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The tension between the current expansion rate H0 using Planck data and direct model-independent
measurements in the local Universe has grown in the context of the ΛCDM model. The growing
tension among early-time and local measurements of H0 has not ameliorated and remains a crucial and
open question in cosmology. Solutions to understanding this tension are possible hidden sources of
systematic error in the observable measurements or modifications to the concordance ΛCDMmodel. In this
work, we investigate a solution to the H0 tension by modifying ΛCDM and we add at early times an
extra-relativistic energy density ρex beyond the standard model. For a scale factor larger than ac, this extra
energy density ρex dilutes faster than radiation and becomes subdominant. In some contexts,
this ρex corresponds to early dark energy or bound dark energy, and we refer to this cosmological model
as ΛCDM-Nx. We implement ΛCDM-Nx in CAMB and perform a full COSMOMC analysis, allowing to
simultaneously fit the latest data from cosmic microwave background (CMB) anisotropies and the
value of H0 ¼ 74.03� 1.42 km s−1 Mpc−1 obtained from distance ladder measurements using Cepheid
variables to calibrate the absolute luminosity of type Ia supernovae by Riess et al. [Astrophys. J. 876, 85
(2019)]. The inclusion of ρex ameliorates the tension between early- and late-time measurements only
slightly, and we obtain a value H0 ¼ ð68.70� 0.45 km s−1 Mpc−1Þ which is still in conflict with local
measurements. We follow up our analysis by proposing two forecasting standard deviations σH ¼ 1 and
σH ¼ 0.5 (in units of km s−1 Mpc−1) for local distance measurements, i.e., H0 ¼ ð74.03� 1Þ and
H0 ¼ ð74.03� 0.5Þ km s−1 Mpc−1. We implement these new values of H0 in COSMOMC including
CMB and Riess data, and we obtain a value of H0 ¼ ð72.83� 0.47Þ km s−1 Mpc−1 at the 68% confidence
level for σH ¼ 0.5, which is fully consistent with Reiss’ results, while the price to pay is a percentage
increase of the reduced CMB ðχredCMBÞ2 of 0.127% vs the ΛCDM model, corresponding to a very
small increase. Finally, the energy density ρex leaves distinctive imprints in the matter power spectrum at
scales k ∼ kc [with kc ¼ acHðacÞ] and in the CMB power spectrum, allowing for independent verification
of our analysis.
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I. OVERVIEW

Even before the discovery of the accelerated expansion
rate of the Universe [1–3], the quest to determine the rate
of expansion of the Universe occupied a central role in
cosmology for decades. However, great technical and
observational achievements in recent years have delivered
percent-level precision measurements of the cosmological
parameters. The improvement in probing the physics of
different epochs of the Universe has yielded discordance in
some measurements. In particular, we have an increasing
tension among the values of some cosmological parame-
ters, such as the value of H0.
According to the distance ladder measurements, which

use nearby Cepheids to anchor supernovae data and

determine their distance [4–6], the obtained value for the
Hubble parameter is up to 3.4σ higher than the value
determined using cosmic microwave background (CMB)
probes. This distance ladder method to determine H0 is
model independent, i.e., it does not rely on the underlying
cosmological model, and the latest estimate reported a
value of H0 ¼ 74.03� 1.42 km s−1Mpc−1 [4].
An alternative calibration of the distance ladder uses the

tip of the red giant branch method [7]. This method is
independent of the Cepheid distance scale and gives a value
of H0 ¼ 69.8� 1.9 km s−1 Mpc−1 [8], which is in the
middle of the range defined by the current Hubble
tension. It agrees at the 1.2σ level with that of the
Planck Collaboration [9], and at the 1.7σ level with the
SH0ES measurement ofH0 based on the Cepheid distance
scale [4]. Measurements of lensing time delays [10–12]
between multiple images of background quasars provide a
high value for H0 which is in agreement with the tradi-
tional local distance ladder estimation. Reference [10]
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reported a value of H0¼71.9þ2.4
−3.0 kms−1Mpc−1, while

Ref. [11] found the value H0 ¼ 72.5þ2.1
−2.3 km s−1Mpc−1

and the H0LiCOW team [12] reported H0 ¼
73.3þ1.7

−1.8 km s−1Mpc−1 by making a joint analysis of six
gravitationally lensed quasars with measured time delays.
This technique is completely independent of both the
supernovae and CMB analyses.
The precise CMB measurements by Planck [9] (here-

after [P18]) provided a value of the Hubble parameter
H0 ¼ ð67.27� 0.60Þ km s−1Mpc−1 at the 68% confidence
level assuming the standard ΛCDMmodel, corresponding
to the particle content of the standard model of particles
physics [13] supplemented by cold dark matter and a
cosmological constant as dark energy. The value of H0

from CMB measurements is in conflict with the value of
H0 determined at late cosmological times from local
measurements by Riess et al. [4] (hereafter [R19]) given
by H0 ¼ ð74.03� 1.42Þ km s−1 Mpc−1 and with an aver-
age reported value H0 ¼ ð73.3� 0.8Þ km s−1Mpc−1 [14]
from different local measurements projects. A combined
analysis of distance measurements for four megamaser-
hosting galaxies done by the Megamaser Cosmology
Project [15] gave the value H0¼73.9�3.0kms−1Mpc−1.
A combination of “time-delay cosmography” [16]
and the distance ladder results gives a result of H0 ¼
74.5þ5.6

−6.1 km s−1 Mpc−1.
On the other hand, the latest results from the Planck

Collaboration report a model-dependent ΛCDM extrapo-
lated value of H0 ¼ ð67.36� 0.54Þ km s−1Mpc−1 [9],
while the latest results from the Atacama Cosmology
Telescope [17] CMB probe found a value that agrees with
the Planck satellite estimate within 0.3%, reporting a value
of H0 ¼ 67.6� 1.5 km s−1Mpc−1. In a recent review,
Verde et al. reported an average value of local measure-
ments ofH0 ¼ 73.03� 0.8 km s−1Mpc−1 [14]. Regardless
of the exact value ofH0 obtained from local measurements,
the significance of the tension between the measurements
of early and late times lies in the range 4.0 − 5.7σ [14],
implying some profound misunderstanding in either the
systematic errors of the observational analysis or the
theoretical ΛCDM model.
The discrepancy between the early- and late-Universe

H0 measurements has gained major attention from the
cosmological community, and some authors have explored
a variety of extensions to the minimal ΛCDM model to
accommodate the high value of H0 obtained from local
measurements with the precise information encoded in the
CMB. Trying to understand the tension between these two
values led to a reexamination of possible sources of
systematic errors in the observations [18–20], but it also
suggests the need to extend our physical model describing
the Universe. Any of these theoretical modifications should
leave the accurate determination of the angular scale of the
acoustic peaks in the CMB power spectrum by Planck
unchanged [21].

TheH0 tension has been studied recently in Refs. [22–26],
and more recently in Refs. [27–34] where the impact on
structure formation was studied.
The suggestionmade inRef. [5] to explore the existence of

dark radiation in the early Universe in the range of ΔNeff ¼
0.4–1 to solve this tensionwas explored in detail in Ref. [35],
where they explored changing the values of Neff and cs.
Alternatively, some models explore the possibility of having
interactions within the dark sector (dark matter and dark
engery) so that can not only help to solve the cosmic
coincidence problem, but also solve the H0 tension
[36,37]. In the context of exploring alternative models for
the dark sector, Ref. [38] investigated the possible scenarios
for a phantom crossing dark energy component as another
option for solving the Hubble tension. Given the amount of
interest invested in this topic, some authors have explored
changes to general relativity in order to accommodate the
high value of H0 with CMB data. For instance, Ref. [39]
explored a model in which a fifth force between dark matter
particles is mediated by a scalar field which plays the role of
dark energy. Models that vary the effective gravitational
constant and effective number of relativistic degrees of
freedom are explored in Ref. [40]. In a different approach,
Ref. [41] explored the possibility of strongly interacting
massive neutrinos to alleviate the H0 tension.
However, perhaps the most widely explored extension to

