient strength is needed.
Seed fields may be generated with different strengths due to
a variety of processes [1,2]. There has been a lot of debate
about whether seed fields can be produced by battery
mechanisms (charge separation processes, separation of
charges, and production of currents) during galaxy and
cluster formation [3,4], or whether seed fields with a
primordial origin are needed. Both scenarios are currently
under active consideration [5–9]. Several mechanisms have
been proposed for the origin of primordial seed fields,
ranging from cosmological phase transitions [10] to the
inflationary production of magnetic fields [11–24]. For a
review of proposed scenarios, we refer the reader to
Refs. [8,25,26].
We are interested in two classes of observations at two

different scales that put constraints on magnetogenesis
scenarios. The first is galactic magnetic fields (GMFs) with
amplitudes of the order of ∼μG, and the second is the lower
bound of 10−16 G on intergalactic magnetic fields (IGMFs)
on Mpc scales. The mechanism behind the generation of
magnetic fields remains mysterious, not only on scales with

a large correlation length, LB ≳ 1 Mpc [7,27], but also on
smaller scales, LB ≲ 1 Mpc. The origin of an initial
magnetic seed with sufficient strength (to be amplified
by either astrophysical or primordial processes) is still
unknown.
While astrophysical origins for the observed magnetic

fields are not excluded, the detection of magnetic fields
with a correlation length ≳1 Mpc in cosmic voids [28–32]
has rekindled interest in the construction of inflationary
mechanisms of magnetogenesis. Cosmic inflation allows us
to imagine that quantum fluctuations of magnetic fields are
stretched beyond the horizon, which later seeds the
observed magnetic fields with a very large coherent length
[23,24], an opportunity which is not available in models of
the early Universe without inflation. However, the con-
formal invariance of Maxwell theory implies that magnetic
fields cannot be generated in an expanding Universe
[23,24,33]. A simple way to generate the magnetic fields
during inflation is to introduce an interaction between the
inflaton and the electromagnetic fields that breaks the
conformal invariance. Since the violation of gauge invari-
ance generally gives rise to ghostlike instabilities [34,35],
the mechanisms that preserve gauge invariance while
breaking the conformal invariance have gained most of
the attention.
The best-studied model of inflationary magnetogenesis

is the so-called Ratra model1 [24,36–50], in which an
interaction between the electromagnetic field and the
inflaton (or a spectator) field is introduced. The action
contains the nonminimal coupling I2ðϕÞFμνFμν, where ϕ is*talebian@ipm.ir
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the inflaton field, Fμν is the electromagnetic field strength,
and the conformal coupling IðϕÞ is added to break the
conformal invariance. The elementary versions of the
model suffer from two main problems: the strong coupling
problem, and the backreaction problem [36,38–42]. For
some ranges of the parameter space, both problems
are bypassed, but in those cases the generated magnetic
field is not stronger than 10−32 G [39] at 1 Mpc today.
Another well-studied mechanism is the combination of a
Ratra-like coupling with an axionlike coupling—i.e.,
L ⊇ I2ðϕÞðFμνFμν þ γFμνF̃μνÞ—in which γ is a constant.
This Lagrangian generates helical magnetic fields. After
inflation and before recombination, as the plasma is highly
turbulent with a large Reynolds number, the inverse
cascade process plays a significant role in the subsequent
evolution of magnetic fields and their coherence length
[51]. Taking into account the constraints from non-
Gaussianities [52] and induced gravitational waves [53]
in this model, the scenario can satisfy the observational
lower bounds on IGMFs while providing a seed for the
galactic dynamo to generate GMFs. Caprini and Sorbo [53]
have claimed that the model can provide a magnetic field
amplitude of the order of 10−19 G on the Mpc scale [53].
This comes at the price of a low energy scale of inflation,
ranging from 105 to 1010 GeV.
In our previous work [54], we have studied the effects of

electromagnetic noises on the generation of primordial
magnetic fields in the Ratra-like model using the mechanism
of stochastic inflation. It was shown therein that the stochas-
tic effects can play important roles which affect the previous
estimations on the amplitude of backreactions on the
inflation dynamics, yielding large enough seeds formagneto-
genesis. Motivated by the nontrivial contributions of sto-
chastic noises on the system containing gauge fields, one
may expect that the stochastic effects can play important
roles in axionmagnetogenesis setup aswell. In this paper, we
revisit the axion magnetogenesis model, taking into account
the stochastic noises of the electromagnetic fields. We show
that the stochastic effects indeed can significantlymodify the
previous results for helical magnetogenesis.
The rest of the paper is organized as follows: In Sec. II,

the magnetogenesis mechanism in a model of inflation with
the parity-violating interaction is reviewed, and the relevant
results of previous works—e.g., Refs. [52,53]—are pre-
sented. In Sec. III, we revisit the setup, taking into account
stochastic noises, and we derive the Langevin equations of
the electric and magnetic fields and investigate the param-
eters of the model. In Sec. IV, we discuss the observational
constraints on the magnetic fields at the present time and
search the parameter space of the model where the
constraints are satisfied. Section V is devoted to the
summary and conclusions, while many technicalities asso-
ciated with the stochastic noises and their correlations and
the cosmological evolution of the magnetic fields are
relegated to the Appendixes.

II. THE MODEL

The setup is based on a hybrid of the Ratra and axion
models. The electromagnetic Lagrangian density LEM
consists of a Uð1Þ gauge field Aμ coupled to an axionic
inflaton field ϕ via

LEM ¼ −
1

4
I2ðϕÞ

�
FμνFμν þ γ

2
FμνF̃μν

�
; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and F̃μν ≡
ϵμναβ

2
ffiffiffiffi−gp Fαβ is its dual, with ϵ0123 ¼ 1. Here, we choose the

constant parameter γ < 0 without loss of generality. Since
the energy density of the electromagnetic field is exponen-
tially diluted during the quasi–de Sitter inflationary expan-
sion, the conformal coupling IðϕÞ is added to break the
conformal invariance. With this conformal coupling, the
energy is continuously pumped from the inflaton sector to
the gauge field sector, so the electromagnetic energy
density survives the exponential dilution. Although the
conformal coupling is a function of ϕ, the latter itself is a
function of time, so we consider the following pheno-
menological ansatz for the conformal coupling:

IðτÞ ¼ Ie

�
τ

τe

�
n
; ð2:2Þ

where the conformal time τ is related to the cosmic time t
via the scale factor a as in dt ¼ adτ, τe and Ie are the
corresponding terminal values at the end of inflation. This
coupling was employed extensively in the context of
anisotropic inflation [55–62] and the generation of primor-
dial magnetic fields during inflation [24,36–50]. The
spectral index of the magnetic field is controlled by the
parameter n, so a scale-invariant magnetic field can be
obtained for the cases n ¼ 3 or n ¼ −2.
To study magnetogenesis in the presence of the

Lagrangian LEM [Eq. (2.1)], we start with the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ þ LEM

�
;

ð2:3Þ

in which R is the Ricci scalar and MPl ≡ ð8πGÞ−1
2 is the

reduced Planck mass with G being the Newton constant.
We assume that the electromagnetic fields are purely

excited quantum mechanically. This means that the
electromagnetic fields have no background components
so they do not contribute to the background energy density.
The background is given by a spatially flat, Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe, described
by the line element
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ds2 ¼ a2ðτÞð−dτ2 þ dx · dxÞ; ð2:4Þ

in which the relation a ≃ −ðHτÞ−1 can be used with good
accuracy, where H is the Hubble expansion rate during
inflation.
It is more convenient to work in the temporal Coulomb

gauge A0 ¼ ∂iAi ¼ 0 and define the electric and magnetic
fields as

Ei ≡ −I
∂τAi

a2
; Bi ≡ I

ϵijk∂jAk

a2
: ð2:5Þ

With the above definitions, the Friedmann and Klein-
Gordon (KG) equations take the following form:

3M2
PlH

2 ¼ 1

2
_ϕ2 þ V þ ρEM;

ρEM ≡ 1

2
ðE2 þ B2Þ; ð2:6Þ

ϕ̈þ 3H _ϕ −
∇2

a2
ϕþ V;ϕ ¼ SEM;

SEM ≡ 1

_ϕa

I0

I
ðE2 − B2 − 2γE · BÞ; ð2:7Þ

where a dot (prime) denotes the derivative with respect to
the cosmic time t (conformal time τ). Note that ρEM
represents the electromagnetic field energy density, while
SEM is the backreaction source of the electromagnetic fields
on the KG field equation.
Finally, the Maxwell equations with the Bianchi iden-

tities read as

_BþHð2þ nÞB ¼ −
∇ × E

a
; ð2:8Þ

_Eþ γ _BþHð2 − nÞðEþ γBÞ ¼ −
∇ × ðBþ γEÞ

a
: ð2:9Þ

There are two important issues which should be taken
into account when constructing a scenario of magneto-
genesis during inflation: the strong coupling problem and
the electric field backreaction problem. Looking at the
electromagnetic action, we realize that the gauge coupling
is IðϕÞ−1, so in order for the perturbative field theory to be
trusted, we require that IðϕÞ ≥ 1 for all time during
inflation. With the phenomenological ansatz given in
Eq. (2.2), we need n > 0 in order to avoid the strong
coupling problem. Furthermore, we set Ie ¼ 1 in Eq. (2.2)
such that we recover the standard Maxwell theory at the end
of inflation when the inflaton decays through the (p)
reheating process. The backreaction problem, on the other
hand, is associated with the fact that for some regions of
parameter space, the electric field is enhanced so efficiently
that its energy density can dominate over the inflaton

potential, terminating inflation prematurely [39]. As stud-
ied in Ref. [54], to avoid the backreaction and the strong
coupling problems, we require 1

2
< n < 2, which will be

considered in this work as well. As studied in Ref. [54] (see
also Refs. [63,64]), stochastic effects have important
implications for these two problems. The stochastic noises
cause the solutions of electromagnetic fields to settle down
to an equilibrium state in such a way that (for an acceptable
range of parameter space) not only are the backreaction
effects under control, but also an acceptable amount of
magnetic field is generated.
To have the backreaction effects under control, we

assume that the gauge field contributions do not destroy
the dynamics of the inflaton field or the background
geometry given in Eqs. (2.6) and (2.7), respectively.
This means that

ΩEM ≡ ρEM
3M2

PlH
2
≪ 1; ð2:10Þ

RS≡
���� SEM
3H _ϕ

���� ≪ 1: ð2:11Þ

Both of the above conditions must be satisfied during
inflation. We check these conditions in the context of
stochastic formalism and specify the allowed regions of the
parameter space.
To study the behavior of electromagnetic fields in this

model, we look at the quantum fluctuations of the gauge
field during inflation. Defining the canonical field as
Ãi ≡ IAi and going to the Fourier space, we expand Ãi
in terms of the creation and annihilation operators ak and
a†k as follows:

Ãi ¼
X
λ¼�

Z
d3k
ð2πÞ3 e

λ
i ðkÞðvk;λðτÞak;λ þ v�k;λðτÞa†−k;λÞeik:x;

ð2:12Þ

in which vk;λ is the mode function and eλ are the circular
polarization vectors satisfying the relations

eλðk̂Þ:e�λ0 ðk̂Þ ¼ δλλ0 ;

k̂:eλðk̂Þ ¼ 0;

ik̂ × eλ ¼ λeλ;

eλðk̂Þ ¼ e�λð−k̂Þ;X
λ¼�

eλi ðk̂Þeλ�j ðk̂Þ ¼ δij − k̂ik̂j: ð2:13Þ

Substituting Eq. (2.12) into the action and using ansatz
(2.2), the equation for the mode function is given by
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v″k;λ þ
�
k2 þ 2λξ

k
τ
−
nðn − 1Þ

τ2

�
vk;λ ¼ 0; ξ≡ −nγ:

ð2:14Þ

Here we have defined the instability parameter ξ > 0
[remember that we have chosen γ < 0 in the Lagrangian
of Eq. (2.1)]. As we shall see, ξ is one key parameter of the
model which controls the strength of tachyonic instability
for the gauge field perturbations. In the previous works of
magnetogenesis based on the setup of Eq. (2.1) [53,65],
ξ has been taken to be in the range ξ ∼Oð10Þ.
The mode function vk;λ satisfying Eq. (2.14) evolves in

three stages as follows: During early times, τ → −∞, the
ultraviolet term k2 dominates, and the gauge quanta are in
their Bunch-Davies vacuum. Later on, before horizon
crossing, the term proportional to ξ becomes important
for the subhorizon modes with jkτj≲ ξ. Since τ < 0 during
inflation, the mode function with positive helicity is
exponentially amplified, whereas the mode of opposite
helicity does not experience such an amplification. In order
for an efficient enhancement to take place, one requires
ξ ≫ 1, in which a net chirality in the gauge field perturba-
tions is generated. Finally, as τ → 0, the last term in the
parenthesis takes over, as in conventional models of
inflation based on scalar field dynamics.
The above three-stage processes can be addressed by a

function with three arguments such as the Whittaker
functions. Actually, the solutions to this equation are given
by a linear combination of Whittaker functions Wμ;νðzÞ
and Mμ;νðzÞ with the coefficients determined by the
initial conditions. Imposing the standard Bunch-Davies
solutions at early times2 −kτ → ∞, the solution of
Eq. (2.14) is given by

vk;λðτÞ¼
e
λπξ
2ffiffiffiffiffi
2k

p Wμ;νð2ikτÞ; μ≡−iλξ; ν≡n−1=2: ð2:15Þ

For γ ¼ 0, it is easy to check that the above mode function
coincides with the well-known mode function in terms of
the Hankel functions3 used in earlier studies, such as in
Ref. [54].
During the second stage, in which the second term in the

parenthesis in Eq. (2.14) dominates, the subhorizon modes
with λ ¼ þ are amplified. In the regime jkτj ≪ ξ, the
solution (2.15) is approximated to [53,66]

vþk ðτÞ≃
ffiffiffiffiffiffiffiffiffi
−
2τ

π

r
eπξK2νð

ffiffiffiffiffiffiffiffiffiffiffiffi
8ξjkτj

p
Þ; jkτj≪ξ;ξ≫1; ð2:16Þ

where Kν is the modified Bessel function of the second
kind. Subsequently, for jkτj ≪ 1=ξ, we obtain

vþk ðk; τÞ ≃
ffiffiffiffiffiffiffiffiffiffi
−

τ

2π

r
eπξΓð2n − 1Þj2ξkτj−ðn−1=2Þ;

jkτj ≪ 1=ξ ≪ 1: ð2:17Þ

As seen, the amplitude of the gauge field is exponentially
enhanced via the instability parameter ξ.
Our first task is to calculate the amplitude of the

generated magnetic field, its correlation length, and the
spectral index at the time of the end of inflation τ ¼ τe.
In Appendix A, we have defined these quantities in
Eqs. (A12), (A11), and (A14), denoted by BðτeÞ, LðτeÞ,
and nB, respectively. Assuming an instantaneous reheating
scenario after inflation and denoting the values of BðτeÞ and
LðτeÞ in the absence of stochastic effects by B̄rh and L̄rh,
the intensity of the magnetic field is found to be4 [53]

B̄rh ≃ 1.9× 1053 G

�
H
MPl

�
2

eπξξ−5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð4þ 2nÞΓð6− 2nÞ

p
;

ð2:18Þ

while the correlation scale is given by [53]

L̄rh ≃
18π

ð3þ 2nÞð5 − 2nÞ
ξ

H
; ð2:19Þ

and the magnetic spectral index on large scales reads as

nB ¼ 5

2
−
����n −

1

2

����: ð2:20Þ

Therefore, the cases n ¼ 3 and n ¼ −2 lead to magnetic
fields with scale-invariant spectra. As mentioned before,
to keep the backreaction and the strong coupling problems
under control, we require 1

2
< n < 2, so Eq. (2.20)

simplifies to

nB ¼ 3 − n: ð2:21Þ

For large enough values of ξ, the gauge field perturba-
tions can induce sizeable gravitational waves [53] and
non-Gaussianities [52] which are under observational
constraints on CMB scales [67]. Therefore, the tensor-to-
scalar ratio rt and the equilateral configuration non-
Gaussianity fequilNL can be used to express the Hubble
parameter H in terms of the model parameters n and ξ.
According to Refs. [52,53], we have

2Wμ;νðzÞ → zμe−z=2 for z → ∞.
3W0;νðzÞ ¼

ffiffiffiffi
πz

p
2
iνþ1Hð1Þ

ν ðiz
2
Þ, in which Hð1ÞðxÞ is the Hankel

function of the first kind.

4We estimate the reduced Planck mass in units of gauss as
M2

Pl ≃ 3 × 1056 G.

TALEBIAN, NASSIRI-RAD, and FIROUZJAHI PHYS. REV. D 105, 023528 (2022)

023528-4



H
MPl

≃ e−πξ
�
rtPζ

ptðnÞ
�

1=4
ξ3=2; ð2:22Þ

H
MPl

≃ e−πξ
�
fequilNL P2

ζ

pfðnÞ
�

1=6
ξ3=2; ð2:23Þ

where Pζ ≃ 2.1 × 10−9 is the amplitude of the scalar
perturbations, and the functions ptðnÞ and pfðnÞ are
defined in Refs. [52,53], respectively. The above relations
are obtained for ξ ∼Oð10Þ, which leads to a very small
energy scale of inflation. However, in the following
analysis and in the presence of stochastic noises, we show
that for ξ ∼Oð10Þ there are significant backreactions on the
Klein-Gordon equation which spoil the inflationary dynam-
ics. To bypass this issue, the upper bound ξ≲ 3 must be
considered, which is consistent with the findings of
Refs. [66,68]. We confirm that for ξ≲ 3, the usual vacuum
tensor perturbations have the dominant contribution in rt,
so that the energy scale of inflation can take higher values,
in contrast to the conclusion of Ref. [52].
The above was a brief review of inflationary magneto-

genesis in the setup with the action of Eq. (2.3) in the
conventional approach and in the absence of stochastic
effects. In the next section, we revisit these conclusions in
the context of stochastic inflation.

III. STOCHASTIC ANALYSIS

In this section, we study the magnetogenesis mechanism,
taking into account the effects of stochastic noises. We
employ the formalism of stochastic inflation, which is an
effective theory for the long-wavelength modes [69–71]. In
this formalism, the quantum fields are decomposed into
long- and short-wavelength modes. The long modes are the
coarse-grained perturbations on super-Hubble scales, while
the short modes act as the stochastic forces for the evolution
of the long modes at the time when they leave the Hubble
horizon. For light scalar perturbations, the amplitude of these
stochastic noises is H=2π, while for the electromagnetic
perturbations they show more nontrivial properties [54,64].
To perform stochastic analysis, we decompose the

electric and magnetic fields into long and short modes
[72–74]. Denoting these fields collectively as X ¼ Ei; Bi,
we write

X ¼ Xl þ
ffiffiffi
ℏ

p
Xs; ð3:1Þ

where the IR (Xl) and UV (Xs) parts are decomposed via
the step function Θ as

Xs;lðx; tÞ ¼
Z

d3k
ð2πÞ3 Θð�k ∓ kcÞeik:xX̂kðtÞ; ð3:2Þ

where the upper (lower) sign in Eq. (3.2) corresponds to the
short (long) modes and kc ≡ εaðtÞH, with ε ≪ 1 being a

small cutoff parameter. In addition, X̂k is the quantum
operator expanded as

X̂k ¼ akXk þ a†−kX−k;

½ak0;λ0 ; a
†
k;λ� ¼ ð2πÞ3δλλ0δ3ðk − k0Þ; ð3:3Þ

where ak and a
†
k are the usual ladder operators and Xk is the

Fourier component of the fields. Note that these ladder
operators are the same for the electric, magnetic, and gauge
fields.
To perform stochastic calculus, it is more convenient to

use the dimensionless variables X ¼ B; E associated with
the long-mode perturbations of the electric and magnetic
fields defined via

X ≡ Xl

HMPl
: ð3:4Þ

Substituting Eq. (3.1) into Eqs. (2.8) and (2.9) and
expanding for the long modes—i.e., k < kc—we find
the Langevin equations for the electric and magnetic fields.
More specifically, neglecting the terms proportional to the
gradients of the fields or the slow-roll parameters, we
obtain

B0
i ¼ −ð2þ nÞBi þ σ̂Bi ðNÞ; ð3:5Þ

E0
i ¼ −ð2 − nÞEi þ 2nγBi þ σ̂Ei ðNÞ; i ¼ 1; 2; 3; ð3:6Þ

where the index i represents the spatial components of the
fields, and the prime here and below denotes the derivative
with respect to the e-folding number, dN ¼ Hdt. The
quantum noises σ̂XðNÞ, emerging from the UV modes,
are defined as

