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The second-order formula of Minkowski functionals in weakly non-Gaussian fields is compared with the
numerical N-body simulations. Recently, the weakly non-Gaussian formula of Minkowski functionals is
extended to include the second-order effects of non-Gaussianity in general dimensions. We apply this
formula to the three-dimensional density field in the large-scale structure of the Universe. The parameters
of the second-order formula include several kinds of skewness and kurtosis parameters. We apply tree level
of nonlinear perturbation theory to estimate these parameters, including novel calculations of quartic
cumulants. First we compare the theoretical values with those of numerical simulations on the basis of
parameter values, and next we test the performance of the analytic formula combined with the perturbation
theory. The second-order formula outperforms the first-order formula in general. The performance of the
perturbation theory depends on the smoothing radius applied in defining the Minkowski functionals. The
quantitative comparisons are presented in detail.
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I. INTRODUCTION

The large-scale structure of the Universe has rich
information for cosmology. The structure originates from
the initial density fluctuations, which are believed to be
generated by the cosmic inflation in the very early universe
[1–4]. While many scenarios to achieve the inflation
are proposed so far [5], we still do not know the true
mechanism to generate the initial density field. The large-
scale structure of the Universe also contains information
about the evolution of the Universe. Such cosmological
information is contained in the statistical properties of the
large-scale structure, and therefore it is of great importance
to statistically characterize the observed structures.
The power spectrum (and its Fourier counterpart, corre-

lation function) is one of the most popular statistics to
characterize the large-scale structure [6]. The statistical
properties of a random Gaussian field are completely
characterized once the power spectrum is specified. The
large-scale structure is nearly Gaussian on sufficiently large
scales, or at sufficiently early time, since the initial

conditions of the density fluctuations are nearly
Gaussian as indicated by the cosmic microwave back-
ground radiation [7]. However, gravitational evolutions
destroy the Gaussianity of the distribution, and non-
Gaussianity comes in on small scales in late time.
How to effectively characterize the non-Gaussian fields

is a nontrivial problem in cosmology. This problem attracts
a lot of attention because the power spectrum or correlation
function cannot capture the information about the non-
Gaussianity. One of the straightforward ways to characterize
the non-Gaussianity is to consider higher-order generaliza-
tions of the power spectrum and correlation function, i.e.,
polyspectra and N-point correlation functions. Nevertheless,
these higher-order correlations are difficult to accurately
measure, because these are functions of scales with many
arguments [6]. There are many alternative methods to
characterize the non-Gaussianity in general.
Among others, the set of Minkowski functionals [8,9] is

one of the popular methods to investigate the non-
Gaussianity in cosmology [10,11]. Applications of the
Minkowski functionals to the large-scale structure of the
Universe are also quite popular [12–22]). The Minkowski
functionals are calculated for the excursion set of the
random fields, such as isodensity surfaces of the large-
scale structure. The isodensity surfaces are defined by
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specifying the density threshold, and the Minkowski func-
tionals are considered as functions of the threshold for a
given density field.
One of the striking properties of the Minkowski func-

tionals is the fact that the functional forms of the
Minkowski functionals as functions of the threshold have
universal forms for Gaussian random fields: according to
Tomita’s formula [23], the Minkowski functionals of
random Gaussian fields are represented by specific func-
tions which are common to all random Gaussian fields.
Only the amplitudes of the functions are affected by the
power spectrum of the distributions. Thus, any deviation
from the Gaussian predictions of the Minkowski func-
tionals as functions of the threshold indicates non-
Gaussianity of the distribution.
Interpreting the deviations from the Gaussian predic-

tions of the Minkowski functionals is theoretically impor-
tant to understand the nature of non-Gaussianity. The
theoretical models for the generation mechanisms of
initial density fluctuations usually predict the higher-order
polyspectra such as the bispectrum, trispectrum, and so
forth. The relation between the non-Gaussian Minkowski
functionals and higher-order polyspectra are analytically
derived with an expansion scheme when the non-
Gaussianity is weak [24,25]. The first-order corrections
of the non-Gaussianity in the Minkowski functionals are
solely determined by integrals of the bispectrum, which
are called skewness parameters. Until recently, the ana-
lytic formula of the first-order corrections to the
Minkowski functionals are derived in three or less
dimensions. The second-order corrections depend both
on bispectrum and trispectrum. The analytic formula with
second-order corrections in two dimensions is derived
[26]. Formal expression of Euler characteristic, or genus
statistics, which is one of the Minkowski functionals, in
two and three dimensions in terms of the Gram-Charlier
expansion to all orders are known [27,28]. Most recently,
an analytic formula for non-Gaussian corrections up to the
second order are derived in general dimensions [29,30].
The second-order terms involve integrals of trispectrum,
which are called kurtosis parameters. Concrete relations
of the second-order corrections to the bispectrum and
trispectrum are derived in the last literature.
In this paper, we address how the second-order formula

works in the analysis of the large-scale structure in three
dimensions. For this purpose, we employ both the non-
linear perturbation theory and N-body simulations of
gravitational evolution in the expanding Universe.
Nonlinear perturbation theory is expected to be valid in
the weakly nonlinear regime on large scales, while the
N-body simulations can probe the fully nonlinear regime
at the expense of computational cost. The comparison
between the perturbation theory and numerical simulations
gives a useful insight into the applicability of the analytic
formula to realistic applications in cosmology.

