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We discuss new consistency relations for single field models of inflation capable of generating
primordial black holes (PBH), and their observational implications for CMB μ-space distortions. These
inflationary models include a short period of nonattractor evolution; the scale-dependent profile of
curvature perturbation is characterized by a pronounced dip, followed by a rapid growth leading to a peak
responsible for PBH formation. We investigate the squeezed and the collapsed limits of three- and four-
point functions of curvature perturbation around the dip, showing that they satisfy consistency relations
connecting their values to the total amplification of the curvature spectrum, and to the duration of the
nonattractor era. Moreover, the corresponding non-Gaussian parameters are scale dependent in proximity
of the dip, with features that again depend on the amplification of the spectrum. For typical PBH scenarios
requiring an orderOð107Þ enhancement of the spectrum from large towards small scales, we generally find
values fsqNL ¼ Oð10Þ and τcolNL ¼ Oð103Þ in a range of scales that can be probed by CMB μ-space
distortions. Using these consistency relations, we carefully analyze how the scale-dependence of non-
Gaussian parameters leads to characteristic features in hμTi and hμμi correlators, providing distinctive
probes of inflationary PBH scenarios that can be tested using well-understood CMB physics.
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I. INTRODUCTION

Primordial black holes (PBH) might constitute a fraction
of the dark matter of our universe being formed by the
gravitational collapse of overdense regions in the early
stages of our universe evolution [1–3]. Such overdense
regions can be produced by an amplification of the
spectrum of primordial curvature fluctuations from infla-
tion [4,5]. We refer the reader to the recent reviews [6–9]
for constraints on PBH populations and details on their
formation mechanisms.
Within the framework of single-field inflation, the

enhancement of the spectrum of fluctuations can occur
during a brief phase of nonattractor evolution, for example
associated with an inflection point in the inflaton potential
(for explicit constructions, see [10–17]). In this case, the
would-be decaying mode of curvature fluctuations is
actually active at superhorizon scales, where it plays an
important role in determining the amplitude of the curva-
ture spectrum. In particular, it causes an enhancement of its
amplitude by several orders of magnitude from large
towards small scales—see Fig 1 for a representative
example. Despite the large variety of single-field scenarios,
there are universal features that are common to all models
with a short-phase of nonslow-roll evolution. First, the
spectrum as a function of momentum does not grow faster
than k4 in its way towards the peak [18], see for example

Fig 1. Second, the growth of the spectrum is preceded by a
pronounced dip, whose position is controlled by the total
enhancement of the spectrum [19]. In [20], building on the
original idea of [21], we showed that large squeezed non-
Gaussianity in proximity of the dip of the spectrum induces
sizeable cross correlations between CMB μ distortions and
temperature fluctuations, which can be used as a test of

FIG. 1. A representative plot of the spectrum of fluctuations in
inflationary scenarios including short phase of nonattractor ex-
pansion. Horizontal axis: k=kna, with kna the scale of horizon-
crossing at the onset of the nonslow-roll epoch. Vertical axis: ratio
ΠðkÞ of the spectrumevaluated at scalek, versus its large-scalevalue
at k ¼ 0. The orange dashed line has a profile proportional to k4.
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PBH scenarios based on single-field inflation. Interestingly,
this proposal is based only on well understood perturbation
theory at large cosmological scales, and does not need to
consider complex nonlinear phenomena occurring at PBH
formation.
In this work we make further steps in exploring this

subject, by determining new properties for the statistics of
curvature fluctuations around the dip of the spectrum, and
their consequences for CMB μ-distortion anisotropies. We
first show that appropriate limits of n-point correlators of
curvature fluctuations satisfy new consistency relations,
connecting their maximal values to the total amplification
of the spectrum. For example, calling ΠT the total ampli-
fication of the spectrum from large to small scales—and
having in mind a typical values a ΠT ≃ 107 for generating
PBH—we focus on the parameters fsqzNL and τ

coll
NL controlling

respectively the squeezed bispectrum and collapsed tris-
pectrum.We find that around the dip these quantities satisfy
universal consistency relations, and have maximal values
that scale as fsqzNL ≃ Π1=4

T ≃Oð10Þ, and τcollNL ≃ Π1=2
T ≃

Oð103Þ with respect to ΠT , up to overall order one
coefficients determined by the duration of the nonattractor
epoch. Moreover, such squeezed and collapsed limits are
scale-dependent (see Fig 3), and their features are again
controlled by the total amplification of the spectrum. We
prove our consistency relations for non-Gaussian param-
eters in two ways. In Sec. II we make use of a heuristic
approach based on [19], which allows one to get a simple,
intuitive understanding of the physics behind the single-
field system we consider. Then, in Sec. III, we rederive the
consistency conditions using the rigorous gradient expan-
sion approach first introduced [22], so to place the results of
Sec. II in firmer footings. In Sec. IV, we study the
implications of our findings for CMB μ distortions. In this
respect, we go beyond the analysis carried in [20] by
developing the following points: First, we show how the
information provided by the consistency relations allows us
to carry on a more detailed analysis of hμTi correlators,
whose quantitative and qualitative features depend on the
properties of the scale-dependent squeezed bispectrum.
Then, we study for the first time the implications for the
hμμi self-correlator of a scale-dependent collapsed trispec-
trum around the dip. Finally, at the light of the results
above, we discuss improved estimates for the detectability
of non-Gaussian consistency relations with PIXIE or
PRISM-like experiment, and physical implications for
PBH populations. We conclude our work with a discussion
in Sec. V, followed by technical appendixes.

II. CONSISTENCY RELATIONS AT THE DIP:
A HEURISTIC APPROACH

We begin by developing a heuristic, intuitive approach
for characterizing the statistics of curvature perturbations.
We consider single-field inflationary scenarios that include

a short phase of nonslow-roll evolution, which can lead to
PBH production. We characterize the scale dependence of
the curvature perturbation spectrum, that in turn implies
new consistency relations for squeezed limits of n-point
functions. The results of these heuristic considerations
will be supported by a more rigorous analysis in Sec. III.
Phenomenological implications are then developed in
Sec. IV, where we apply our findings to CMB μ distortions
as a probe of early Universe scenarios leading to PBH
formation.
A short phase of nonattractor evolution during inflation

is a common ingredient of inflationary scenarios leading
to primordial black hole production [10,12–17,23–29].
During the nonattractor epoch, the slow-roll conditions are
violated, and the would-be decaying mode influences the
dynamics of curvature fluctuations, enhancing by several
orders of magnitude the amplitude of the corresponding
spectrum. Fig 1 shows a representative plot for the enhance-
ment of the spectrum of curvature fluctuations caused by a
nonattractor phase. We notice interesting features that are
universal in single-field models of inflation:
(a) As first shown in [18], the spectrum towards the peak

grows as function of momentum k with a power not
larger1 than k4.

(b) The growth of the spectrum towards the peak is
preceded by a deep dip, whose properties depend
on the total amplification of the spectrum, and on the
duration of the nonattractor era.

In this section, using methods based on [19], we discuss
universal properties of curvature fluctuations at the dip of the
spectrum, in the limit of short duration of the nonattractor era.
The spectral index around the dip, as well as the squeezed
limits of the bispectrum and trispectrum in its proximity,
satisfy consistency relations that connect their valueswith the
total size of amplification of the spectrum during the non-
attractor regime. In the next section, using a gradient
formalism, we prove our results more rigorously, and extend
them to include a sizeable duration of the nonslow-roll era
during inflation.
In the limit of short duration of nonattractor regime, the

equations controlling the curvature fluctuations and the
corresponding spectrum at the dip position simplify con-
siderably. We assume a conformally flat Friedmann-
Lemaitre-Roberson-Walker (FLRW) background metric
during inflation, with scale factor aðτÞ and −∞ < τ < 0
the conformal time. The system consists of three phases:
(1) An initial prolonged phase of quasi-de Sitter ex-

pansion, for τ < τ1 (we neglect any slow-roll cor-
rections in this epoch, and in epoch 3 below).

1Some exceptions to this conclusion can be made through a
prolonged nonattractor era with ηc ¼ −1 [30] (See also [31])
which can result with a growth rate of k5ðln kÞ2 > k4 or through
multiple nonattractor phases that exhibit an almost instantaneous
transition [19,32].
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(2) A short phase of nonattractor expansion for τ1 ≤
τ ≤ τ2, whose duration is parametrized by ΔτA ¼
τ2 − τ1.

(3) A final phase of inflationary quasi de Sitter expan-
sion, lasting ΔτB ¼ −τ2 for τ2 ≤ τ ≤ 0. We assume
ΔτA ≪ ΔτB, and this relation quantifies the limit of
short-duration of the nonattractor process.

The succession of these three phases requires appropriate
matchings at times τ1;2; this fact has phenomenological
implications that we will discuss in due time.
The quadratic action for a Fourier mode of comoving

curvature perturbation Rk is given by

Sð2Þk ¼ 1

2

Z
dτz2ðτÞ½R0

k
2ðτÞ − k2R2

kðτÞ�; ð2:1Þ

with zðτÞ ¼ a _ϕ=H a function of time only, dubbed pump
field. During the quasi-de Sitter phases of inflationary
evolution, τ < τ1 and τ > τ2, the pump field is proportional
to the scale factor aðτÞ, with (nearly) constant coefficient
depending on the inflationary model. During the phase of
nonattractor, instead, the time profile of the pump field
changes considerably, potentially inducing amplifications
of the spectrum of curvature fluctuations.
We define

βh ≡ ΔτA
ΔτB

�
2þ

�
d ln z2ðτÞ
d ln τ

�
τ¼τ1

�
; ð2:2Þ

as a (possibly) large parameter associated with the varia-
tions in the pump field during the nonslow-roll phase
τ1 ≤ τ ≤ τ2. In the limit of pure de Sitter expansion in the
intervals τ < τ1 and τ > τ2, and considering small values
for the ratio ΔτA=ΔτB, the work [19] determined the
following analytical expression for the mode function
RkðτÞ during the final phase of evolution τ > τ2:

RkðτÞ ¼
R0ffiffiffiffiffiffiffi
2k3

p ½C1ðkÞe−ikτð1þ ikτÞ

þ C2ðkÞeikτð1 − ikτÞ�; τ ≥ τ2: ð2:3Þ

The previous expression contains an overall constant
normalization R0 common to all modes k, whose value
depends on the inflationary model and is not relevant
for our arguments. The scale-dependent functions C1;2ðkÞ
read as

C1ðkÞ¼1þ βh
8k2ΔτAΔτB

ð1−e2ikΔτA−2ikΔτAð1þ2ikΔτBÞÞ;

ð2:4Þ

C2ðkÞ ¼ −
βhe−2ikτ2

8k2ΔτAΔτB
ð1 − e2ikΔτAð1 − 2ikΔτBÞ

− 2ikðΔτA þ ΔτBÞÞ: ð2:5Þ

When βh ¼ 0, the configuration reduces to the usual
solution for fluctuations during a de Sitter phase of
expansion. Notice that the solution (2.3), (2.4), (2.5)
satisfies the Bunch-Davies condition at early times. We
refer the reader to [19] for a complete discussion regarding
the formula (2.3).
Equation (2.3) allows us to compute the spectrum of

curvature fluctuations at the end of inflation τ ¼ 0, which
corresponds to the end of the second slow-roll epoch
following the intermediate nonattractor phase. In our
context, we are interested to study the enhancement of
the curvature spectrum from large k → 0 towards small
scales. Denoting with a prime h…i0 the n-point correlators
without the corresponding momentum-conserving δ-func-
tions, we consider the ratio

ΠðkÞ≡ hR2
kðτ ¼ 0Þi0

hR2
k¼0ðτ ¼ 0Þi0 ð2:6Þ

of correlation functions evaluated at the end of inflation.
The resulting function ΠðkÞ quantifies the amplification of
the spectrum from large to small scales, and depends on the
scale k of horizon exit for modes produced at early times
during inflation. In our case it reads

ΠðkÞ ¼ jC1ðkÞ þ C2ðkÞj2: ð2:7Þ

The maximal value of ΠðkÞ at small scales, which we
define as ΠT can be analytically determined from the
expressions (2.4), (2.5) as a simple function of βh

ΠT ≡ Πðk → ∞Þ ¼
�
1þ βh

2

�
2

: ð2:8Þ

In the limit of large βh, the value of ΠT can be large,
enhancing the spectrum to the values needed for producing
PBHs. For example, a βh of orders of a few thousands can
produce an enhancement ΠT ≃ 107, the typical enhance-
ment of the curvature spectrum required for PBH formation
mechanisms.
The position of the dip of the power spectrum. In the

present instance, we are interested in using the previous
formulas for examining in details the properties of the dip
feature we notice in Fig 1, which corresponds to a universal
property of single-field models with a short nonattractor
phase. In particular we are interested to its position, and the
scale dependence of the spectrum in its proximity. We take
the simplifying limit of very small duration of nonattractor
phase, ΔτA=ΔτB → 0. We then identify the momentum
scale kna,

kna ¼ 1=ΔτB ¼ −1=τ2; ð2:9Þ

with the scale at which modes start leaving the horizon
during the nonattractor era (while for larger scales k ≤ kna
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modes leave the horizon during the initial de Sitter phase).
We introduce the dimensionless quantity

κ ¼ k=kna; ð2:10Þ

to describe the quantity ΠðκÞ that characterize the scale
dependence of the power spectrum as