ΛCDM is known as early dark energy (EDE) [42–45].
There is no unique or unambiguous definition of EDE.
Typically, in EDE models there is an early period during
which an extra energy component—not contained in the
ΛCDM model—contributes to the expansion rate of the
Universe H. Even the terminology of “early period” is
model and case dependent as it can take place in the
radiation-dominated era or at late times, such as at z ∼ 4.
Original EDE models were motivated by the evolution of
scalar fields (quintessence) to describe the evolution of dark
energy [42,43,46–48]. These EDE models had in general a
non-negligible energy density at early times, well within
the radiation-dominated era. The equation of state w of the
quintessence scalar field had a period of w ¼ 1=3 at early
times, with a later transition to w ∼ 1, diluting the energy
density and becoming subdominant for a long period of
time covering most of the matter-dominated era, to finally
reappear dynamically at late times as dark energy [49–56].
Alternatively, recent EDE models add an extra component
to the energy-momentum tensor ΩEDEðaÞ at different
scales, and this EDE dilutes rapidly at a scale factor ac,
which determines the time of the transition, with ΩEDE ¼ 0
for a ≫ ac. This EDE modifies the expansion rate of the
universe, the cosmological distances and the density
perturbations at different epochs [44,57] and some EDE
models [22,58,59] have been proposed as deviations from
ΛCDM and possible solutions to the H0 crisis [4].
Furthermore, the increasing statistical tension in the

estimated Hubble parameter from early- and late-time
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observations [14] has reignited interest in alternative
cosmological models, while the surge in clustering data
[60] and the percentage precision for cosmic distances
[9,60] allows to search for extensions beyond ΛCDM by
searching for cosmological features in the matter
[25,33,43,44,57,58,61] or CMB power spectra, standard
distances rulers, or tensions in the ΛCDM model such as
the recent H0 crisis [4].
On the other hand, a physically motivated dark energy

model presented in Refs. [52,62–64] introduces a dark
sector, corresponding to a dark gauge group SU(3) similar
to the strong QCD interaction in the standard model. The
fundamental particles contained in this dark SU(3) are
massless and redshift as radiation for a < ac, but the
underlying dynamics of the gauge interaction of this group
forms massive bound states once the interaction becomes
strong, similarly to protons and neutrons in the strong QCD
force, and we refer to this model as the “bound dark
energy” (BDE) model [52,62,63]. The energy of the
elementary particles is transferred to the lightest bound
state after the phase transition takes place at ac and
corresponds to a scalar field ϕ. Due to the dynamics of
ϕ, the energy density of BDE dilutes at ac and eventually
reappears close to the present time as dark energy [62,63].
This dilution at ac leaves interesting imprints on the matter
power spectrum [64] (for a model-independent analysis
see, for instance, Refs. [65,66]). BDE is a particular model
of elementary particle physics where an extra gauge group
SU(3) is introduced and naturally contains the main
characteristics of EDE, namely, it accounts for an extra-
relativistic energy density ρex at high energies, while ρexðaÞ
dilutes rapidly for a > ac due to a phase transition of the
underlying gauge and forms bounds states [62,63].
The main goal of this work is to study the tension in and

possible solution to the value of H0 from low-redshift
probes with the precise determination of CMB data. This
paper is organized as follows. In Sec. II we present a brief
introduction, and we give the details behind our modifi-
cations through toy model calculations in Sec. III. We
implemenet EDE models in the Boltzmann code CAMB
and in COSMOMC, as well as a discussion of our results,
are presented in Sec. IV, and we describe the analysis in
Sec. IVA. In Sec. V we present our conclusions.

II. INTRODUCTION

The main goal of this work is to study the tension in and
possible solutions to the value of H0 from low-redshift
probes and the precise determination of CMB data. We
work with two different cosmological models: the first one
is simply the standard ΛCDM model, corresponding to the
content of the standard model of particles physics [13], cold
dark matter, and a cosmological constant as dark energy,
while the second model we denote as ΛCDM-Nx, corre-
sponding to ΛCDM but supplemented with an extra-
relativistic energy density ρexðaÞ ∼ 1=a3 present at a scale

factor a ≤ ac, while for a > ac ρexðaÞ dilutes as
ρexðaÞ ∼ 1=a6. This model ΛCDM-Nx is inspired by
BDE [62,63].
For definiteness, in this study we take the recent local

measurement H0 ¼ ð74.03� 1.42Þ km s−1Mpc−1 at the
68% confidence level from [R19], and the inferred value
of H0 ¼ ð67.27� 0.60Þ km s−1 Mpc−1 at the 1σ level
from the Planck 2018 data [P18] for a ΛCDM model
using ðTT;TE;EEþ LowEÞ measurements. We modified
CAMB [67,68] and perform a full COSMOMC analysis1

[69–71]. We perform the analysis for the ΛCDM and
ΛCDM-Nx models. However, besides the 1σ value σH ¼
1.42 from local H0 measurements [R19], we also consider
two forecasting 1σ values σH, and for definiteness we
choose and introduce in the analysis the value
H0 ¼ 74.03� σH km s−1 Mpc−1, with σH ¼ 1 and σH ¼
0.5 (in units of km s−1 Mpc−1). With these two forecasting
values we assess the impact of more precise local H0

measurements on the posterior value of H0 from CMBþ
local H0 data. Notice, however, that our forecasting 1σ’s
σH ¼ 1 and σH ¼ 0.5 are similar to the one reported in
Ref. [14] with H0 ¼ ð73.03� 0.8Þ km s−1 Mpc−1. The
results of our analysis are shown in Sec. IVA and we
present the conclusions in Sec. V.
The value of H0 ¼ 74.03� 1.42 km s−1Mpc−1 deter-

mined by Riess et al. [R19] [4–6] has a discrepancy
of between 4.0σ and 5.8σ [14] with the value inferred
from Planck CMB ðTT;TE;EEþ LowEÞ data [P18],
H0 ¼ ð67.27� 0.60Þ km s−1Mpc−1, at the 1σ level in
theΛCDMmodel. The solution to this discrepancy remains
an open question in cosmology. Since CMB radiation is
generated at an early epoch a⋆ ¼ 1=1090, the prediction of
the Hubble constant at the present time H0 inferred from
Planck data is a consequence of the assumption of the
validity of the standard ΛCDM model. So, either Planck or
local H0 measurements are inaccurate, due to possible
systematics, or we need to modify the concordance
cosmological ΛCDM model. Here we follow this second
option and attempt to reconcile the value of H0 from these
two observational experiments.
We work with two different cosmological models. The

first one is simply the standard ΛCDM model, correspond-
ing to the content of the standard model of particles physics
[13] and a cosmological constant as dark energy. We name
the second model ΛCDM-Nx and it consists of ΛCDM
supplemented by an extra-relativistic energy density
ρexðaÞ ∼ 1=a3 present at early times for a scale factor
a ≤ ac, where ac denotes the transition scale factor, and we
assume that ρexðaÞ ∼ 1=a6 for a > ac, motivated by BDE
and EDE models.
We have implemented the cosmological ΛCDM-Nx

model in CAMB [67,68] and we perform a full

1http://cosmologist.info/cosmomc.
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COSMOMC analysis for several data sets described in
Sec. IV for both ΛCDM and ΛCDM-Nx models, and we
present the results in Secs. IVA and IV B and conclusions
in Sec. V.
For definiteness, we take the ðTT;TE;EEþ lowEÞ

measurements from Planck 2018 [P18] with H0 ¼
ð67.27� 0.60Þ km s−1Mpc−1 and the recent local meas-
urement H0 ¼ ð74.03� 1.42Þ km s−1Mpc−1 at the
68% confidence level from [R19]. However, besides the
1σ value σH ¼ 1.42 (in units of km s−1 Mpc−1) from local
measurements [R19], we also introduce two forecasting 1σ
values and we choose σH ¼ 1 and σH ¼ 0.5. With these
two forecasting values of σH, i.e. H0 ¼ 74.03� σH, we
want to assess the impact of a more precise local H0

measurements combined with CMB data on the posterior
value of H0. Notice, however, that our forecasting 1σ
values σH ¼ 1 and σH ¼ 0.5 are of the same order as the
average value H0 ¼ ð73.03� 0.8Þ km s−1Mpc−1 reported
in Ref. [14]. The results of these analyses are shown in
Sec. IVA and we present our conclusions in Sec. V.
We will implement cosmological models ΛCDM and

ΛCDM-Nx in CAMB and COSMOMC in Sec. IV, however
we would like to present first a simple toy model in Sec. III
illustrating how an extra-relativistic energy density ρexðaÞ,
present only at early times a < ac, can account for the same
acoustic scale θða⋆Þ as measured by Planck [P18] but with
the value of H0 consistent with [R19]. We estimate the
cosmological constraints analytically in Sec. III B and
study the impact of the extra ρex on the growth of the
linear matter density and matter power spectrum in
Sec. III C.

III. COSMOLOGICAL TOY MODELS

We now present a simple toy model to analytically
illustrate how adding an extra-relativistic energy density
ρexðaÞ, present at early times, can account for having the
same acoustic scale θða⋆Þ as the ΛCDM model but with a
higher value of H0.