This paper is organized as follows. In Sec. II, the second-
order formula of Minkowski functionals are summarized,
and many parameters in the formula are defined. In Sec. III,
methods to evaluate skewness and kurtosis parameters by
the nonlinear perturbation theory of gravitational evolution
are developed. In Sec. IV, the analytic formula with the
perturbation theory and the results of N-body simulations
are compared in detail. Conclusions are given in Sec. V.

II. ANALYTIC FORMULA OF MINKOWSKI
FUNCTIONALS WITH SECOND-ORDER NON-

GAUSSIANITY

In this section, we summarize the second-order formula
of Minkowski functionals with weak non-Gaussianity
derived in the previous papers [29,30].
First we review mathematical definitions of Minkowski

functionals in three-dimensional density fields ρðxÞ below
[11]. We denote the density contrast by δðxÞ ¼ ρðxÞ=ρ̄ − 1
where ρ̄ ¼ hρðxÞi is the mean density. In cosmological
applications, the Minkowski functionals are defined in
smoothed density fields,

δsðxÞ ¼
Z

d3x0WRðjx − x0jÞδðx0Þ; ð1Þ

where WRðxÞ is a smoothing kernel with smoothing radius
R. It is a common practice to apply a Gaussian kernel,

WRðxÞ ¼
e−x

2=ð2R2Þ

ð2πÞ3=2R3
; ð2Þ

to obtain the smoothed density field. We also assume this
kernel function throughout this paper.
The Minkowski functionals are defined by specifying the

isodensity contours with δs ¼ νσ0, where ν is the threshold
and

σ0 ¼ hδs2i1=2 ð3Þ

is the root-mean-square of the density fluctuations. There
are four Minkowski functionals in three-dimensional space.
We denote the Minkowski functionals per unit volume by
VkðνÞ (k ¼ 0, 1, 2, 3) as functions of the threshold ν which
specifies the isodensity surfaces as defined below.
The Minkowski functional of k ¼ 0 corresponds to the

volume fraction of the excursion set,

V0ðνÞ ¼
1

V

Z
Fν

d3x; ð4Þ

where V is the total volume of the sample, and Fν is a set of
all positions which satisfies δs ≥ νσ0. The other Minkowski
functionals correspond to surface integrals of the isodensity
surface ∂Fν, which is the boundary of the excursion set,
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VkðνÞ ¼
1

V

Z
∂Fν

d2xvkðν; xÞ; ð5Þ

where vkðν; xÞ is the local Minkowski functionals
defined by

v1ðν; xÞ ¼
1

6
; ð6Þ

v2ðν; xÞ ¼
1

6π

�
1

R1

þ 1

R2

�
; ð7Þ

v3ðν; xÞ ¼
1

4π

1

R1R2

; ð8Þ

and R1, R2 are the radii of curvature of the isodensity
surface orientated toward lower density regions.
The Minkowski functionals have geometrical interpre-

tations: the first Minkowski functional V0 corresponds to
the volume of the excursion set Fν as described above.
Minkowski functionals Vk with k ¼ 1, 2 correspond to the
area (k ¼ 1) and the total mean curvature (k ¼ 2) of the
isodensity surface ∂Fν, and V3 corresponds the Euler
characteristic which is a purely topological quantity.
Analytic formula of the Minkowski functionals up to

second order in weakly non-Gaussian field in general
dimensions d is derived in Refs. [29,30]. In the case of
three dimensions, d ¼ 3, the derived formula reduces to

VkðνÞ ¼
1

ð2πÞðkþ1Þ=2
ω3

ω3−kωk

�
σ1ffiffiffi
3

p
σ0

�
k
e−ν

2=2

��
Hk−1ðνÞ þ

�
1

6
Sð0ÞHkþ2ðνÞ þ

k
3
Sð1ÞHkðνÞ þ

kðk − 1Þ
6

Sð2ÞHk−2ðνÞ
�
σ0

þ
�
1

72
ðSð0ÞÞ2Hkþ5ðνÞ þ

�
1

24
Kð0Þ þ k

18
Sð0ÞSð1Þ

�
Hkþ3ðνÞ þ k

�
1

8
Kð1Þ þ k − 1

36
Sð0ÞSð2Þ þ k − 2

18
ðSð1ÞÞ2

�
Hkþ1ðνÞ

þ k

�
k − 2

16
Kð2Þ

1 þ k
16

Kð2Þ
2 þ ðk − 1Þðk − 4Þ

18
Sð1ÞSð2Þ

�
Hk−1ðνÞ

þ kðk − 1Þðk − 2Þ
�
1

24
Kð3Þ þ k − 7

72
ðSð2ÞÞ2

�
Hk−3ðνÞ

�
σ0

2 þOðσ03Þ
��

; ð9Þ

where HnðνÞ ¼ eν
2=2ð−d=dνÞne−ν2=2 are the probabilists’

Hermite polynomials, and various parameters are given
below in order. First, the factor

ωk ≡ πk=2

Γðk=2þ 1Þ ð10Þ

is the volume of the unit ball in k dimensions. Second,

σ1 ≡ h∇δs · ∇δsi1=2 ð11Þ

is a spectral moment. Third, SðaÞ are skewness parameters
defined by

Sð0Þ ¼ hδs3ic
σ0

4
; Sð1Þ ¼ 3

2
·
hδsj∇δsj2ic
σ0

2σ1
2

;

