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2Università degli Studi di Napoli “Federico II”, Via Cinthia 21, I-80126 Napoli, Italy

(Received 9 December 2021; accepted 8 January 2022; published 24 January 2022)

We consider a quantum universe composed of a small system S and a large environment. It has been
demonstrated that, for the vast majority of randomly chosen wave functions of the universe satisfying a total
energy constraint, the reduced density matrix of the system S is given by the canonical statistical
distribution. Here, through the Page-Wootters mechanism, we show that time and nonequilibrium
dynamics can emerge as a consequence of the entanglement between the system and the environment
present in the (randomly chosen) global wave function of the universe. The clock is provided by the
environment, which ticks the temporal evolution of S. The paradox of the peaceful coexistence of statistical
equilibrium and nonequilibrium dynamics is solved by identifying the trace over the environment degrees
of freedom with the temporal trace over the entire history of the system S.
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I. INTRODUCTION

We consider a global quantum system, the “universe”,
composed of a small system S and a large environment E. It
has been recently demonstrated [1,2] (see also [3]) that,
under a suitable constraint on the total energy and for the
overwhelming majority of randomly chosen pure wave
functions of the universe, the reduced density matrix of S is
indistinguishable from a thermal canonical distribution; a
property named in [1] as Canonical Typicality.
In 1983 Don N. Page and William K. Wootters (PaW)

suggested that time can be an emergent property of
entanglement between subsystems in a globally static
universe [4,5], a proposal that has recently attracted much
attention [6–24] as a viable route for a new description of
space-time, including a new perspective for merging
quantum clocks and gravity [25,26] (see the Appendix A
for a brief summary of PaW theory).
The goal of this work is to show that canonical thermal

equilibrium and dynamics can coexist in a quantum
universe, with the environment providing the clock for
the evolution of the system S. The dynamics are governed
by the Schrödinger equation corrected by a nonlocal term
which vanishes in the limit of fixed total energy of the
universe. The paradox of the coexistence of thermal
equilibrium and nontrivial evolution of S is solved because
the trace over the degrees of freedom of the environment
coincides with a temporal average over the entire life of S.
The temporal dynamics of the system S emerges by

considering the relative states of S (in the Everett sense
[27]) with respect to the states of the environment.

II. CANONICAL EQUILIBRIUM DISTRIBUTION

Our quantum universe is composed by a small system S
weakly interacting with a large environment E, and it is
governed by the Hamiltonian

Ĥ ¼ ĤE þ ĤS; ð1Þ

where ĤE and ĤS are the Hamiltonians of the subsystemsE
and S respectively, having dimensions dE ≫ dS. The
relatively small interaction between the environment and
the system S is neglected [1,2]. In analogy with the standard
derivation of the canonical distribution of a subsystem
given a global microcanonical distribution, we impose the
total energy in the interval ½E;Eþ δ�, where δ ≪ E;ΔEðSÞ

[ΔEðSÞ being the typical spacing between energy levels of
the system S] but large enough to contain many eigenvalues
of ĤE. This constraint corresponds to the choice of
HU ⊆ HE ⊗ HS. We consider, following [1], a universe
in a pure state jΨi ∈ HU. The state of the system S is
obtained after tracing out the environment degrees of
freedom

ρ̂S ¼ TrE½jΨihΨj�: ð2Þ

According to [1,2], for almost every pure state jΨi ∈ HU,
the state of S is well approximated by the canonical
distribution
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ρ̂S ≈ TrE½Ω̂U� ≈
1

Z
e−βĤS ; ð3Þ

where β ¼ dSðEÞ=dE is the inverse temperature with SðEÞ
the environment entropy, Z ¼ Tr½e−βĤS � and Ω̂U ¼ d−1U P̂U
is the equiprobable mixed state in HU with dU the
dimension of the space HU and P̂U the projection on
HU. Notice that equal probabilities (and random phases)
are assigned in this case to all the states within Ω̂U which is
thus maximally mixed inHU [28]. Equation (3) implies that
the thermal state of the small subsystem S can be derived
from a (randomly chosen) pure state jΨi ∈ HU or from the
maximally mixed state Ω̂U.

III. ENVIRONMENT AS A CLOCK

A. General framework

We are now going to merge canonical typicality and PaW
theory. The key point is to recognize the environment as a
clock,

ĤE ≡ ĤC: ð4Þ
Notice that in the PaW framework a good clock has to have
a Hilbert space dimension larger than the dimension of the
system S, otherwise it would no longer be possible to relate
each energy eigenstate of the system to an energy eigenstate
of the clock (see Appendix A and [18]). Furthermore a
good clock has to interact weakly with the system S or, in
the ideal case, it should not interact at all. These conditions
coincide with those required for the environment by
canonical typicality.
In the original PaW theory the global state of the universe

is an eigenstate of the totalHamiltonianwith zero eigenvalue,
i.e., ĤjΨi ¼ 0. In this work we follow a slightly different
path and weweakly relax the PaWconstraint considering the
total energy of the universewithin the energy shell ½E;Eþ δ�
where δ ≪ E;ΔEðSÞ but large enough to contain many
energy eigenvalues of the clock ≡ environment C. In this
frameworkwe find a nonlocal Schrödinger-like evolution for
the relative state of S that reduces to the usual Schrödinger
dynamics for times t − t0 ≪ 1=δ (where t0 is the initial time)
or for all times in the limit δ → 0.
We define the time states in the Hilbert space of the

clock ≡ environment using the approach developed in
[18,29]. We assume that the Hamiltonian of the environ-
ment has nondegenerate energy eigenstates with rational
energy ratios