ΠðκÞ ¼ 1 − 2βhκj1ðκÞ cos κ þ β2hκ
2j21ðκÞ; ð2:11Þ

with j1ðκÞ the spherical Bessel function:

j1ðκÞ ¼
1

κ

�
sin κ
κ

− cos κ

�
: ð2:12Þ

Notice that the spectrum ΠðκÞ in eq (2.11) depends on a
single extra parameter βh, which is the only free parameter
available describing the impact of the very short phase of
nonattractor dynamics. As shown in Fig. 2, (2.11) describes
very well the global features we mentioned above including
the intermediate dip feature and the expected k4 growth that
follows the dip towards small scales.
In the limit of large values of βh (and κ ≤ 1), it is

straightforward to compute the position of the dip, using
1=βh as expansion parameter. For this purpose, we intro-
duce a convenient variable x through the rescaling

κ ≡
ffiffiffiffiffi
3

βh

s
x; ð2:13Þ

to express ΠðκÞ of Eq. (2.11) as [see e.g., Eq. (B10)]

ΠðxÞ ¼ ð1 − x2Þ2 þ 3x4ð6 − x2Þ
5βh

þO
�
1

β2h

�
: ð2:14Þ

To leading order in the large βh limit, x ¼ 1 therefore
locates the position of the universal dip feature [19]. In

terms of the original variable κ ¼ k=kna, the location and
depth of the dip feature are then given by

kdip
kna

¼
ffiffiffiffiffi
3

βh

s
¼

ffiffiffi
3

2

r
Π−1=4

T → Π
�
kdip
kna

�
¼ 3

2
Π−1=2

T ; ð2:15Þ

where we used (2.8) to relate the position of the dip and its
depth to the total enhancement in the spectrum. These
simple interesting relations connect the position of the dip
with an inverse power of the total enhancement ΠT of the
spectrum. In the limit of large ΠT , the position of the dip in
momentum space is parametrically well smaller than the
scale at which modes start to leave the horizon during the
nonattractor era kna, i.e., κdip ¼ kdip=kna ≪ 1. The position
of dip scale in momentum space therefore corresponds to
modes that leave the horizon during the initial attractor
slow-roll regime. For example, for a typical PBH forming
scenario with ΠT ∼ 107, we find κdip ∼ 10−2.
We will reconsider and prove relations similar to (2.15)

with more rigorous methods in Sec. III to further relate
these features to the additional properties of the system
such as the duration of the nonattractor era and the value of
the slow-roll parameter during this epoch.
The spectral index. We continue our discussion by

studying the behavior of the spectral tilt

ns − 1 ¼ d lnΠðκÞ
d ln κ

; ð2:16Þ

around the position of the dip. Using the simplified profile
of Eqs. (2.14) and (2.13) in (2.16), we present the behavior
of the spectral index around the dip feature in the right
panel of Fig 2. The plot shows that the spectral index can
acquire values of order Oð10Þ around the dip. We can
utilize the same formulas to analytically determine the
maximum and the minimum acquired by ns − 1, focusing
on the zeros of the running defined as

FIG. 2. Left: Scale dependence of the Power spectrum and its important global features. Right: Scale dependence of the spectral index
ns − 1 around the dip feature. In the right panel, the location of the minimum/maximum of the spectral index ns − 1 [see e.q., (2.20)] are
indicated with blue dashed lines. In both plots we use βh ¼ 5 × 103.
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αs ≡ dns
d ln k

: ð2:17Þ

With this aim, we notice from the right panel of Fig. 2 that
extremal points of the spectral tilt are located in the close
vicinity of the dip feature. We therefore we make the
convenient substitution in terms of an expansion in the
small quantity 1=βh,

κ ¼
ffiffiffiffiffi
3

βh

s �
1þ x1ffiffiffiffiffi

βh
p þ x2

βh

�
; ð2:18Þ

for two yet to be determined quantities x1;2. Using (2.14)
and (2.13), we find that αs (2.17) vanishes with the
following choices for the parameters x1;2

x1 ¼ �
ffiffiffi
3

p

2
; x2 ¼ −

9

40
: ð2:19Þ

Then the position of the extrema of the spectral tilt are
located in

kmin =max

kna
¼

ffiffiffiffiffi
3

βh

s �
1 ∓

ffiffiffi
3

p

2
ffiffiffiffiffi
βh

p −
9

40βh

�
; ð2:20Þ

with corresponding value of the minimum and maximum
value of the ns − 1,

ðns − 1Þmin =max ¼ 2 ∓ 2
ffiffiffiffiffi
βh

pffiffiffi
3

p ¼ 2 ∓
ffiffiffi
8

3

r
Π1=4

T ; ð2:21Þ

in good agreement with the profile shown in the right panel
of Fig. 2. These formulas provide new consistency relations
for the extremal values of the spectral index around the dip
in single-field inflationary models which include a short
nonslow-roll phase. Interestingly, these relations all involve
combinations of the quantity Π1=4

T , which controls the

position of the dip and the properties of the slope of the
spectrum in its proximity.

A. Implications for non-Gaussianity

We find that the location of the dip feature occurs at
momentum scales much smaller than the scale at which
inflationary modes leave the horizon during the nonslow-
roll phase. In this regime, since modes that leave the
horizon around the dip scale are associated with the initial
single-field slow-roll epoch, we can reasonably expect the
validity of Maldacena consistency relations for squeezed
and collapsed limits of n-point correlation functions.
Namely, defining P1 ≡ hRk1Rk1i0, k12 ¼ jk⃗1 þ k⃗2j, and

fsqNL ¼ 5

12
lim
k1→0

hRk1Rk2Rk3i0
P1P2

;

τcolNL ¼ 1

4
lim
k12→0

hRk1Rk2Rk3Rk4i0
P1P3P12

; ð2:22Þ

we expect the following relations to hold [33–38],

fsqNLðkÞ¼
5

12
ð1−nsðkÞÞ; τcolNLðkÞ¼

�
6

5
fsqzNLðkÞ

�
2

;

ð2:23Þ
respectively for the squeezed bispectrum and collapsed
bispectrum. We represent the scale dependence of these
nonlinearity parameters in Fig. 3. Following our discus-
sions above, we find that for large values of the enhance-
ment factor ΠT the maximal/minimal value for fsqNL and the
extremal values of τcolNL around the dip are given by

ðfsqNLÞmax =min ¼
5

12

�
�

ffiffiffi
8

3

r
Π1=4

T − 1

�
;

ðτcolNLÞext ¼
3

5

�
�

ffiffiffi
8

3

r
Π1=4

T − 1

�2

: ð2:24Þ

FIG. 3. Scale dependence of fsqzNL (Left) and τcollNL (Right) around the dip scale kdip assuming the consistency relations (2.23) in the
squeezed and collapsed limits respectively. In both plots we take βh ¼ 5 × 103 corresponding to a total enhancement of ΠT ≃ 107 as
shown in Fig. 2.
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For a total enhancement of ΠT ∼ 107, these results yield to
jðfsqNLÞmaxj ∼ 38 and ðτcolNLÞext ∼ 2 × 103.
We find it interesting that the maximal values

of non-Gaussianity parameters are controlled by the
total enhancement of the curvature spectrum, ΠT , the
only free parameter that enters in our discussion.
As we will learn in the next section, more refined
proofs of the new consistency relations lead to the same
order of magnitude for the amplitudes of fNL, τNL,
up to order-one corrections related to the details
of the nonattractor phase. Moreover, we will
confirm that the quantities fNL and τNL are
characterized by the specific scale dependence
shown in Fig. 3, whose features are also controlled
by ΠT.
Before discussing a more rigorous derivation of these

results, we comment on some of their physical implica-
tions, once we assume that ΠT ∼Oð107Þ as usually
required by PBH formation mechanisms:
(a) The position of the dip roughly satisfies kdip ≃

10−2kpeak, see the left panel of Fig. 2. It occurs at
relatively large scales where modes still leave the
horizon during the initial attractor phase.

(b) The consistency relations (2.23) and (2.24) dictate that
in any single-field model of inflation with a non-
attractor phase we should expect amplitudes of order
fsqNL ∼Oð10Þ and τcolNL ∼Oð103Þ for the nonlinearity
parameters around the dip.

(c) Besides their large magnitude, the parameters
fsqNL and τcolNL acquire a pronounced, specific scale
dependence around the dip feature—see Fig. 3. As
we will show in Sec. IV, the amplitude and
the characteristic scale dependence of these
parameters play an important role for studying
observable quantities—such as the statistics
of CMB μ distortions—at scales much larger
than the peak scale in the power spectrum.
This is a distinctive feature of these scenarios
producing PBH, that may allow us to differentiate
nonattractor single-field inflation from other models
that exhibit large non-Gaussianity at μ-distortion
scales.

(d) The scenarios we consider undergo phases of
nonattractor evolution that need dedicated match-
ing conditions to connect to distinct cosmological
phases. These junction conditions can influence the
dynamics of decaying modes, and potentially break
the adiabaticity conditions of single-field attractor
inflation. If so, the squeezed limits of non-Gaus-
sian parameters typically correspond to physical
quantities, and can not be removed by coordinate
transformations as in [39–42]. Non-Gaussianity in
explicit models undergoing nonattractor evolution
are studied for example in [43–48] and the subtlety

with matching conditions clearly discussed in the
recent work [49].2

III. THE GRADIENT EXPANSION APPROACH TO
CONSISTENCY RELATIONS

The aim of this technical section is to use the gradient
expansion formalism3—first introduced in [22]—for repro-
ducing and place in firm footing the heuristic perspective to
consistency relations we discussed in the previous section.
In the gradient expansion framework, iterative solutions

of the comoving curvature perturbation are generated at any
desired order in a small-k expansion, in terms of analytic
functions controlled by the background evolution. For
example, the amplitude of curvature fluctuations at a
fiducial late time τ ¼ τ� (e.g., at the reheating surface)
is mapped to its value at an initial time around horizon
exit τ ¼ τk in terms of a complex-valued k-dependent
coefficient

Rkðτ�Þ ¼ αkRkðτkÞ ¼ ðαRk þ iαIkÞRkðτkÞ; ð3:1Þ

where in the last equality we split the enhancement factor
into its real and imaginary parts,

αk ≡ αRk þ iαIk: ð3:2Þ

Once expanded up to second, k2-order in the gradient
expansion, the real and imaginary parts of this coefficient
are given by

αRk ¼ 1þDðτkÞvRR − FðτkÞk2; ð3:3Þ

αIk ¼ DðτkÞvIR: ð3:4Þ

The quantity vRR and vRI denotes the real and imaginary part
of the k-dependent fractional velocity of the curvature
perturbation evaluated at τ ¼ τk defined as

vRðτkÞ ¼
R0

k

3HkRk

����
τ¼τk

: ð3:5Þ

2The recent work [50], appeared in the arXiv after our
manuscript was submitted for publication, shows that if the
condition of adiabaticity holds, then the leading contributions to
non-Gaussianity around the dip can be readsorbed in the back-
ground geometry by an appropriate coordinate choice. This is an
important point to develop in future analysis, in particular to
understand at what extent the adiabaticity condition for modes
leaving early around the dip is affected by the violation of
attractor phase occurring later in the inflationary process.

3For a detailed account on the spectral profile of the scalar
power spectrum that leads to PBH formation and its applications
in the context of induced gravitational waves, we refer the reader
to [31] where further developments of the gradient expansion
formalism is discussed.
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The full k dependence of the expressions (3.3) and (3.4) on
super-horizon scales is encoded in the quantities vRR, v

I
R

(see Appendix A for details) and in the functions
DðτkÞ; FðτkÞ, given by the following nested integrals of
the pump field appearing in Eq. (2.1) (see [22,31] for
further details)

DðτÞ ¼ 3Hk

Z
τ�

τ
dτ0

z2ðτkÞ
z2ðτ0Þ ; ð3:6Þ

FðτÞ ¼
Z

τ�

τ

dτ0

z2ðτ0Þ
Z

τ0

τk

dτ00z2ðτ00Þ: ð3:7Þ

Expressions (3.6) and (3.7) indicate that if the pump field
increases with time—as in standard slow-roll inflation,
where z ∝ aðτÞ—the functions D, F rapidly decrease to
zero after horizon crossing (i.e., αk → 1). In this case, the
curvature perturbation in (3.1) settles to a constant shortly
after horizon exit [Rkðτ�Þ ≃RkðτkÞ]. On the contrary, in
inflationary models containing phases of nonattractor
evolution, zðτÞ transiently decreases and the functions D,
F can grow, amplifying the spectrum of curvature pertur-
bation [i.e., jαkj ≫ 1 in Eq. (3.1)] at super-horizon scales;
see Appendix B.
The curvature perturbation power spectrum. We define

the late-time power spectrum evaluated at τ ¼ τ� as

hRkðτ�ÞRk0 ðτ�Þi ¼ ð2πÞ3PRðτ�; kÞδðk⃗þ k⃗0Þ: ð3:8Þ

Using eq. (3.1), we can then relate the power spectrum at
late times to the power spectrum evaluated at horizon
crossing via

PRðτ�; kÞ≡ 2π2

k3
PRðτ�; kÞ ¼

2π2

k3
½jαkj2PRðτkÞ�

≡ jαkj2PRðτkÞ; ð3:9Þ

where PRðτkÞ≡k3PRðτk;kÞ=2π2, and jαkj2 ¼ ðαRk Þ2þ
ðαIkÞ2.
A nonlinear expression for R. We assume that RkðτkÞ is

a Gaussian random variable: nevertheless, the superhorizon

evolution typically introduces nonlinearities. In fact, we
can go beyond the linear theory used for Eq. (3.1) to
compute the bispectrum of the late time curvature pertur-
bation Rkðτ�Þ. For the purpose of deriving an analytic
expression for the bispectrum and to study the correspond-
ing consistency relations, we adopt the following nonlinear
expression for Rkðτ�Þ, first derived in [51,52]