Sð2Þ ¼ −
9

4
·
hj∇δsj2△δsic

σ1
4

; ð12Þ

where h� � �ic denotes the cumulants. However, all the third-
order cumulants in the above equations can be replaced by
simple means, because hδsi ¼ h∇δsi ¼ 0. Fourth, KðaÞ

· are
kurtosis parameters defined by

Kð0Þ ¼ hδs4ic
σ0

6
; Kð1Þ ¼ 2 ·

hδs2j∇δsj2ic
σ0

4σ1
2

; ð13Þ

Kð2Þ
1 ¼ −

3

5
·
5hδsj∇δsj2△δsic þ hj∇δsj4ic

σ0
2σ1

4
; ð14Þ

Kð2Þ
2 ¼ −

3

5
·
5hδsj∇δsj2△δsic þ 3hj∇δsj4ic

σ0
2σ1

4
; ð15Þ

Kð3Þ ¼ 9 ·
hj∇δsj2ð△δsÞ2ic − hj∇δsj2δs;ijδs;ijic

σ1
6

; ð16Þ

where δs;ij ≡ ∂2δs=∂xi∂xj. The fourth-order cumulants are
related to the mean values by

hδs4ic ¼ hδs4i − 3σ0
4; ð17Þ

hδs2j∇δsj2ic ¼ hδs2j∇δsj2i − σ0
2σ1

2; ð18Þ

hδsj∇δsj2△δsic ¼ hδsj∇δsj2△δsi þ σ1
4; ð19Þ

hj∇δsj4ic ¼ hj∇δsj4i −
5

3
σ1

4; ð20Þ

hj∇δsj2ð△δsÞ2ic ¼ hj∇δsj2ð△δsÞ2i − σ1
2σ2

2; ð21Þ

hj∇δsj2δs;ijδs;ijic ¼ hj∇δsj2δs;ijδs;iji − σ1
2σ2

2; ð22Þ

where
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σ2 ≡ hð△δsÞ2i1=2 ð23Þ

is another spectral moment. The formula of Eq. (9) is a
generalization of the analytic formula previously derived in
restricted cases [23–26].
Various parameters in the formula of Eq. (9) are related

to the power spectrum PðkÞ, bispectrum Bðk1; k2; k3Þ, and
trispectrum Tðk1; k2; k3; k4Þ of the (unsmoothed) density
contrast δ, which are defined by

hδ̃ðkÞδ̃ðk0Þic ¼ ð2πÞ3δ3ðkþ k0ÞPðkÞ; ð24Þ

hδ̃ðk1Þδ̃ðk2Þδ̃ðk3Þic ¼ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBðk1; k2; k3Þ;
ð25Þ

hδ̃ðk1Þδ̃ðk2Þδ̃ðk3Þδ̃ðk4Þic
¼ ð2πÞ3δ3ðk1 þ k2 þ k3 þ k4ÞTðk1; k2; k3; k4Þ; ð26Þ

where

δ̃ðkÞ ¼
Z

d3xe−ik·xδðxÞ ð27Þ

is the Fourier transform of the density contrast. The Fourier
transform of the smoothed density contrast δs is given by
δ̃sðkÞ ¼ δ̃ðkÞWðkRÞ, where

WðkRÞ ¼
Z

d3xe−ik·xWRðxÞ ð28Þ

is a (three-dimensional) Fourier transform of the smoothing
kernel. In the case of Gaussian smoothing, Eq. (2), we
have

WðkRÞ ¼ e−k
2R2=2: ð29Þ

The smoothed density contrast is therefore given by

δsðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xδ̃ðkÞWðkRÞ: ð30Þ

Substituting Eq. (30) into Eqs. (3), (11)–(16), (23), the
spectral representations of the parameters are given by

σj
2 ¼

Z
d3k
ð2πÞ3 k

2jPðkÞW2ðkRÞ; ð31Þ

SðaÞ ¼ 1

σ0
4−2aσ1

2a

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3

× ð2πÞ3δ3ðk1 þ k2 þ k3ÞsðaÞðk1; k2; k3Þ
× Bðk1; k2; k3ÞWðk1RÞWðk2RÞWðk3RÞ; ð32Þ

KðaÞ
· ¼ 1

σ0
6−2aσ1

2a

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3

d3k4
ð2πÞ3

× ð2πÞ3δ3ðk1 þ k2 þ k3 þ k4ÞκðaÞ· ðk1; k2; k3; k4Þ
× Tðk1; k2; k3; k4ÞWðk1RÞWðk2RÞWðk3RÞWðk4RÞ;

ð33Þ

where

sð0Þ ¼ 1; sð1Þ ¼ −
3

2
k1 · k2; sð2Þ ¼ −

9

4
ðk1 · k2Þk32;

κð0Þ ¼ 1; κð1Þ ¼ −2k1 · k2;

κð2Þ1 ¼ −
3

5
ðk1 · k2Þð5k32 þ k3 · k4Þ;

κð2Þ2 ¼ −
3

5
ðk1 · k2Þð5k32 þ 3k3 · k4Þ;

κð3Þ ¼ −9ðk1 · k2Þ½k32k42 − ðk3 · k4Þ2�: ð34Þ

Thus, all the necessary parameters in the formula of Eq. (9)
are calculated once the power spectrum, bispectrum, and
trispectrum of the density field are specified.