σ̂Xðx; tÞ ¼ −
dkc
dt

Z
d3k
ð2πÞ3 δðk − kcÞeik:xX̂kðtÞ: ð3:7Þ

Both the electric and magnetic noises are determined via
the mode function of the gauge field [Eq. (2.15)]. We are
ultimately interested in the superhorizon behavior of the
above mode function, which controls the behavior of
quantum noises σ̂X. The properties of the electromagnetic
noises and their correlations are studied in Appendix B.
Here, we rewrite Eq. (B9) in terms of the number of
e-folds as

hσ̂Xi ðN1Þσ̂Xj ðN2Þi ¼ DX
2δijδðN1 − N2Þ; ð3:8Þ

where DX is the diffusion coefficient defined by

DX
2 ≡ 1

18π2
dk3c
dN

X
λ

jXλðN; kcÞj2: ð3:9Þ

PRIMORDIAL HELICAL MAGNETIC FIELDS FROM … PHYS. REV. D 105, 023528 (2022)

023528-5



Using the small argument behavior of the mode function
[Eq. (2.15)],5 the diffusion coefficients have been calcu-
lated in Eq. (B19), which for ξ ≫ 1 yields6

DB ≃
eπξ

ffiffiffi
ξ

p

π
ffiffiffiffiffiffi
3π

p Γð2n − 1Þ
2n

H
MPl

εnB; ð3:10Þ

DE ¼ DB

ð2n − 1Þ
ε

; ð3:11Þ

where the magnetic field spectral index is defined in
Eq. (2.21): nB ¼ 3 − n.
There are some important comments to discuss here. First,

the amplitude of the diffusion coefficient of the electric field
is stronger than that of themagnetic field by a factor ε−1. This
is the reason why it is always the backreaction from the
electric field that spoils the slow-roll inflation. Second,
while the parameter ε is employed in our analysis as a
bookkeeping parameter to separate the long and short
modes, it appears on the diffusion coefficients as well.
Curiously, the dependences on ε for both diffusion coef-
ficients are exactly determined by the scale dependency of
each perturbations—i.e.,DB (DE) is independent of ε when
n ¼ 3 (n ¼ 2). Aswementioned in the previous section, it is
a well-known result that the magnetic (electric) fields are
scale invariant for n ¼ 3 (n ¼ 2).
Since the quantum nature of these noises disappears for

ε ≪ 1 (see Appendix A for more details), one can express
the quantum noises σ̂XðNÞ in terms of the classical
normalized white noise σðNÞ as

σ̂Xi ðNÞ≡DXσiðNÞ; ð3:12Þ
where

hσiðNÞi ¼ 0;

hσiðN1ÞσjðN2Þi ¼ δijδðN1 − N2Þ: ð3:13Þ
Now, we define a three-dimensional (3D) Wiener (or

Brownian) process with the components Wi associated
with the noise σi via

dWiðNÞ≡ σiðNÞdN; ð3:14Þ

and we rewrite the stochastic differential equations (3.5)
and (3.6) in the following form:

dBi ¼ −ð2þ nÞBidN þDBdWiðNÞ; ð3:15Þ

dEi ¼ ð−ð2 − nÞEi þ 2nγBiÞdN þDEdWiðNÞ: ð3:16Þ

The second terms in each of the above equations
represent the effect of the random noises, while the first
terms, proportional to dN, represent the classical drift term.
For 1=2 < n < 2, both of the above classical drift terms are
negative, and the system is in the form of Ornstein-
Uhlenbeck (OU) stochastic differential equations. The
main feature of the OU process is that the frictional drift
force can be balanced by the random force, so the stochastic
fields B and E admit equilibrium states with long-term
means and bounded variances (a mean-reverting process).
To be more precise, an OU process is a stationary Gauss-
Markov process in which there is the tendency for the
system to drift toward the mean value, with a greater
attraction when the process is further away from the mean.
For this process, the explicit dependence of the mean on the
initial conditions is washed out over time, and the system
can be fully described by the drift and the diffusion
coefficients.
To solve the coupled Langevin equations (3.15) and

(3.16), we go to a basis in which the equations are
decoupled (see Appendix C for more details). We have
assumed that the electromagnetic fields are purely excited
quantum mechanically. This means that the electromag-
netic fields have no background components, so we set the
initial conditions for the electromagnetic fields to zero in
Eqs. (C11) and (C12), obtaining

BiðNÞ ¼ DB

Z
N

0

eðnþ2ÞðN0−NÞσiðN0ÞdN0; ð3:17Þ

EiðNÞ¼−γBiðNÞþðDEþγDBÞ
Z

N

0

e−ðn−2ÞðN0−NÞσiðN0ÞdN0:

ð3:18Þ

Our main goal is to calculate various cases of the
electric and magnetic correlation function (stochastic aver-
ages). Using the following properties of the stochastic
integrals [75],�Z

N0

0

GðNÞdWðNÞ
Z

N0

0

FðNÞdWðN0Þ
	

¼
Z

N0

0

GðNÞFðNÞdN; ð3:19Þ
�Z

N0

0

GðNÞdWðNÞ
	

¼ 0; ð3:20Þ

we can calculate the mean and the variance associated with
BiðNÞ and EiðNÞ. More specifically,

hBii ¼ hEii ¼ 0; ð3:21Þ

hB2
i ðNÞi ¼ DB

2

2ðnþ 2Þ ð1 − e−2ðnþ2ÞNÞ; ð3:22Þ
5Wμ;νðzÞ → z1=2−νΓð2νÞ=Γðν − μþ 1=2Þ for z → 0.
6We have used the approximation jΓðxþ iyÞj2 ≃

π=ðy sinhðπyÞÞ for y ≫ x.
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hE2
i ðNÞi ¼ γ2hB2

i ðNÞi− γ

2
DBðDE þ γDBÞð1− e−4NÞ

þ ðDE þ γDBÞ2 ×

 1−e−2ð2−nÞN

2ð2−nÞ ; n ≠ 2

N; n¼ 2
: ð3:23Þ

A. Backreaction condition

Having calculated hB2
i ðNÞi, we can go ahead to look for

the predictions of the model for the primordial magneto-
genesis. However, before that, we should check the back-
reaction conditions induced on the background dynamics,
parametrized by Eqs. (2.10) and (2.11). For the case ξ < 1,
there is no tachyonic instability from the parity-violating
term and, as shown in Ref. [54], the system is under control
for the range 1

2
< n ≤ 2. However, in the current setup with

ξ > 1, new backreactions from the tachyonic enhancement
of the þ mode of the gauge field can be induced. As we
demonstrate below, for keeping the backreactions under
control, one actually requires ξ≲ 3.
Using the definitions of E and B in Eq. (3.4), the

backreaction constraints [Eqs. (2.10) and (2.11)] are
given by

ΩEM ¼ 1

6
ðE2 þ B2Þ ≪ 1; ð3:24Þ

RS ¼
n
6ϵϕ

ðE2 − B2 − 2γE · BÞ ≪ 1; ð3:25Þ

where the magnitudes of the fields are given by X ≡
ðP3

i¼1X
2
i Þ1=2 for X ¼ B; E, and the inflaton slow-roll

parameter ϵϕ is defined as

ϵϕ ≡
_ϕ2

2M2
PlH

2
: ð3:26Þ

Note that in general, ϵϕ differs from the Hubble slow-roll
parameter ϵH ≡ − _H=H2. Combining Eqs. (2.6) and (2.7),
we find that

ϵH ¼ ϵϕ þ 2ΩEM −
2nγ
3

E · B: ð3:27Þ

As seen, these two slow-roll parameters do not coincide
in general, especially when the backreaction effects are
significant.
Now, in order to estimate the backreaction effects, we

note that the constraint of Eq. (3.25) is stronger than
Eq. (3.24) by a slow-roll factor ΩEM ≃ ϵϕRS. This means
that the backreactions from the electromagnetic field affect
the dynamics of the inflaton field sooner than the back-
ground expansion rate. Therefore, the fractional energy
density of the electromagnetic fields is subdominant, and
the constraint RS ≪ 1 must be checked first. For a fixed
cutoff parameter ε, this constraint leads to a limited

parameter space for n and ξ. In Fig. 1, we have plotted
the allowed regions where the condition RS ≪ 1 is satisfied
in the parameter space ξ − n. It is found that for the entire
range 1=2 < n < 2, we require ξ≲ 3 in order for the
backreaction RS ≪ 1 to be satisfied. Note that the con-
straint ξ≲ 3 is obtained in Refs. [66,68] as well. In this
range of parameter space, we can safely consider ϵH ≃ ϵϕ to
a very good accuracy.
Now, let us consider a slightly different setup, as studied

in Ref. [52], in which a spectator field σ other than the
inflaton field is coupled to the FF̃ term and I ¼ IðσÞ. Then,
one can parametrize the backreaction of the gauge field on
the KG equation of the test field as

Rσ
S ≡ n

6ϵσ
ðE2 − B2 − 2γE · BÞ; ð3:28Þ

where the test field slow-roll parameter is defined as

ϵσ ≡ _σ2

2M2
PlH

2
: ð3:29Þ

Demanding that the test field remain subdominant with
respect to the inflaton field, we require ϵσ < ϵϕ. Therefore,
we find that Rσ

S > RS, so that the maximum value of ξ
allowed is even less than in the case when the running field
is the inflaton field itself. In other words, the backreaction
is stronger for the test field σ coupled to the gauge field.
In summary, we need ξ≲ 3 to meet the backreaction

condition. This is in contrast with the conclusion of
Refs. [52,53], in which ξ can take values in the range
ξ ∼ 10–20 by fine-tuning the value of H=MPl to a very
small value, say H=MPl ∼ 10−20, to get the desired value of

FIG. 1. The allowed parameter space of ξ − n where the
backreaction effects are not significant—i.e., RS < 0.1. To be
conservative, for all values of ε, the backreactions can be
neglected in the interval 1

2
< n < 2 when ξ≲ 3.
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the observed magnetic fields. This value for the Hubble
parameter during inflation leads to ϵϕ ∼ 10−32, which
violates the backreaction constraint Eq. (95) of Ref. [52]
even for an inflaton field.

B. Equilibrium state

We see from Eq. (3.22) that the magnetic field experi-
ences an equilibrium state in which the second term in the
bracket falls off exponentially [54]. Note that this is
because the magnetic field equation [Eq. (3.15)] is in the
form of an OU stochastic differential equation where the
classical drift term with a negative coefficient is balanced
by the diffusion coefficient term.
The time when the magnetic field reaches its equilibrium

is estimated as [54]

NB
eq ≈

ln 10
nþ 2

; ð3:30Þ

when the exponential term in Eq. (3.22) falls to less than
10−2. The amplitude of each component of the dimension-
less magnetic fields in the stationary state is given by

hB2
i ieq ¼

DB
2

2ðnþ 2Þ : ð3:31Þ

On the other hand, the situation for the electric field is
very different, as can be seen from Eq. (3.23). In the
following, we study the evolution of the electric field in
three different regimes: 1

2
< n < 2, n ¼ 2, and n > 2.