Rkðτ�Þ ¼ αkRkðτkÞ þ
FðτkÞ
2

�Z
d3k0

ð2πÞ3 ½4k
02

− k⃗0:ðk⃗ − k⃗0Þ�Rk0 ðτk0 ÞRjk⃗−k⃗0jðτjk⃗−k⃗0jÞ
	
; ð3:10Þ

and the last term is the nonlinear contribution controlled by
a convolution of the Gaussian variable RkðτkÞ.
It is interesting to point out that for modes exiting

the horizon during the initial slow-roll era, the late-time
super-horizon curvature perturbation given in Eq. (3.10) is
a real quantity, up to an overall phase that does not affect
observables. This is because the dominant part of the super-
horizon curvature perturbation evaluated at the initial time
τk—namely RðτkÞ of Eq. (A1)—is real up to an irrelevant
phase as at initial time we assume −kτk ¼ ck ≪ 1, render-
ing the imaginary part of (A1) subdominant on super-
horizon scales. On the other hand, by definition, FðτÞ is real
since it is given as an integral of a real quantity called pump
field zðτÞ. Finally, as we show explicitly in Appendix B 1,
for modes that exit the horizon in the initial slow-roll era, αk
is completely dominated by its real part, see e.g., the left
panel of our Fig. 13.
Bispectrum. We define the late-time bispectrum of

curvature perturbations as

hRk1ðτ�ÞRk2ðτ�ÞRk3ðτ�Þi
¼ ð2πÞ3BRðk1; k2; k3Þδðk⃗1 þ k⃗2 þ k⃗3Þ; ð3:11Þ

and using (3.10), at leading order in the nonlinear term, the
bispectrum is given by [51,52]

BRðk1; k2; k3Þ ¼
ð2π2Þ2

2ðk1k2k3Þ3
½Re½α�k1αk2 �Fðτk3Þf5ðk21 þ k22Þ − k23gk33PRðτk1ÞPRðτk2Þ þ perms�; ð3:12Þ

where the permutations are cyclic among the three external momenta fk⃗1; k⃗2; k⃗3g. Correspondingly, we define the scale-
dependent nonlinearity parameter fNL as

fNLðk1; k2; k3Þ ¼
5

6

BRðk1; k2; k3Þ
½PRðτ�; k1ÞPRðτ�; k2Þ þ perms� ; ð3:13Þ

Using (3.9) and (3.12) in (3.13), we then obtain the scale-dependent fNL as
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fNLðk1; k2; k3Þ ¼
5

12

ðRe½α�k1αk2 �Fðτk3Þf5ðk21 þ k22Þ − k23gk33PRðτk1ÞPRðτk2Þ þ permsÞ
½jαk1αk2 j2PRðτk1ÞPRðτk2Þk33 þ perms� : ð3:14Þ

Trispectrum. We define the connected part of the late time trispectrum of curvature perturbation as

hRk1Rk2Rk3Rk4i ¼ hRG
k1
ðτ�ÞRG

k2
ðτ�ÞRG

k3
Gðτ�ÞRG

k4
ðτ�Þi þ ð2πÞ3δðK⃗totÞTRðk1; k2; k3; k4Þ; ð3:15Þ

where the first term is the Gaussian part of the trispectrum (see Appendix D) and K⃗tot ≡P
4
i¼1 k⃗i.

Utilizing again the nonlinear expression (3.10), the leading-order scale-dependent trispectrum is found to be

TRðk1; k2; k3; k4Þ ¼
Re½α�k1αk2 �Fðτk3ÞFðτk4Þ

4
f4ðk21 þ k213Þ þ 2k⃗1:k⃗13gf4ðk22 þ k213Þ − 2k⃗2:k⃗13g

× PRðτk1ÞPRðτk2ÞPRðτk13Þ þ 11 perms; ð3:16Þ

where we introduce k⃗ij ¼ k⃗i þ k⃗j, kij ¼ jk⃗i þ k⃗jj for i ≠ j and perms denote distinct permutations among the external

momenta fk⃗1; k⃗2; k⃗3; k⃗4g. We define the corresponding scale dependent nonlinearity parameter τNL as

τNLðk1; k2; k3; k4Þ ¼
TRðk1; k2; k3; k4Þ

PRðτ�; k1ÞPRðτ�; k2ÞPRðτ�; k13Þ þ 11 perms
: ð3:17Þ

Equations (3.14), (3.16), and (3.17) suggest that the size
and the scale-dependence of the fNL and τNL parameters
depend on the function FðτkÞ and the quantity αk, whose
behavior depends on the pump field profile. Given these
preliminary results, we now study the scale dependence of
the power spectrum and bispectrum on a representative
setup capable of producing a large PBH population during
inflation, to further support the findings of Sec. II.

A. Spectral profile of the scalar power
spectrum and its properties

To study the spectral shape and enhancement in the
power spectrum, we consider a typical two phase infla-
tionary scenario that instantly connects an initial slow-roll
era with ηsr ¼ 0, to a slow-roll violating, nonattractor phase
with ηc ≤ −6, within the time range τ0 ≤ τ ≤ τf. Here η
denotes the second slow-roll parameter, Hη≡ d ln ϵ=dt.
The first slow-roll parameter is given by Hϵ ¼ −d lnH=dt.
The pump field zðτÞ appearing in the quadratic action (2.1)
is assumed to have a profile (we take τ < 0),

zðτÞ ¼
�
z0ðτ=τ0Þ−1 τ=τ0 ≥ 1;

z0ðτ=τ0Þ−ðηcþ2Þ=2 τf=τ0 ≤ τ=τ0 ≤ 1;
ð3:18Þ

describing collectively the initial slow-roll and the slow-roll
violating phases. Although the setup is qualitatively similar
to the one discussed in the previous section, in this case we
consider a finite duration for the nonattractor era denoted
by ΔN ¼ ln ðτ0=τfÞ in e-fold numbers. We relate the
quantity z0 with a constant slow-roll parameter ϵsr via
z0 ¼ −aðτ0Þ

ffiffiffiffiffiffiffiffi
2ϵsr

p
Mpl. For simplicity we parametrize the

scale factor as in de Sitter space: a ¼ −1=ðHτÞ with a
constant Hubble rate H during inflation, which defines
comoving horizon τ0 ¼ ða0HÞ−1 ¼ H−1

0 at the time of the
transition to the nonattractor era.
We proceed with determining spectral profile of the

power spectrum by evaluating the dimensionless power
spectrum (3.9) at the end of the nonattractor era,

PRðτf;kÞ≡ jαkj2PRðτkÞ¼ ½ðαRk Þ2þðαIkÞ2�PRðτkÞ: ð3:19Þ

Using the pump field profile (3.18), we can derive analytic
formulas for αRk (3.3) and αIk (3.4) (see Appendix A and B)
to characterize the shape of the power spectrum. The
resulting profile of the late time power spectrum is shown
in Fig. 4 for representative scenarios leading to PBH
formation given the pump field profile of (3.18). For
understanding the physical implications of our findings
within the gradient expansion formalism, it is convenient to
introduce a fixed quantity

ck ≡ −kτk ≤ 1; ð3:20Þ

which determines the size of a mode k with respect to
the horizon ðaHÞ−1 at time τ ¼ τk, corresponding to the
horizon crossing epoch. We stress that by virtue of the
relation (3.20) and the super-horizon gradient formalism,
all modes we consider in Fig. 4 (and in general in this work)
are outside the horizon at the initial time τk. We then
distinguish modes whose momenta lie in the following
ranges:
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(i) modes that become super-horizon during the initial
slow-roll era, i.e., modes satisfying τk=τ0 > 1 or
equivalently k=H0 < ck ≤ 1, and

(ii) modes that leave the horizon during the nonattractor
ηc ≤ −6 phase, ck < k=H0.

Focusing on these regimes separately, we discuss below the
spectral behavior of PR and its global features.
Total enhancement in the power spectrum. Figure 4

indicates that independently from the choice of model
parameters, the power spectrum reaches its peak at kpeak ≃
3H0 (See also [53] for an analysis of the ultraslow-
roll case). To obtain the parametric dependence of the
total enhancement on the model parameters, we evaluate
the power spectrum at this scale to determine its height
with respect to the largest scales. For this purpose, we first
focus on PRðτkÞ as in (A7) in the nonattractor phase
(ck < k=H0), which reads

PRðτkÞ
As

¼ c2νk π2

4

�
k
H0

�
−2νþ2

�
f23 þ 2

�
k
H0

�
f3f4

þ
�

k
H0

�
2

ðf23 þ f24Þ
�
τ¼τk

; ð3:21Þ

where ν ¼ ð3þ ηcÞ=2 and As ¼ H2=8π2ϵsrM2
pl is the

normalization of the power spectrum at very large scales,
k → 0.
In Appendix Awe show that the functions f3 and f4 that

appear in (3.21) are given by (J, Y being Bessel functions
of first and second kind)

f3

�
−kτ;

k
H0

; ν

�

¼ Jν−1

�
k
H0

�
Yνð−kτÞ − Yν−1

�
k
H0

�
Jνð−kτÞ; ð3:22Þ

f4

�
−kτ;

k
H0

; ν

�
¼ Jν

�
k
H0

�
Yνð−kτÞ − Yν

�
k
H0

�
Jνð−kτÞ:

ð3:23Þ

Using (3.22) and (3.23), it is straightforward to realise
that the expression in the square brackets of (3.21) is
dominated by the last term around the peak scale. Also,
around the scale of the peak, the modulus square of the
enhancement factor are well approximated by the following
expression

jαkj2 ≃ ðαRk Þ2 ≃ ð1þDðτkÞvRRÞ2 ≃DðτkÞ2; ð3:24Þ

where in the last step we take vRR → 1which can be verified
explicitly applying Eq. (A4) at scales around kpeak.
Combining (3.24) and (3.21) evaluated at the peak scale,
the total enhancement of the power spectrum from large
scales to small scales can be computed by making use of the
expression in (3.19). This gives,

Πtot ≡ PRðτf; kpeakÞ
As

≃ Cðck; νÞe−2ð3þηcÞΔN; ð3:25Þ

where Cðck; νÞ is

Cðck; νÞ ¼
π232νþ6

16ν2c2νk
½f23ðck; 3; νÞ þ f24ðck; 3; νÞ�: ð3:26Þ

Equation (3.25) indicates that the total enhancement in the
scalar power spectrum is exponentially sensitive to slow-
roll parameter ηc ≤ −6 and in particular to the duration ΔN
of the nonattractor phase. Using this expression, one can
confirm that for typical parameter choices that leads to a
Πtot ≃ 107 enhancement required for PBH formation, one
obtains C ≃Oð1Þ.

FIG. 4. Scale dependence of the power spectrum for an inflationary scenario that includes a transient ultra slow-roll or constant roll
phase. The location of the dip feature (red dashed line) and its relation to the global enhancement Πtot in the power spectrum is shown.
The plots are obtained using the gradient expansion formalism, and normalized with respect to power spectrum at the largest scales, i.e.,
As ¼ H2=ð8π2ϵsrM2

plÞ ≃ 2.1 × 10−9.
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The dip and its properties. For modes that exit the
horizon during the initial slow-roll era, there is a pro-
nounced dip in the power spectrum occurring far away
from the peak scale, kdip ≪ H0 < kpeak. It is worth men-
tioning that the dip appears due to competing contributions
in the power spectrum that are weighted by opposite signs.
To determine its location, we focus our attention on the
scale dependence of the power spectrum (3.19) for scales
satisfying k=H0 < ck ≤ 1. As we show in Appendix B 1, in
this regime the enhancement factor αk of Eq. (3.2) is
dominated by its real part whose scale dependence can be
accurately captured by Eq. (B3),

αRk ≃ αRð0Þ

�
1 − β

�
k
H0

�
2
�
þO

�
k3

H3
0

�
; ð3:27Þ

where αRð0Þ is an order quantity and β ≫ 1 is an exponen-
tially large number parametrized in terms of the duration
ΔN of the slow-roll violating phase and the value of ηc in
this era [See Eq. (B4)]. In Appendix A—see in particular
Eq. (A3)—we show that the quantity PRðτkÞ is nearly scale
independent for modes that leave the horizon in the initial
slow-roll era. This implies that the scale dependence of the
late time power spectrum (3.19) around the dip is com-
pletely dictated by αRk . Therefore the zero of (3.27) provides
an accurate description for the location of the dip in the
power spectrum, which reads as

kdip
H0

¼ 1ffiffiffi
β

p ≡
�
−

ηce−ð3þηcÞΔN

αRð0ÞðckÞðηc þ 1Þðηc þ 3Þ
�−1=2

: ð3:28Þ

Notice that by virtue of the above definition (3.28), the
exponentially large number β plays the same role of the
parameter βh introduced in the heuristic approach we
discussed in the previous section. A clear advantage of
the gradient approach is the fact that it makes apparent why
such a large number appears in PBH forming inflationary
scenarios by relating β to the duration ΔN and ηc of the
slow-roll violating phase as β ∝ e−ð3þηcÞΔN ≫ 1.
The presence of such a pronounced dip in the spectrum

is a universal feature, being virtually present in all single field
models based on nonattractor evolution that are aiming to
generate a sizeable peak in the power spectrum for producing
PBH, say of order Πtot ≃ 107 (see e.g., [10,12,14–17,23–
26]). Using (3.28) we can universally relate the location of
the dip feature to the total enhancement in the power
spectrum in (3.25), as first found in [19], which reads as

kdip
H0

≃
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðck;νÞ

p
αRð0ÞðckÞðηcþ1Þðηcþ3Þ

ηc

�1=2
Π−1=4

tot ≈10−2:

ð3:29Þ

A close examination of Fig. 4 confirms these arguments and
shows that (3.29) is a robust relation, valid in all single field

inflationary scenarios that can produce a pronounced peak in
the power spectrum.Note also that—considering the relation
between the peak scale and H0 we mentioned before—we
can connect the peak scale to thedip scale askdip ≃ 10−2kpeak.
Relation (3.29) is in agreement with the results of Sec. II, and
includes an overall, order-one factor depending on param-
eters controlling the duration of the dip and the properties of
the system.