III. EVALUATING PARAMETERS BY THE
NONLINEAR PERTURBATION THEORY

The cosmological perturbation theory of nonlinear den-
sity field [31] is one of the standard methods of evaluating
the power spectrum and higher-order polyspectra in gen-
eral. Therefore, it is natural to apply the perturbation theory
to predict the parameters of the formula of non-Gaussian
Minkowski functionals. In this section we derive the
necessary equations to achieve the evaluations.

A. Spectra from the standard perturbation theory

In the standard perturbation theory, the nonlinear density
contrast δ̃ðkÞ in Fourier space is expanded by the linear
density contrast δLðkÞ as

δ̃ðkÞ ¼
X∞
n¼1

1

n!

Z
d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 δ

3
Dðk1 þ � � � þ kn − kÞ

× Fnðk1;…; knÞδLðk1Þ � � � δLðknÞ; ð35Þ

and a similar expansion is applied to the velocity (diver-
gence) field θ with kernel functions Gnðk1;…; knÞ.1 Using
the recursion relations [31,32] of the kernels Fn andGn, we
have

1Our conventions for the kernel functions Fn and Gn are
different from most of the literature’s in which a factor 1=n! in
Eq. (35) is missing. One should replace Fn;Gn → n!Fn; n!Gn to
reproduce the equations in the corresponding literature’s. Our
conventions designate most of the derived equations more
concisely.
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F2ðk1;k2Þ ¼
10

7
þ
�
k1
k2

þ k2
k1

�
k1 · k2
k1k2

þ 4

7

�
k1 · k2
k1k2

�
2

; ð36Þ

G2ðk1; k2Þ ¼
6

7
þ
�
k1
k2

þ k2
k1

�
k1 · k2
k1k2

þ 8

7

�
k1 · k2
k1k2

�
2

; ð37Þ

and

F3ðk1; k2; k3Þ ¼
7

6
αðk1; k2 þ k3ÞF2ðk2; k3Þ

þ 1

6
½7αðk2 þ k3; k1Þ

þ 4βðk2 þ k3; k1Þ�G2ðk2; k3Þ; ð38Þ

where

αðk1; k2Þ≡ 1þ k1 · k2
k12

; βðk1; k2Þ≡ jk1 þ k2j2ðk1 · k2Þ
2k12k22

:

ð39Þ

Instead of the asymmetric kernel F3 in the above equation,
it is convenient to define the symmetrized kernel

FðsÞ
3 ðk1; k2; k3Þ≡ 1

3
F3ðk1; k2; k3Þ þ cyc; ð40Þ

where “þcyc” denotes the cyclic permutations of the
previous term with respect to the arguments k1, k2, k3.
In the lowest-order approximations (so-called “tree-

level” approximations) of the perturbation theory, the
power spectrum, bispectrum and trispectrum defined in
Eqs. (24)–(26) are given by

PðkÞ ¼ PLðkÞ; ð41Þ

Bðk1; k2; k3Þ ¼ F2ðk1; k2ÞPLðk1ÞPLðk2Þ þ cyc; ð42Þ

Tðk1;k2;k3;k4Þ ¼F2ðk1;k2þ k3ÞF2ðk2;−k2− k3Þ
×PLðk1ÞPLðk2ÞPLðjk2þ k3jÞþ symð11Þ
þFðsÞ

3 ðk1;k2;k3ÞPLðk1ÞPLðk2ÞPLðk3Þ
þ symð3Þ; ð43Þ

where “þsymðnÞ” represents additional n terms to sym-
metrize the previous term with respect to the argu-
ments k1;…; k4. Substituting Eqs. (41)–(43) and (34) into
Eqs. (31)–(33), the parameters of the second-order for-
mula (9) of Minkowski functionals are given in the tree-
level perturbation theory of the gravitational evolution of
density field. However, it is not straightforward to numeri-
cally evaluate the skewness and kurtosis parameters with
the above equations as they involve higher-dimensional
integrals. One can analytically reduce the dimensionality of

the integrals in order to practically evaluate them as we
explain below.

B. Skewness and kurtosis parameters

The method to evaluate the skewness parameters SðaÞ
with the Gaussian smoothing kernel in the perturbation
theory are already known [24]. The simplest kurtosis Kð0Þ
with the Gaussian smoothing kernel are also already
addressed [33]. We follow a similar, but somehow different
approach to achieve the numerical evaluations of all the
parameters. For that purpose, it turns out to be desirable to
reexpress the integrals of skewness and kurtosis parame-
ters, Eqs. (32) and (33). The functions sðaÞ and κðaÞ· can be
replaced by the symmetrized ones,

s̃ðaÞðk1; k2; k3Þ≡ 1

3
sðaÞðk1; k2; k3Þ þ cyc; ð44Þ

κ̃ðaÞ· ðk1; k2; k3; k4Þ≡ 1

12
κðaÞ· ðk1; k2; k3; k4Þ þ symð11Þ:

ð45Þ
These functions are completely symmetric for any permu-
tations of their arguments. When one replaces sðaÞ → s̃ðaÞ

and κðaÞ· → κ̃ðaÞ· in Eqs. (32) and (33), the bispectrum and
trispectrum in the perturbation theory can be replaced by
asymmetric functions,

B̃ðk1; k2Þ≡ 3F2ðk1; k2ÞPLðk1ÞPLðk2Þ; ð46Þ
T̃ðk1; k2; k3Þ≡ 12F2ðk1; k2 þ k3ÞF2ðk2;−k2 − k3Þ