A. Acoustic scale

The Planck satellite [9] has delivered impressive quality
cosmological data by measuring the CMB background
radiation. Perhaps the most accurate measurements are the
acoustic scale anisotropies given by the acoustic angle θ,
defined as the ratio of the comoving sound horizon rsða⋆Þ
and the comoving angular diameter distance DAða⋆Þ
evaluated at the recombination scale factor a⋆ (with a
redshift z⋆ ¼ 1=a⋆ − 1 ≃ 1089) as

θða⋆Þ ¼
rsða⋆Þ
DAða⋆Þ

: ð1Þ

The ðTT;TE;EEþ lowEÞ CMB Planck 2018 [9] measure-
ments at the 68% confidence level give

100 θða⋆Þ ¼ ð1.04109� 0.0003Þ ð2Þ

in the context of the standard ΛCDMmodel, corresponding
to a flat Universe with CDM, a cosmological constant Λ as
dark energy, and the standard model particles [13]. The
comoving angular diameter distance and the acoustic scale
are defined as

DAða⋆Þ¼
Z

ao

a⋆

da
a2HðaÞ ; rsða⋆Þ¼

Z
a⋆

ai

cs
a2HðaÞda; ð3Þ

where HðaÞ≡ _a=a is the Hubble parameter, ao is the
present-time scale factor (usually taken as ao ¼ 1), and cs
is the sound speed,

csðaÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þRÞp ; R≡3

4

ρb
ργ

¼ 3

4

�
Ωbo

Ωγo

��
a
ao

�
: ð4Þ

Since Planck CMBmeasurements accurately determine the
acoustic angle θða⋆Þ ¼ rsða⋆Þ=DAða⋆Þ, any modification
of ΛCDM must clearly preserve the ratio in θða⋆Þ. A larger
value of H0 reducesDAða⋆Þ and rsða⋆Þ; however, since the
integration limits differ in DAða⋆Þ and rsða⋆Þ, a change in
H0 will modify the angle θða⋆Þ.
Let us take two models: the standard ΛCDM model (or

“sm”), andΛCDM-Nx (also referred as “smx”) correspond-
ing to a ΛCDM with additional relativistic particles for
a < a⋆. Imposing the constraint to have the same acoustic
scale θða⋆Þ in these two models, i.e.,

θða⋆Þ ¼
rsms ða⋆Þ
Dsm

A ða⋆Þ
¼ rsmx

s ða⋆Þ
Dsmx

A ða⋆Þ
; ð5Þ

the relative quotients of rsða⋆Þ andDAða⋆Þ of these models
must satisfy

ξ≡Dsmx
A ða⋆Þ

Dsm
A ða⋆Þ

¼ rsmx
s ða⋆Þ
rsms ða⋆Þ

: ð6Þ

Any change in DAða⋆Þsmx=Dsm
A ða⋆Þ due, for example, to a

different amount of H0 can be compensated with a change
in rsða⋆Þsmx=rsða⋆Þsm to maintain the same θða⋆Þ.
We impose the constraint to have the same acoustic scale

θða⋆Þ in both models, with ΛCDM (i.e., “sm”) having a
value of H0 as measured by Planck 2018 [P18], where we
take for presentation purposes HP

0 ¼ 67 (in units of
km s−1 Mpc−1), and the second model ΛCDM-Nx (i.e.,
“smx”), corresponding to the standard ΛCDM model with
extra-relativistic energy density ρexðaÞ and an H0 given by
HR

0 ¼ 74 (in units of km s−1 Mpc−1), consistent with [R19].
We define the Hubble parameter in ΛCDM as H2

sm ¼
ð8πG=3Þρsm with an energy content ρsm ¼ ρsmr þ ρsmm þ
ρsmΛ for radiation, matter, and the cosmological constant,
respectively, while ΛCDM-Nx has H2

smx ¼ ð8πG=3Þρsmx
with ρsmx ≡ ρsmx

r þ ρsmx
m þ ρsmx

Λ . For simplicity we assume
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the same amount of matter in both models and we take for
model ρsmx the following content:

(i) for a ≤ ac we have extra radiation ρex ≠ 0 with
ρsmx
r ¼ ρsmr þ ρex and ρsmx

m ¼ ρsmm ;
(ii) for a > ac, we have ρex ¼ 0, ρsmx

r ¼ ρsmr , ρsmx
m ¼ ρsmm

but ρsmx
Λ > ρsmΛ .

We will now determine the relation between the amount
ρexðacÞ [or, equivalently, ΩexðacÞ] as a function of the
transition scale ac such that the ratio of the sound horizon
rsða⋆Þ at decoupling and the angular distance to the last
scattering surfaceDAða⋆Þ is unchanged, thus preserving the
acoustic angle θða⋆Þ as measured by Planck [4], but with a
Hubble parameter H0 in the ΛCDM-Nx (“smx”) model
consistent with the high value of local measurementsHR

0 ¼
74 [4]. Taking Hsm

0 ¼ HP
0 ¼ 67 and Hsmx

0 ¼ HR
0 ¼ 74, the

ratio Dsmx
A ða⋆Þ=Dsm

A ða⋆Þ gives

ξ ¼ Dsmx
A ða⋆Þ=Dsm

A ða⋆Þ ¼ 0.981: ð7Þ

Since ξ < 1 and using Eq. (6), we require rsmx
s ða⋆Þ=rsms ða⋆Þ

to be smaller than one. We can achieve this by increasing
HðaÞ in the region a ≤ a⋆ in ΛCDM-Nx compared to the
standard ΛCDM model by introducing extra radiation
ρexðaÞ in the region a < a⋆. With this modification, we
tune ρexðacÞ to obtain the ratio rsmx

s ða⋆Þ=rsms ða⋆Þ in order to
obtain the same value of θða⋆Þ in Eq. (6) as measured by
Planck 2018.
Let us compare the Hubble parameter in these two

models in the region a ≪ ao, where dark energy is
subdominant, which gives

Hsm

Hsmx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsmr þ ρsmm

ρsmr þ ρsmm þ ρex

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωex

p
; ð8Þ

with

Ωex ≡ ρex
ρsmx

¼ ρex
ρsm þ ρex

≃
Nexβ

1þ ðNν þ NexÞβ
; ð9Þ

where the last term in Eq. (9) is given in terms of relativistic
degrees of freedom with ρsm ¼ gsmργ , ρex ¼ gexργ ,
and gsm ¼ 1þ Nνβ, gex ¼ Nexβ, gsmx ¼ gsm þ gex with
ργ ¼ π2

30
gγT4

γ , Nν ¼ 3.046, and where Nex is the number
of the extra-relativistic degrees of freedom in terms of the
neutrino temperature and β ¼ ð7=8Þð4=11Þ4=3. Notice that
the last approximation in Eq. (9) is only valid in the
radiation-dominated epoch. Since we assume in our models
ΛCDM and ΛCDM-Nx the same amount of matter and
radiation at present time but different values ofH0, we must
necessarily have a larger amount of dark energy in model
ΛCDM-Nx than inΛCDM to account for the increase value
inH0. We constrain theΛCDM-Nxmodel by imposing that
it gives the same acoustic angle θða⋆Þ ¼ rsða⋆Þ=DAða⋆Þ as

ΛCDM [cf. Eq. (5)] and a relative quotient of rsða⋆Þ and
DAða⋆Þ as in Eq. (6).
We will now compare the Hubble parameter H in the

ΛCDM (sm) and ΛCDM-Nx (smx) models. By our work-
ing hypothesis, both models have the same amount of
matter and radiation at present time, while the value of H0

differs with HP
0 ¼ 67 for ΛCDM (sm) and HR

0 ¼ 73 for
ΛCDM-Nx (smx). Let us express H as

HsmðaÞ¼Hsm
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωsm

moða=aoÞ−3þΩsm
ro ða=aoÞ−4þΩsm

Λo

q
ð10Þ

and

HsmxðaÞ ¼ Hsmx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωsmx

mo ða=aoÞ−3 þΩsmx
ro ða=aoÞ−4 þ Ωsmx

Λo

q
ð11Þ

with the constraint Ωmo þΩro þΩΛo ¼ 1 for both models.
Since by assumption we have the same amount of matter
and radiation, ρsmmo ¼ ρsmx

mo and ρsmro ¼ ρsmx
ro , we simply

multiply and divide by the critical density ρco of each
model to get

ρqo ¼ Ωsm
qoρ

sm
co ¼ Ωsmx

qo ρsmx
co ; ð12Þ

ρsmx
Λo ¼ ρsmΛo þ ρsmco

�ðHsmx
0 Þ2

ðHsm
0 Þ2 − 1

�
; ð13Þ

with q ¼ m; r for matter and radiation, respectively.
ΛCDM (sm) and ΛCDM-Nx (smx) have the same ρmo
and ρro, but a different value for H0 gives a different
amount of dark energy ρΛ, as seen in Eq. (13). We clearly
see in Eq. (13) how different values of H0 impact the dark
energy density in these two models. We further express

Ωsmx
qo ¼ ðHsm

0 Þ2
ðHsmx

0 Þ2Ω
sm
qo;

Ωsmx
Λo ¼ 1 − ðΩsmx

mo þΩsmx
ro Þ ¼ 1 −

ðHsm
0 Þ2

ðHsmx
0 Þ2 ðΩ

sm
mo þ Ωsm

ro Þ:

ð14Þ

The Hubble parameter H becomes

HsðaÞ¼Hs
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩs

mo½ða=aoÞ−3−1�þΩs
ro½ða=aoÞ−4−1�

q
;

ð15Þ

with s ¼ sm and smx for the ΛCDM and ΛCDM-Nx
models, respectively. Expressing Hsmx in terms of standard
model “sm” quantities we have for “smx” model a Hubble
parameter HsmxðaÞ given by
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Hsmx ¼ Hsmx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðHsm

0 Þ=Hsmx
0 Þ2FðaÞ

q
ð16Þ

¼ Hsm
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHsmx

0 =Hsm
0 Þ2 þ FðaÞ

q
; ð17Þ

with FðaÞ≡Ωsm
mo½ða=aoÞ−3 − 1� þ Ωsm

ro ½ða=aoÞ−4 − 1�.
We have expressed HsmxðaÞ in terms of quantities

of the model sm and the ratio Hsm
0 =Hsmx

0 . The difference
in Hsm in ΛCDM and Hsmx in ΛCDM-Nx due to the
distinct values of H0 is manifested in the first terms in the
square root in Eqs. (15) and (17) [1 in Eq. (15) compared
to ðHsmx

0 =Hsm
0 Þ2 in Eq. (17)], with ðHsmx

0 =Hsm
0 Þ2¼

ðHR
0 =H

P
0 Þ2¼ð74=67Þ2¼1.22 for our two fiducial

examples.

B. Impact of ρex on the acoustic scale rsða⋆Þ
We will now quantify the impact on the acoustic scale

rsða⋆Þ from having extra-relativistic energy density ρexðaÞ,
present before recombination, helps to conciliate the H0

tension between early and late-time measurements. We
assume that ρex is present up to the scale factor ac and that it
dilutes rapidly [66] and no longer contributes to H. The
rapid dilution of ρex can be motivated by a BDE model
[62,63] or EDE models [22,24]. Interestingly, an extra
energy denisty ρex, with a rapid energy density dilution at
ac, besides contributing towards a solution to the H0 crisis,
may also leave interesting signatures in the matter power
spectrum [61,63,65,66,72], so we may correlate the H0

solution with cluster counts.
Let us now study the impact of ρex on the H0 tension

problem and its cosmological signatures. From Eq. (8), we
take Hsm=Hsmx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
, and for simplicity and pre-

sentation purposes we consider that Ωex is constant for a ≤
ac and Ωex ¼ 0, and Hsmx ¼ Hsm for a > ac. The precise
impact of Ωex and the value of ac on the different
cosmological parameters must be numerically calculated.
We implement ΛCDM-Nx in a Boltzmann code and run
Markov chains (we use CAMB and COSMOMC [67–71]),
and we present the results in Sec. IV.
Nevertheless, having approximate analytic expressions

of the acoustic scale allows us to have a simple grasp
of the impact of ρex and ac on the magnitude of rsða⋆Þ
and a possible solution to the H0 crisis. The change in the
acoustic scale rsða⋆Þ in ΛCDM (sm) and ΛCDM-Nx (smx)
can be easily estimated. Let us consider the difference

rsms ða⋆Þ − rsmx
s ða⋆Þ ¼

Z
a⋆

ai

csda
a2Hsm

−
Z

a⋆

ai

csda
a2Hsmx

¼
Z

ac

ai

csda
a2Hsm

−
Z

ac

ai

csda
a2Hsmx

≡ rsms ðacÞ − rsmx
s ðacÞ; ð18Þ

where we have taken into account that Hsmx ¼ Hsm for
a > ac and the integrals from ac ≤ a ≤ a⋆ cancel out. As

long as Hsm=Hsmx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωex

p
is constant, we can simply

write

rsmx
s ðacÞ≡

Z
ac

ai

csda
a2Hsmx

¼
Z

ac

ai

�
Hsm

Hsmx

�
csda
a2Hsm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
rsms ðacÞ: ð19Þ

Clearly, the value of Ωex determines the ratio of
rsmx
s ða⋆Þ=rsms ða⋆Þ. Now, by writing rsms ða⋆Þ − rsmx

s ða⋆Þ ¼
rsms ða⋆Þð1 − ξÞ with ξ given in Eq. (6) and rsms ðacÞ −
rsmx
s ðacÞ ¼ rsms ðacÞð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωex

p Þ from Eq. (18), we
obtain rsms ða⋆Þð1 − ξÞ ¼ rsms ðacÞð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p Þ and

rsms ða⋆Þ
rsms ðacÞ

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
1 − ξ

: ð20Þ

If we assume radiation domination, the quantity a2H is
constant, and by also taking cs to be constant (for simplicity
and presentation purposes) we get

rsms ða⋆Þ
rsms ðacÞ

¼
R
a⋆
ai

dacs
a2HsmR

ac
ai

dacs
a2Hsm

¼ acHsmðacÞ
a⋆Hsmða⋆Þ

¼ a⋆
ac

; ð21Þ

and Eq. (20) becomes

�
a⋆
ac

�
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωex

p
1 − ξ

¼ 52.63ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
Þ; ð22Þ

where we have set ξ ¼ 0.981 [our fiducial value in Eq. (6)].
Equation (22) gives a very simple analytic solution for ac as
a function of Ωex with the constraint that we have the same
acoustic angle θða⋆Þ [cf. Eq. (1)] in ΛCDM-Nxwith H0 ¼
74 as in the ΛCDM model with H0 ¼ 67. We see in
Eq. (22) that larger values of ac require smaller values of
Ωex. In Fig. 1 we plot the required values of Nex and Ωex as
functions of x ¼ ac=aeq using Eq. (22) and from the
numerical calculation solving the full HðaÞ as given in
Eqs. (10) and (11). We should keep in mind that Eq. (22) is
only an approximation since we assumed radiation
domination; however, it gives a simple estimation of the
required value of Ωex required to obtain the size of the
acoustic scale determined by Planck data [P18] and the
value of H0 measured by Riess et al [R19].

C. Matter power spectrum and ρex
We have seen in the previous section how ρex impacts

cosmological distances and contributes to reducing
the H0 tension. The rapid dilution of ρex affects the
evolution of density perturbations and the matter power
spectrum Pðk; zÞ [25,33,43,44,57,58,61,66]. Interestingly,
an energy density ρexðaÞ that dilutes rapidly at a ¼ ac (see
Sec. III B) will leave detectable imprints on the matter
power spectrum, which can be correlated with a possible
solution to theH0 tension. We can estimate the location and

DE LA MACORRA, GARRIDO, and ALMARAZ PHYS. REV. D 105, 023526 (2022)

023526-6



magnitude of this bump produced at the transition scale ac
corresponding to the mode

kc ≡ acHc; ð23Þ

with Hc≡HðacÞ2¼ð8πG=3ÞρsmxðacÞ and ρsmx¼ρsmþρex.
The amplitude of the bump is related to the magnitude of
ρexðaÞ, while the width of the bump is related to how fast
ρex dilutes [66]. During radiation domination the amplitude
δm ¼ δρm=ρm has a logarithmic growth,

δsmx
m ðaÞ ¼ δsmx

mi ðlnða=asmx
h Þ þ 1=2Þ; ð24Þ

δsmm ðaÞ ¼ δsmmiðlnða=asmh Þ þ 1=2Þ; ð25Þ

where ah corresponds to the horizon crossing. Comparing
the growth of δm for the same mode in both cases ksmx ¼
ksm with ksm ¼ asmh Hsmðasmh Þ and ksmx ¼ asmx

h Hsmxðasmx
h Þ.

Modes k > kc cross the horizon at ah < ac and we find
from Eq. (8) that

asmx
h

asmh
¼ Hsm

Hsmx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
: ð26Þ

The ratio Δδm ¼ δsmx
m =δsmm ¼ ðδsmx

mi =δ
sm
miÞðlnða=asmx

h Þ þ
1=2Þ=ðlnða=asmh Þ þ 1=2Þ can be expressed for a > ac as

Δδm ¼ δsmx
mi

δsmmi

h�
Hsmx

þ
Hsmx

−

�
ln
�

a
ac

�
þ ln

�
asmh
asmx
h

�
þ ln

�
ac
asmh

�
þ 1

2

i
ln
�

a
ac

�
þ ln

�
ac
asmh

�
þ 1

2

;

ð27Þ

whereHsmxþ ðacÞ contains ρex andHsmx
− ðacÞ has ρex ¼ 0. For

presentation purposes, herewe have consider a step function
at ac with ρexðaÞ¼0 for a < ac, and we have Hsmxþ ðacÞ=
Hsmx

− ðacÞ ¼ HsmxðacÞ=Hsm ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωex

p
. Equation (27)

is valid for modes k > kc entering the horizon at ah < ac.
The increase for modes k > kc at present time is

Δδm ¼ δsmx
m

δsmm
¼ δsmx

mi

δsmmi

Hsmxþ
Hsm

−
¼ δsmx

mi

δsmmi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωex

p ; ð28Þ

where we assumed that ao ≫ ac. On the other hand, modes
k < kc do not undergo the transition and are not boosted by
the rapid dilution of ρex. The final result in the matter power
spectrum is the generation of a bump in the ratioPsmx=Psm at
scales of the order of kc.
To conclude, we have seen in our toy model that an

extra-relativistic energy density ρex may alleviate the
tension in the H0 measurements and at the same time
leave detectable signals in the matter power spectrum,
allowing for a verification of the proposal.