EðCÞ
i

EðCÞ
1

¼ Ai

Di
; ð5Þ

where Ai and Di are integers with no common factors and

EðCÞ
0 ¼ 0. This implies that all energy values are integer

multiples of a (arbitrarily small) step (ℏ ¼ 1),

EðCÞ
i ¼ ri

2π

T
; ð6Þ

where T ¼ 2πr1
E1

, ri ¼ r1
Ai
Di

for i > 1 (with r0 ¼ 0) and r1 is
equal to the lowest common multiple of the values ofDi. In
this space we define the states

jtmi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

pþ 1
p

Xp
i¼0

e−iE
ðCÞ
i tm jEðCÞ

i i ð7Þ

with pþ 1 ¼ dC, tm ¼ t0þmT=ðsþ 1Þ, m ¼ 0; 1; 2;…; s,
and sþ 1 ≥ rp. The number of states jtmi is therefore
greater than the number of energy states in HC and the
sþ 1 values of tm are uniformly distributed over T. These
states are not orthogonal but provide an overcomplete basis
in C with the resolution of the identity

pþ 1

sþ 1

Xs
m¼0

jtmihtmj ¼ 1C: ð8Þ

In order to obtain a continuous flow of time we can now
consider the limit s → ∞ and define

jti ¼
Xp
i¼0

e−iE
ðCÞ
i tjEðCÞ

i i; ð9Þ

where t can now take any real value from t0 to t0 þ T. In
this limit the resolution of the identity (8) becomes

1

T

Z
t0þT

t0

dtjtihtj ¼ 1C; ð10Þ

and the states jti provide again an overcomplete basis with

htjt0i ¼ P
n e

iEðCÞ
n ðt−t0Þ. We notice that, if we consider non-

rational ratios of energy levels, the resolutions of the
identity (8) and (10) are no longer exact and the time
states jtmi and jti do not provide an overcomplete basis in
C. However, since any real number can be approximated
with arbitrary precision by a ratio between two rational
numbers, the residual terms in the resolutions of the identity
can be arbitrarily reduced [18].

B. Random universe and dynamics

Here we show that a universe in a (randomly chosen)
pure state is compatible with the emergence of time and a
nontrivial dynamical evolution of the system S. The global
state of the universe is

jΨi ¼
X
j

X
i

cijjEðCÞ
i ijEðSÞ

j i; ð11Þ

where we take the coefficients cij distributed as in [1]. With

jΨi ¼ jΦi=kjΦik and jΦi ¼ P
j

P
i c̃ijjEðCÞ

i ijEðSÞ
j i, the
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real and imaginary parts of the coefficients c̃ij ¼ cijkjΦik
are chosen as independent real Gaussian random variables
with zero mean and variance 1=2 for the values of i, j such

that EðCÞ
i þ EðSÞ

j ∈ ½E;Eþ δ� and c̃ij ¼ 0 otherwise. Since

δ ≪ ΔEðSÞ
j ¼ EðSÞ

jþ1 − EðSÞ
j ∀ j and considering that the

spectrum of ĤC is much denser than the spectrum of
ĤS, the constraint on the total energy implies that each level
of the system is coupled with several neighbor levels of the
clock. The random choice of the coefficients provides
canonical typicality [1]; here we show that is also sufficient
to provide the temporal dynamics for the relative state (in
the Everett sense [27]) of the system S.
The action of the global Hamiltonian Ĥ on the global

state jΨi gives

ĤjΨi ¼ ðĤC þ ĤSÞ
X
j

X
i∈Ij

cijjEðCÞ
i ijEðSÞ

j i

¼
X
j

X
i∈Ij

cijðEðCÞ
i þ EðSÞ

j ÞjEðCÞ
i ijEðSÞ

j i

¼ EjΨi þ
X
j

X
i∈Ij

cijΔijjEðCÞ
i ijEðSÞ

j i; ð12Þ

where Ij is the set of the environment levels such that

EðCÞ
i ∈ ½E − EðSÞ

j ; E − EðSÞ
j þ δ� and where we have written

EðCÞ
i þ EðSÞ

j ¼ Eþ Δij with Δij ∈ ½0; δ�. The relative state
of the system S at a certain time t is defined by

jϕðtÞiS ¼ htjΨi ð13Þ

[notice that (13) is still a pure state] and its time evolution
can be easily calculated,

i
∂
∂t jϕðtÞiS ¼

∂
∂t

XdC
k

hEkjeiEktjΨi ¼ −
XdC
k

hEkjEkeiEktjΨi

¼ −htjĤCjΨi ¼ ĤShtjΨi − htjĤjΨi
¼ ðĤS − EÞjϕðtÞiS
− htj

X
j

X
i∈Ij

cijΔijjEðCÞ
i ijEðSÞ

j i; ð14Þ

where we have used (9), Ĥ ¼ ĤC þ ĤS, (13), and (12).