× PLðk1ÞPLðk2ÞPLðjk2 þ k3jÞ
þ 4F3ðk1; k2; k3ÞPLðk1ÞPLðk2ÞPLðk3Þ:

ð47Þ
Because of the delta functions in Eqs. (32) and (33), one

can replace k3 ¼ −k1 − k2 in Eq. (44) and k4 ¼ −k1 −
k2 − k3 in Eq. (45). We denote s̃ðaÞðk1; k2Þ and
κ̃ðaÞ· ðk1; k2; k3Þ after substituting these constraints. After
all, Eqs. (32) and (33) are reexpressed as

SðaÞ ¼ 1

σ0
4−2aσ1

2a

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 s̃

ðaÞðk1; k2Þ

× B̃ðk1; k2Þe−ðk12þk22þk1·k2ÞR2

; ð48Þ

KðaÞ
· ¼ 1

σ0
6−2aσ1

2a

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3 κ̃

ðaÞ
· ðk1; k2; k3Þ

× T̃ðk1; k2; k3Þ
× e−ðk12þk22þk32þk1·k2þk2·k3þk3·k1ÞR2

; ð49Þ
where

s̃ð0Þ ¼ 1; ð50Þ
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s̃ð1Þ ¼ 1

2
ðk12 þ k22 þ k1 · k2Þ; ð51Þ

s̃ð2Þ ¼ 3

2
½k12k22 − ðk1 · k2Þ2�; ð52Þ

and

κ̃ð0Þ ¼ 1; ð53Þ

κ̃ð1Þ ¼ 1

3
ðk12 þ k22 þ k32 þ k1 · k2 þ k2 · k3 þ k3 · k1Þ;

ð54Þ

κ̃ð2Þ1 ¼ 1

10
f5½k12k22 − ðk1 · k2Þ2�

− 6ðk1 · k3Þðk2 · k3Þ þ 2ðk1 · k2Þk32g þ cyc; ð55Þ

κ̃ð2Þ2 ¼ 1

10
f5½k12k22 − ðk1 · k2Þ2�

þ 2ðk1 · k3Þðk2 · k3Þ þ 6ðk1 · k2Þk32g þ cyc; ð56Þ

κ̃ð3Þ ¼ 3

2
½k12k22k23 þ 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

− 3ðk1 · k2Þ2k32� þ cyc; ð57Þ

and the Gaussian window function, Eq. (29), is explicitly
used. In the lowest-order in the perturbation theory, the
parameters σj of Eq. (31) are given by

σj
2 ¼

Z
∞

0

k2dk
2π2

k2jPLðkÞe−k2R2

; ð58Þ

where the Gaussian window function is assumed.

Because the integrands of Eqs. (48) and (49) are rota-
tionally invariant, one can reduce the dimensionality of the
integrals by three dimensions. In order to reduce the
dimensionality of integrals of Eq. (48) for the skewness
parameters, one can choose the coordinates system,

k1R ¼ ðp sin θ; 0; p cos θÞ; k2R ¼ ð0; 0; qÞ; ð59Þ

and the volume element of the integral in Eq. (48) reduces
to

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 →

1

8π4R6

Z
∞

0

p2dp
Z

∞

0

q2dq
Z

π

0

sin θdθ:

ð60Þ

We substitute Eqs. (46) and (50)–(52) into Eq. (48) in this
coordinate system. The integral over the variable θ can
analytically performed as

Z
π

0

sin θdθex cos θcosnθ ¼ 2
dn

dxn

�
sinh x
x

�
: ð61Þ

As a result, we have expressions in a form,

SðaÞ ¼ 1

8π4R2aþ6σ0
4−2aσ1

2a

×
Z

∞

0

dpdqe−p
2−q2 S̃ðaÞðp;qÞPL

�
p
R

�
PL

�
q
R

�
; ð62Þ

where S̃ðaÞðp; qÞ are analytic functions which are explicitly
given by

S̃ð0Þ ¼ −6
�
p2 þ q2 þ 8

7

�
coshðpqÞ þ 6

�
2p2q2 þ p2 þ q2 þ 8

7

�
sinhðpqÞ

pq
; ð63Þ

S̃ð1Þ ¼−3
�
p4þq4þ4p2q2þ22

7
ðp2þq2Þþ24

7

�
coshðpqÞþ3

��
3p2q2þ22

7

�
ðp2þq2Þþp4þq4þ36

7
p2q2þ24

7

�
sinhðpqÞ

pq
;

ð64Þ

S̃ð2Þ ¼ 18

�
2p2q2 þ 3ðp2 þ q2Þ þ 48

7

�
coshðpqÞ − 18

�
ðp2q2 þ 3Þðp2 þ q2Þ þ 30

7
p2q2 þ 48

7

�
sinhðpqÞ

pq
: ð65Þ

The two-dimensional integrations of Eq. (62) are numeri-
cally evaluated without any difficulty.
Similarly, the dimensionality of integrals of Eq. (49) for

kurtosis parameters can be reduced due to the rotational
invariance of integrands. It is convenient to change the
integration variables [33],

p ¼ k1R; q ¼ k2R; r ¼ ðk2 þ k3ÞR; ð66Þ

or,

k1 ¼
p
R
; k2 ¼

q
R
; k3 ¼

r − q
R

: ð67Þ
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One can choose coordinates system,