IV. COSMOLOGICAL RESULTS AND MCMC
IMPLEMENTATION

Here we consider two models: the first model is simply
the standard ΛCDM model, while our second model
corresponds to an extension to ΛCDM, where we add
extra-relativistic energy density ρexðaÞ ∝ 1=a3 present only
at early times for a scale factor a smaller than ac,
corresponding to the transition scale factor, and the extra
energy density dilutes as ρex ∝ a−6 for a ≫ ac and there-
fore rapidly becomes negligible. We refer to this latter
model as ΛCDM-Nx and it is motivated by the BDE model
[62,63] and EDE models [42–45].
With this rapid dilution we avoid a step function

transition at ac in the evolution of ρexðaÞ. Clearly, ρex
dilutes faster than radiation for a > ac and its contribution
rapidly becomes subdominant. The energy density ρex can
also be parametrized by the number of extra-relativistic
degrees of freedom Nex, defined in terms of the neutrino
temperature Tν as ρex ¼ ðπ2=30ÞNexT4

ν. We implement the
ΛCDM-Nx model in the Boltzmann code CAMB [67–71]
and perform a full COSMOMC analysis for ΛCDM and
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FIG. 1. Analytic and numerical solutions for NexðacÞ and ΩexðacÞ. We plot Nex (left panel) and ΩexðacÞ (right panel) as functions of
x≡ ac=aeq satisfying the constraint rsmx

s ða⋆Þ=rsms ðadÞ ¼ ξ [cf. Eq. (7)]. We plot the numerical solution (blue) using Eq. (3) and the
analytic solution (dashed-orange) using Eq. (22).
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ΛCDM-Nx for several data sets, and we present the results
and conclusions in Sec. IVA.
Since our main interest here is to study the tension

between the inferred value of H0 from early CMB physics
and late-time local measurements of H0, we use the CMB
(TT, TE, EEþ lowE) data set from Planck 2018 [P18] and
the recent measurements from SH0ES, HR

0 ¼ ð74.03�
1.42Þ at the 68% confidence level, from [R19]. We run
Markov chain Monte Carlo (MCMC) simulations for both
models—ΛCDM and ΛCDM-Nx—and compare the pos-
terior probabilities, and we assess the viability to alleviate
the H0 tension between CMB data from Planck [P18] and
local H0 measurements [R19]. We decided not to use BAO
measurements, keeping in mind that BAO is consistent with
high and low values ofH0 and it is in the context of ΛCDM
that BAO measurements hint at a lower value of H0 [60].
Besides, BAO analysis is strongly impacted by the late-time
dynamics of dark energy at low redshifts z < 5. Changes in
BAO analysis due to a dynamical dark energy are beyond
the scope in this work since we want to concentrate here on
the tension between CMB and local H0 measurements.
For our analysis we consider—in addition to the recent

measurement HR
0 ¼ 74.03� σH with σH ¼ 1.42 at the

68% confidence level (we will quote all values of H0

and σH in units of km s−1Mpc−1)—two forecasting values
of σH and we take these forecasting values as σH ¼ 1 and

σH ¼ 0.5. With these two forecasting values of σH we
impose a “tighter observational” constraint onH0 from local
measurements to study the impact on the posterior proba-
bilities ofH0 and other relevant cosmological parameters in
the ΛCDM and ΛCDM-Nx models, and we assess the
pricewe have to pay regarding the “goodness of fit” ofCMB,
χ2CMB, for these two forecasting values of H0. Notice,
however, that these forecasting values, σH ¼ 1 and
σH ¼ 0.5, are of the same order of magnitude as the average
value obtained in Ref. [14] with an average value of local
measurements of H0 ¼ ð73.03� 0.8Þ km s−1Mpc−1.
We first consider the MCMC results using CMB data

[P18] and H0 ¼ ð74.02� σHÞ with σH ¼ 1.42 [R19]. We
show the best-fit and marginalized values at the 68% con-
fidence level for ΛCDM-Nx and ΛCDM for different
cosmological parameters in Table I. For completeness,
we also include ΛCDM without the Riess H0 data set
(we refer to this case as “No-Riess”). Notice that the value
of H0 in Table I is slightly increased from H0 ¼ ð67.99�
0.45Þ in ΛCDM without the Riess data [R19] to H0 ¼
ð68.54� 0.43Þ for ΛCDM and a value of H0 ¼ ð68.70�
0.45Þ in ΛCDM-Nx where we included Riess data [R19] in
these last two cases. The values of H0 correspond to mild
increases of 0.81% and 1.04%, in the value of H0 for
ΛCDM and ΛCDM-Nx, respectively. These values
of H0 are still in disagreement with local measurements

TABLE I. We show the best-fit, marginalized, and 68% confidence limits on cosmological parameters forΛCDM-Nx and ΛCDMwith
Planck 2018 TT,TE,EE-lowE and local H0 R19 measurements and ΛCDM without R19 (i.e., “No-Riess”).

ΛCDM-Nx H0 ¼ ð74.03� 1.42Þ ΛCDM H0 ¼ 74.03� 1.42 ΛCDM H0 no-riess

Model parameter Best-fit sampling Best-fit sampling Best-fit sampling

ac 0.00071 0.407þ0.105
−0.241 × 10−6 � � � � � � � � � � � �

ΩexðacÞ 0.00353 0.063þ0.146
−0.021 � � � � � � � � � � � �

Nex 0.09034 0.81þ0.22
−0.79 � � � � � � � � � � � �

H0 69.14 68.70� 0.45 68.557 68.54� 0.43 67.961 67.99� 0.45
ΩΛ 0.702 0.7007� 0.0057 0.700 0.6997� 0.0056 0.692 0.6925� 0.0060
Ωm 0.298 0.2993� 0.0057 0.300 0.3003� 0.0056 0.308 0.3075� 0.0060
Ωmh2 0.142 0.14123� 0.00093 0.141 0.14106� 0.00092 0.142 0.14209� 0.00096
Ωbh2 0.022 0.02257� 0.00014 0.022 0.02248� 0.00013 0.022 0.02237� 0.00013
zeq 3398.84 3375� 22 3370.15 3371� 22 3397.99 3396� 23

lnð1010AsÞ 3.048 3.049� 0.017 3.047 3.046� 0.017 3.044 3.045� 0.016
ns 0.973 0.9722þ0.0043

−0.0049 0.970 0.9683� 0.0037 0.966 0.9655� 0.0038
σ8 0.826 0.8237� 0.0079 0.821 0.8206� 0.0075 0.824 0.8235� 0.0072
S8 0.823 0.823� 0.013 0.821 0.821� 0.012 0.835 0.834� 0.013
zdrag 1089.81 1060.63þ0.38

−0.56 1060.12 1060.09� 0.28 1059.93 1059.92� 0.28
rdrag 146.60 101.11� 0.76 147.35 147.35� 0.24 147.14 147.17� 0.24
z⋆ 1060.24 1089.95þ0.26

−0.35 1089.63 1089.65� 0.21 1089.88 1089.88� 0.22
r⋆ 143.98 144.58� 0.25 144.72 144.72� 0.23 144.48 144.51� 0.24
DAðr⋆Þ=Gpc 13.829 13.885� 0.024 13.899 13.898� 0.022 13.877 13.880� 0.023
100θðz⋆Þ 1.0410 1.04137� 0.00036 1.0411 1.04115� 0.00029 1.0410 1.04099� 0.00029

χ2H0
11.84 14.2� 2.4 14.854 15.0� 2.4 � � � � � �

χ2CMB 2766.24 2782.6� 6.1 2765.69 2781.3� 5.8 2764.35 2780.0� 5.7
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[R19]. The model ΛCDM-Nx contains extra
radiation, ΩexðacÞ ¼ 0.063ðþ0.146;−0.021Þ, with Nex ¼
0.0903ðþ0.28;−0.79Þ at the 68% confidence level.