B. Bispectrum in the squeezed limit: A consistency
relation around the dip

Let us concentrate on modes that exit during the initial
slow-roll era, k=H0 < ck, to investigate the scale-depend-
ence of the bispectrum. We anticipate that the bispectrum
exhibits features and be amplified around the dip scale kdip
in the power spectrum since nonlinearities are usually
enhanced at the location of rapid changes in the power
spectrum [54]. More importantly, we show that scale
dependence of the squeezed bispectrum closely follows
the prediction of Maldacena consistency condition: i.e.,
fNLðkÞ ¼ 5ð1 − nsðkÞÞ=12 [33], proving the heuristic
results of Sec. II.
Consistency condition. We begin by the squeezed

limit of the scale dependent nonlinearity parameter.4

For scales that exit the horizon during the initial slow-roll
era, noting the scale invariance of PRðτkÞ factors, we take
the squeezed limit k⃗3 → 0 (k1 ≃ k2 ≡ q) of (3.14) which
yields [20,51]

fNLðq; q; k3 → 0Þ≡ fsqNL ¼ 5

12

�
4Re½α�qαk3 �FðτkqÞq2

jαqαk3 j2
�

≃
5

12

�
4αRqFðτkqÞq2

jαqj2
�
; ð3:30Þ

where in the last equality we make the approximation
αk3 → 1 in the k3 → 0 limit, and we use the fact that the
enhancement factor is dominated by its real part αRk in the
initial slow-roll phase. To prove that the consistency
condition holds, we now show that the term inside the
brackets in (3.30) is equivalent to ð1 − nsÞ. For this
purpose, approximating αk ≃ αRk as before, we utilize
(3.19) and the definition ns − 1≡ d lnPRðτf; kÞ=d ln k to
write

ð1 − nsÞ≡ −
d lnPRðτf; qÞ

d ln q
¼ −

2αRq ð q
H0

× αR
0

q Þ
jαqj2

≈
4αRqFðτkqÞq2

jαqj2
; ð3:31Þ

4A scale-dependent fNL may arise in a various other infla-
tionary contexts, see e.g., the early works [55–57].
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where the prime denotes derivative with respect to the
normalized wave-number k=H0. Notice that in the last
equality of (3.31) we take −ðq=H0ÞαR0

q ≃ 2FðτqÞq2.
Employing further simplifications for αRk and its derivative
[see Eqs. (B8) and (B9)], we prove in Appendix B 1 that
this relation holds to a very good approximation. This fact
confirms that the consistency condition always holds in the
initial slow-roll stage of inflationary scenarios that can
generate PBH populations. To be more explicit, in Fig. 5 we
show the behavior of squeezed limit fNL superimposed
with 5ð1 − nsÞ=12 around the dip scale for a representative
choice of parameters that can generate a Πtot ≃ 107

enhancement in the power spectrum as required for PBH
production. The figure shows clearly that the scale depend-
ence of the nonlinearity parameter fNL follows Maldacena
consistency condition.
Maximal value of fsqNL around the dip. Another con-

clusion we can guess from Fig. 5 is that the maximal
amplitude of the squeezed limit nonlinearity parameter
becomes jfNLj ≃Oð10Þ around kdip which is consistent
with the large values obtained by the spectral tilt jns − 1j
around the dip region; see Fig. 4, and recall the results of
Sec. II. In what follows, we will show that jfNLj ≃Oð10Þ
universally holds around the dip scale kdip for any infla-
tionary scenario that support a Πtot ≃ 107 enhancement in
the power spectrum.
We proceed as in Sec. II—we focus on the maximum and

the minimum values obtained by the ns − 1 and specifically
the zeros of its running defined in (2.17). On the other hand,
as Fig. 5 suggests, the spectral index reaches its maximal
values very close to the dip scale kdip. Therefore, we find it
convenient to define a new variable

k
H0

≡ xffiffiffi
β

p ; ð3:32Þ

where β ¼ βðηc;ΔN; ckÞ ≫ 1 is defined as in (3.28) [See
also Eq. (B4)]. In the parametrization of Eq. (3.32), the dip
feature in the power spectrum corresponds to x ¼ 1 which
in turn overlaps with the zero of the spectral index, since the
latter is proportional to the real part of the enhancement
factor as can be verified from Eq. (3.31). Furthermore, we
expect the maximal values of ns − 1 to be very close to the
dip feature. We then define x ¼ 1þ y where y ≪ 1 and
expand the resulting expression using αs (2.17) up to
quadratic order in y. In this way we obtain a simple
quadratic equation for y, and its roots provide us the zeros
of the running αs and hence the location of the maximum
and minimum of the spectral index. In particular, in terms
of the model parameters, we find the following solutions,

y� ≃� D̄
2αRð0ÞðckÞ

ffiffiffi
β

p þ 3D̄2

4½αRð0ÞðckÞ�2β
; ð3:33Þ

where we define

D̄ ¼
αRð0ÞðckÞðηc þ 1Þ

ð1þ c2kÞηc
− αIð0ÞðckÞ

ffiffiffi
β

p
: ð3:34Þ

We note that although the latter expression appear to be of
the order of

ffiffiffi
β

p
≫ 1, it is genuinely an order one number

due to the small factor αIð0Þ ∝ c3k ≪ 1 [See e.g., (B4)]. In

fact, for any scenario that leads to aΠtot ≃ 107 enhancement
in the power spectrum, the second term in (3.34) is
comparable to the first term in absolute magnitude and
therefore it is a order-one number as one can verify
explicitly from (B4). Using (3.33), the location of the
maximum and the minimum of the spectral index is
therefore given by

k�
H0

≃
kdip
H0

ð1� y�Þ ¼
1ffiffiffi
β

p ð1� y�Þ: ð3:35Þ

The accuracy of these formulas in locating the max/min
values of ns − 1 is shown in Fig. 5. Using these results, we
can then determine the maximal values obtained by the
nonlinearity parameter in the squeezed limit. Utilizing the
consistency condition, we plug (3.35) in (3.31) and at
leading order in the large parameter β, we found

ðfsqNLÞmax =min ¼
5

12
ð1 − nsÞ ≃ −

10

3

αRð0ÞðckÞ2
D̄2

βy∓

≃� 5

3

αRð0ÞðckÞ
D̄

ffiffiffi
β

p
: ð3:36Þ

Using (3.25), we can then rewrite the max/min value of the
nonlinearity parameter in terms of the total enhancement in
the power spectrum as

FIG. 5. Scale dependence of the squeezed configuration non-
linearity parameter fNL around kdip for a transient constant-roll
model that generates a Πtot ≃ 107 enhancement in the power
spectrum. The accuracy of the consistency relation fNL ¼ 5ð1 −
nsÞ=12 in capturing the behavior of the fNL in the squeezed limit
is shown by red dotted curve.
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ðfsqNLÞmax=min

≃�5

3

�
−

αRð0ÞðckÞηc
D̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðck;νÞ

p ðηcþ1Þðηcþ3Þ

�1=2
Π1=4

tot :

ð3:37Þ

For typical scenarios with Πtot ≃ 107, the expression above
evaluates to ðfsqNLÞmax =min ≃Oð10Þ as can be checked
explicitly. This results confirms and supports the findings
of Sec. II.

C. Trispectrum in the collapsed limit
and its consistency relation

We now focus on the scale dependence of the trispectrum
around the dip feature, i.e., for k=H0 < ck. As we show
below, the resulting scale dependent trispectrum closely
tracks a specific single-field relation [35–38]

τcolNL ¼ 36

25
ðfsqNLÞ2; ð3:38Þ

in the collapsed limit jk⃗12j → 0.
Consistency relation. To prove that the relation (3.38)

holds for modes exiting the horizon in the initial slow-roll
era, we take the collapsed limit k⃗12 → 0 (k⃗34 → 0) of
Eq. (3.17) assuming a symmetric folded kite configuration
for the external momenta, i.e., k1 ≃ k2 ≃ k3 ≃ k4 ¼ q with
k12, k34 → 0. In this limit, noting the expressions (3.16) and
(3.9), we find that τNL (3.17) reduces to

lim
k12→0

τNL ≡ τcolNLðq; k12Þ ¼ 4
jαqj2ðFðτqÞq2Þ2
jαqj4jαk12 j2

≃ 4
ðαRq Þ2ðFðτqÞq2Þ2

jαqj4
; ð3:39Þ

where in the last step we approximately take αk12 ≃ 1 in the
k12 → 0 limit and assume αq ≃ αRq during the initial slow-
roll stage. Using the squeezed limit expression for fsqNL
(3.30), it simply follows from (3.39) that relation (3.38)
holds in a nontrivial scale-dependent manner during the
initial slow-roll stage, i.e., around the dip feature in the
power spectrum. To illustrate these points concretely, we
show in Fig. 6 the scale dependence of the τcolNL around the
dip scale kdip. We clearly see that τcolNL satisfies the relation
(3.38) and therefore it becomes maximal at wave numbers
where jfsqNLj does: i.e., at k� as given by Eq. (3.35). Using
(3.37) and (3.38), the maximal value that τcolNL can acquire is
found to be

ðτcolNLÞmax ¼ −
4αRð0ÞðckÞηc

D̄2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðck; νÞ

p ðηc þ 1Þðηc þ 3ÞΠ
1=2
tot : ð3:40Þ

Therefore, for any slow-roll violating transient phase that
can generate a Πtot ≃ 107 enhancement in the power
spectrum, the nonlinearity parameter becomes τcolNL ≃
Oð103Þ around the dip feature, in agreement with the
heuristic results of Sec. II.
Before we conclude this section, we stress that our

findings on the scale dependence of the bispectrum in
Sec. III B agree well both qualitatively and quantitatively
with the previous studies focusing on the same issue using
numerical techniques (See e.g., [58–60]). As we mentioned
earlier in [20], the gradient expansion formalism has the
advantage of analytic control that allows us to transparently
capture the features of n-point scalar correlation functions
using a few parameters such as the duration of the transient
nonattractor era ΔN and the slow-roll parameter ηc in this
phase. More importantly, using the gradient formalism we
proved analytically in Secs. III B and III C that consistency
conditions5 fsqNL ¼ 5ð1 − nsÞ=12 and τcolNL ¼ 36ðfsqNLÞ2=25
(3.38) hold for modes that leave the horizon during the
initial slow-roll era.

IV. CMB μ DISTORTIONS AND
NON-GAUSSIANITY AROUND THE DIP

In the previous section we studied consistency condi-
tions for non-Gaussian parameters around the dip of the
spectrum. If the dip feature occurs at relatively large scales,
say 10 Mpc−1 ≤ kdip ≤ 104 Mpc−1, the properties of the
resulting curvature spectrum can be probed through CMB μ
distortions, using well controlled CMB physics in the linear
regime [62,63] [see [64,65] for a review].

FIG. 6. Scale dependence of τNL around kdip in the collapsed
limit for the transient constant-roll scenario with the same model
parameters provided in Fig. 5. τcolNL as predicted by the consistency
relation (3.38) is shown by orange dotted curve. τcolNL becomes
maximal at the same wave numbers (blue dotted vertical lines)
where fNL in the squeezed configuration does..

5See also [61,60] for an investigation on the Maldacena’s
consistency condition in slow-roll violating inflationary
scenarios.
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This possibility was suggested in [20], building on the
ideas first developed in [21]. In this section we further
develop and extend these arguments.We stress that the range
of scales we identified for kdip above is well motivated
for PBH populations with astrophysical masses. For exam-
ple, given that kdip=kpeak ∼ 10−2, with a dip scale located at
kdip ≃ 103–104 Mpc−1 relates to a peak scale kpeak≃
105–106 Mpc−1, that correspond to the formation of PBHs
in the mass range MPBH ≃ 1–100 M⊙ (see e.g., [8,66]).
CMB μ distortions can impose constraints on PBH

formation mechanisms [18,67]; we wish to emphasize that,
in case of detection, the statistics of μ distortions at large
scales provide information on the physics sourcing PBHs at
much smaller, nonlinear scales. This is possible thanks to
the coupling between large and small scales through the
squeezed and collapsed limits of non-Gaussianity.
Our starting point are the consistency relations of Secs. II

and III which imply that for an Oð107Þ enhancement in the
spectrum,we obtain fsqzNL ∼Oð10Þ, τcollNL ∼Oð103Þ around the
dip feature for any model of single-field inflation including a
short period of nonattractor evolution. Additionally, we find
that the squeezed non-Gaussian parameters has features
specific of these scenarios—see Fig 3.
As first proposed in [21] (and further explored in

[68–75]), non-Gaussianity at μ-distortion scales have dis-
tinctive consequences for hμTi correlators6 among CMB μ
distortions and temperature fluctuations sensitive to the
squeezed limit of the bispectrum, and for hμμi self
correlations sensitive to the collapsed limit of the trispec-
trum. In this section we go beyond work in [20] by
developing the following points
(a) First, we show how the information provided by

the consistency relations allows us to carry on a
more detailed analysis of hμTi correlators, whose
quantitative and qualitative features depend on the
properties of the squeezed bispectrum. See Sec. IVA.