p ¼ ðp sin θ cosϕ; p sin θ sinϕ; p cos θÞ; ð68Þ

q ¼ ðq sin θ0; 0; q cos θ0Þ; r ¼ ð0; 0; rÞ: ð69Þ

and the volume element of the integral in Eq. (49)
reduces to

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3k3
ð2πÞ3

→
1

32π6R9

Z
∞

0

p2dp
Z

∞

0

q2dq
Z

∞

0

r2dr

×
Z

π

0

sin θdθ
Z

π

0

sin θ0dθ0
Z

2π

0

dϕ
2π

: ð70Þ

The integral over the variable ϕ is straightforward, and the
integral over θ can again analytically performed by apply-
ing Eq. (61). The integrals over θ0 are only possible for the
first term of Eq. (47), and are not possible for the second
term. We use a new integration variable μ ¼ cos θ0 for the
last integrals. As a result, we have expressions in a form,

KðaÞ
· ¼ 1

32π6R2aþ9σ0
6−2aσ1

2a

Z
∞

0

dpdqdre−p
2−q2−r2

×

�
K̃ðaÞ

· ðp; q; rÞPL

�
p
R

�
PL

�
q
R

�
PL

�
r
R

�

þ
Z

1

−1
dμeqrμL̃ðaÞ

· ðp; q; r; μÞPL

�
p
R

�
PL

�
q
R

�

× PL

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2 − 2qrμ

p
R

��
; ð71Þ

where K̃ðaÞ
· , L̃ðaÞ

· are analytic functions. For example,

K̃ð0Þ ¼ 48

r2

��
p2 þ r2 þ 8

7

�
coshðprÞ −

�
2p2r2 þ p2 þ r2 þ 8

7

�
sinhðprÞ

pr

�

×

��
q2 þ r2 þ 8

7

�
coshðqrÞ −

�
2q2r2 þ q2 þ r2 þ 8

7

�
sinhðqrÞ

qr

�
; ð72Þ

L̃ð0Þ ¼ 4qr2

21ðq2 þ r2 − 2qrμÞ
�
½ð8þ 9p2 − 19r2Þq − 7ð8þ 9p2 þ 9r2Þrμþ 2ð24þ 27p2 þ 41r2Þqμ2� coshðprÞ

− ½ð8þ 9p2 − 19r2 − 10p2r2Þq − 7ð8þ 9p2 þ 9r2 þ 18p2r2Þrμ

þ 2ð24þ 27p2 þ 41r2 þ 68p2r2Þqμ2� sinhðprÞ
pr

�
: ð73Þ

Other functions K̃ð1Þ, K̃ð2Þ
1 , K̃ð2Þ

2 , K̃ð3Þ are similarly given,
although explicit expressions of these functions are too
tedious to reproduce here. It is straightforward to derive the
expressions by using theMathematica package. With these
analytic results, we numerically evaluate the three- and
four-dimensional integrations of Eq. (71).

IV. COMPARISONS WITH NUMERICAL
SIMULATIONS

To see how the non-Gaussian formula of Minkowski
functionals works in the three-dimensional large-scale
structure, we now compare the analytic predictions and
the results of cosmological N-body simulations. For that
purpose, we calculate the Minkowski functionals from 300
realizations of the N-body simulations from the Quijote suite
[34]. Each realization contains N ¼ 5123 particles in a box
size of V ¼ 1 h−3Gpc3. The cosmological parameters of
the simulations are given by Ωm ¼ 0.3175, Ωb ¼ 0.049,
h ¼ 0.6711, ns ¼ 0.9624, σ8 ¼ 0.834, and a flat ΛCDM
model is assumed. In calculating the Minkowski

functionals, the density field in the simulation box is
smoothed by a Gaussian filter of the radius
R¼10;20;30;40h−1Mpc. The Minkowski functionals
are numerically evaluated based on Crofton’s formula from
integral geometry [35,36] where each Minkowski func-
tional can be computed by counting the numbers of
vertices, edges, faces, and cubes of the excursion set over
a threshold ν [11].
With the same set of cosmological parameters, theoreti-

cal predictions of the weakly non-Gaussian formula of
Minkowski functionals with the nonlinear perturbation
theory are calculated according to the method described
in the previous section. The linear power spectrum PLðkÞ is
evaluated by the CLASS code [37,38]. Once the linear power
spectrum is given, all the parameters in the formula of
Eq. (9) for the Minkowski functionals are calculated by
numerical integrations of Eqs. (58), (62), (71).
In Table I, the parameters of the weakly non-Gaussian

formula of Minkowski functionals are given. The upper
figures of each entry represent the predictions of the
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lowest-order perturbation theory. The lower figures of each
entry are the values calculated directly from the simulation
data with Eqs. (3), (11)–(23). In Figs. 1, 2 and 3, the values
of various parameters calculated from the perturbation
theory and simulation data are compared. The spectral
parameters σj in the simulations are well reproduced by the
tree-level perturbation theory within a few percent on every
scale. The skewness and kurtosis parameters in the sim-
ulations are quantitatively reproduced by the tree-level
perturbation theory on sufficiently large scales within 5%

for R≳ 30 h−1Mpc, while the accuracy of the perturbation
theory decreases to 10% for R ∼ 20 h−1Mpc and much
worse for R ∼ 10 h−1Mpc.
Finally, the Minkowski functionals calculated from the

numerical simulations are compared with analytic predic-
tions in Figs. 4–7. Each figure corresponds to different
smoothing radius. The symbols represent the measured
values and errors estimated from the 300 realizations of
simulations. The leftmost columns show the shape of the

TABLE I. The values of parameters for the weakly non-Gaussian formula of Minkowski functionals in the large-
scale structure. Four cases of the smoothing radius R are presented. The values calculated from the lowest-order
perturbation theory (upper figures) and directly from the numerical simulations with 1σ errors (lower figures) are
listed.