By defining the operator Δ̂ ¼ P
j

P
i∈Ij ΔijjEðCÞ

i ijEðSÞ
j i ×

hEðCÞ
i jhEðSÞ

j j and removing the term related to Ewhich gives
an irrelevant phase factor in the evolution of S, (14)
becomes the time nonlocal Schrödinger-like equation,

i
∂
∂t jϕðtÞiS ¼ ĤSjϕðtÞiS −

1

T

Z
t0þT

t0

dt0Δ̂ðt; t0Þjϕðt0ÞiS;

ð15Þ

where Δ̂ðt; t0Þ ¼ htjΔ̂jt0i. The last term in the right-hand
side of the equation is an integral operator acting on S.
For times t − t0 ≪ 1=δ (and so t − t0 ≪ 1=Δij for

typical Δij) (15) reduces to the ordinary Schrödinger
equation. Indeed we have

jϕðtÞiS
¼ htjΨi ¼ ht0jeiĤCðt−t0ÞjΨi ¼ e−iĤSðt−t0Þht0jeiĤðt−t0ÞjΨi
¼ e−iĤSðt−t0Þht0j

X
j

X
i∈Ij

cije
iðEðCÞ

i þEðCÞ
j Þðt−t0ÞjEðCÞ

i ijEðSÞ
j i

¼ e−iĤSðt−t0Þht0j
X
j

X
i∈Ij

cijeiEðt−t0ÞeiΔijðt−t0ÞjEðCÞ
i ijEðSÞ

j i;

ð16Þ

where we used (13), Ĥ ¼ ĤC þ ĤS, and EðCÞ
i þ EðSÞ

j ¼
Eþ Δij. For t − t0 ≪ 1=δ, considering eiΔijðt−t0Þ ≃ 1 and
removing the irrelevant global phase factor eiEðt−t0Þ, (16)
becomes

jϕðtÞiS ≃ e−iĤSðt−t0Þjϕðt0ÞiS; ð17Þ
which provides the Schrödinger evolution for the system S.
In Sec. III. D we briefly discuss the effect of the nonlocal
term in Eq. (15) for times t − t0 ≥ 1=δ.

Equation (15) can be explicitly solved; with EðCÞ
i þ

EðSÞ
j ¼ Δij (the term related to E has been removed) we

obtain (see Appendix B)

jϕðtÞiS ¼
X
j

αjðtÞe−iE
ðSÞ
j tjEðSÞ

j i ð18Þ

with

αjðtÞ ¼
X
i∈Ij

cijeiΔijt: ð19Þ

Equation (18) provides an additional time dependence
to the Schrödinger evolution through the coefficients
αjðtÞ. In the case t − t0 ≪ 1=δ we have αðtÞ ≃P

i∈Ij cije
iΔijt0 ≡ αjðt0Þ and the state (18) becomes

jϕðtÞiS ≃
P

j αjðt0Þe−iE
ðSÞ
j tjEðSÞ

j i where we recognize again
the Schrödinger evolution for the system S.
We emphasize that (15) does not preserve the norm of

the state jϕðtÞiS over time. Indeed, calculating the scalar
product hϕðtÞjϕðtÞi through (18) we obtain

hϕðtÞjϕðtÞi ¼
X
j

jαjðtÞj2 ¼
X
j

X
i∈Ij

X
k∈Ij

cijc�kje
iðΔij−ΔkjÞt

¼
X
j

X
i∈Ij

X
k∈Ij

jcijkckjj cosððΔij − ΔkjÞt

− ΔφðjÞ
ik Þ ð20Þ
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where cij ¼ jcijjeiφij , ckj ¼ jckjjeiφkj and ΔφðjÞ
ik ¼ φkj −φij.

However, the corrections remain small when t − t0 ≪ 1=δ
(and vanish in the limit δ → 0) being hϕðtÞjϕðtÞi ≃P

j

P
i;k∈Ij cijc

�
kje

iðΔij−ΔkjÞt0 ¼ P
j jαjðt0Þj2 that is different

from the unity but (approximately) constant over time. We
notice that a similar problem arose, for different reasons,
in [13] where it was handled by introducing a new
definition for the inner product.
To summarize, the environment can provide the clock for

the dynamical evolution of the system S. The state of S
conditioned to a certain value of the clock through (13)
consists of a pure state obeying a nonlocal dynamical
Schrödinger-like equation (that reduces to the standard
Schrödinger equation for t − t0 ≪ 1=δ). Nevertheless, after
tracing out the degrees of freedom of the clock ≡
environment, we find the system in a state of thermal
equilibrium provided by the canonical distribution. This
compatibility is simply explained by the fact that the trace
over the environment degrees of freedom is equivalent to
the trace over all times. Indeed we have (see Appendix D)

ρ̂S ¼ TrC½jΨihΨj� ¼
1

T

Z
t0þT

t0

dthtjΨihΨjti ≈ 1

Z
e−βĤS ;

ð21Þ

where again β ¼ dSðEÞ=dE is the inverse temperature with
SðEÞ the clock ≡ environment entropy and Z ¼ Tr½e−βĤS �
as in Eq. (3).

C. Initial conditions for S

The merging of canonical typicality and PaW imposes a
constraint on the allowed initial conditions of the sub-
system S. The initial condition for the state (18) is

jϕðt0ÞiS ¼
X
j

αjðt0Þe−iE
ðSÞ
j t0 jEðSÞ

j i ð22Þ

with

αjðt0Þ ¼
X
i∈Ij

cijeiΔijt0 : ð23Þ

The reduced density matrix ρ̂S of the subsystem S is

ρ̂S ¼ TrC½jΨihΨj� ¼
X
j

X
i∈Ij

jcijj2jEðSÞ
j ihEðSÞ

j j; ð24Þ

where, following [1], we have considered that the
relevant energy intervals for the clock ≡ environment

coupled with each level EðSÞ
j of S are pairwise disjoint

(which is a consequence of δ≪ΔEðSÞ
j ¼EðSÞ

jþ1−EðSÞ
j ∀ j).