(1) 1
2 < n < 2
In this regime, the electric field does not grow

with time and admits an equilibrium state. The
timescale when the components of the electric field
reach the equilibrium state is estimated as

NE
eq ≈

2 ln 10
2 − n

; ð3:32Þ

with the equilibrium magnitude

hE2
i ieq ¼ γ2hB2

i ieq þ
ðDE þ γDBÞ2
2ð2− nÞ −

γDBðDE þ γDBÞ
2

≃
DE

2

2ð2− nÞ : ð3:33Þ

Here, we have neglected terms related to DB in favor
ofDE becauseDB is smaller thanDE by a factor of ε,
as seen from Eq. (B19).
Since the electromagnetic field falls into the sta-

tionary state for the parameter space 1=2 < n < 2,
one can use the alternative approach of a probability
distribution function to study the system. This inde-
pendent approach is studied in Appendix D.

(2) n ¼ 2
In this special case, the electric field becomes

scale invariant—i.e., DE does not depend on ε—and
the evolution of the components of the electric field
is given by

dEi ¼ −
ξDBffiffiffi
2

p dN þDEdWiðNÞ: ð3:34Þ

At the end of inflation, N ≃ 60, the condition (3.25)
is violated for ξ≳ 3. This is the hallmark of back-
reaction problems induced by electric fields, as
studied in previous literature using different ap-
proaches.

(3) n > 2
In this case, the electric field grows exponentially

in time:

hE2
i ðNÞi ≃ ðDE þ γDBÞ2

2ðn − 2Þ e2ðn−2ÞN

≃
H2ξ sinhð2πξÞ
6π3M2

Plðn − 2Þ
����Γð2nÞ2n

����2
�
eN

ε

�
2ðn−2Þ

:

ð3:35Þ

Since ε ≪ 1, ξ≳ 1, there may be a very narrow band
of the parameter space in which the backreaction
conditions (3.24) and (3.25) are satisfied initially.
But then the condition (3.25) is violated, and
inflation is spoiled quickly. This again indicates
the difficulties with the backreaction problem in this
setup induced by the electric field.

Hereafter, we only consider the range 1
2
< n < 2 where

both the magnetic and electric fields experience equilib-
rium states with the amplitudes in Eqs. (3.31) and (3.33),
respectively. Also, as mentioned before, the amplitude of
the magnetic field scales with ε like εnB , while that of the
electric field is stronger, scaling like εnB−1.
Now, let us have a closer look at the parameter ε. As we

discussed in our previous analysis [54], a lower bound on ε
can be found in the coarse-graining process by considering
the longest wavelength observable on the CMB scale,
kCMB ≃ 10−4 Mpc−1. On the other hand, for the magneto-
genesis mechanism, we are interested in the mode kMpc

associated with the physical length scale ∼Mpc today.
Then, the smallest value for ε is given by

εMpc ≃
kCMB

kMpc
¼ 10−5: ð3:36Þ

However, a larger value for ε can be obtained by replacing
kCMB with the Planck observation’s pivot scale k� ¼
0.05 Mpc−1, which results in εMpc ≃ 10−2. Therefore, we
consider εMpc in the range 10−2 − 10−5 in the rest of the
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paper, which is also small enough to meet the criteria of the
long and short decomposition of stochastic analysis.

C. Magnetic field at the end of inflation

The stationary value of the dimensionlessmagnetic fieldB
is given in Eq. (3.31), which will be used to calculate the
amplitude of the magnetic fields at the end of inflation. For
simplicity, we assume an instantaneous reheating, so we use
the subscript “rh” to indicate the corresponding value at the
end of inflation. To proceed further, the characteristic
properties of the primordial magnetic fieldmust be translated
into the stochastic language. By “characteristic properties,”
wemean the correlation scale Lrh, the magnetic strengthBrh,
and the spectral index nB, which, in the context of the
conventional approach, are defined in Eqs. (A11), (A12), and
(A14), respectively. The dictionary we use is as follows:
(1) In the stochastic approach, we deal with the

coarse-grained magnetic field instead of the Fourier
components. Therefore, the magnetic strength
[Eq. (A12)] at the end of inflation is translated to

Brh ≡
ffiffiffiffiffiffiffiffiffi
hB2

l i
q

; ð3:37Þ

in which Bl ≡HMPlBrh is IR—the part (long mode)
of the magnetic field which is defined via the
relation (3.2). Since for the parameter space 1=2 <
n < 2 the magnetic field components fall into the
equilibrium state [Eq. (3.31)], the coarse-grained
magnetic field at the end of inflation is given by

Brh ¼ HMPl

�X3
i¼1

hB2
i ieq

�
1=2

≃
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p HMPlDB; ð3:38Þ

in which the relation (3.31) has been used for the
component of the magnetic field in the equilibrium
state. Now, using the value ofDB given in Eq. (3.10),
we obtain Brh ∝ H2eπξεnB .

(2) The correlation scale [Eq. (A11)] can be used in the
stochastic approach as well. Therefore, integrating
over the modes jkτj≲ ξ, we obtain

Lrh ≃
18π

ð3þ 2nÞð5 − 2nÞ
ξ

H
: ð3:39Þ

This scale is roughly given by the scale at which
the power spectrum peaks. At the end of inflation,
the correlation scale Lrh is much smaller than the
smoothing scale Lε ∼ 2π=ðεaHÞ by a factor of ε=ξ.

(3) The spectral index [Eq. (A14)] is given by the power
of parameter ε in Eq. (3.38). Combining Eqs. (B19)
and (3.31), we find nB ¼ 3 − n, as mentioned
in Eq. (2.21).

Therefore, the magnetic field intensity at the end of inflation
is given by7

Brh ≃ 5.3 × 1055 G
�

H
MPl

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ sinhð2πξÞp

Γð2n − 1Þ
2n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p εnB :

ð3:40Þ

The above expression is the intensity of the magnetic field at
the end of inflation when the stochastic noises are taken into
account. As seen, Brh depends on the Hubble parameter
during inflation H, but it is also a function of n and ξ for a
fixed value of ε. As we discussed before, the latter parameter
controls the scale dependency of the magnetic field.
The expression (3.40) can be compared with its counter-

part in Eq. (2.18), which is obtained in the absence of the
stochastic effects. In Fig. 2, we have plotted the ratio
between these two amplitudes for the same values ofH and
ξ in terms of n. The plot shows that in the stochastic
approach, the intensity of the magnetic field at the end of
inflation is smaller than what is obtained in the conven-
tional method. This is because the stochastic process
controlling the dynamics of the magnetic field is an OU
process in which the stochastic force is balanced by the
frictional drift force. Therefore, the tachyonic production of
the gauge field is controlled by the stochastic noises, and
the amplitude of the magnetic field becomes smaller than in
conventional approaches where no stochastic effects are
included.
The amplitude of H controls the energy scale of

inflation, and it is usually estimated by the tensor-to-scalar
ratio rt. However, the tachyonic growth of the gauge field

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.01

0.10

1

10

FIG. 2. The plot compares the amplitude of the magnetic field
in Eq. (3.40) with its counterpart B̄rh in Eq. (2.18) obtained in the
absence of stochastic effects. We have chosen ξ ¼ 3 in order
to avoid the backreaction problem. For ε ≳Oð0.1Þ, we have
Brh ∼OðB̄rhÞ, but for the consistency of the stochastic formalism,
we require ε ≪ 1. As a result, we find a smaller intensity for the
magnetic field in the presence of stochastic noises.

7The unit conversion 1 GeV ¼ 3.8 × 109 G1=2 is used.
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can source the tensor perturbations, so there is a contribu-
tion from the electromagnetic source to rt as well. In
Appendix E, we have estimated rt in terms of the
equilibrium amplitude of the electric field (for the inter-
ested range 1=2 < n < 2) as a source for tensor perturba-
tions. Based on the results from Appendix E, we have
shown in Fig. 3 how the energy scale of inflation depends
on the model parameters. Having the Hubble parameter
during inflation [Eq. (E9)] at hand, one finds the final result
for the intensity of the magnetic field at the end of inflation
Brhðn; ξ; rtÞ. We comment that a very small value of
H=MPl ∼ 10−20 has been advocated in Refs. [52,53] in
order to generate the observationally required value of the
primordial magnetic field. As we mentioned previously,
this is because those studies allowed for ξ ≃ 10–20, while
in our analysis, taking the backreaction and the stochastic
effects all into account, we can go as far as ξ ≃ 3.
In order to evaluate the intensity and the correlation

length of the magnetic field today, we need to study its time
evolution after the end of inflation. In Appendix A, we have
reviewed the cosmological evolution of the helical and
nonhelical magnetic fields from the time of the end of
inflation, Brh, until today, B0. In the next section, we
employ the results of Appendix A to estimate the ampli-
tudes of the magnetic fields generated in the presence of the
stochastic noises.

IV. PRESENT MAGNETIC FIELDS

A successful primordial magnetogenesis mechanism
should generate an initial magnetic seed with sufficient
strength. Having Eq. (3.40) as our primordial seed at the
end of inflation, we study its evolution until today using the
relations presented in Appendix A. The seed field could be
amplified by either astrophysical or primordial processes to
produce the observed magnetic field today and to satisfy
the IGMF and GMF observational constraints, as pointed
out in the Introduction. In what follows, we will present
these constraints with more details and then investigate the

parameters of the model with which the constraints relating
to GMFs and/or IGMFs could be satisfied.

A. Observational constraints

We are interested in two classes of observations, GMF
and IGMF, that may hint towards the primordial origin of
the cosmological magnetic fields and could be sourced by
the seed field [Eq. (3.40)]. The former corresponds to the
galactic scale, while the latter deals with the extragalactic
scale. Although the astrophysical mechanisms of gener-
ation, such as the Biermann battery or the ejection of
magnetic fields from stars, have been assumed as possible
seeds for the galactic dynamo and GMFs, it would be
difficult to provide fields that can account for the lower
bound of IGMFs because the bound applies in the absence
of matter structure or ionized plasma [29]. Therefore,
IGMF observations can be considered as a strong hint
on the necessity of primordial magnetic seeds. The details
of the observations are as follows.
(1) GMFs:

Using a number of techniques, magnetic fields of
the order of

BGMF ∼ μG ð4:1Þ

are observed in galaxies which are tens of Kpc in
scale. For example, our galaxy is permeated by a
magnetic field with strength 3–4 μG [76], while
magnetic fields with similar magnitudes (with
strength 1–10 μG) have also been observed in
clusters of galaxies on scales of up to ∼0.1 Mpc
[77,78]. A primordial magnetic seed with a minimal
amplitude ∼nG can be amplified to the desired
strength by simple adiabatic contraction, while the
seeds with much smaller amplitudes must be am-
plified by stronger processes—e.g., the galactic
dynamo mechanism.
The dynamo mechanism transfers the kinetic

energy of fluid into magnetic energy. More precisely,
the coarse-grained hydrodynamics fluctuations can
amplify a weak seed of a magnetic field by providing
the electromotive forces.8 For instance, a field of
order 10−30 G at 10 kpc is sufficient to initiate the
dynamo process [79]. On the other hand, it is
claimed in Ref. [8] that a seed field of 10−23 G at
∼Mpc is needed to initiate the dynamo mechanism.
To estimate the intensity of a magnetic field at the
∼Mpc scale via an inverse cascade process, we
follow Refs. [53,80], in which a seed field in the
range of

FIG. 3. Inflationary energy scale as a function of the parameter
ξ with n ¼ 1.5 and ε ¼ 0.01 for various tensor-to-scalar ratios.
For ξ > 4, the gauge field has the dominant contribution to rt, and
inflation has a low-energy scale, ρ1=4inf ≃ 10−8 − 10−15MPl.