R [h−1 Mpc] 10 20 30 40

σ0 0.385 0.193 0.121 0.0845
0.3804� 0.0001 0.1899� 0.0001 0.1194� 0.0001 0.08374� 0.0001

σ1 0.0367 0.0101 0.00441 0.00240
0.03652� 0.00001 0.009918� 0.000004 0.004352� 0.000003 0.002371� 0.000002

Sð0Þ 3.56 3.40 3.33 3.28
3.762� 0.004 3.46� 0.01 3.36� 0.02 3.28� 0.05

Sð1Þ 3.63 3.45 3.36 3.31
3.932� 0.003 3.531� 0.006 3.41� 0.01 3.34� 0.03

Sð2Þ 3.66 3.68 3.71 3.72
4.499� 0.004 3.887� 0.006 3.81� 0.01 3.78� 0.03

Kð0Þ 23.2 20.9 19.9 19.2
26.66� 0.09 21.6� 0.2 20.2� 0.5 19� 1

Kð1Þ 23.8 21.3 20.2 19.5
28.77� 0.09 22.2� 0.1 20.6� 0.3 19.8� 0.8

Kð2Þ
1

30.6 28.3 27.2 26.7

41.7� 0.1 30.4� 0.2 28.1� 0.4 27.5� 0.8

Kð2Þ
2

18.8 17.7 17.3 17.0

26.7� 0.1 19.2� 0.1 18.0� 0.2 17.8� 0.6
Kð3Þ 25.1 25.6 26.1 26.4

45.5� 0.2 29.6� 0.2 27.6� 0.4 27� 1

FIG. 1. The values of σ0 and σ1 calculated from the perturbation
theory (solid and dashed lines, respectively) and simulation data
(points with error bars), as functions of smoothing radius R.

FIG. 2. The values of skewness parameters Sð0Þ, Sð1Þ, Sð2Þ
calculated from the perturbation theory (solid, dashed and dotted
lines, respectively) and simulation data (points with error bars), as
functions of smoothing radius R.
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Minkowski functionals. The second and third columns
show the differences from the Gaussian predictions, i.e.,
they depict the non-Gaussian effects. The numerical results
(symbols) in these two columns are the same. The Gaussian
predictions are subtracted from the full Minkowski func-
tionals. Only the theoretical predictions (solid and dashed
lines) are different in these columns of the plots. For the
theoretical predictions, solid lines use the skewness and
kurtosis parameters estimated from the simulations, and
dashed lines use the parameters estimated from the per-
turbation theory. The lines in the second columns show the
first-order theory of non-Gaussianity in the analytic for-
mula. The lines in the third columns show the second-order
theory of non-Gaussianity. The rightmost columns show
the differences from the first-order theory, i.e., they depict
the second- and higher-order effects of non-Gaussianity
in the Minkowski functionals.
As expected, the analytic predictions reproduce the

results of numerical simulations when the smoothing radius

FIG. 3. The values of kurtosis parameters Kð0Þ, Kð1Þ, Kð2Þ
1 , Kð2Þ

2 ,
Kð3Þ calculated from the perturbation theory (solid, dashed,
dotted, dash-dotted and long-dashed lines, respectively) and
simulation data (points with error bars), as functions of smooth-
ing radius R.

FIG. 4. Minkowski functionals calculated from the numerical simulations (points with error bars) are compared with analytic
formulas. A smoothing radius R ¼ 10 h−1 Mpc is adopted. The panels in the leftmost column show the values of Minkowski

functionals. The curves are normalized by the maximum of the absolute values for Gaussian predictions, VðGÞ;MAX
k . The dotted lines

correspond to the zeroth-order predictions, or Gaussian predictions, dashed lines correspond to the first-order predictions, and solid lines
correspond to the second-order predictions. The parameter values for the first- and second-order predictions are numerically calculated
from the simulations. The panels of the second and third columns show non-Gaussian components of Minkowski functionals, i.e.,
Gaussian predictions are subtracted from the first columns. The numerical results (symbols) are the same in these two columns. The
parameter values for the solid lines are taken from the numerical simulations, and those for the dashed lines are taken from the
predictions of the perturbation theory. In the panels of the second column, the analytic predictions with the first-order theory are
presented. In the panels of the third column, the analytic predictions with the second-order theory are presented. In the panels of the
rightmost column, first-order predictions are subtracted from the Minkowski functionals, in order to focus on second- and higher-order
effects.
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FIG. 5. Same as Fig. 4 but for the smoothing radius of R ¼ 20 h−1 Mpc.