Canonical typicality implies

X
i∈Ij

jcijj2 ≈
1

Z
e−βE

ðSÞ
j ; ð25Þ

which constrains the initial conditions by selecting a set
of allowed αjðt0Þ through (23). It is crucial to notice that
Eq. (25) constrains the sum of the absolute values of the
coefficients cij and therefore leaves a large margin of
freedom on the possible values of αjðt0Þ. In conclusion,
canonical typicality states that the reduced density matrix
ρ̂S ¼ TrC½jΨihΨj� of the overwhelming majority of the
pure wave functions jΨi ∈ HU ⊆ HC ⊗ HS is canonical.
This means that the overwhelming majority of the ran-
domly chosen coefficients cij satisfy Eq. (25) which, in our
framework, is consistent with a nontrivial dynamical
evolution of the system S.

D. A toy model

We look now at a simple example assuming that the
subsystem S consists of a one-dimensional harmonic
oscillator with Hamiltonian ĤS¼ P̂2

2mþ 1
2
mω2X̂2. We

assume that the dynamics are confined among the two
lowest-energy levels of the oscillator and therefore
the global state of the universe (11), satisfying the con-

straint on the total energy, is jΨi¼P
i∈I0 ci0jE

ðCÞ
i ij0ðSÞi þP

i∈I1 ci1jE
ðCÞ
i ij1ðSÞi.

With (22) and t0 ¼ 0, we look at the (pure) initial state of
the subsystem S, jϕð0ÞiS ¼ α0ð0Þj0ðSÞi þ α1ð0Þj1ðSÞi,
where we set the initial values α0ð0Þ and α1ð0Þ according
to (23). Thanks to (18) and (19), for the conditioned state of
S at a generic time t, we have

jϕðtÞiS¼α0ðtÞe−iE
ðSÞ
0

tj0ðSÞiþα1ðtÞe−iE
ðSÞ
1

tj1ðSÞi
¼
X
i∈I0

ci0e
−iðEðSÞ

0
−Δi0Þtj0ðSÞiþ

X
i∈I1

ci1e−iðE
ðSÞ
1

−Δi1Þtj1ðSÞi:

ð26Þ
We recall here that the state (26) is not normalized. To
restore the normalization (for t ≪ 1=δ where the norm
is approximately preserved) we should divide (26) byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20ð0Þ þ α21ð0Þ

p
. However, for the sake of simplicity, we

proceed with the calculation without considering the
normalization.
We look now at the time dependence of the expectation

value of the position operator hX̂it ¼ hϕðtÞjX̂jϕðtÞi and
obtain (see Appendix E)

hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r
jα0ðtÞkα1ðtÞj cosðωt − ΔϕðtÞÞ

¼
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0kck1j cosððωþ ðΔi0 − Δk1ÞÞt

− Δφð0;1Þ
ik Þ; ð27Þ
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where we have considered α0ðtÞ ¼ jα0ðtÞjeiϕ0ðtÞ, α1ðtÞ ¼
jα1ðtÞjeiϕ1ðtÞ,ΔϕðtÞ ¼ ϕ1ðtÞ − ϕ0ðtÞ, ci0 ¼ jci0jeiφi0 , ck1 ¼
jck1jeiφk1 , Δφð0;1Þ

ik ¼ φk1 − φi0, and EðSÞ
1 − EðSÞ

0 ¼ ω. For
times t ≪ 1=jΔi0 − Δk1j, up to first order of approximation
in tðΔi0 − Δk1Þ, (27) reduces to (see Appendix F)

hX̂it ≃
ffiffiffiffiffiffiffi
2

mω

r
jα0ð0Þkα1ð0Þj cosðωt − Δϕð0ÞÞ

−
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0kck1jtðΔi0 − Δk1Þ

× sinðωt − Δφð0;1Þ
ik Þ ð28Þ

where α0ð0Þ ¼ jα0ð0Þjeiϕ0ð0Þ, α1ð0Þ ¼ jα1ð0Þjeiϕ1ð0Þ,
Δϕð0Þ ¼ ϕ1ð0Þ − ϕ0ð0Þ, and where we used again (23).
Equation (28) indicates, as expected, that the expectation

value hX̂it oscillates between �
ffiffiffiffiffi
2
mω

q
jα0ð0Þkα1ð0Þj with

frequency ω (apart from small corrections) and this is not
surprising since we know that for t ≪ 1=δ the system S
exhibits a Scrödinger-like evolution.
If we trace over the clock ≡ environment degrees of

freedom, which corresponds to a time average, for the
overwhelming majority of the randomly chosen coeffi-
cients cij we obtain, thanks to (21), (24), and (25), the
canonical mixed density matrix for the subsystem S,

ρ̂S ¼
1

T

Z
T

0

dthtjΨihΨjti

¼
X
i∈I0

jci0j2j0ðSÞih0ðSÞj þ
X
i∈I1

jci1j2j1ðSÞih1ðSÞj

≈
1

Z
ðe−βEðSÞ

0 j0ðSÞih0ðSÞj þ e−βE
ðSÞ
1 j1ðSÞih1ðSÞjÞ: ð29Þ

IV. DISCUSSION

A. On conditional probabilities

An important point in the PaW mechanism concerns
conditional probabilities. In the original PaW proposal the
probability to obtain the outcome a when measuring the
observable Â (with Âjai ¼ ajai) on the subspace S at a
certain clock time t is

pða on S jt onCÞ ¼ pða on S; t onCÞ
pðt onCÞ ; ð30Þ

that is the conditional probability of obtaining a on S given
that the clock C shows t.
This aspect of the theory has been criticized by K. V.