8For comprehensive reviews of magnetic fields in the early
Universe, see for instance Refs. [8,25].

TALEBIAN, NASSIRI-RAD, and FIROUZJAHI PHYS. REV. D 105, 023528 (2022)

023528-10



10−23 G≲ Bseed ≲ 10−21 G ð4:2Þ

at the Mpc scale is required to explain the observed
μG magnetic fields in galaxies via the dynamo
mechanism. It must be noted that due to the
complicated galactic magnetohydrodynamics proc-
ess, there is a large uncertainty on the ranges given in
Eq. (4.2). Moreover, the observation of magnetic
fields with the same order in protogalactic clouds at
high redshift is against the validity of galactic
dynamo mechanism [81,82]. However, it is usually
assumed that the observed GMF is the end product
of this mechanism [80]. Therefore, we consider
Eq. (4.2) as a reference value for the seed amplitude.

(2) IGMFs:
The IGMF constraint is based on the nonobser-

vation of GeV photons from TeV blazars and active
galactic nuclei [28]. IGMFs lead to a lower bound on
the intensity of magnetic fields in the intergalactic
medium with a correlation length of 1 Mpc or more
[83]. This bound is strengthened for the smaller
correlation length. Several observations [5,84–90]
have constrained the strength of the cosmological
magnetic fields in this class to be [91,92]

BIGMF≳10−16 G×


1; LB≳1Mpcffiffiffiffiffiffiffiffiffi
1Mpc
LB

q
; LB≲1Mpc

: ð4:3Þ

In addition, there is an upper bound BIGMF ≲ 10−9 G
coming from theCMBdata. There are two points here
that must be mentioned: First, the above observation
puts a constraint not only on the intensity of the
magnetic field but also on its correlation length.
Second, the lower bound 10−16 G on Mpc scales is
not very rigid, and it could take a wide range with a
width of 3 orders of magnitude, 10−15 − 10−18 G,
depending on the details of cascade emission and its
time delay [31,83].

The large correlation length involved in the bounds (4.3)
and (4.2) may hint towards the primordial origin of the
cosmological magnetic fields. We are interested in the
parameter space in which the primordial magnetic fields
[Eq. (3.40)] satisfy the lower bound in IGMFs [Eq. (4.3)] and
provides the seed [Eq. (4.2)] forGMFs, assuming thegalactic
dynamo mechanism as the amplification mechanism.
In order to study the cosmological evolution of the

primordial magnetic fields, we should consider the flux
conservation as well as the helicity conservation. The
relations between the present amplitude of the magnetic
field B0 and the reheating value Brh for the flux and helicity
conservations are given in Eqs. (A18) and (A22), respec-
tively. Depending on the characteristics of the magnetic
field produced during inflation, as well as the character-
istics of the environment through which it passes, one of the

two conservation laws could be at work. Themodes that exit
the horizon during inflation at early times will be less
affected by the plasma turbulence when they reenter the
horizon after recombination. Therefore, the flux conserva-
tion is a good approximation for studying their evolution.On
the other hand, the modes that exit the horizon at later times
will encounter the turbulent plasma at the reentry time.
Hence, their flux is not conserved, so we study their
evolution via helicity conservation. More precisely, there
exits a special scale kdiss at which the Reynolds number of
plasma is at the order of unity. Modes with k > kdiss
(k < kdiss) come across the plasma at the turbulent (viscous)
regime, so in order to study their subsequent evolution, we
can easily consider helicity (flux) conservation. In the
following, we use the superscripts F and H to denote
the present magnetic fields BF

0 and BH
0 , which are evolved

via the flux and helicity conservations, respectively.
For a small value of ξ, the generated magnetic field is

nonhelical, so one can track the evolution of the magnetic
field by imposing the flux conservation. For helical fields,
however, the situation is different. It is well studied that
during the radiation-dominated epoch, the helical magnetic
fields undergo the inverse cascade process [51,93]. During
this process, the intensity of the magnetic field decreases in
the comoving frame, and its correlation scale increases
while the power is transferred from small to large scales.
Furthermore, it displays a property of self-similarity—i.e.,
the magnetic spectral index at scales larger than the
correlation scale remains unchanged.

B. Flux conservation

For ξ≲ 1, the magnetic field is basically nonhelical.
Neglecting the resistivity and the turbulence of the pri-
mordial plasma, one can estimate the strength of the

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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FIG. 4. Present value of magnetic field at the Mpc scale in terms
of parameter n according to Eq. (4.4) for ξ ¼ 1, in which flux
conservation is assumed. As seen, the generated magnetic field
easily satisfies the observational IGMF bound [Eq. (4.3)], but not
the GMF bound via the galactic dynamo mechanism. One may
consider a process weaker than the dynamo mechanism to
amplify the intensity to the order of 10−15 G to μG observed
in galaxies.
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magnetic fields at the present time. Assuming radiation-like
dilution for the electromagnetic energy density and also an
instant reheating scenario after the end of inflation9 leads to

BF
0 ≃ 1.7 × 10−6 G

�
H
MPl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ sinhð2πξÞp

Γð2n − 1Þ
2n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p εnB;

ð4:4Þ

in which we have inserted Eq. (3.40) into Eq. (A18). Using
the relation (E9) for the Hubble parameter, which repre-
sents the energy scale of inflation, the behavior of the
present amplitude of the magnetic field BF

0 in terms of the
parameters of the model, n; ξ; rt, is obtained. The result is
plotted in Fig. 4. The energy scale of inflation is also
plotted in Fig. 3. We see that taking into account the
stochastic noises, an acceptable amplitude for the present
magnetic field is generated [54] with a high-energy scale of
inflation.

C. Helicity conservation

For ξ > 1, the generated magnetic field at the end of
inflation is maximally helical.10 After inflation, the thermal
cosmic plasma contains many relativistic charged particles
and can be treated as an MHD plasma. In this limit, the
electric field is damped away, and the magnetic field
undergoes an inverse cascade due to helicity conservation.
Therefore, the discussion presented in Appendix B is
relevant.
Inserting Eq. (3.40) into Eq. (A22), the intensity of

the present magnetic field at the correlation scale LH
0 ¼

108 MpcðBH
0 =GÞ is obtained to be

BH
0 ¼ 5 × 10−16 G

�
H
MPl

�
1=2

�
Γ2ð2n − 1Þ
22nþ1ðnþ 2Þ e

2πξε2nB
�

1=3

:

ð4:5Þ

Since we are interested in Mpc scales, the correction arising
from the scale dependence must be taken into account via
the relation (A19). Upon doing so, the amplitude of the
magnetic field at Mpc scales is obtained to be

BMpc ¼ BH
0

�
LH
0

Mpc

�
nB
: ð4:6Þ

In Fig. 5, we have presented BMpc in terms of n and
found that the maximum value of the intensity of the
magnetic field is not stronger that 10−28 G, which is too
small to be considered as a seed field [Eq. (4.2)] to initiate
the galactic dynamo and explain the GMF constraints. One

would need a stronger process in order to amplify this small
seed value to the desired amplitude.11

To investigate the IGMF constraint, we follow the
method used in Refs. [32,52]. The magnetic fields with
minimal amplitude of the order of 10−18 G and correlation
length LH

0 ≳De can explain the nonobservation of GeV
gamma-ray cascades around blazars in the intergalactic
medium (IGM) [28,31,83], in which De is the electron/
positron energy loss length for inverse Compton scattering.
The correlation length of our setup is typically in the
range LH

0 ≃ 10−3 − 10−9 pc, which is much smaller than
De ≃ 80 Kpc. Taking into account the correction arising
from the scale dependence for nB > 1=2 (equivalent to
n < 5=2), the constraint [Eq. (4.3)] for LH

0 ≪ De is
translated into the following upper bound [32]:

BH
0 ≳ Bobs

ffiffiffiffiffiffi
De

LH
0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10nB − 5

nB

s
; ð4:7Þ

where Bobs ¼ 10−18 − 10−16 G.
The above constraint will need a large value of ξ, say

ξ ∼ 10–20. However, this large value of ξ is not allowed,
since it induces large backreactions on the scalar field
dynamics. In Fig. 6, we have shown the allowed regions in
parameter space ξ − n in which the backreaction problem is
bypassed and the constraint of Eq. (4.7) is satisfied. As
seen, there is no overlapping region, and the primordial
seed fields [Eq. (3.40)] cannot satisfy the IGMF con-
straint [Eq. (4.3)].

0.5 1.0 1.5 2.0

10-52

10-47

10-42

10-37

10-32

10-27

FIG. 5. Present value of magnetic field at the Mpc scale in terms
of parameter n according to Eq. (4.6), in which helicity
conservation is assumed for ξ ¼ 3. As seen, the primordial seed
field [Eq. (3.40)] is not strong enough to provide the initial seed
needed in Eq. (4.2) for the dynamo mechanism. One will need a
process stronger than the dynamo mechanism to amplify the
intensity to the order of 10−30 G to μG observed in galaxies for
the parameter space n≲ 2.

9See Ref. [94] for a different discussion.
10For a different mechanism of helical magnetogenesis, see

Ref. [95].