FIG. 6. Same as Fig. 4 but for the smoothing radius of R ¼ 30 h−1 Mpc.
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is large and the expansion parameter σ0 is small. The
qualitative behaviors of the Minkowski functionals as
functions of the threshold are reproduced by the analytic
formulas. Quantitatively, however, the agreements are
better for large smoothing radii than for small smooth-
ing radii.
In Fig. 4 with the smallest smoothing radius of R ¼

10 h−1Mpc and σ0 ¼ 0.38, the theoretical predictions
significantly deviate from the numerical results. The
Minkowski functionals of the lower threshold, ν≲ −2,
in the numerical measurements are flat because of the
negligible or zero probability of having sufficiently small
or negative density ρ=ρ̄ − 1 ¼ νσ0 in the field. However,
such constraints originate from nonperturbative effect
where jδsj≳ 1 are not taken into account in the theoretical
predictions with the perturbation theories. The Minkowski
functionals of the higher threshold, ν≳ 2, are also non-
perturbative and perturbation theories are not expected to
apply. In the middle range of the threshold, −2≲ ν≲þ2,
the second-order theory outperforms the first-order theory
(compare second and third columns). There are still a
certain amount of deviations between second-order theory
and numerical results (fourth column) with this smoothing
radius of R ¼ 10 h−1 Mpc. The discrepancies in the fourth
column between theoretical predictions and numerical
results are due to higher-order effects in the expression
of the analytic formula, Eq. (9), of Minkowski functionals,
and also higher-order corrections to the skewness and

kurtosis parameters estimated by the tree-level perturbation
theory in the case of dashed lines.
In Fig. 5 with the smoothing radius of R ¼ 20 h−1Mpc

and σ0 ¼ 0.19, the theoretical predictions are far better than
the previous case of R ¼ 10 h−1Mpc. The plotted range of
−3.5 ≤ ν ≤ þ3.5 satisfies jδsj≲ 1, and the perturbation
theory becomes better than the previous case. The second-
order theory is much better than the first-order theory as in
the previous case, and deviations of the first- and second-
order theories are smaller than the previous case. Therefore,
the higher-order effects are relatively not so important
in this case. In Figs. 6 and 7 with the smoothing radii of
R ¼ 30 h−1Mpc and 40 h−1Mpc (σ0 ¼ 0.12 and 0.08,
respectively), the agreements of theoretical predictions and
numerical results becomes better as smoothing radius
increases.
Our results are consistent with the previous work [28],

where one of the Minkowski functionals, the Euler char-
acteristic among others, in the second-order theory is
compared with numerical simulations of power-law pri-
mordial spectra, using measured values of kurtosis param-
eters, and good agreements are found for σ0 ≲ 0.2. Our
results extend the previous work to calculating all the
Minkowski functionals with arbitrary spectrum with ana-
lytic predictions of kurtosis parameters in the perturbation
theory. Therefore, a condition σ0 ≲ 0.2 is considered as a
rough criterion that the second-order theory is applicable to
a certain extent, irrespective to the primordial spectrum.

FIG. 7. Same as Fig. 4 but for the smoothing radius of R ¼ 40 h−1 Mpc.
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V. CONCLUSIONS

In this paper, we compare the second-order formula of
weakly non-Gaussian Minkowski functionals to the results
of N-body simulations of the large-scale structure. As
expected, the nonlinear perturbation theory reproduces the
deviations from the Gaussian predictions of Minkowski
functionals when the smoothing radius is large enough. We
quantitatively investigate the performance of the nonlinear
perturbation theory against the numerical simulations.
The nonlinear perturbation theory predicts all the param-

eters in the analytic formula of weakly non-Gaussian
Minkowski functionals. While the calculations of skewness
and kurtosis parameters with the perturbation theory
involve multidimensional integrals, parts of the integrations
are analytically performed, and one can numerically
evaluate all the necessary integrals without any difficulty.
The predicted parameters are compared with those directly
evaluated by the N-body simulations in Table I and
Figs. 1–3.
In our calculations, the nonlinear perturbation theory

with tree-level approximations are adopted. Higher-order
corrections of the perturbation theory with loop corrections
may improve the theoretical predictions, while the numeri-
cal evaluations of the multidimensional integrals would be
much harder. Investigations along this line is one of the
possible extensions of the present work.
The Figs. 4–7 show our comparisons of the Minkowski

functionals between numerical results and analytic
formula for various smoothing radius. As expected, the
degree of agreement varies with smoothing radius. The
analytic formula is better in the larger smoothing radius
(i.e., smaller σ0), as expected. While higher-order effects of
both non-Gaussianity and the perturbation theory are

simultaneously important for smaller smoothing radius,
the analytic formula with larger smoothing radius outper-
forms the case of smaller smoothing radius.
In this paper, we only consider the clustering of dark

matter in real space, and obviously ignore the effects of
galaxy biasing and redshift-space distortions, which are
inevitable in the actual observations of the large-scale
structure of the Universe. While the purpose of this paper
is to investigate the dynamically nonlinear effects on the
Minkowski functionals of density fluctuations of dark
matter, taking into account the biasing and redshift-space
distortions should be necessary to realistically predict the
shape of Minkowski functionals of observable galaxies. We
will address these effects in future work. Taking into
account only the biasing is not so difficult if the perturba-
tive bias model [39] is assumed to predict the skewness
and kurtosis parameters by the perturbation theory. While
taking into account the redshift-space distortions in the
analytic formula is tedious, much of the ground work
has been done with the first-order theory of non-
Gaussianity [40].
Another important application of the present work (with

extensions of including the observational effects mentioned
above) is to see whether or not one can distinguish the
primordial non-Gaussianity from the non-Gaussianity
induced by nonlinear evolutions. The method developed
in this paper should offer an analytic way of investigating
this kind of issue in future work.
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