We follow up our analysis by considering HR
0 ¼

ð74.03� σH) with the two forecasting values σH ¼ 1
and σH ¼ 0.5. With these forecasting values for σH, we

TABLE II. Best-fit, marginalized, and 68% confidence limits for ΛCDM with Planck 2018 TT,TE,EE-lowE data and H0 ¼
74.02� σH with the forecasting values σH ¼ 1 and σH ¼ 0.5

ΛCDM H0 ¼ 74.03� 1 ΛCDM H0 ¼ 74.03� 0.5

Model parameter Best-fit sampling Best-fit sampling

H0 69.050 69.04� 0.41 70.789 70.79� 0.36
ΩΛ 0.706 0.7059� 0.0052 0.727 0.7268� 0.0041
Ωm 0.294 0.2941� 0.0052 0.273 0.2732� 0.0041
Ωmh2 0.140 0.14013� 0.00089 0.137 0.13690� 0.00077
Ωbh2 0.023 0.02258� 0.00013 0.023 0.02291� 0.00013
zeq 3349.60 3349� 21 3272.72 3272� 18

lnð1010AsÞ 3.046 3.046� 0.017 3.049 3.051þ0.017
−0.019

ns 0.972 0.9712� 0.0036 0.981 0.9805� 0.0036
σ8 0.818 0.8180� 0.0074 0.808 0.8089þ0.0072

−0.0082
S8 0.810 0.810� 0.012 0.772 0.772� 0.011
zdrag 1060.31 1060.24� 0.27 1060.77 1060.73� 0.28
rdrag 147.48 147.51� 0.24 148.08 148.11� 0.23
z⋆ 1089.41 1089.44� 0.20 1088.72 1088.74� 0.18
r⋆ 144.89 144.91� 0.23 145.58 145.60� 0.21
DAðr⋆Þ=Gpc 13.913 13.915� 0.022 13.973 13.974� 0.021
100θðz⋆Þ 1.0413 1.04128� 0.00029 1.0418 1.04178� 0.00028

χ2H0
24.797 25� 4 42.027 42� 9

χ2CMB 2766.43 2782.1� 6.2 2784.45 2800.3� 7.8

TABLE III. Best-fit, marginalized, and 68% confidence limits for ΛCDM-Nx with Planck 2018 TT,TE,EE-lowE data and H0 ¼
74.02� σH with the forecasting values σH ¼ 1 and σH ¼ 0.5.

ΛCDM-Nx H0 ¼ 74.03� 1 ΛCDM-Nx H0 ¼ 74.03� 0.5

Model parameter Best-fit sampling Best-fit sampling

ac 0.00015 0.407þ0.105
−0.245 × 10−6 0.00348 4.898þ2.247

−2.710 × 10−3
ΩexðacÞ 0.00623 0.079þ0.161

−0.023 0.00603 4.786þ5.447
−1.319 × 10−3

Nex 0.07059 0.99þ0.28
−0.95 0.60916 0.69� 0.10

H0 69.23 69.19� 0.44 72.83 72.99� 0.47
ΩΛ 0.705 0.7067� 0.0053 0.718 0.7151� 0.0045
Ωm 0.2949 0.2933� 0.0053 0.2825 0.2849� 0.0045
Ωmh2 0.1413 0.14039� 0.00090 0.1499 0.1518� 0.0024
Ωbh2 0.0227 0.02267� 0.00015 0.0230 0.02300� 0.00012
zeq 3377.26 3355� 22 3581.23 3628� 59

lnð1010AsÞ 3.0502 3.051� 0.017 3.0699 3.076þ0.016
−0.018

ns 0.9776 0.9753þ0.0046
−0.0052 0.9911 0.9917� 0.0040

σ8 0.8258 0.8220� 0.0080 0.8472 0.854� 0.010
S8 0.8187 0.813� 0.012 0.8221 0.832� 0.014
zdrag 1060.58 1060.87þ0.43

−0.61 1062.30 1062.51� 0.38
rdrag 146.92 147.31� 0.28 141.80 141.0� 1.0
z⋆ 1089.45 1089.83þ0.28

−0.36 1090.31 1090.53� 0.32
r⋆ 144.36 144.74� 0.26 139.40 138.6� 1.0
DAðr⋆Þ 13.860 13.899� 0.024 13.404 13.330� 0.095
100θðz⋆Þ 1.0414 1.04155� 0.00038 1.0403 1.04013� 0.00036

χ2H0
23.031 24� 4 5.71714 5.2� 4.2

χ2CMB 2767.06 2784.9� 6.4 2779.81 2797.9� 6.9
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impose a tighter constraint on the value of H0 and this
allows to assess the impact on the posterior probabilities
of the cosmological parameters as well as the goodness fit
for CMB, χ2CMB. We implement these forecasting values
(σH ¼ 1 and σH ¼ 0.5) in the MCMC analysis for the
ΛCDM and ΛCDM-Nx models. We show the best-fit
values and posterior probabilities at 68% C.L. in
Table II for ΛCDM and in Table III for ΛCDM-Nx. For
the ΛCDM model with the forecasting value σH ¼ 1 we
find a value of H0 ¼ 69.04� 0.41 (68% C.L.) and a
best-fit value H0 ¼ 69.05, while for σH ¼ 0.5 we find

H0 ¼ 70.79� 0.36 (68% C.L.) and H0 ¼ 70.79 for the
best fit. In the ΛCDM-Nx model we obtain for σH ¼ 1 a
value H0 ¼ 69.19� 0.44 with a best fit H0 ¼ 69.23, and
for σH ¼ 0.5 we get H0 ¼ 72.99� 0.47 and a best fit
72.83. We notice that a reduced σH ¼ 0.5 substantially
increases the value of H0 in ΛCDM-Nx but not in ΛCDM.
This is no surprise and is a consequence of the contribution
of the extra-relativistic energy density ρex in ΛCDM-Nx.
We present the best-fit values and marginalized 68% and

95% parameter constraint contours for different cosmo-
logical parameters for ΛCDM in Fig. 2 and for ΛCDM-Nx

FIG. 2. Marginalized 68% and 95% parameter constraint contours for ΛCDM using Planck 2018 TT,TE,EE,lowE data [P18] and
H0 ¼ ð74.03� σHÞ km s−1 Mpc−1 with σH ¼ 1.42 [R19], the forecasting values σH ¼ 1, 0.5, and ΛCDM without the Riess data set.
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in Fig. 3. We present in Fig. 4 the marginalized 68% and
95% parameter constraint contours for ΛCDM, with
σH ¼ 1.42, σH ¼ 0.5 and No-Riess supplemented with
ΛCDM-Nx with σH ¼ 0.5. This last graph allows for a
convenient comparison of the posteriors between ΛCDM
models and ΛCDM-Nx with σH ¼ 0.5 and the impact on
the value of H0 and other parameters.
The best-fit values for Nex;ΩexðacÞ, and the transition

scale factor ac for the three ΛCDM-Nx cases are
Nex ¼ 0.09, ΩexðacÞ ¼ 0.0035, and ac ¼ ð7.1 × 10−4Þ
for H0 with σH ¼ 1.42, Nex ¼ 0.07, ΩexðacÞ ¼ 0.0062,

and ac ¼ ð1.5 × 10−4Þ for H0 with σH ¼ 1, and
Nex ¼ 0.61, ΩexðacÞ ¼ 0.006, and ac ¼ ð3.48 × 10−3Þ
for H0 with σH ¼ 0.5. Notice that ΩexðacÞ remains of
the same order of magnitude in all three ΛCDM-Nx cases,
while we get an increase ofNex and ac by factor of about 10
in ΛCDM-Nx with σH ¼ 0.5 compared to ΛCDM-Nx with
σH ¼ 1.42 or σH ¼ 1.

A. Analysis

Let us now compare and analyze the results of the
MCMC analysis for the ΛCDM and ΛCDM-Nx models

FIG. 3. Marginalized 68% and 95% parameter constraint contours for ΛCDM-Nx using Planck 2018 TT,TE,EE,lowE data and
H0 ¼ ð74.03� σHÞ km s−1 Mpc−1 with σH ¼ 1.42 [R19] and the forecasting values σH ¼ 1, 0.5.
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given in Tables I, II, and III. We present in Tables I, II, and
III the best and sampling values for different cosmological
parameters in the ΛCDM and ΛCDM-Nx models and the
corresponding figures of the constraint contours at 68% and
95% CL of different marginalized parameters, in Fig. 2 for
ΛCDM, Fig. 3 for ΛCDM-Nx, and in Fig. 4 we incorporate
ΛCDM and ΛCDM, we find it useful to analyze the
difference between these cases by determining the relative
difference and the percentage difference for some relevant
parameters shown in Tables V and VI, respectively.