(b) Then, we study for the first time the implications for
the hμμi correlator of a scale-dependent collapsed
trispectrum around the dip. See Sec. IV B.

(c) c. Finally, in light of the results above, we discuss
improved estimates for the detectability of non-
Gaussian consistency relations with PIXIE or
PRISM-like experiments, and physical implications
for PBH populations. See Sec. IV C.

Before covering the points above, we present some
preliminary formulas7 that we are going to use extensively.
We begin by relating the initial curvature perturbationRk to

the harmonic coefficients of the CMB temperature anisot-
ropies Θðn̂Þ ¼ P

lm aTlmYlmðn̂Þ and CMB distortion anisot-
ropies μðn̂Þ ¼ P

lm aμlmYlmðn̂Þ. The coefficients aT;μlm
associated with Rk are given by [21,68],

aTlm ¼ 12π

5
ð−iÞl

Z
d3k
ð2πÞ3RkΔlðkÞY�

lmðk̂Þ; ð4:1Þ

aμlm ≃ 18.4πð−iÞl
Z

d3k1d3k2
ð2πÞ6

× Y�
lmðk̂þÞRk1Rk2W

�
kþ
ks

�
jlðkþχ�Þ

× hcos ðcsk1τÞ cos ðcsk2τÞip½e−ðk21þk2
2
Þ=k2D �zizf ; ð4:2Þ

where p denotes time averaging over the period acoustic
oscillations, k⃗þ ≡ k⃗1 þ k⃗2; cs is the sound speed of the
radiation perturbations, χ� ¼ τ0 − τ� ≃ 14 Gpc is the
comoving distance between the last scattering surface
and today, and ΔlðkÞ is the transfer function during
radiation dominated universe. Moreover, in (4.2), WðkÞ ¼
3k−3½sinðkÞ − k cosðkÞ� is a top-hat filter function in Fourier
space that smears the dissipated energy over a volume of
radius k−1s ≳ kDðzfÞ−1 where kD is the diffusion damping
scale during radiation domination. It depends on redshift as
kDðzÞ ≃ ½ð1þ zÞ=105�3=2130 Mpc−1 and the range of z
associated with the μ distortions is given by

zf ≡ 5 × 104 < z < 2 × 106 ≡ zi: ð4:3Þ

We then define angular correlators involving anisotropies
labeled by fi; jg as

hðailmÞ�ajl0m0 i ¼ δll0δmm0Cij
l ; i ¼ μ; T: ð4:4Þ

In what comes next, we make use of definition (4.4) to
study angular correlations hμTi and hμμi, and to relate them
to scale dependent bispectrum and trispectrum present
around the dip scale of the PBH forming inflationary
scenarios.

A. Phenomenology of the scale dependent
squeezed bispectrum: CμT

l

We start discussing cross correlations between μ dis-
tortions and temperature anisotropies Θ. As we will see, the
specific scale-dependent profile of the squeezed bispec-
trum8 can considerably enhance such cross correlations in
comparison with more standard non-Gaussian models.
Using the definition (3.11) of the bispectrum together

with (4.1) and (4.2), the cross correlations CμT
l for a

6See also [75,76] for the influence of primordial non-Gaus-
sianities on μE and μB [74] cross correlations. Note that for single
field attractor inflation, the leading-order observable hμTi in-
duced by local non-Gaussianity vanishes [73].

7We refer the reader to [64], or Sec. 3.1 of [20] for a mini-
introduction of CMB μ distortions and additional motivations for
the formulas that follow.

8See also [69,70] for earlier studies on hμTi correlator as a
probe of scale dependent bispectrum and [77] for limitations arise
in this regard due to galactic and extragalactic foregrounds.
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squeezed bispectrum (k⃗þ ¼ k⃗1 þ k⃗2 → 0) can be expressed
as [21,68],

CμT
l ≃

27.6
20π3

Z
d ln kþΔlðkþÞjlðkþχ�Þ

×
Z

d ln q½k3þq3BRðq; q; kþ → 0Þ�½e−2q2=k2DðzÞ�zizf ;

ð4:5Þ

where we take the filter function W → 1 in the squeezed
limit kþ ≪ ks ≃ kdðzfÞ, and we relabel jk⃗1j ≃ j − k⃗2j≡ q.
Using the general definition (3.13) of the nonlinearity
parameter, the squeezed limit bispectrum inside the
d ln q integral in (4.5) can be expressed as

BRðq; q; kþ → 0Þ ≃ 12

5
fsqNLðqÞEðqÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

≡feffNLðqÞ

PRðτqÞPRðτkþÞ: ð4:6Þ

In (4.6), we defined an effective feffNLðqÞ by combining the
squeezed limit fsqNL with a scale-dependent enhancement
factor

EðkÞ ¼ fΠðkÞ; jαkj2g; ð4:7Þ

which can assume two values, depending on whether
we consider the heuristic formulas of Sec. II for the
consistency relations, or the gradient expansion formulas
of Sec. III. For the rest of this section, we consider in
parallel the two cases, normalizing E assuming that
Eðkþ → 0Þ → 1 as we did in (4.6).
Noticing that PRðτpÞ ¼ 2π2PRðτpÞ=p3 and PRðτpÞ ≃

2.1 × 10−9 for mode exit during the initial slow-roll era [see
e.g., (A3)], we insert (4.6) in (4.5) to express the angular
cross correlation as

CμT
l ≃ 2.7 × 10−17

2π

lðlþ 1Þ bðpbhÞðlÞ; ð4:8Þ

where we define

bðpbhÞðlÞ≡ 6lðlþ 1Þ
lnðkDðziÞkDðzfÞÞ

Z
d ln kþΔlðkþÞjlðkþχ�Þ

×
Z

d ln qfeffNLðqÞ½e−2q2=k2DðzÞ�zizf ; ð4:9Þ

as the key quantity that parameterizes the multipole l
dependence and the size of the angular correlator hμTi of
Eq. (4.8). Notice that this quantity depends on the transfer
function ΔlðkÞ which we decompose as [70]

ΔlðkÞ ¼ ρðlÞΔsw
l ðkÞ: ð4:10Þ

Δsw
l ðkÞ is the transfer function in the large-scale Sachs-

Wolfe (SW) limit

Δsw
l ðkÞ ¼ 1

3
jlðkχ�Þ; ð4:11Þ

while

ρðlÞ ≃ 1.08½1 − 0.022l − 1.72 × 10−4l2

þ 2 × 10−6l3 − 4.56 × 10−9l4�; ð4:12Þ

is an analytic fit that includes high-l corrections to the SW
approximation [70]. Inserting (4.10) in (4.9) and using
(4.11), we can analytically carry the integral over long
momenta kþ in (4.9), and factorize the result as

bðpbhÞðlÞ ¼ ρðlÞbswðpbhÞ; ð4:13Þ

with

bswðpbhÞ ¼
�
ln

�
kDðziÞ
kDðzfÞ

��
−1 Z

d ln qfeffNLðqÞ½e−2q2=k2DðzÞ�zizf :

ð4:14Þ

The function bswðpbhÞ is normalized in such a way that for a
purely local spectrum with constant nonlinearity parameter,
feffNLðqÞ ¼ fNL, we get bswðpbhÞ ¼ fNL. In this case, we

reproduce the standard results for CμT
l in the SW limit

[21,68] as we show in the left panel of Fig. 7. However, a
nontrivial-scale dependent of feffNL in (4.14) can signifi-
cantly impact the amplitude CμT

l (4.8). We will concretely
see an example of this fact in the PBH forming inflationary
scenarios we are analyzing.
To summarize the formulas so far, for inflationary

models that can produce a sizeable peak in the power
spectrum, the amplitude, and scale dependence (l) of the
angular correlator CμT

l can be determined by

CμT
l ≃ 2.7 × 10−17

2π

lðlþ 1Þ ρðlÞb
sw
ðpbhÞ ≡ ρðlÞCμT;sw

l ; ð4:15Þ

where we defined the angular hμTi cross correlation in the
Sachs-Wolfe limit l → 0 as

CμT;sw
l ¼ 2.7 × 10−17

2π

lðlþ 1Þ b
sw
ðpbhÞ: ð4:16Þ

Consistency relations and the function bswðpbhÞ. The
integral of Eq. (4.14) which provides the quantity bswðpbhÞ
depends on the scale-dependent nonlinearity parameter
feffNLðqÞ of Eq. (4.6). We now make use of the information
given by the consistency relation for the squeezed bispec-
trum of Secs. II and III (fsqNLðqÞ ¼ 5ð1 − nsðqÞÞ=12) to
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characterize the size of bswðpbhÞ and its dependence on the dip
position kdip. We show that for interesting values of kdip this
quantity is large and negative, and its value depends on the
total amplification of the spectrum, as well as on properties
of the nonattractor phase.
In Appendix C, we derive a power-law expression for

feffNLðqÞ [see Eq. (C2)]. Using it, we can express bswðpbhÞ in
terms of the following polynomial

bswðpbhÞ ¼
5

3 ln ½kdðziÞ=kdðzfÞ�
Xnf
n¼2

c̃ðnÞE
Γðn=2Þ
2ðnþ2Þ=2

�
kDðzÞ
kdip

�
n
jzizf ;

ð4:17Þ

where the coefficients c̃E, with E¼fΠ;jαj2g, include as
above, both the heuristic and gradient expansion
approaches. They are given in (C3) and (C4). In the same
way, nf ¼ f5; 6g depending on which approach one adopts.
This formula depends on kdip, which we take within the

μ-distortion band of Eq. (4.3) as

kDðzfÞ ≃ 46 Mpc−1 < kdip < kDðziÞ ≃ 11 600 Mpc−1:

ð4:18Þ

The reason for this choice is twofold. First of all, if we take
kdip ≲ kDðzfÞ then the peak of the power spectrum
would lie within the range of scales associated with μ
distortions, where we have stringent constraints on the peak
amplitude of the power spectrum from COBE and FIRAS
which limits hμi≲ 10−5 [78,79]. Instead, when choosing
kdip > kDðzfÞ, the interesting effects of the scale dependent
bispectrum around the dip scale are no longer present, as
can be realized from (4.17) which behaves as bswðpbhÞ → 0 in

the kDðziÞ=kdip → 0 limit. Another concrete consequence
of the choice of scales (4.18) is that the amplitude of bswðpbhÞ
is controlled by the upper limit shown in Eq. (4.17), namely

by powers of kDðziÞ=kdip. For the derivations we present
below, we will repeatedly make such a simplification.
In the regime of interest (4.18), we find that bswðpbhÞ

acquires a minimum at a critical value of the ratio
kdip=kDðziÞ, whose location is

�
kdip

kDðziÞ
�

nf−4

min
¼ −

nfΓðnf=2Þ
2nf=2

c̃
ðnfÞ
E

c̃ð4ÞE

; ð4:19Þ

At its minimum (4.19), the amplitude of bswðpbhÞ (4.17) is

negative and its final value is set by a competition between
the nf and n ¼ 4 terms in the sum (4.17). Using (4.19) in
(4.17), we can obtain this negative value at the minimum as

bswðpbhÞjmin≃−
5

3ln ½kDðziÞ=kDðzfÞ�
ðnf−4Þ
8nf

jc̃ð4ÞE j
�
kDðziÞ
kdip

�
4

min
;

ð4:20Þ

where we use the fact c̃ð4ÞE < 0 for both the approaches we
are focusing in. We can be more explicit in discussing
separately the two cases we are considering:
(a) a. Heuristic approach: Using the formulas (4.19) and

(4.20), we can relate the location of the minimum of
bswðpbhÞ, as well as its amplitude at that position to the

free parameter βh, by setting nf ¼ 6, and making use
of the coefficients we provide in (C4). At leading order
in the large parameter βh ≫ 1, this procedure gives�
kDðziÞ
kdip

�
2

min
≃0.74βh≃1.5Π1=2

T →bswðpbhÞjmin

≃−7×10−3β2h≃−2.8×10−2ΠT; ð4:21Þ

where we use βh ≃ 2Π1=2
T from (2.8). For inflationary

scenarios with a total of ΠT ≃ 107 enhancement, these
results predict kDðziÞ≃69kdip;min and bswðpbhÞjmin≃
−Oð105Þ. Importantly, the size of jbswðpbhÞj is much

FIG. 7. CμT
l —See Eqs. (4.15) and (4.16) for a scale independent purely local type bispectrum with fNL ¼ 1 (Left) and fNL ¼ −550

(Right).
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larger than the maximal values of jfsqzNLj around the dip
position, as we analyzed in Sec. II in Eq. (2.24). This is
due to the fact that bswðpbhÞ involves an integration over
momenta that—picking up contributions from the
scale-dependent squeezed bispectrum—considerably
enhances its value with respect to the constant fsqNL
case [see comment after Eq. (4.14)]. This fact im-
proves the chances of detection.