Kuchar [30] who emphasized that the PaW mechanism is
not able to provide the correct propagators when consid-
ering multiple measurements. Indeed measurements of the
system at two times will give the wrong statistics because

the first measurement “collapses” the time state and freezes
the system. Two possible ways out of this problem have
been proposed—the first in [31] (which we call GPPT
theory in the following) with an experimental illustration
in [7], and the second in [6].
We focus now on the GPPT proposal. As pointed out in

[7] one of the main ingredients in the GPPT theory is the
averaging over the abstract coordinate time (the “external
time”) in order to eliminate any external time dependence
in the observables. So, in the GPPT proposal, the proba-
bility of obtaining the outcome a when measuring the
observable Â on the subsystem S conditioned to having the
outcome t on C is given by [31]

pða on S j t onCÞ ¼
R
dθ Tr½P̂a;tðθÞρ̂�R
dθ Tr½P̂tðθÞρ̂�

; ð31Þ

where θ is the external time, ρ̂ ¼ jΨihΨj is the global
state of the universe, P̂tðθÞ ¼ Û†ðθÞP̂tÛðθÞ [with
ÛðθÞ ¼ e−iĤθ] is the projector relative to the result t for
a clock measurement at external time θ, and P̂a;tðθÞ ¼
Û†ðθÞP̂a;tÛðθÞ is the projector relative to the result a
for a measurement on S and t for a measurement on C at
external time θ (we are working here in the Heisenberg
picture with respect to the external time θ). The generali-
zation of Eq. (31) to multiple time measurements is given
by [31]

pðaf onS j tf onC; ai; tiÞ

¼
R
dθ

R
dθ0 Tr½P̂af;tfðθÞP̂ai;tiðθ0Þρ̂P̂ai;tiðθ0Þ�R

dθ
R
dθ0 Tr½P̂tfðθÞP̂ai;tiðθ0Þρ̂P̂ai;tiðθ0Þ�

; ð32Þ

provides the conditional probability of obtaining af on the
system S at clock time tf, given that a previous joint
measurement of S and C returns ai, ti.
The GPPT proposal needs a global state ρ̂ commuting

with the global Hamiltonian and then it can be applied to
our framework in the limit δ → 0. We finally notice and
emphasize that, in our framework, the fact of having
nonorthogonal time states does not constitute a problem
in the application of the GPPT theory. Indeed, when we
calculate the relative state of the system S to a certain clock
value t through (13), we find no contributions from times
≠ t and interference phenomena are not present even if the
time states are not orthogonal [18].

B. Nonobservable universe as a clock

A condition to merge canonical typicality and PaW time
is to have an environment that is negligibly interacting with
S. This is certainly not the case in our everyday life where
decoherence due to the surrounding environment is often
non-negligeable. A possible choice of a good clock (non-
interacting with S) is the nonobservable universe (namely,
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a part of the global system that is outside the light cone
of S). In this respect, it is intriguing to notice that the recent
observations on the cosmic microwave background [32]
together with the inflationary paradigm, indicate that at the
beginning of cosmic inflation the Universe was in a pure
state with highly-correlated quantum fluctuations [33].
Furthermore, it has been suggested that the assumption
that the observable and the nonobservable universe might
be entangled provides an argument in support of inflation
[10,34]. It is therefore somehow natural to speculate that
the nonobservable universe acts as a clock for the observ-
able universe. Indeed in this framework the two require-
ments for a “good clock” are satisfied; the clock and the
system S are noninteracting and, in addition, the dimension
of the clock is presumably larger than the dimension of S
(i.e., the nonobservable universe is bigger than the observ-
able universe). A very simple estimate supports the con-
sistency of the scenario. The spacing between the energy
levels in the clock space is

δEðCÞ
i ¼ EðCÞ

iþ1 þ EðCÞ
i ¼ 2πℏ

T
ðriþ1 − riÞ; ð33Þ

where riþ1 − ri is an integer. Notice that δEðCÞ
min ¼ 2πℏ=T

is the minimum energy-step value, so that all other
energy values can be considered as integer multiples of

this minimum step. The δEðCÞ
min is inversely proportional to

the value of T, that is the time taken by the clock to return to
its initial state (notice that the framework we introduced in
Sec. III leads to a cyclical flow of time). So, considering the
global system as the whole universe, we can relate T to the
current age of the universe TU by assuming T ≥ TU ∼
13.8 × 109 y ≃ 4.35 × 1017 s (and t0 ¼ 0 the instant of the
big bang). This leads to

δEðCÞ
min ¼

2πℏ
T

≤
2πℏ

TUniverse
≃ 1.5 × 10−51 J: ð34Þ

This upper limit for δEðCÞ
min is very small compared to other

energies on atomic scale and fits into our framework of
constructing the spectrum of the Hamiltonian ĤC with
integer multiples of a minimum energy step.

V. CONCLUSIONS

In this work we have merged canonical typicality and the
PaW quantum time. We consider a quantum universe made
by a small system S and a large environment which serves
as a clock for S. Thanks to canonical typicality we know
that for almost all pure states in which the whole universe
can be, after tracing over the environment the system S is
in a state of equilibrium described by the canonical
distribution. In the same scenario we find a Schrödinger-
like evolution corrected by a nonlocal term for the relative
state of S with respect to the clock ≡ environment.