In Table IV we show the discrepancy between the value
of H0 ¼ 74.03� σH for the three different values of σH
(i.e., σH ¼ 1.42, 1, 0.5), and the posterior probability of
H0 � σs, where σs is the 68% confidence level for ΛCDM
and ΛCDM-Nx from the MCMC analysis. The central
value of H0 of the samplings increases with decreasing σH,
while the amplitude of σs remains nearly constant in all six
cases ðσs ∼ 0.42Þ. The quantity ΔH0 ≡ ð74.03 −H0Þ cor-
responds to the distance between the central value H0 ¼
74.03 from [R19] and the central valueH0 from each of the

FIG. 4. Marginalized 68% and 95% parameter constraint contours using Planck 2018 TT,TE,EE,lowE data and H0 ¼ ð74.03�
0.5Þ km s−1 Mpc−1 for ΛCDM-Nx and H0 ¼ ð74.03� σHÞ km s−1 Mpc−1 with σH ¼ 1.42 [R19] and the forecasting values σH ¼ 0.5
and No-Riess for ΛCDM models.
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samplings, and we define σT ≡ σH þ σs for each case. Not
surprisingly, for smaller values of σH we obtain a larger H0

and a decrease in ΔH0=σT in the ΛCDM and ΛCDM-Nx
models. However, even though the value ofH0 increases, so
does χ2H0

in all cases except for ΛCDM-Nx with σH ¼ 0.5.
We obtain in the ΛCDM model χ2H0

¼ 15� 2.4 for
σH ¼ 1.42, χ2H0

¼ 25� 4 for σH ¼ 1, and χ2H0
¼ 42� 9

for σH ¼ 0.5, in ΛCDM-Nx we have χ2H0
¼ 14.2� 2.4 for

σH ¼ 1.42 and χ2H0
¼ 24� 4 for σH ¼ 1, while we have a

significant reduction in the σH ¼ 0.5 model, obtaining
χ2H0

¼ 5.2� 4.2. Notice that the difference in χ2H0
between

ΛCDM andΛCDM-Nx is small for σH ¼ 1.42 and σH ¼ 1;
however, the impact from the ΛCDM-Nx model with the
forecasting value σH ¼ 0.5 has a significant reduction in χ2H0

from χ2H0
¼ 42� 9 in ΛCDM to χ2H0

¼ 5.2� 4.2 in
ΛCDM-Nx. We remark that only ΛCDM-Nx with σH ¼
0.5 has a ΔH0=σT smaller than one, clearly showing the
impact of the reduced σH.
In order to assess the impact of the reduced fore-

casting value σH ¼ 0.5 in ΛCDM-Nx on different cos-
mological parameters, we compare the results from
ΛCDM-Nx with σH ¼ 0.5 and ΛCDM with
σH ¼ 1.42; σH ¼ 0.5, and No-Riess in Table V and we
determine the relative percent difference between
ΛCDM-Nx with σH ¼ 0.5 with ΛCDM for several param-
eters, and we show in Table VI the percentage difference
of several parameters between ΛCDM-Nx with σH ¼ 0.5

and ΛCDM-Nx with σH ¼ 1 and σH ¼ 1.42 as well as
ΛCDM with σH ¼ 0.5; σH ¼ 0.5 ¼ 1; σH ¼ 1.42, and
No-Riess.
In Table V we present the relative percent

difference (RPD) ΔRPDP≡ 100ðPΛ − PNxÞ=PNx for
several parameters between the ΛCDM-Nx (with
σH ¼ 0.5) and ΛCDM models (with σH ¼ 0.5,
σH ¼ 01.42, and No-Riess). Not surprisingly, the change
in θ is small (with ΔRPDθ < 0.15%), we get a decrease in
DAðr⋆Þ and rðr⋆Þ of the same order with ΔRPD ∼ 4% for
both quantities, while we have ΔRPDH0 values of 6.7%,
5.9%, and 2.8% with respect to ΛCDM (No-Riess,
σH ¼ 1.42, and σH ¼ 0.5, respectively). In the last col-
umn we present the reduced ðχredCMBÞ2, with
ðχredCMBÞ2 ¼ χ2CMB=ðNd:o:f: − NparamÞ, and we take into
account that ΛCDM-Nx has two extra parameters,
namely, ac and ΩexðacÞ. We obtain a slight increase in
ðχredCMBÞ2 of less than 1% for ΛCDM-Nx with σH ¼ 0.5 vs
ΛCDM (0.635% against ΛCDM No-Riess and 0.587% in
ΛCDM with σH ¼ 1.42 models). On the other hand, we
obtain a significant reduction in χ2H0

for ΛCDM-Nx
ðσH ¼ 0.5Þ, corresponding to a ΔRPDχ

2
H0

of 635% vs
ΛCDM (σH ¼ 0.5) and 159% vs ΛCDM ðσH ¼ 1.42Þ.
In Table VI we show in the first two lines the value ofH0

and the distance between obtained best-fit values of H0

and the central value of H0 ¼ 74.03 [R19] divided
by the observational error σH ¼ 1.42 for each of the
different cases, while in the third line we present the

TABLE IV. Central value H0 and the 68% confidence level ðσsÞ of the MCMC samplings using Planck 2018 and H0 ¼ 74.02� σH
with different values of σH in the ΛCDM and ΛCDM-Nx models. The value σH ¼ 1.42 corresponds to local measurements (R19),
σH ¼ 1 and σH ¼ 0.5 are the two forecasting values of local H0 measurements, and σs corresponds to the sampling margin at the
68% confidence level. We see that the central value of H0 increases with decreasing σH , while the distance in ΔH0=σT becomes smaller
with σT ¼ σH þ σs. The reduction is far more prominent in ΛCDM-Nx than in ΛCDM. Finally, we show in the last two lines the χ2 for
H0 and CMB sampling with the different data sets.

Model ΛCDM ΛCDM ΛCDM ΛCDM-Nx ΛCDM-Nx ΛCDM-Nx

H0 ¼ 74.03� σH σH ¼ 1.42 σH ¼ 1 σH ¼ 0.5 σH ¼ 1.42 σH ¼ 1 σH ¼ 0.5

H0 � σs 68.54� 0.43 69.04� 0.41 70.79� 0.36 68.70� 0.45 69.19� 0.44 72.99� 0.47
σT ¼ σH þ σs 1.42þ 0.43 1þ 0.41 0.5þ 0.36 1.42þ 0.45 1þ 0.44 0.5þ 0.36
ΔH0=σT 2.968 2.697 1.820 2.850 2.602 0.550

χ2H0
15.0� 2.4 25� 4 42� 9 14.2� 2.4 24� 4 5.2� 4.2

TABLE V. In the second line we show the best-fit values for ΛCDM-Nx with H0 ¼ ð1.42� 0.5Þ km s−1 Mpc−1 and we present the
relative percent difference ΔRPDP≡ 100 ðPΛ − PNxÞ=PNx for different parameters between the ΛCDM-Nx (with σH ¼ 0.5) and ΛCDM
models for different values of σH ¼ 0.5, 1.42, and No-Riess.

Model 100θðz⋆Þ DAðr⋆Þ r⋆ H0 Ωmh2 zeq σ8 S8 χ2H0
χ2CMB ðχredCMBÞ2

ΛCDM-Nx σH ¼ 0.5 1.04027 13.404 139.40 72.83 0.1499 3581.23 0.847 0.822 5.72 2779.81 1.100

ΛCDM σH ¼ 0.5 0.146 4.239 4.429 −2.809 −8.612 −8.615 −4.591 −6.156 635.111 0.167 0.088
ΛCDM σH ¼ 1.42 0.082 3.688 3.815 −5.873 −5.892 −5.894 −3.062 −0.094 159.815 −0.508 −0.587
ΛCDM No-Riess 0.068 3.525 3.639 −6.691 −5.115 −5.117 −2.748 1.524 � � � −0.556 −0.635
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TABLE VI. We show in the top part the values of H0, its distance to HR in units of σR ¼ 1.42, and the reduced χ2CMB for the different
ΛCDM-Nx and ΛCDM-Nx cases. In the bottom part we present the percentage difference (% Diff.) defined as ΔP≡ 100 ðP −
PNxðσH ¼ 0.5ÞÞ=½ðPþ PNxðσH ¼ 0.5ÞÞ=2� of the parameters between ΛCDM-Nx (with σH ¼ 0.5) and the different ΛCDM-Nx and
ΛCDM cases.