(b) Gradient expansion formalism: In this approach, we
use (C3) together with (4.19) and (4.20) to determine
the location of the minimum and the resulting
bswðpbhÞjmin in terms of model parameters as

�
kDðziÞ
kdip

�
min

≃
0.34
ck

ηcð1þ c2kÞ
ðηc þ 1Þ

ffiffiffi
β

p
→ bswðpbhÞ

����
min

≃ −7.5 × 10−3
�
0.34
ck

�
4 η4cð1þ c2kÞ4

ðηc þ 1Þ4 β2;

ð4:22Þ

where dependence of β ≫ 1 on the properties
of the nonattractor era is given by (B4). For typical
parameter choices that leads to a Πtot ≃ 107 enhance-
ment in the power spectrum (see Fig. 4), we have
β ≃ 103 and (4.22) predict kDðziÞ ≃ ð40 − 50Þkdip;min

and bswðpbhÞjmin ≃ −Oð104Þ.
Comparing the result obtained from the heuristic

approach and the gradient expansion formalism, we notice
that although they agree for the location of the minimum
kdip;min, the amplitude of bswðpbhÞ at the minimum differs by

an order of magnitude. However, expression (4.22) indi-
cates that for smaller choices of the model parameter ck the
overall amplitude jbswðpbhÞj and the location of the minimum

of bswðpbhÞ tend to agree better with the heuristic approach,

as in this case kdip;min shifts to slightly larger scales,
causing the overall amplitude jbswðpbhÞjmin to become larger.

We confirm these findings in Figs. 8 and 9, where we
present the dependence of bswðpbhÞ on the dip scale kdip in both
the heuristic approach and gradient expansion formalism
for representative parameter choices that can generate
substantial growth in the power spectrum, as required
for PBH formation.
The multipole dependence of CμT

l . We collect these
results to consider the scale dependence (l) of angular
cross correlation CμT

l . For concreteness, we set kdip ¼
103 Mpc−1 to first determine the amplitude of bswðpbhÞ from
(4.17). We then represent in Fig. 10 the multipole depend-
ence of the quantity CμT

l using (4.12), (4.15), and (4.16).
We notice that, in addition to the enhancement of the
amplitude of the angular correlator CμT

l ∝ bswðpbhÞ for

jbswðpbhÞj ≫ 1, its scale dependence from large (small l) to

small (large l) scales. This is because bswðpbhÞ < 0 for the

phenomenologically interesting kdip values we are focusing
defined in (4.18). As explained in detail in [20], the origin
of this behavior can be traced back to the change of sign of

FIG. 8. The quantity bswðpbhÞ (4.17) vs kdip within the gradient expansion formalism for inflationary scenario that contains a transient
slow-roll violating phase that is characterized by the parameter choices; fΔN ¼ 2.6; ηc ¼ −6; ck ¼ 0.4g (Left) and fΔN ¼ 2.6; ηc ¼
−6; ck ¼ 0.3g (Right).

FIG. 9. The quantity bswðpbhÞ (4.17) vs kdip in the heuristic
approach of Sec. II for an inflationary scenario that can generate
a ΠT ≃ 107 growth in the power spectrum.
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the scale dependent feffNL in (4.14) which occurs at q ¼ qdip
followed by its growth in the negative direction. This result
implies that for inflationary models that is capable to
generate PBH populations, μ distortions become anticorre-
lated with temperature anisotropies at large scales. We note
that a similar profile for CμT

l can be generated by a standard
local type non-Gaussianity that exhibit a large and negative
scale-independent nonlinearity parameter fNL ¼ −Oð100Þ,
as we show in the right panel of Fig. 7.

B. Phenomenology of scale dependent trispectrum: Cμμ
l

We now investigate non-Gaussian9 contribution to hμμi
self-correlation induced by the scale-dependent trispectrum
in PBH forming inflationary models. With this aim, we
focus our attention to the collapsed limit kþ → 0 of the
curvature perturbation four-point function. In this limit, the
non-Gaussian contribution (D10) to hμμi reads as

Cμμ
l;NG ≃

2.65
π5

Z
d ln kþj2l ðkþχ�Þ

×
Z

d ln qd lnpk3þq3p3 lim
kþ→0

TRðq; pÞ

× ½e−2q2=k2DðzÞ�zizf ½e−2p
2=k2DðzÞ�zizf ; ð4:23Þ

where in the collapsed limit we use k⃗1 → −k⃗2 ⇒ k1 ¼
k2 ≡ q and k⃗3 → −k⃗4 ⇒ k3 ¼ k4 ≡ p. The expression
(4.23) simplifies further if we consider the symmetric
folded kite configuration q ¼ p. To see this fact explicitly,
we first focus on the trispectrum in this configuration which
reads as

lim
kþ→0

TRðq; kþÞ ≃ 4τcolNLðqÞEðqÞ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
≡½6

5
feffNLðqÞ�2

PRðτqÞPRðτqÞPRðτkþÞ;

ð4:24Þ

where we make use of the consistency relation (3.38) and
the definition (4.6) of feffNL. The terms under the braces in
(4.24) can be identified as the effective τNL; namely,
τeffNLðqÞ≡ 36feffNLðqÞ2=25, which represents a scale-depen-
dent generalization of the standard local type trispectrum
with a constant τNL [80,81]. Inserting (4.24) into (4.23) and
focusing on q ¼ p configuration, we can describe the non-
Gaussian hμμi self-correlation as

Cμμ
l;NG ≃ 6.1 × 10−24

2π

lðlþ 1Þ ðb
sw
ðpbhÞÞ2; ð4:25Þ

where bswðpbhÞ is defined as in (4.14). This result implies that,

in single-field PBH inflationary scenarios, hμμi is scale
invariant, i.e., lðlþ 1ÞCμμ

l ¼ constant similarly to a purely
local form trispectrum [21]. However, its amplitude can be
enhanced by a factor of bsw

2

ðpbhÞ ≫ 1 compared to the latter.

In particular, considering a jbswðpbhÞj ≃Oð102Þ which arises

in scenarios with a dip feature located at kdip ≈ 103 Mpc−1,
we can obtain a total enhancement of Oð105Þ. Another
point worth stressing is the fact that Cμμ

l;NG > 0 for all
multipoles, as it should be clear from (4.25). We illustrate
these points in Fig. 11 where we show bsw

2

ðpbhÞ and Cμμ
l for

representative scenarios that can produce a large peak in the
power spectrum. The left panel of the figure informs us that
bsw

2

ðpbhÞ is maximal at the same location (4.19) where bswðpbhÞ
has a minimum.

C. Prospects of detectability of μ-distortion anisotropies

We now develop Fisher forecasts to estimate the
detectability of the signals we investigated in Secs. IVA

FIG. 10. CμT
l for inflationary models that can generate a Πtot ≃ 107 enhancement in the power spectrum. The left panel represents the

results obtained in the heuristic approach with βh ¼ 5 × 103. In the right panel, we show the correspondingCμT
l using the formulas in the

gradient formalism where the parameter choices that characterize the slow-roll violating phase is indicated in the boxes.

9Disconnected part of the four-point function also leads to a
Gaussian contribution for hμμi with l ≠ 0. We analyze this
contribution in Appendix D and find that it can be neglected
compared to the Cμμ

l;NG we investigate in this section.
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and IV B. We use a 1 × 1 Fisher information matrix for the
parameter bswðpbhÞ ≡ b [82],

F ¼
X
l

X
X;Y

∂CμX;S
l

∂b Cov−1ðCμX
l CμY

l Þ ∂C
μY;S
l

∂b ; ð4:26Þ

where the sum runs over X; Y ¼ fT; μg;,S refers to the
theoretical predictions we derived in Eqs. (4.15) and (4.25),
and Cov−1 is the inverse of the covariance matrix, defined
as [82]

CovðCμX
l CμY

l Þ¼ 1

2lþ1
½ðCμX;S

l þCμX;N
l ÞðCμY;S

l þCμY;N
l Þ

þðCμμ;S
l þCμμ;N

l ÞðCXY;S
l þCXY;N

l Þ�; ð4:27Þ

where N represents the experimental noise. Using (4.26)
and (4.27), the signal-to-noise (SN) ratio is given by
ðS=NÞ2 ¼ b2F. In the derivation of the components of
the covariance matrix, some simplifications can be made.
First of all, note that for scales we are interested in
2 < l < Oð100Þ, the experimental noise for TT correlator
can be neglected CTT;S

l ≫ CTT;N , with

CTT;S
l ¼ 36π

25

Z
d ln kPRðτf; kÞΔ2

l ðkÞ: ð4:28Þ

Similarly, μ and T instrumental noises are uncorrelated and
therefore we can setCμT;N

l ¼ 0 in (4.27). On the other hand,
as can be confirmed from (4.25) and the discussion it
follows, μμ correlation is dominated by the instrumental
noise, i.e., Cμμ;S

l ≪ Cμμ;N
l , for phenomenologically inter-

esting values we are focusing on where ðbswðpbhÞÞ2 ≲ 105.

For a PIXIE-like experiment [83], this noise can be
modeled as Cμμ;N

l ≃ 4πμ2mine
l2=842 [21] where μmin denotes

the minimum detectable μ-distortion signal. Finally, for the

X ¼ Y ¼ T component of the covariance matrix
another simplification arises by noticing that ðCμT

l Þ2 ≪
Cμμ;N
l CTT

l . This relation can be confirmed noticing the
SW limit of (4.28), CTT;sw

l ¼ 2πAs=ð25lðlþ 1ÞÞ with
As ¼ 2.1 × 10−9, (4.15), and the relation for Cμμ;N

l above.
In light of these arguments, the SN ratio yields as

�
S
N

�
2

¼
Xlf
l¼2

ð2lþ1Þ
� ðCμT;S

l Þ2
CTT;S
l Cμμ;N

l

þ2
Cμμ;S
l

Cμμ;N
l

þ2

�
Cμμ;S
l

Cμμ;N
l

�2�
;

ð4:29Þ

where we carry the sum up to lf ¼ 200. To accurately
estimate the first term in (4.29), we require the knowledge of
CTT
l in (4.28) by taking into account the transfer functionΔl.

In this respect, [68,70] found that the contribution from the
first term in (4.29) corresponds to 40% of the result obtained
by adopting the SW limit, i.e., by taking ρðlÞ → 1 in (4.15)
and adopting CTT;sw

l ¼ 2πAs=ð25lðlþ 1ÞÞ.10 At the same
time, the second and third term inEq. (4.29) can be evaluated
directly from our results of Sec. IV B. We obtain

S
N
≃ 0.99 × 10−3

�
10−8

μmin

�
jbswðpbhÞj

þ 2.15 × 10−8
�
10−8

μmin

�
2

jbswðpbhÞj2; ð4:30Þ

where we normalized the minimum detectable distortion to
μmin ≈ 10−8, as relevant for a PIXIE-like experiment [84]. In

FIG. 11. Left: Logarithmic plot of bsw
2

ðpbhÞ as a function of the location of the dip feature for inflationary models that can generate a peak
required for PBH formation. Right: Scale invariance of Cμμ

l for the parameter choices shown in the left panel. The location of the dip
feature in the power spectrum is taken as kdip ¼ 103 Mpc−1 for both curves, corresponding to bsw

2

ðpbhÞ ≃ f4.3 × 105; 2.8 × 105g for the

black and orange curves, respectively.

10It should be noted that we ignore the enhancement of the
power spectrum in (4.28) to arrive this expression. This is
justified because the smallest scales we are interested in corre-
sponds to lf ¼ 200, while for the scenarios we are focusing in
this work, the enhancement in the power spectrum occurs for
scales corresponding to l ≫ lf .
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(4.30), the first contribution corresponds to the sum of the
first two terms in (4.29) which are of the same order of
magnitude for any values of b and μmin. In fact, the second
term is weighted by the cross component of the covariance
matrix, and it contribution is twice as large as the μT (the
first) term in (4.29).At the same time, the last term represents
the contribution to the SN ratio from μμ alone; it is
generically subdominant compared to the first two terms
in (4.29), but it nevertheless provides a non-negligible
contribution. These results imply that hμμi self correlations
improve the prospects for the observability of distortion
anisotropies.
Using (4.30), we argue that an inflationary scenario with

jbswðpbhÞj≳ 989 is detectable at 1σ level for a PIXIE like

experiment. We note from (4.17) that such values of jbswðpbhÞj
can be obtained for PBH forming scenarios where kdip lies
close its smallest allowed values (kdip ≳ 830 Mpc−1) dic-
tated by the limits on average distortion μ ≲ 10−5 (See
Fig. 14). Moreover, for an experimental design comparable
to PRISM [85] with μmin ¼ 10−9, this situation can be
improved since a smaller value jbswðpbhÞj ≳ 99 is required

for the detectability. Focusing our attention to the latter, in
the left panel of Fig. 12 we present the SN ratio (4.30) in
terms of the location of the dip scales kdip allowed by the
μ≲ 10−5 limit. As can be also inferred from (4.17), for
kdip ≳ 1600 Mpc−1 the SN ratio drops below unity.
However it satisfies S=N > 1 for the allowed region of
830 Mpc−1 ≲ kdip ≲ 1600 Mpc−1. In the right panel, we
show cumulatively the SN ratio as a function of lf for three
different scenarios defined in this range of scales together
with their corresponding jbswðpbhÞj. [Recall that lf corre-

sponds to the upper limit of the sum in Eq (4.29).] This
implies that our SN ratio estimate does not improve
significantly and saturates for lf ≳ 100.
μ-distortion anisotropies as a probe of PBH populations.