Canonical typicality and dynamics can coexist because
in our protocol the action of tracing out the environment is
equivalent to tracing over all times; the trace over the
environment coincides with a temporal average.
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APPENDIX A: SUMMARY OF PAGE AND
WOOTTERS THEORY

We give here a brief review of the PaW theory. We
consider the whole universe as being in a stationary state
with zero eigenvalue (and therefore there is no need for
an external time), consistently with the Wheeler-DeWitt
equation

ĤjΨi ¼ 0; ðA1Þ

where Ĥ and jΨi are the Hamiltonian and the state of the
universe respectively. We can then divide the universe into
two noninteracting subsystems, the clock C and the rest of
the universe S, and thus the total Hamiltonian can be
written as

Ĥ ¼ ĤC þ ĤS; ðA2Þ

where ĤC and ĤS are the Hamiltonians acting on C and S
respectively. The condensed history of the system S is
written through the entangled global stationary state jΨi ∈
H ⊆ HC ⊗ HS [which satisfies the constraint (A1)] as
follows:

jΨi ¼ 1ffiffiffiffiffiffi
dC

p
X
τ

jτiC ⊗ jϕτiS; ðA3Þ

where dC is the dimension of the clock subspace and the
states fjτiCg are eigenstates of the clock observable. We
notice here that a “good clock”must have dC ≫ dS. Indeed,
writing jΨi in the energy eigenbasis, one finds that with
dC ≤ dS it would not be possible to couple every energy
state of S to an energy state of C satisfying the constraint
(A1) and some states of S would be excluded from the
dynamics [18].
In this framework the relative state (in Everett sense [27])

of the subsystem S with respect to the clock C can be
obtained via conditioning

jϕτiS ¼
hτjΨi
1=

ffiffiffiffiffiffi
dC

p : ðA4Þ

Note that, as mentioned before, equation (A4) is the Everett
relative state definition of the subsystem S with respect to
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the clock system C. As pointed out in [9], this kind of
projection has nothing to do with a measurement. Rather,
jϕτiS is a state of S conditioned to the clock C in the state
jτiC. Then, from equations (A1), (A2), and (A4), it is
possible to derive the Schrödinger evolution for the relative
state of the subsystem S with respect to the clock C (ℏ ¼ 1)

jϕτiS ¼ e−iĤSðτ−τ0Þjϕτ0iS; ðA5Þ

where jϕτ0iS ¼
ffiffiffiffiffiffi
dC

p hτ0jΨi, being jτ0iC the clock eigen-
state taken as initial time.
We want to emphasize here that, as pointed out in [6], in

the PaWapproach the zero eigenvalue of Ĥ does not play a
special role in identifying the global state jΨi. Indeed up to
an irrelevant global phase in the dynamics of jϕτiS, the
global state jΨi can be obtained also by imposing the
constraint ĤjΨi ¼ EjΨi with real E. This consideration is
useful for the arguments we address in the main text.

APPENDIX B: PROOF OF EQUATION (18)

Here we show that the state

jϕðtÞiS ¼
X
j

X
i∈Ij

cije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i ðB1Þ

is a solution for the equation

i
∂
∂t jϕðtÞiS ¼ ĤSjϕðtÞiS − htjΔ̂jΨi; ðB2Þ

[where Δ̂ ¼ P
j

P
i∈Ij ΔijjEðCÞ

i ijEðSÞ
j ihEðCÞ

i jhEðSÞ
j j] and for

Eq. (15). In the first case we substitute (B1) in (B2) thus
obtaining

i

�
−i
X
j

X
i∈Ij

cijE
ðSÞ
j e−iðE

ðSÞ
j −ΔijÞtjEðSÞ

j i þ i
X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i

�

¼ ĤSjϕðtÞiS − htj
X
j

X
i∈Ij

cijΔijjEðCÞ
i ijEðSÞ

j i ðB3Þ

⇒ ĤSjϕðtÞiS −
X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i ¼ ĤSjϕðtÞiS − htj

X
j

X
i∈Ij

cijΔijjEðCÞ
i ijEðSÞ

j i: ðB4Þ

So we have
X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i ¼ htj

X
j

X
i∈Ij

cijΔijjEðCÞ
i ijEðSÞ

j i; ðB5Þ

that is an identity, considering that in the right-hand side of the equation (B5) htjEðCÞ
i i ¼ eiE

ðCÞ
i t and the global constraint on

energy gives EðCÞ
i ¼ −EðSÞ

j þ Δij (remember that the total energy term E has been removed).

To verify that the (B1) is a solution for (15) we have first to see how Δ̂ðt; t0Þ acts on jϕðt0ÞiS. We have

Δ̂ðt; t0Þjϕðt0ÞiS ¼
X
j

X
k∈Ij

X
i∈Ij

eiE
ðCÞ
k tΔkje

−iEðCÞ
k t0cijeiE

ðCÞ
i t0 jEðSÞ

j i: ðB6Þ

So, by substituting the state (B1) in Eq. (15) and using (B6), we obtain

X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i ¼ 1

T

Z
T

0

dt0
X
j

X
k∈Ij

X
i∈Ij

eiE
ðCÞ
k tΔkje

−iEðCÞ
k t0cijeiE

ðCÞ
i t0 jEðSÞ

j i ðB7Þ

⇒
X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i ¼

X
j

X
i∈Ij

cijΔije
−iðEðSÞ

j −ΔijÞtjEðSÞ
j i; ðB8Þ

where in the last step we used again the constraint on the energy EðCÞ
i ¼ −EðSÞ

j þ Δij and (see Appendix C for the proof)

Z
t0þT

t0

dt0eiðE
ðCÞ
i −EðCÞ

k Þt0 ¼ Tδi;k: ðB9Þ
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APPENDIX C: PROOF OF EQUATION (B9)