Best-fit models ΛCDM-Nx ΛCDM-Nx ΛCDM-Nx ΛCDM ΛCDM ΛCDM ΛCDM

H0 ¼ 74.03� σH σH ¼ 0.5 σH ¼ 1.42 σH ¼ 1 No-Riess σH ¼ 1.42 σH ¼ 1 σH ¼ 0.5

H0 72.83 69.14 69.23 67.96 68.56 69.05 70.79
ðHR −H0Þ=1.42 0.83 3.43 3.37 4.27 3.85 3.50 2.28
ðχredCMBÞ2 1.100 1.095 1.095 1.093 1.094 1.094 1.101

Parameter ΛCDM-Nx % Diff. % Diff. % Diff. % Diff. % Diff. % Diff.
H0 72.83 −1.30 −1.27 −1.73 −1.51 −1.33 0.71
ΩΛ −0.72 −0.53 −0.43 −0.90 −0.62 −0.40 −0.32
Ωm 0.28 1.29 1.07 2.15 1.51 1.00 0.83
Ωmh2 0.15 −1.31 −1.47 −1.31 1.51 −1.67 −2.25
Ωbh2 0.02 −0.55 −0.33 −0.66 −0.54 −0.41 −0.07
zeq 3581.23 −1.31 −1.47 −1.31 −1.52 −1.67 −2.25
σ8 0.85 −0.63 −0.64 −0.70 −0.78 −0.87 −1.17
S8 0.82 0.01 −0.10 0.38 −0.02 −0.37 −1.59
zdrag 1062.30 0.64 −0.04 −0.06 −0.05 −0.05 −0.04
rdrag 141.80 0.83 0.89 0.92 0.96 0.98 1.08
z⋆ 1090.31 −0.70 −0.02 −0.01 −0.02 −0.02 −0.04
r⋆ 139.40 0.81 0.87 0.89 0.94 0.96 1.08
DAðr⋆Þ 13.40 0.78 0.84 0.87 0.91 0.93 1.04
100θðz⋆Þ 1.04027 0.02 0.03 0.02 0.02 0.02 0.04

χ2H0
5.72 17.44 30.11 � � � 22.21 31.26 38.03

χ2CMB 2779.81 −0.122 −0.115 −0.139 −0.127 −0.121 0.042
ðχredCMBÞ2 1.100 −0.122 −0.115 −0.159 −0.147 −0.140 0.022

FIG. 5. Matter power spectrum (left panel) for ΛCDM and ΛCDM-Nx and the ratios (right panel) ΛCDM-Nx/ΛCDM and ΛCDM–
No-Riess/ΛCDM, where 1σ ≡ 1 km s−1 Mpc−1 and 0.5σ ≡ 0.5 km s−1 Mpc−1.
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reduced ðχredCMBÞ2. We also show the percentage difference
ΔP≡ 100 ½ðP − PNx0.5Þ=ðPþ PNx0.5Þ�=2 for different
cosmological parameters, between ΛCDM-Nx ðσH ¼
0.5Þ and the other six cases considered in this work,
i.e., ΛCDM-Nx (σH ¼ 1.42 and σH ¼ 1) and ΛCDM
(σH ¼ 1.42, σH ¼ 1, σH ¼ 0.5, and No-Riess). Notice
that the changes in r⋆ and DAð⋆Þ are of the same
magnitude (around ∼0.90%Þ, while the percentage change
in 100θðz⋆Þ is small (around ∼0.02%). We find a signifi-
cant increase in the χ2H0

values of the six cases compared to
ΛCDM-Nx ðσH ¼ 0.5Þ, with a percentage of ΔPðχ2H0

Þ ¼
22.21 against ΛCDM ðσH ¼ 1.42Þ and ΔPðχ2H0

Þ ¼ 38.03
against ΛCDM-Nx (σH ¼ 0.5), while we obtain a reduc-
tion in the CMB χ2 of ΔP½ðχredCMBÞ2� ¼ 0.127ð0.121Þ with
respect to ΛCDM σH ¼ 1.42 ðΛCDMσH ¼ 1Þ and an
increase of ΔPððχredCMBÞ2Þ ¼ −0.042 compared to
ΛCDM ðσH ¼ 0.5Þ.

B. Matter power spectrum and CMB power spectrum

Here we show the impact of a rapid diluted energy
density on the matter power spectrum of a rapid diluted
energy density given by ΩexðacÞ at ac with and at a
mode kc ≡ acHc with Hc ≡HðacÞ. As shown in
Sec. III C, a rapid diluted energy density generates a bump
in the ratio of the matter power spectrum between the
ΛCDM-Nx and ΛCDM models [66], as observed in
Refs. [25,33,43,44,57,58,62,63,65,73,74]. In Fig. 5 we
show the matter power spectrum. On the left-hand side we
plot ΛCDM with and without Riess data [R19] and the
threeΛCDM-Nx cases (σH ¼ 1.42, σH ¼ 1, σH ¼ 0.5). On
the right-hand side we show the ratios of ΛCDM-Nx/
ΛCDM and ΛCDM–No-Riess/ΛCDM. Notice that for
ΛCDM-Nx with σH ¼ 0.5 we find an increase in power
of about 6% for modes 10−3 < k < 1 in h/Mpc units, while
for the other ΛCDM models (σH ¼ 1.42 and σH ¼ 1) the
difference is below 2%. In Fig. 6 we show the CMB power

FIG. 6. We plot CMBTT
l , CMBTE

l , CMBEE
L power spectra for ΛCDM and ΛCDM-Nx models, where 1σ ≡ 1 km s−1 Mpc−1 and

0.5σ ≡ 0.5 km s−1 Mpc−1.
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spectrum for all five models described above, top panel
corresponds to CTT

l , left bottom panel CTE
l and CEE

L right
bottom panel.

V. CONCLUSIONS

We have studied possible solutions to the increasing
H0 tension between local H0 and Planck CMB measure-
ments in the context of the ΛCDM model. Recent local
measurements of H0 estimate a value of H0 ¼ 74.03�
1.42 km s−1 Mpc−1 [4], with a reported average value
for different local measurements of H0 ¼ ð73.03�
0.8Þ km s−1 Mpc−1 [14], while Planck obtained a value
of H0 ¼ ð67.36� 0.54Þ km s−1 Mpc−1 [9]. The magnitude
of the tension between the early- and late-time measure-
ments either implies an important misunderstanding in the
systematic errors of the observational analysis, or it may
hint towards new physics beyond the concordance cosmo-
logical ΛCDM model. Here we took the second point of
view and studied possible solutions to reduce the tension
between local H0 measurements and the CMB radiation
observed by the Planck satellite. To alleviate this discrep-
ancy, we added to ΛCDM an extra-relativistic energy
density ρex present at early times, and we allowed for
ρex to dilute rapidly (as ρex ∝ 1=a6) for a scale factor
larger than ac; we named this model ΛCDM-Nx. These
types of dynamics are present in some scalar field
models (quintessence fields) and have been widely
studied. With these two phenomenological parameters,
we analyzed ΛCDM-Nx using CMB data [P18] and local
H0 measurements [R19]. Besides taking H0¼ð74.03�
σHÞkms−1Mpc−1 with σH ¼ 1.42 [R19], we also included
two forecasting 1σ standard deviation values, σH ¼ 1 and
σH ¼ 0.5 km s−1Mpc−1, and we assessed the impact of
these forecasting H0 measurements on the posterior prob-
abilities of the different cosmological parameters.
For ΛCDM-Nx, using Planck 2018 CMB

ðTT;TE;EEþ lowEÞ data and the forecasting local meas-
urement H0 ¼ 74.03� 0.5 km s−1 Mpc−1, we obtained a
value for the Hubble parameter of H0 ¼ 72.99�
0.47 km s−1 Mpc−1 at 68% C.L. with a best-fit
H0 ¼ 72.83 km s−1Mpc−1. In Table VI we show the
percentage difference of several cosmological parameters
in the ΛCDM-Nx model with a forecasting value H0 ¼
ð74.03� 0.5Þ km s−1Mpc−1 and the other six models
considered in this work.

In particular, we found it interesting to compare ΛCDM-
Nx with σH ¼ 0.5withΛCDM σH ¼ 0.5 andΛCDM σH ¼
1.42 models. We found an increase in the percentage
difference between the two ΛCDM models of 22.21%
for σH ¼ 1.42 and 38.03% for σH ¼ 0.5 in χ2H0

, respec-
tively, while we obtained a decrease in the reduced χredCMB of
0.147% for ΛCDM σH ¼ 1.42 and a negligible increase of
0.022% in the ΛCDM σH ¼ 0.5 model.
Not surprisingly, a reduced 1σ (σH ¼ 0.5) in the fore-

casting value of H0 has a larger impact on the posterior
value of H0 than in the analysis of the CMB. Notice,
however, that the change in χredCMB is 2 orders of magnitude
smaller than the change in χ2H0

.
To conclude, we found that a ΛCDM-Nx model, with

extra-relativistic energy density at a scale factor a < ac, is
consistent with H0 [R19] and CMB [P18] observations as
long as we assume a small forecasting value or H0 data
(e.g., σH ¼ 0.5 km s−1Mpc−1), while the impact on the
CMB χ2 is small. Finally, we would like to stress that our
phenomenological model ΛCDM-Nx, and in particular the
ρex and ac parameters, may have a sound derivation from
extension of the standard model of particle physics as for
example in BDE or EDE models. These are exciting times
to pursue a deeper understanding of our Universe, in an
epoch of high-precision cosmological observations thanks
to DESI and in the near future LSST, to further constrain
the building blocks of particle physics through their impact
on cosmological observables.
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