We conclude our analysis with some implications of our

findings for PBH populations. In inflationary scenarios
where the curvature power spectrum has a pronounced peak
of order Πtot ≃ 107 located at wave number kpeak ≃
100kdip ≫ kCMB ¼ 0.05 Mpc−1, PBHs may have formed
during the radiation dominated era upon horizon reentry
of modes whose wave number is comparable with
the peak scale [1,2]. Assuming that the power spectrum
is sufficiently peaked, we can relate the mass of the PBH
today to the location of the dip scale in the power spectrum
as [17,67],

Mpbh;0¼AMMpbh;f

≃AM
�

γ

0.2

��
kdip

104 Mpc−1

�
−2
2.4M⊙; ð4:31Þ

where A and M indicate the amount mass gain that can
arise due to accretion and merger effects for the corre-
sponding PBH seed massMpbh;f at the time of formation. γ
is the ratio of the PBH mass to the mass within the causal
horizon and can take values between γ ¼ 0.2 [3,86] and
γ ¼ 0.8 [87] depending on the assumptions about PBH
formation in the radiation dominated era.
Considering the phenomenologically interesting values

of dip scales 830 Mpc−1 ≲ kdip ≲ 1600 Mpc−1 we identi-
fied above, Eq (4.31) implies that PBHs with Mpbh;0 ¼
10–100 M⊙ can be probed by μ distortion anisotropies
assuming negligible accretion and merger coefficients,
A;M → 1. Taking into account these effects within the
ranges 105 ≥ A ≥ 1, 105 ≥ M ≥ 1 [67,88], a detection of
μ-distortion anisotropies through hμTi and hμμi angular
correlators can be therefore considered as a useful tool to
distinguish astrophysical vs primordial the origin of super
massive black holes (SMBH) with masses Mpbh;0 ¼
106–109 M⊙ today.

FIG. 12. The cumulative signal to noise ratio (4.30) as a function of the dip location in the power spectrum for kdip ≳ 830 Mpc−1

(Left). SN ratio as a function of maximum multipole lf at fixed kdip and hence jbswðpbhÞj (Right).
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V. DISCUSSION

In single field-inflationary models that are capable
of generating PBH populations, the power spectrum of
curvature perturbation has interesting universal features
such as the presence of a pronounced dip. Focusing
on the heuristic approach introduced in [19] and gradient
expansion formalism [22] (see Secs. II and III), we
explicitly demonstrated that the position of the dip in
momentum space is uniquely determined by the global
enhancement Π ≃ 107 of the power spectrum via
kdip ≃ Π−1=4kpeak ≪ kpeak, implying its occurrence on
scales much larger than the peak scale associated with
PBH formation. More importantly, in Secs. III B and III C
we analyzed consistency relations for n-point correlators
(n ¼ 3, 4) of curvature perturbation in the vicinity of the
dip feature. We found that non-Gaussianity parameters
satisfy the conditions fsqNL ¼ 5ð1 − nsÞ=12 and τcolNL ¼
ð6fsqNL=5Þ2 in a nontrivial scale-dependent manner,
allowing us to derive a new set of consistency conditions
in terms of the global enhancement Π ≃ 107 in the power
spectrum and relate their scale dependence to its slope. In
scenarios where the dip feature lies within the scale range
(4.18) where μ distortions are generated, the characteristic
scale dependence of such n-point correlators offers us a
unique chance to probe the underlying PBH formation
mechanism at relatively large scales through the CMB
spectral μ-distortion anisotropies.
In fact, developing upon the ideas first presented in [20],

we explored the implications of the consistency conditions
for the bispectrum and trispectrum on the cross correlation
between spectral distortions and temperature anisotropies
hμTi and distortion self-correlations hμμi. In this context,
in Sec. IVA, we studied hμTi angular correlator induced by
the squeezed-limit bispectrum derived from the consistency
relation fsqNL ¼ 5ð1 − nsÞ=12. We found that the pro-
nounced characteristic scale dependence of the bispectrum
can alter the amplitude and overall multipole dependence of
hμTi significantly with respect to more standard cases (see
Sec. IVA). These results confirm the findings obtained
earlier in [20] and put them on a firmer footing through
the use of the consistency condition. In Sec. IV B, utilizing
the consistency relation τcolNL ¼ ð6fsqNL=5Þ2, we studied
for the first time the influence of the enhanced col-
lapsed-limit trispectrum present around the dip scale and
found that it induces sizeable distortion self-correlations
hμμi that are scale invariant, lðlþ 1ÞCμμ

l ¼ constant.
Including the information that we can gain from the μ
self-correlations, in Sec. IV C, we then showed that the
prospects of detectability of μ-distortion anisotropies are
enhanced compared to considering μT correlations
alone [20]. In particular, we found that for phenomeno-
logically allowed and interesting values of dip location in
the range 830 Mpc−1 ≲ kdip ≲ 1600 Mpc−1, μ-distortion
anisotropies—induced by non-Gaussian consistency

relations—should be observable for a PIXIE or PRISM-
like experimental design.
Considering the relation between the dip and peak scale

in the power spectrum kpeak ≃ 100kdip, spectral-distortion
anisotropies we derived in this work can be utilized to
identify the formation mechanism of BHs with masses
Mpbh;0 ≃ 10–100 M⊙ today, and/or SMBHs with Mpbh;0 ≃
106–109 M⊙ taking into account strong accretion and
merger effects (see Sec. IV C). Furthermore, the properties
we studied in this work can also be also considered as a
useful tool for discriminating inflationary models of PBH
formation as in some scenarios based on particle production
[89–92], the dip feature is not present and therefore
unlikely to produce interesting μ-distortion anisotropies
at large scales.
This work can be extended in a few directions. First of

all, our analysis on the squeezed-limit bispectrum and the
collapsed-limit trispectrum does not include finite but
subleading corrections of order Oðkþ=qÞ in terms of the
soft momenta kþ. It would be interesting to include such
corrections to investigate the impact of not so squeezed and
collapsed limit n-point correlators of curvature perturbation
on the μT and μμ angular correlators. Finally, it would be
interesting to extend our analysis to derive predictions on
the μ-distortion anisotropies for scenarios including multi-
ple scalar fields [93–95]. Such an analysis would be helpful
in comparing the general single field predictions we derived
in this work and guide us towards a better understanding for
the formation mechanism of BHs with astrophysically
relevent masses.
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APPENDIX A: THE POWER SPECTRUM PRðτkÞ
AND FRACTIONAL VELOCITY vR

For the initial slow-roll phase, the standard solution for
the curvature perturbation that reduces to the standard
Bunch-Davies vacuum can be written as [31]

Rsr
k ¼ iH

Mpl

e−ikτffiffiffiffiffiffiffiffiffiffiffiffi
4ϵsrk3

p ð1þ ikτÞ; τk=τ0 > 1; ðA1Þ

where ϵsr ≪ 1 is the slow-roll parameter, which we
assume to be constant adopting η ¼ _ϵ=ϵH → 0. Using
the solution (A1), the real and imaginary part of vR
(3.5) can be derived as
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vRRðckÞ ¼ −
c2k

3ð1þ c2kÞ
;

vIRðckÞ ¼ −
c3k

3ð1þ c2kÞ
; τk=τ0 > 1; ðA2Þ

where ck is defined as in (3.20). Notice that the imaginary
part of vR in (A2) includes an extra factor of ck compared
to the real part. We note that unless ck ¼ 1, this translates
into an extra suppression for the imaginary part of the
fractional velocity and hence the imaginary part of αk (3.4)
as we will show explicitly below. On the other hand, using
(A1), the power spectrum evaluated at around horizon
crossing is given by

PRðτkÞ¼
k3

2π2
jRkðτkÞj2 ¼

H2

8π2ϵsrM2
pl

ð1þc2kÞ; τk=τ0> 1:

ðA3Þ

Next, we need to determine RðτkÞ, vR and PRðτkÞ
in the nonattractor era, i.e., for τk=τ0 < 1. This was
done in [20] using a matching procedure for Rk and its
derivative at the transition time τ ¼ τ0. The resulting
fractional velocity in the nonattractor era, i.e., for
τk=τ0 < 1 is given by [20]

vRRðτÞ¼−
y
3

�
f1f3−y0ðf1f4þf2f3Þþy20ðf1f3þf2f4Þ

f23−2y0f3f4þy20ðf23þf24Þ
�
;

ðA4Þ

vIRðτÞ ¼ −
y
3

�
y20ðf1f4 − f2f3Þ

f23 − 2y0f3f4 þ y20ðf23 þ f24Þ
�
; ðA5Þ

where we defined y≡ −kτ and the functions
fn ¼ fnðy; y0; νÞ, for n ¼ 1, 2, 3, 4 in terms of the
Bessel function of the first and second kind as

f1ðy; y0; νÞ ¼ Jν−1ðy0ÞYν−1ðyÞ − Yν−1ðy0ÞJν−1ðyÞ;
f2ðy; y0; νÞ ¼ Jνðy0ÞYν−1ðyÞ − Yνðy0ÞJν−1ðyÞ; ðA6Þ

satisfying the following relations f4 ¼ f1ðy; y0; νþ 1Þ;
f3 ¼ −f2ðy0; y; νÞ, with ν ¼ ð3þ ηcÞ=2. The continuity
of the real and the imaginary part of the fractional velocity
in passing from the slow-roll to the nonattractor era can be
confirmed explicitly from Eqs. (A4) and (A5) at τk ¼ τ0.
Finally, the power spectrum evaluated at τ ¼ τk for modes
that leave the horizon during the nonattractor phase
(τk=τ0 < 1) is given by [20]

PRðτkÞ¼
H2

8π2ϵsrM2
pl

c2νk π2

4

�
k
H0

�
2−2ν

× ½f23−2y0f3f4þy20ðf23þf24Þ�τ¼τk
: ðA7Þ

Similarly, the continuity of the power spectrum can be
confirmed explicitly by evaluating (A7) at the transition
point τk ¼ τ0 at which it reduces to (A3).

APPENDIX B: THE FUNCTIONS DðτkÞ, FkðτkÞ
AND THE ENHANCEMENT FACTOR αk

For the two-phase background model parametrized by
the pump field profile in Eq. (3.18), scale-dependent
functions DðτkÞ, FðτkÞ [see Eqs. (3.6) and (3.7)] are
calculated in [31] for modes that exit during the initial
slow-roll era (k=H0 < ck) and in [20] for mode exit during
the nonattractor era (eΔN > k=H0 > ck). In particular, for
mode exit during the initial slow-roll stage, these functions
are found to be

DðτkÞ ¼ 1 −
3

ðηc þ 3Þc3k

�
e−ðηcþ3ÞΔN þ ηc

3

��
k
H0

�
3

;

FðτkÞk2 ¼
c2k
6
−
�

ηce−ðηcþ3ÞΔN

ðηc þ 3Þðηc þ 1Þ þ
ηc

2ðηc þ 3Þ
��

k
H0

�
2

þ
�
e−ðηcþ3ÞΔN

ðηc þ 3Þck
þ ηc
3ðηc þ 3Þck

��
k
H0

�
3

; ðB1Þ

where τf=τ0 ≡ xf ¼ e−ΔN with ΔN denoting the duration
of the nonattractor era. On the other hand, modes that exit
during the nonattractor era, eΔN > k=H0 > ck are given by

DðτkÞ ¼ −
3

ηc þ 3
−

3e−ðηcþ3ÞΔN

ðηc þ 3Þcηcþ3
k

�
k
H0

�ðηcþ3Þ
;

FðτkÞk2 ¼
e−ðηcþ3ÞΔN

ðηc þ 1Þðηc þ 3Þcηcþ1
k

�
k
H0

�ðηcþ3Þ

þ c2k
2ðηc þ 3Þ −

e−2ΔN

2ðηc þ 1Þ
�

k
H0

�
2

: ðB2Þ

Together with the fractional velocities vRR, v
I
R we found

in (A2), (A4), and (A5), one can make use of the
formulas (B1) and (B2) to describe full spectral behavior
of the enhancement factor αk from large to small scales in a
continuous way by utilizing the formulas (3.3) and (3.4).