11It should be noted that we have considered the strong
coupling regime, in which 0 < n < 1

2
, as well, and the result

for the magnetic field did not change much from Fig. 5.
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V. CONCLUSION

In this paper, we have revisited the mechanism
of magnetogenesis in the I2FF̃ inflationary model by
taking into account the stochastic effects of the electro-
magnetic field perturbations. We have derived the associ-
ated Langevin equations for the electric and magnetic
fields and have calculated their two-point correlations.
The corresponding Langevin equations are in the form
of Ornstein-Uhlenbeck stochastic differential equations
with a negative drift coefficient. We have shown that both
the electric and magnetic fields settle into equilibrium states
very quickly, with the strengths given by Eqs. (3.33) and
(3.31), respectively.
We also checked the backreaction constraint and found

that the instability parameter has an upper bound ξ≲ 3 in
order for the backreaction of electromagnetic fields on the
dynamics of the inflaton field to be under control. This
bound is consistent with the results of Refs. [66,68]. In
addition, the backreaction effects become stronger when
we use a test field instead of inflatons, because the slow-roll
parameter associated with the test field is smaller than that
of the inflaton field.
The results show that the stochastic effects cause the

amplitude of the magnetic field at the end of inflation to be
smaller than what is obtained in the conventional method
by at least 2 orders of magnitude; see Fig. 2. The stochastic
forces tame the tachyonic growth of IR modes, which are
described by an OU-type stochastic differential equation.
The process settles the fields into equilibrium states and
decreases their exponential growths.
The setup with ξ > 1 produces magnetic fields with

a net helicity. Therefore, the helicity conservation must be

considered for the evolution of the magnetic field from the
end of inflation until today. But, as mentioned above, the
backreaction constraint requires ξ≲ 3, so the tachyonic
growth of the electromagnetic perturbations is limited and
the observational constraints of Eqs. (4.2) and (4.3) are not
satisfied. Therefore, in the parameter space where the
backreaction is under control, the model is not able to
provide a chiral primordial seed for GMFs and IGMFs.
Furthermore, as shown in Fig. 3, with ξ≲ 3, the energy
scale of inflation can be as high as 10−3 − 10−4MPl. These
results are in contrast with the results of Refs. [52,53], in
which it is claimed that the model with ξ ∼Oð10Þ is able
not only to account for the IGMF observations, but also to
initiate the galactic dynamo by providing the seed field in
the range of Eq. (4.2) while inflation is happening at a low-
energy scale.
On the other hand, for ξ < 1, the generated magnetic

field is not helical, and one can simply study the evolution
of the magnetic field via flux conservation. This yields the
present magnetic field with the amplitude BF

0 ≃ 10−13 G on
Mpc for n ≃ 2, which is well suitable into the IGMF bound
[Eq. (4.3)]. The generated seed field is too strong for the
galactic dynamo mechanism, but one can consider another
weaker process—e.g., adiabatic contraction—to amplify
these magnetic fields to provide the intensity of the order of
∼μG on galactic scales.
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APPENDIX A: COSMOLOGICAL EVOLUTION
OF MAGNETIC FIELDS

In this Appendix, we briefly review the evolution of
cosmological magnetic fields in an expanding Universe
filled with and without the cosmic plasma. We refer the
reader to Refs. [7,51] for detailed and critical reviews of the
literature on the subject.
Due to the homogeneity and isotropy of the Universe, it

is more convenient to study the properties of its magnetic
field in terms of its Fourier components,

Bðk; tÞ ¼
Z

d3xBðx; tÞeik·x: ðA1Þ

Using Eqs. (2.5) and (2.12), we obtain

Biðk; τÞ ¼
X
λ¼�

eλi ðkÞðBλðk; τÞak;λ þ B�
λðk; τÞa†−k;λÞ; ðA2Þ

where k ¼ jkj and Bλðk; τÞ ¼ λkvk;λðτÞ. The spatial struc-
ture of magnetic fields is statistically the same at any
location in the Universe, which implies that the expectation

FIG. 6. The allowed region with small backreaction RS < 1
[Eq. (3.25)] is confined in the lower bounded area (red area). The
parameter space where the IGMF constraint [Eq. (4.7)] is satisfied
is confined in the upper parts bounded by different curves (red,
blue, and orange). There is no overlapping area, which means that
the model with the maximally helical seeds cannot satisfy the
IGMF constraint.
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values of the magnetic fields only depend on k, δij, and
ϵijk, as well as combinations of these.
The two-point function of the Fourier components of the

magnetic field, which is a divergence-free vector field, in
the comoving coordinate, can be written as

hBiðk; τÞB�
jðq; τÞi

¼ ð2πÞ3 δðk−qÞ
k3

ððδij − k̂ik̂jÞPBðk;τÞ− iϵijlk̂lHBðk; τÞÞ;
ðA3Þ

where k̂ ¼ k=k, and the bracket hi denotes an ensemble
average.
The symmetric and antisymmetric parts of the above

correlation are denoted by PB and HB, respectively—i.e.,

X
λ¼�

hBλðk; τÞB�
λðq; τÞi ¼ ð2πÞ3 δðk − qÞ

k3
PBðk; τÞ; ðA4Þ

X
λ¼�

λhBλðk; τÞB�
λðq; τÞi ¼ ð2πÞ3 δðk − qÞ

k3
HBðk; τÞ: ðA5Þ

The symmetric part of the spectrum determines the energy
density,

ρBðτÞ≡ 1

2π2

Z
d ln kPBðk; τÞ: ðA6Þ

Therefore, PBðk; τÞ is related to the magnetic energy
density per logarithmic wave number via

PBðk; τÞ ¼ 2π2
dρBðk; τÞ
d ln k

: ðA7Þ

The magnetic helicity is defined as

HðV; τÞ ¼
Z
V
d3xhAðx; τÞ ·Bðx; τÞi; ðA8Þ

where V is a volume through the boundary of which no
magnetic field lines cross. For the gauge in which the 3D
vector potential A is transverse, we define the magnetic
helicity density as

hðτÞ≡ hAðx; τÞ ·Bðx; τÞi ¼ 1

2π2

Z
d ln kHBðk; τÞ: ðA9Þ

Hence, HBðk; τÞ is related to the helicity density per
logarithmic interval,

HBðk; τÞ ¼ 2π2
dhðτÞ
d ln k

: ðA10Þ

It is convenient to assign two characteristic properties to
the magnetic fields. First, the characteristic correlation

length L, which is sometimes called the correlation scale,
is defined via

L≡
R
d ln kð2πk ÞPBðkÞR
d ln kPBðkÞ

; ðA11Þ

which is a measure of the scale containing most of the
magnetic energy.
Second, the scale-averaged magnetic strength is given by

B≡ ffiffiffiffiffiffiffiffi
2ρB

p
; ðA12Þ

while the characteristic magnetic field strength at scale
l ¼ 2π=k is defined as

Bl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
dρB
d ln k

r ����
k¼2π=l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PBðkÞ

p
π

����
k¼2π=l

: ðA13Þ

In addition, the magnetic spectral index on large scales is
defined as

nB ≡ 1

2

d lnPBðkÞ
d ln k

: ðA14Þ

For example, in the model IðτÞFμνFμν with IðτÞ ∝ τn, the
magnetic field spectral index is given by nB ¼ 5

2
− jn − 1

2
j

so that the cases with n ¼ 3 and n ¼ −2 lead to scale-
invariant magnetic spectra.
To study the expected relic magnetic field, which might

survive until the present epoch, we must have enough
knowledge about the initial spectrum of the magnetic field
generated during inflation—i.e., PB and HB—and know
their evolution well after inflation and the reheating phase.
In the first approximation, the conductivity of the

Universe, which is very high after reheating, must be
considered. Therefore, any electric fields produced during
inflation will be damped very rapidly after inflation while
the magnetic field is frozen. This is why we consider
magnetogenesis models prior to reheating. The electric
conductivity converts the generated electromagnetic
modes into a frozen magnetic field which obeys adiabatic
dilution—i.e., the magnetic power spectrum decays as
PB ∝ a−4 after the mode function is frozen due to electric
conductivity.
A better approximation is to consider a plasma environ-

ment instead of an electrically conductive medium. Due to
the presence of many relativistic charged particles after
inflation, the thermal cosmic plasma can be treated as a
magnetohydrodynamic (MHD) plasma. An important char-
acteristic of the fluid flow is given by its local kinetic
Reynolds number, denoted by Re. The Reynolds number is
a measure of the relative importance of fluid dissipative
terms in the Euler equations of MHD fluid. In general, in
the MHD limit, the electric fields are damped away, while
the magnetic fields’ evolution must be studied in two

TALEBIAN, NASSIRI-RAD, and FIROUZJAHI PHYS. REV. D 105, 023528 (2022)

023528-14



different regimes: the turbulent regime, when Re ≫ 1, and
the viscous regime, when Re ≪ 1. In the former regime, the
magnetic field is damped on small scales, which leads to a
maximally helical field—i.e., one of the polarization modes
vanishes [51]. Therefore, the magnetic fields undergo an
inverse cascade due to helicity conservation [80]. This
effect is active as long as Re > 1 on the scale under
consideration. Therefore, the fluid is turbulent in the regime
in which the decay rate of the total energy only depends on
the flow properties on the integral scale and is independent
of dissipative terms. This regime is applicable well before
the neutrino decoupling and recombination. After the end
of the turbulent phase, magnetic fields are damped on small
scales by viscosity and evolve by flux conservation, so that
B ∝ a−2 on large scales.
In the viscous regime, the decay of magnetic energy

depends on the magnitude of viscosities. This regime
describes the state of the cosmic plasma, before recombi-
nation, on scales smaller than the damping scale kdiss at
which Re becomes of order unity. Both the turbulent
motion of the fluid and the magnetic field are damped
exponentially by viscosity. Furthermore, there is the effect
of ambipolar diffusion after recombination, when the
Universe is a weakly ionized fluid. This diffusion is due
to the ion-neutral mixture in the tightly coupled regime,
which inserts an additional dissipative term in the MHD
equations. We refer the reader to Refs. [7,51] for more
details about the general features of the evolution of
magnetized fluids, such as the decay of energy density,
as well as the growth of magnetic field coherence length, in
the turbulent and viscous regimes.
In what follows, we will study the evolution of the

magnetic fields from the end of inflation (reheating) till the
present time in terms of two different assumptions: flux
conservation (ρB ∝ B2 ¼ const:) and helicity conservation
(h ∝ B2L ¼ const:). For the expanding Universe, these two
conservation laws lead to B2 ∝ a−4 and B2L ∝ a−3,
respectively.

1. Flux conservation

In order to estimate the strength of the magnetic fields at
the present time, we assume radiation-like dilution for the
electromagnetic energy density and neglect the high con-
ductivity and turbulence of the primordial plasma with an
instant reheating scenario (see Ref. [94] for a controversial
discussion). Due to the flux conservation, the amplitude of
the magnetic field at the present time, denoted by B0, is
given by

B0 ¼
�
arh
a0

�
2

Brh; ðA15Þ

where the amplitude of the magnetic field at the end of
inflation is denoted by Brh, and arh and a0 are the values of
the scale factor at the end of inflation and at present,

respectively. To simplify the situation further, we assume
that the Universe was radiation dominated throughout its
history with a reasonable accuracy. Then, we have

a0
arh

¼
�
g�rh
g�0

�
1=3 Trh

T0

; ðA16Þ

in which g�0 and g�rh are the effective numbers of relativistic
degrees of freedom at the present time and at the time of
reheating, respectively. Moreover, an instant reheating
scenario allows us to express Trh in terms of the Hubble
rate at the end of inflation H:

Trh ≃ 1.5 × 1031 K

�
g�rh

106.75

�
−1=4

�
H
MPl

�
1=2

: ðA17Þ

Using these relations, the amplitude of the observed
magnetic field at the present time is given by

B0 ≃ 3.2 × 10−62
�

H
MPl

�
−1
Brh; ðA18Þ

where we have set g�0 ¼ 3.36 and g�rh ¼ 106.75.