We start here considering a generic state jψi ∈ HC, that is

jψi ¼
Xp
k¼0

ckjEðCÞ
k i ðC1Þ

where, we recall,pþ 1 ¼ dC.We now apply in sequence the

resolutions of the identity 1C ¼ 1
T

R t0þT
t0 dtjtihtj and 1C ¼Pp

n¼0 jEðCÞ
n ihEðCÞ

n j thus obtaining

jψi ¼ 1

T

Z
t0þT

t0

dtjtihtjψi ¼ 1

T

Z
t0þT

t0

dt
Xp
k¼0

cke
itEðCÞ

k jti

¼
Xp
n¼0

jEðCÞ
n ihEðCÞ

n

���� 1T
Z

t0þT

t0

dt
Xp
k¼0

cke
itEðCÞ

k jti

¼
Xp
n¼0

Xp
k¼0

ck
1

T

Z
t0þT

t0

dteitðE
ðCÞ
k −EðCÞ

n ÞjEðCÞ
n i: ðC2Þ

Since the state jΨi in Eq. (C2) has to be equal to (C1), we

have
R t0þT
t0 dteitðE

ðCÞ
k −EðCÞ

n Þ ¼ Tδk;n.

APPENDIX D: PROOF OF EQUATION (21)

Here we prove Eq. (21), namely we show that, although
the states jti are not orthogonal, we have

ρ̂S ¼ TrC½jΨihΨj� ¼
1

T

Z
t0þT

t0

dthtjΨihΨjti: ðD1Þ

Then, thanks to canonical typicality, we know that
ρ̂S ≈ 1

Z e
−βĤS where β ¼ dSðEÞ=dE is the inverse tem-

perature (with SðEÞ the entropy of C) and Z ¼
Tr½e−βĤS � [1]. We start calculating the partial trace of
the global state TrC½jΨihΨj� through the energy basis in
the subspace C

ρ̂S ¼ TrC½jΨihΨj� ¼
X
n

hEðCÞ
n jΨihΨjEðCÞ

n i

¼
X
n

X
j

X
i∈Ij

X
l

X
k∈Il

cijc�klhEðCÞ
n jEðCÞ

i ihEðCÞ
k jEðCÞ

n ijEðSÞ
j ihEðSÞ

l j; ðD2Þ

where Ij is the set of the environment levels such that EðCÞ
i ∈ ½E − EðSÞ

j ; E − EðSÞ
j þ δ�. Now, being δ ≪ ΔEðSÞ

j ∀ j, then the

energy intervals for the clock ≡ environment coupled with each level EðSÞ
j of S are pairwise disjoint. So equation (D2)

becomes

ρ̂S ¼ TrC½jΨihΨj� ¼
X
j

X
i∈Ij

jcijj2jEðSÞ
j ihEðSÞ

j j: ðD3Þ

Going instead to calculate the right-hand side of equation (D1) we have

1

T

Z
t0þT

t0

dthtjΨihΨjti ¼ 1

T

Z
t0þT

t0

dt
X
j

X
i∈Ij

X
l

X
k∈Il

cijc�klhtjEðCÞ
i ihEðCÞ

k jtijEðSÞ
j ihEðSÞ

l j

¼
X
j

X
i∈Ij

X
l

X
k∈Il

cijc�kl
1

T

Z
t0þT

t0

dte−itðE
ðCÞ
i −EðCÞ

k ÞjEðSÞ
j ihEðSÞ

l j ðD4Þ

and, considering
R t0þT
t0 dte−itðE

ðCÞ
i −EðCÞ

k Þ ¼ Tδi;k (see Appendix C), we obtain

1

T

Z
t0þT

t0

dthtjΨihΨjti ¼
X
j

X
i∈Ij

jcijj2jEðSÞ
j ihEðSÞ

j j; ðD5Þ

where we used again the fact that the relevant energy
intervals for the clock ≡ environment coupled with

each level EðSÞ
j of S are pairwise disjoint. Equation (D5)

that is the same of (D3), so 1
T

R t0þT
t0 dthtjΨihΨjti ¼

TrC½jΨihΨj� ¼ ρ̂S.

APPENDIX E: PROOF OF EQUATION (27)

We calculate here the expectation value hX̂it ¼
hϕðtÞjX̂jϕðtÞi, where X̂ ¼

ffiffiffiffiffiffiffi
1

2mω

q
ðâþ â†Þ, considering

the relative state jϕðtÞiS written as
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jϕðtÞiS ¼
X
i∈I0