2. Helicity conservation

The evolution of B and L during the postinflationary
epoch undergoes several different phases: turbulent, vis-
cous, and free-streaming [7,51]. Not only do the initial
values of the intensity and the correlation scale determine
what phase the Universe is in, but also the particle species
with the longest mean free path (neutrinos, followed by
photons after neutrino decoupling) have significant effects
on the evolution of the magnetic energy via the temperature
of the kinetic viscosity of the plasma.
It is well known that in the turbulent fluid with

nonvanishing helicity, the helical magnetic field undergoes
a process known as inverse cascade during the radiation-
dominated epoch. Considering this process, the comoving
L increases and its comoving intensity B decreases.
The power is transferred from small scales to large
scales, while the magnetic spectrum at scales larger than
L—i.e., l > L—maintains its spectral index unchanged.
Consequently, the amplitude of the magnetic field on large
scales is given by

Bl>L ¼ B

�
L
l

�
nB
; ðA19Þ

displaying a property of self-similarity [51]. It must be
noted that the inverse cascade is not effective in the case of
a (nearly) scale-invariant spectrum even for a fully helical
magnetic field [96].
Taking into account high conductivity along with the

turbulence of the primordial plasma, the magnetic fields
evolve while conserving (comoving) magnetic helicity
density (instead of magnetic flux) via the inverse cascade
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process. Therefore, in an expanding Universe, we
have

B2
0L0 ¼

�
arh
a0

�
3

B2
rhLrh; ðA20Þ

where Lrh and L0 are the correlation scale at the end of
inflation and at the present time, respectively. The above
relation must be considered along with a second relation in
order to determine the present values of the magnetic
intensity and its correlation scale. Reference [51] demon-
strated that for a large set of initial conditions, the values of
B and L at recombination are linked by the relation
B ≃ LHrecρ

1=2, where Hrec is the Hubble parameter at
recombination and ρ is the energy density of the fluid
particles that couple to the magnetic field. Evolving this
relation until today, under the condition that their comoving
values stay constant, we find a very general relation [7,51]

B0 ≃ 10−8 G

�
L0

Mpc

�
: ðA21Þ

The relations (A20) and (A21) are a consequence of the
inverse cascade of the helical field associated with self-
similar evolution.
One can determine the current values of the magnetic

intensity and the correlation scale by combining Eqs. (A20)
and (A21) to obtain

B0 ¼ 10−8 G

�
Brh

10−8 G

�
2=3

�
Lrh

Mpc

�
1=3

�
arh
a0

�
; ðA22Þ

L0 ¼
�

Brh

10−8 G

�
2=3

�
Lrh

Mpc

�
1=3

�
arh
a0

�
Mpc: ðA23Þ

Using Eqs. (A16) and (A17), the magnetic field intensity
and the correlation scales can be obtained in terms of the
Hubble rate at the end of inflation and other parameters of
the model.

APPENDIX B: NOISE CORRELATIONS
FOR THE HELICAL EM FIELDS

In this Appendix, we derive the explicit forms of
the quantum noises arising from the short modes of
electromagnetic fields. For the nonhelical electro-
magnetic fields, the corresponding results can be found
in Refs. [54,63,64].
Expanding Eq. (3.7) in terms of the creation and

annihilation operators ak and a†k, we find

σ̂Xi ðx; tÞ¼−
dkc
dt

X
λ

Z
d3k
ð2πÞ3 δðk−kcÞ

×eλi ðkÞðXk;λðtÞak;λþXk;λðtÞ�a†−k;λÞeik:x; ðB1Þ

where kc ≡ ϵaðtÞH. Without loss of generality, we assume
x ¼ rẑ and consider the wave number k̂ and the polariza-
tion vectors eλðk̂Þ as

k̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ðB2Þ

eλðk̂Þ ¼
1ffiffiffi
2

p ðcos θ cosϕ − iλ sinϕ;

cos θ sinϕþ iλ cosϕ;− sin θÞ ðB3Þ

in Cartesian coordinates. One can easily check that the
above satisfies the orthogonality relations [Eq. (2.13)].
To calculate the correlation of the helical noises, we use

the fact that for any λ-dependent function gλ, one has

X
λ¼�

gλeλi ðk̂Þeλ�j ðk̂Þ¼ 1

2

X
λ¼�

gλðδij− k̂ik̂jþ iλfijðθ;ϕÞÞ; ðB4Þ

where fij is an antisymmetric matrix, fij ¼ −fji, given by

f21ðθÞ ¼ cos θ; f32ðθ;ϕÞ ¼ sin θ cosϕ;

f13ðθ;ϕÞ ¼ sin θ sinϕ: ðB5Þ

Using the relations

Z
Ω
dΩeikr cos θ ¼

Z
2π

ϕ¼0

dϕ
Z

π

0

sin θdθeikr cos θ

¼ 4π
sinðkrÞ
kr

¼r→0
4π; ðB6Þ

Z
Ω
dΩeikr cos θðδij − k̂ik̂jÞ ¼

8π

3
δij

sinðkrÞ
kr

¼r→0 8π

3
δij;

ðB7Þ

Z
Ω
dΩeikr cos θfij ¼r→0

0; ðB8Þ

one can find that

hσ̂Xi ðt1;xÞσ̂Xj ðt2;xÞi

¼ 1

18π2
dk3c
dt

X
λ

jXλðt1; kcÞj2δijδðt1 − t2Þ: ðB9Þ

Using Eq. (2.15) as well as the definition of electric and
magnetic fields [Eq. (2.5)], we find
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hσ̂Ei ðN1Þ; σ̂Ej ðN2Þi ¼
H221−2nε4−2nΓð2nÞ2
3π2M2

PljΓðnþ iξÞj2 coshðπξÞδijδðN1 − N2Þ; 0 < n < 2; ðB10Þ

hσ̂Bi ðN1Þ; σ̂Bj ðN2Þi ¼
H2ε5ð2εÞ−2jn−1

2
jΓð2jn − 1

2
jÞ2

3π2M2
PljΓð12 þ jn − 1

2
j þ iξÞj2 coshðπξÞδijδðN1 − N2Þ; 0 < n ≠

1

2
< 2; ðB11Þ

while for n ¼ 1=2 we have

hσ̂Bi ðN1Þ; σ̂Bj ðN2Þi ¼
H2ε5log2ðεÞ
3π3M2

Pl

coshðπξÞδijδðN1 − N2Þ; n ¼ 1

2
: ðB12Þ

1. Disappearance of the quantum nature
of the noises

Here, we show that the quantum nature of noises
disappears on large scales. To this end, we show that the
following commutator goes to zero in this limit:

½τ̂X; σ̂X�
D2

X
→ 0; ðB13Þ

where τ̂X is the noise corresponding to the conjugate
momentum of X, defined by

τ̂Xðx; tÞ ¼ −
dkc
dt

Z
d3k
ð2πÞ3 δðk − kcÞeik:x _̂Xk: ðB14Þ

If we show that the above relation holds, then it is logical to
neglect the quantum nature of X on large scales, while
keeping the effects of the classical noise of the X field in the
analysis.
Using Eq. (2.15), as well as the definition of electric and

magnetic fields [Eq. (2.5)], we obtain the following
equations for the commutators of electromagnetic fields
and their conjugate momentum:

½σ̂Ei ðN1Þ; τ̂Ej ðN2Þ� ¼ −
2iH2ξε4 sinhð2πξÞ

3π2M2
P

δijδðN1 − N2Þ;

0 < n < 2: ðB15Þ

Comparing Eqs. (B10) and (B15), we see that the ratio of
the amplitude of the commutator to the amplitude of the
noise of the electric field is Oðε2nÞ and can be neglected in
the range in which we are interested. This shows that as
long as ε ≪ 1, the noises can be treated classically. In the
same manner, one can write the amplitude of the magnetic
field and its commutator as follows:

½σ̂Bi ðN1Þ; τ̂Bj ðN2Þ� ¼ −
iH2ε5 coshð2πξÞ

3π2M2
p

δijδðN1 − N2Þ;

0 < n < 2: ðB16Þ

We see that the ratio of the commutator to the amplitude
of the magnetic field is Oðϵ2jn−1

2
jÞ when n ≠ 1

2
and

Oðlog−2ðϵÞÞ when n ¼ 1
2
. Therefore, we conclude that

one can neglect the quantum nature of the noises and treat
them as classical noises.
With the above property and the disappearance of the

quantum nature of the noises, one can express the quantum
noises σ̂XðNÞ in terms of the classical normalized white
noise σ as

σ̂Xi ðNÞ≡DXσiðNÞ; ðB17Þ

where

hσiðNÞi ¼ 0;

hσiðN1ÞσjðN2Þi ¼ δijδðN1 − N2Þ; ðB18Þ

and for n ≠ 1=2, the amplitude DX is given by

DX ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshðπξÞp
π

ffiffiffi
3

p Γð2n − 1Þ
2njΓðnþ iξÞj

H
MPl

ε2−n

×


 ð2n − 1Þ; X ¼ E

ε; X ¼ B
: ðB19Þ

This amplitude approaches what is obtained in Refs. [54,64]
when ξ → 0 for nonhelical electromagnetic noises where the
two transverse modes are the same.