ci0e
−iðEðSÞ

0
−Δi0Þtj0ðSÞi þ

X
i∈I1

ci1e−iðE
ðSÞ
1

−Δi1Þtj1ðSÞi: ðE1Þ

We have

hX̂it ¼
�X

i∈I0

c�i0e
iðEðSÞ

0
−Δi0Þth0ðSÞj þ

X
i∈I1

c�i1e
iðEðSÞ

1
−Δi1Þth1ðSÞj

�

×

ffiffiffiffiffiffiffiffiffiffi
1

2mω

r
ðâþ â†Þ

�X
i∈I0

ci0e−iðE
ðSÞ
0

−Δi0Þtj0ðSÞi þ
X
i∈I1

ci1e−iðE
ðSÞ
1

−Δi1Þtj1ðSÞi
�

ðE2Þ

⇒ hX̂it ¼
ffiffiffiffiffiffiffiffiffiffi
1

2mω

r �X
i∈I0

c�i0e
iðEðSÞ

0
−Δi0Þth0ðSÞj þ

X
i∈I1

c�i1e
iðEðSÞ

1
−Δi1Þth1ðSÞj

�

×

�X
i∈I1

ci1e−iðE
ðSÞ
1

−Δi1Þtj0ðSÞi þ
X
i∈I0

ci0e−iðE
ðSÞ
0

−Δi0Þtj1ðSÞi þ
ffiffiffi
2

p X
i∈I1

ci1e−iðE
ðSÞ
1

−Δi1Þtj2ðSÞi
�
: ðE3Þ

From Eq. (E3) we have

hX̂it ¼
ffiffiffiffiffiffiffiffiffiffi
1

2mω

r X
i∈I0

X
k∈I1

c�i0ck1e
iðEðSÞ

0
−EðSÞ

1
−Δi0þΔk1Þt þ

ffiffiffiffiffiffiffiffiffiffi
1

2mω

r X
i∈I0

X
k∈I1

ci0c�k1e
−iðEðSÞ

0
−EðSÞ

1
−Δi0þΔk1Þt: ðE4Þ

Now, writing ci0 ¼ jci0jeiφi0 , ck1 ¼ jck1jeiφk1 , Δφð0;1Þ
ik ¼ φk1 − φi0 and considering that EðSÞ

1 − EðSÞ
0 ¼ ω, we obtain

hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0jjck1j cosððωþ ðΔi0 − Δk1ÞÞt − Δφð0;1Þ
ik Þ; ðE5Þ

which is what we had to prove, since Eq. (E5) is the same of the second part of Eq. (27).
If we want instead to consider the expectation value hX̂it expressed in terms of the αjðtÞ, through the definition (19) [that

is αjðtÞ ¼
P

i∈Ij cije
iΔijt], we can rewrite Eq. (E4) as

hX̂it ¼
ffiffiffiffiffiffiffiffiffiffi
1

2mω

r
ðα�0ðtÞα1ðtÞeiðE

ðSÞ
0

−EðSÞ
1

Þt þ α0ðtÞα�1ðtÞe−iðE
ðSÞ
0

−EðSÞ
1

ÞtÞ: ðE6Þ

Writing α0ðtÞ ¼ jα0ðtÞjeiϕ0ðtÞ, α1ðtÞ ¼ jα1ðtÞjeiϕ1ðtÞ, ΔϕðtÞ ¼ ϕ1ðtÞ − ϕ0ðtÞ, and considering again EðSÞ
1 − EðSÞ

0 ¼ ω, (E6)
becomes

hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r
jα0ðtÞjjα1ðtÞj cosðωt − ΔϕðtÞÞ: ðE7Þ

Equation (E7) is the same of the first part of Eq. (27) and shows the expectation value hX̂it expressed in terms of the time-
dependent coefficients αjðtÞ.

APPENDIX F: PROOF OF EQUATION (28)

We prove here that Eq. (27) reduces to (28) in the case of t ≪ 1=jΔi0 − Δk1j. We start considering the second part of
equation (27), that is

hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0jjck1j cosðωtþ ðΔi0 − Δk1Þt − Δφð0;1Þ
ik Þ: ðF1Þ

This can be rewritten as
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hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r �X
i∈I0

X
k∈I1

jci0jjck1j cosðωt − Δφð0;1Þ
ik Þ cosððΔi0 − Δk1ÞtÞ

�
þ

−
ffiffiffiffiffiffiffi
2

mω

r �X
i∈I0

X
k∈I1

jci0jjck1j sinðωt − Δφð0;1Þ
ik Þ sinððΔi0 − Δk1ÞtÞ

�
: ðF2Þ

We impose now the condition t ≪ 1=jΔi0 − Δk1j, so we can consider the Taylor expansions of cosððΔi0 − Δk1ÞtÞ and
sinððΔi0 − Δk1ÞtÞ thus obtaining

hX̂it ¼
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0jjck1j cosðωt − Δφð0;1Þ
ik Þþ

−
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0jjck1jtðΔi0 − Δk1Þ sinðωt − Δφð0;1Þ
ik Þþ

−
ffiffiffiffiffiffiffiffiffiffi
1

2mω

r X
i∈I0

X
k∈I1

jci0jjck1jt2ðΔi0 − Δk1Þ2 cosðωt − Δφð0;1Þ
ik Þ þ � � � : ðF3Þ

With α0ð0Þ ¼ jα0ð0Þjeiϕ0ð0Þ, α1ð0Þ ¼ jα1ð0Þjeiϕ1ð0Þ, Δϕð0Þ ¼ ϕ1ð0Þ − ϕ0ð0Þ and αjð0Þ ¼
P

i∈Ij cij, we have

X
i∈I0

X
k∈I1

jci0jjck1j cosðωt − Δφð0;1Þ
ik Þ ¼ jα0ð0Þjjα1ð0Þj cosðωt − Δϕð0ÞÞ: ðF4Þ

So, considering up to the first order of approximation in tðΔi0 − Δk1Þ, we have finally for the expectation value of the
position operator hX̂it,

hX̂it ≃
ffiffiffiffiffiffiffi
2

mω

r
jα0ð0Þjjα1ð0Þj cosðωt − Δϕð0ÞÞþ

−
ffiffiffiffiffiffiffi
2

mω

r X
i∈I0

X
k∈I1

jci0jjck1jtðΔi0 − Δk1Þ sinðωt − Δφð0;1Þ
ik Þ ðF5Þ

that is what we needed to show being (F5) the same of Eq. (28).
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