APPENDIX C: DIAGONALIZATION

In this Appendix, we solve the coupled Langevin
equations

B0 ¼ −ð2þ nÞB þDBσðNÞ; ðC1Þ

E0 ¼ −ð2 − nÞE þ 2nγB þDEσðNÞ: ðC2Þ

A common way of handling these equations is to look for a
change of coordinates or a change of variables that
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simplifies the problem. We use the diagonal matrix method
to solve the equations. Let us write Eqs. (3.15) and (3.16) in
the following matrix form:

�
E0

B0

�
¼ C

�
E

B

�
þ σðNÞ

�
DE

DB

�
; ðC3Þ

where C is the matrix of coefficients given by

C≡
�
n − 2 2nγ

0 −ð2þ nÞ

�
: ðC4Þ

Having the matrix of coefficients at hand, one can easily
write the basis transformation matrix as

P ¼
�−γ 1

1 0

�
; ðC5Þ

which is obtained using the eigenvectors of C.
Now, according to the fact that any vector like V in the

old basis changes as Ṽ ¼ P−1V in the new basis, one can
write Eq. (C3) as

�
Ẽ0

B̃0

�
¼ C̃

�
Ẽ

B̃

�
þ σðNÞ

�
DB

DE þ γDB

�
; ðC6Þ

where

C̃≡ P−1CP ¼
�−ð2þ nÞ 0

0 n − 2

�
; ðC7Þ

and the tilde in the components denotes the changed vector.
Then, in the new basis we obtain

Ẽ0 ¼ −ð2þ nÞẼ þDBσðNÞ; ðC8Þ

B̃0 ¼ −ð2 − nÞB̃ þ ðDE þ γDBÞσðNÞ: ðC9Þ

Note that since the electric and magnetic fields originate
from the same gauge field, the noises σB and σE are not
independent—i.e., σB þ σE ¼ ðDB þDEÞσðNÞ.12 Then, we
obtain two decoupled Langevin equations, which can be
solved easily by the appropriate initial conditions,
BðN ¼ 0Þ ¼ B0 and EðN ¼ 0Þ ¼ E0. More specifically,
the solutions are given by

�
ẼðNÞ
B̃ðNÞ

�
¼

�
B0e−ðnþ2ÞN þDB

R
N
0 eðnþ2ÞðN0−NÞσðN0ÞdN0

ðE0 þ γB0Þeðn−2ÞN þ ðDE þ γDBÞ
R
N
0 e−ðn−2ÞðN0−NÞσðN0ÞdN0

�
: ðC10Þ

Now, going back to the old basis by ðEBÞ ¼ PðẼB̃Þ, we have

BðNÞ ¼ B0e−ðnþ2ÞN þDB

Z
N

0

eðnþ2ÞðN0−NÞσðN0ÞdN0; ðC11Þ

EðNÞ ¼ eðn−2ÞNðE0 þ γB0Þ − γBðNÞ þ ðDE þ γDBÞ
Z

N

0

e−ðn−2ÞðN0−NÞσðN0ÞdN0: ðC12Þ

APPENDIX D: PROBABILISTIC ANALYSIS

In this section, we use another approach to study the
Langevin equation (3.15). Let us recast Eq. (3.15) into the
following stochastic differential equation (SDE):

dBiðNÞ
dN

¼ −μBiðNÞ þDBξiðNÞ; μ≡ nþ 2: ðD1Þ

We are interested in the regime μ > 0, so the above
equation describes an Ornstein-Uhlenbeck (OU) process.
Therefore, the field Bi admits a equilibrium state with a

long-term mean and a bounded variance (mean-reverting
process) due to the fact that the random forceDBξi balances
the frictional drift force −μBi. To be more precise, an OU
process is a stationary Gauss-Markov process, in which
there is the tendency for the system to drift toward the mean
value, with a greater attraction when the process is further
away from the mean. For this process, the explicit depend-
ence of the mean on the initial conditions is washed out
over time, and the system can only be described by the drift
μ and the diffusion DB coefficients. In other words, the
distribution of the random variable Bi can be described by

the normal distributionNð0; DB
2

2μ Þ atN ¼ NB
eq. Formally,NB

eq

goes to infinity, but we can estimate the equilibrium time as
when the relative difference of the field with its equilibrium12Otherwise, we have σB þ σE ¼ ðDB þDEÞ1=2σðNÞ.
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value drops to a small value—say, 10−2. With this approxi-
mation, we obtain Eq. (3.30).
Alternatively, the Fokker-Planck equation associated

with the Langevin equation (D1) can be employed to
describe the time evolution of the probability density
function (PDF) of BiðNÞ. Consider fBi

ðx; NÞ as the PDF
of the random variable Bi. Then the associated Fokker-
Planck equation is given by

∂fBi
ðx; NÞ
∂N ¼ −μ

∂
∂x ðxfBi

ðx; NÞÞ þDB
2

2

∂2

∂x2 fBi
ðx; NÞ:

ðD2Þ

Intuitively, one can think of fBi
ðx; NÞdx as the

probability of Bi falling within the infinitesimal interval
½x; xþ dx�. Assuming a stationary probability distribution,
∂feqBi

=∂N ¼ 0, the equilibrium solution of Fokker-Planck
Eq. (D2) is given by

feqBi
ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ

πDB
2

r
exp

�
−

μ

DB
2
x2
�
: ðD3Þ

Using the above PDF for the components of the magnetic
field Bi, it is easy to obtain the PDF of its magnitude
B≡ ðP3

i¼1 B
2
i Þ1=2 as follows:

feqX ðxÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
μ3

πDB
6

s
x2 exp

�
−

μ

DB
2
x2
�
: ðD4Þ

This density function allows us to calculate the mth
moment associated with B as follows:

hBmieq ¼
Z

∞

0

dxxmfeqB ðxÞ

¼ 2ffiffiffi
π

p
�
DBffiffiffi
μ

p
�

m
Γ
�
mþ 3

2

�
; ðD5Þ

Moreover, these PDFs enable us to calculate the probability
of having a given amplitude for the magnetic field in a
given range. The desired range corresponds to the lower
and upper bounds on cosmological magnetic fields as given
in Eq. (4.3). Subsequently, these bounds are translated into
the interval B1 < B < B2. Therefore, one can calculate the
probability of the generated magnetic field acquiring a
value in the interval determined in Eq. (4.3), given by

PBobs
¼

Z
B2

B1

dxfeqB ðxÞ

¼ Erfðy2Þ − Erfðy1Þ −
2ffiffiffi
π

p ðy2e−y22 − y1e−y
2
1Þ; ðD6Þ

in which yi ≡
ffiffi
μ

p
DB

Bi and i ¼ 1; 2. In fact, the above is the
probability of generating the primordial magnetic field

consistent with the observational bound (4.3) by the model
(2.3), PBobs

ðn; ξ; εÞ. The probabilistic interpretation based
on the Fokker-Planck equation is a parallel approach to the
mechanism of stochastic differential equations presented
in Sec. IV.
It is interesting to obtain the stationary PDF of the

electric field. One can write Eq. (3.18) as follows:

EiðNÞ þ γBiðNÞ

¼ ðDE þ γDBÞ
Z

N

0

e−ðn−2ÞðN0−NÞσiðN0ÞdWðN0Þ: ðD7Þ

As can be seen, the stochastic variable EiðNÞ þ γBiðNÞ
satisfies a Gaussian PDF. As γBi is a Gaussian variable,
one can easily see that ðEiðNÞ þ γBiðNÞÞ − γBiðNÞ is a
Gaussian as well. Therefore, by the mean and variance of
electric field at the equilibrium state, one finds

feqEi ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

πhE2
i ieq

s
exp

�
−

x2

hE2
i ieq

�
; ðD8Þ

where hE2
i ieq is given by Eq. (3.33).

APPENDIX E: GRAVITATIONAL WAVES
INDUCED BY GAUGE FIELDS AND THE

ENERGY SCALE OF INFLATION

The gauge fields are the additional sources of tensor
perturbations, besides the vacuum ones. Which contribu-
tion is the dominant one depends directly on the model
parameter. For ξ ∼Oð10Þ, where the tachyonic enhance-
ment of the gauge field is significant, the gravitational
wave signal actively sourced by the gauge field is more
significant. In this Appendix, we study the production
of gravitational waves induced by the electromagnetic
modes.
Let us turn on the tensor perturbations of the

metric (2.4) via

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ðE1Þ

in which hijðt;xÞ is the transverse-traceless (TT) tensor
perturbation (∂ihij ¼ 0 ¼ hii). The quadratic expansion of
the action (2.3) for tensor part leads to [97,98]

Sð2Þt ¼ M2
Pl

8

Z
d3xdτa2

�
h0ij

2 − ð∂khijÞ2 −
4a2

M2
Pl

hijSij

�
;

Sij ¼ EiEj þ BiBj: ðE2Þ

Therefore, the equation of motion for the tensor modes is
given by

h00ij þ 2Hh0ij − ∇2hij ¼ − 2a2

M2
Pl

Sij; ðE3Þ
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where H ¼ a0=a is the comoving Hubble parameter.
The equation of motion [Eq. (E3)] is solved by separating

hij into a vacuum mode hð0Þij , the solution of the homo-

geneous equation, and a sourced mode hðsÞij . The modes
produced by the gauge quanta are statistically uncorrelated
with those from the vacuum.
In the absence of a source, the power spectrum has the

standard form

Pð0Þ
h ¼ 2H2

π2M2
Pl

: ðE4Þ

Since we are interested in superhorizon solutions for the
sourced modes, we simply neglect the negative-helicity
mode and the gradient term in the Fourier expansion of
Eq. (E3). Then, the tensor mode is given by

hþ ≃
−2Seq
M2

PlH
2
N ; Seq ≃M2

PlH
2hE2

i ieq; ðE5Þ

in which N ∼ 60 is the e-folding number of inflation and
hE2

i ieq is defined in Eq. (3.33). Note that we work in the
parameter space 1=2 < n < 2 and have also neglected the
contribution of magnetic fields due to the suppression
factor ε2 in Eq. (B19) in comparison to the electric part.
Therefore, we find that

PðsÞ
h ≃ 4N 2hE2

i i2eq: ðE6Þ

The two contributions add up in the power spectrum,
yielding

Ph ¼ Pð0Þ
h þ PðsÞ

h : ðE7Þ

Due to the production of the gauge quanta, the tensor-to-
scalar ratio rt ≡ Ph=Pζ can be estimated as

rt ≃
Pð0Þ

h

Pζ
þ 4N 2hE2

i i2eq
Pζ

: ðE8Þ

From CMB observations [67], the scalar power spectrum
is given by Pζ ≃ 2.1 × 10−9, while the constraint on the
tensor-to-scalar ratio rt is rt < 10−2. The above relation,
along with Eq. (3.33) for 1=2 < n < 2, besides the obser-
vational values for rt and Pζ, leads to a relation for the
Hubble parameter during inflation, which we denote by the
dimensionless parameter h:

H
MPl

≡ hðξ; n; rtÞ: ðE9Þ

For large enough ξ, we obtain h ∝ e−πξðPζrtÞ1=4, which is
consistent with Eq. (2.22). Having obtained the Hubble
parameter during inflation, one can estimate the energy
scale of inflation, defined as ρ1=4inf ≡ ð3M2

PlH
2Þ1=4. In Fig. 3,

we have plotted the value of the inflationary energy scale as
a function of ξ. We see that for ξ > 4, the energy scale of
inflation decreases rapidly.
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