1. αk for mode exit during the initial slow-roll era

In this subsection, using the formulas of the previous
section, we provide an expression for αk for k=H0 < ck ≤ 1
that we utilize in the main text extensively.
We begin by noticing that for inflationary scenarios that

contains a transientΔN ∼Oð1Þ slow-roll violating ηc ≤ −6
phase, the terms in the square brackets of (B1) are
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dominated by the exponential factors so we can further
simplify the quantities DðτkÞ and FðτkÞk2. Then noting the
definitions (3.3), (3.4), and (A2), the real and imaginary
part of the enhancement factor can be parametrized as

αRk ≃ αRð0Þ

�
1 − β

�
k
H0

�
2

þ ckðηc þ 1Þ
ð1þ c2kÞηc

β

�
k
H0

�
3
�
;

αIk ≃ αIð0Þ − αRð0Þ
ðηc þ 1Þ
ð1þ c2kÞηc

β

�
k
H0

�
3

; ðB3Þ

where we defined an exponentially large number
β ¼ βðηcΔN; ckÞ, αRð0Þ and αIð0Þ as

αRð0Þ ¼ 1 −
c2k
6
−

c2k
3ð1þ c2kÞ

; αIð0Þ ¼ −
c3k

3ð1þ c2kÞ
;

β ¼ −
ηce−ð3þηcÞΔN

αRð0Þðηc þ 1Þðηc þ 3Þ : ðB4Þ

Note that αRð0Þ and αIð0Þ parametrize the initial values of the

real and imaginary part of αk in the large scale limit k → 0,
respectively. The parameter β ≫ 1 we introduced instead
characterizes the amplification that higher-order terms in
the gradient expansion of αk obtain for a nonattractor
era ηc ≤ −6 with a duration of ΔN e-folds. As is clear
from (B4), for ΔN → 0, β → Oð1Þ, higher-order terms
in the gradient expansion becomes insignificant for provid-
ing an enhancement of the power spectrum at small
scales k=H0 → 1.
Finally, for the purpose of calculating scale dependent

fsqNL and τ
col
NL using the consistency conditions we derived in

Secs. III B and III C, we derive a simplified expression for
the enhancement factor jαkj2 in the gradient expansion
formalism. As we discuss explicitly below, for modes
associated with the initial era we can neglect the imaginary
part of the enhancement factor αIk ≪ αRk and hence
jαRk j2 ≃ ðαRk Þ2. Furthermore, using (B3) and truncating
the resulting ðαRk Þ2 to fifth order in k provides a very
accurate description to the exact result

jαkj2 ≃ ðαRð0ÞÞ2
�
1 − 2β

�
k
H0

�
2

þ 2ckðηc þ 1Þ
ð1þ c2kÞηc

β

�
k
H0

�
3

þ β2
�

k
H0

�
4

−
2ckðηc þ 1Þ
ð1þ c2kÞηc

β2
�

k
H0

�
5
�
:

≃ ðαRk Þ2: ðB5Þ

Using the relation between scales (3.28), we can rewrite
(B5) in a compact way as

jαkj2 ≃ ðαRk Þ2 ≃
X5
n¼0

cðnÞjαj2

�
k
kdip

�
n
; ðB6Þ

where in terms of the parametrization (B4) above, the
coefficients of the sum are given by

cð0Þjαj2 ¼ðαRð0ÞÞ2; cð1Þjαj2 ¼ 0; cð2Þjαj2 ¼−2cð4Þjαj2 ¼−2ðαRð0ÞÞ2;

cð3Þjαj2 ¼−cð5Þjαj2 ¼
2ðαRð0ÞÞ2ckðηcþ1Þ
ð1þc2kÞηc

ffiffiffi
β

p : ðB7Þ

Comparison between αRk and αIk. Another important
point we use repeatedly in the main text is the fact that
imaginary part of αk is subdominant compared to its real
counterpart for modes associated with the initial slow-roll
era. To see this, we can recall (3.4) and notice that
αIk ¼ DðτkÞvIR ≪ DðτkÞvRR ⊂ αRk , which holds as long as
we assume ck ≪ 1 implying vRR ≫ vIR as can be inferred
from (A2). We would like to remind that the choice −kτk ¼
ck ≪ 1 is a natural one considering that in the gradient
expansion formalism ck ≪ 1 simply implies that all the k
modes we focus are outside the horizon at the initial time
τk. To explicitly check the statements above, we compare
the exact jαkj2 quantity with the approximate jαkj2 ≃ ðαRk Þ2
relation (B5) in Fig. 13. We observe that two expressions
match really well for all scales except at the position of the
dip kdip where the approximate relation jαkj2 ≃ ðαRk Þ2
generically leads to a more pronounced dip feature com-
pared to the full expression jαkj2 ¼ ðαRk Þ2 þ ðαIkÞ2.
In this work, except for the part where we study the

global shape of the power spectrum (see Sec. III A), we will
utilize the approximation αk ≃ αRk especially when we
derive the scale dependence of bispectrum and trispectrum
around the dip feature kdip (See e.g., Secs, III B and III C).
We note however that whenever αk appears in the denom-
inator of an expression, we kept its full expression αk ¼
αRk þ iαIk to avoid unphysical divergences that might appear
around especially the dip scale.
αRk around the dip scale. In addition to the approximation

we mentioned above, one can make further simplifications
for the real part of the enhancement factor around the
location of the dip feature of the power spectrum. In
particular, an analysis of the individual terms that con-
stitutes αRk (3.3) for k=H0 < ck reveals that DðτkÞvRR ≪
FðτkÞk2 as can be also observed from the right panel of
Fig. 13. Therefore around the k ∼ kdip, we can simply
approximate αRk as

αRk ≃ 1 − FðτkÞk2: ðB8Þ

The relation above automatically implies that ðαRk Þ0 ¼
−ðFðτkÞk2Þ0 where prime denotes a derivative with
respect to the normalized wave-number k=H0. Recall that
for the discussion that follows equation (3.31) in Sec. III B,
we require −ðk=H0ÞðαRk Þ0 ¼ −ðFðτkÞk2Þ0 ≃ 2FðτkÞk2 to
prove that Maldacena’s consistency condition fNL ¼
5ð1 − nsÞ=12 is satisfied around the dip feature. To show
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this explicitly, notice from Fig. 13 that FðτkÞk2 in (B1) can
be truncated to second order in the k expansion around the
dip feature. Keeping this in mind, using (B1) up to second
order in k, we can therefore write

−
k
H0

ðαRk Þ0 ¼
k
H0

ðFðτkÞk2Þ0≃2

�
FðτkÞk2−

c2k
6

�
≃2FðτkÞk2;

ðB9Þ

where in the last equality we ignored the term proportional
to c2k ≪ 1. Indeed, we utilize the approximation (B9)
[together with (B8)] in the derivation of the general, scale
dependent consistency condition between bispectrum and
power spectrum (See Sec. III B).

2. ΠðkÞ for mode exit during the initial slow-roll era

We now provide a simplified power-law expression for
the scale dependence of the enhancement factor ΠðκÞ of
Sec. II for modes that exit the horizon in the initial slow-roll
stage κ ¼ k=kna < 1. For this purpose, we find it sufficient
to adopt a small κ expansion of the expression (2.11) up to
k6 order which yields

ΠðkÞ≃1−
2βh
3

�
k
kna

�
2

þ
�
2βh
5

þβ2h
9

��
k
kna

�
4

−
β2h
45

�
k
kna

�
6

:

ðB10Þ

By explicitly comparing with (2.11), we found that (B10)
reproduces the exact scale dependence of the power
spectrum very accurately for modes associated with the
initial slow-roll era, k=kna < 1. Using the relation (2.15)
between the scales, we can rewrite (B10) in terms of the dip
scale kdip as

ΠðkÞ ≃
X6
n¼0

cðnÞΠ

�
k
kdip

�
n
; ðB11Þ

where in terms of the only free parameter βh of the heuristic
approach the coefficients cΠ are given by

cð0ÞΠ ¼1; cð1ÞΠ ¼0; cð2ÞΠ ¼−2;

cð4ÞΠ ¼
�
1þ 18

5βh

�
; cð6ÞΠ ¼−

3

5βh
; cð3ÞΠ ¼cð5ÞΠ ¼0: ðB12Þ

APPENDIX C: SQUEEZED LIMIT f effNL AND
AVERAGE μ DISTORTIONS

Building upon our results in the previous appendix, we
now would like to identify the effective nonlinearity
parameter defined in e.g., (4.6) for both approaches
(heuristic vs gradient expansion) we focus in this work.
Using the consistency condition fsqNL ¼ 5ð1 − nsÞ=12 and
noting the definition (4.6), we can describe the squeezed
limit (kþ → 0) feffNL in terms of small momenta q as

feffNLðqÞ ≃ −
5

12
q
dEðqÞ
dq

; ðC1Þ

where we denote the enhancement factors collectively as
EðqÞ¼ fΠðqÞ; jαqj2g for heuristic and gradient approaches,
respectively. Using the expressions (B6) and (B11) we can
then describe scale dependent feffNL in terms of simple
power-law expansion. For both approaches we undertake,
this power-law expression can be expressed collectively as

feffNLðqÞ ¼
5

3

Xnf
n¼2

c̃ðnÞE

�
q
qdip

�
n
; ðC2Þ

where nf ¼ f5; 6g for the gradient/heuristic approach
respectively. In terms of the model parameters that

FIG. 13. The exact behavior of jαkj2 (black solid) and the approximation jαkj2 ≃ ðαRk Þ2 (B5) (orange dashed) from large to small scales
associated with the initial slow-roll era, k=H0 < ck (Left). Comparison of the individual terms in αRk ¼ 1þDðτkÞvRR − FðτkÞk2 (Right).
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characterize the both approaches, the coefficients of this
expansion are given by

c̃ð2Þjαj2 ¼ −c̃ð4Þjαj2 ¼ ðαRð0ÞÞ2;

c̃ð3Þjαj2 ¼ −
5

3
c̃ð5Þjαj2 ¼ −

3

2

ðαRð0ÞÞ2ckðηc þ 1Þ
ð1þ c2kÞηc

ffiffiffi
β

p ; ðC3Þ

in the gradient expansion formalism and

c̃ð2ÞΠ ¼ 1; c̃ð3ÞΠ ¼ c̃ð5ÞΠ ¼ 0;

c̃ð4ÞΠ ¼ −
�
1þ 18

5βh

�
; c̃ð6ÞΠ ¼ 9

10βh
; ðC4Þ

in the heuristic approach of Sec. II. In Secs. IVA and IV B,
we utilize the formulas (C2), (C3), and (C4) to calculate the
amplitude of hμTi and hμμi angular correlators as a function
of the location of the dip scale qdip in the power spectrum.
Average hμi. In the following discussion, we provide hμi

induced due to the scale dependence of the power spectrum
in PBH forming single-field inflationary models. For
concreteness, we will utilize gradient expansion formalism
to describe average hμi in the sky as a function of the scale
kdip beyond which most of the enhancement in the scalar
power spectrum occurs. To compute average distortions we
start with the following expression11 [21],

hμi ≃ 2.3
Z

d ln kPRðτf; kÞ½e−2k2=k2DðzÞ�zizf ; ðC5Þ

where PRðτf; kÞ ¼ jαkj2PRðτkÞ and assuming the
scale invariance, PRðτkÞ ≃As ≃ 2.1 × 10−9. Using (B6)
and (B7) in (C5), we then estimate the amplitude
of hμi in terms of the location of the dip scale kdip. For
this purpose, we take the integral in (C5) over the scales
associated μ era, in particular from kin=Mpc−1 ¼ 1 to
kfin=Mpc−1 ¼ kDðziÞ ¼ 11600. Results obtained in this
way are presented in Fig. 14 for two representative set
of parameter choices that leads to Πtot ≃ 107 growth in the
power spectrum. In this plot, the gray dotted lines indicate
the threshold value of kdip allowed by the current con-
straints hμi≲ 10−5 such that the right hand side of these

vertical lines belongs to the allowed choices of the dip
scale. In light of these results, we find it convenient to make
the choice kdip ¼ 103 Mpc−1 to derive predictions for the
hμTi and hμμi correlators (see Secs. IVA and IV B).
We find it worth stressing that our estimates here can be

regarded as rough indicator of average distortion in PBH
forming single field inflationary models. This is because in
realistic models (see e.g., [17,98]), the spectral shape and
amplitude of the power spectrum prior to the dip scale can
differ substantially compared to the simple assumption
PRðτkÞ ≃As ≃ 2.1 × 10−9 we are undertaking here. As a
mild indicator of such scenarios, by introducing a red tilt to
PRðτkÞ for scales prior to kdip one can confirm that the
overall amplitude of hμi becomes smaller than the estimates
we present here.

APPENDIX D: GAUSSIAN AND NON-GAUSSIAN
CONTRIBUTIONS TO Cμμ

l

In this appendix we derive expressions for the Gaussian
and non-Gaussian contribution to the Cμμ

l that arise through
the connected and disconnected part of the trispectrum
respectively. To calculate the distortion angular autocorre-
lations, we require

haμ�lmaμl0m0 i ¼ ð18.4πÞ2ilð−iÞl0
Z

d3k1d3k2d3k3d3k4
ð2πÞ12 Ylmðk̂þÞY�

l0m0 ðk̂0þÞW
�
kþ
ks

�
W

�
k0þ
ks

�
jlðkþχ�Þjl0 ðk0þχ�Þ

× hcos ðcsk1τÞ cos ðcsk2τÞiphcos ðcsk3τÞ cos ðcsk4τÞip
× ½e−ðk21þk2

2
Þ=k2DðzÞ�if½e−ðk23þk2

4
Þ=k2DðzÞ�ifhRk1ðτfÞRk2ðτfÞR�

k3
ðτfÞR�

k4
ðτfÞi; ðD1Þ

where we used (4.2) with (4.4) and defined k⃗þ ¼ k⃗1 þ k⃗2,
k⃗0þ ¼ k⃗3 þ k⃗4. Assuming Rk is Gaussian at leading order
[see e.g., (3.10)], we can generically split the four-point

FIG. 14. Average μ distortion with respect to the location of the
dip scale in the power spectrum within PBH forming inflationary
scenarios.

11More refined expressions that relates hμi to the primordial
scalar power spectrum can be found in the earlier works [96,97].
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correlator in (D1) into its connected (non-Gaussian) and
disconnected (Gaussian) parts as

hRk1Rk2R
�
k3
R�

k4
i ¼ hRG

k1
ðτfÞRG

k2
ðτfÞRG�

k3
RG�

k4
ðτfÞRk4ðτfÞi

þ hRk1ðτfÞRk2ðτfÞR�
k3
ðτfÞR�

k4
ðτfÞic:
ðD2Þ

Taking into account all possible pair contractions and using
(3.8), the disconnected part of the 4-pt correlator (D2) is
given by

hRG
k1
RG

k2
RG�

k3
RG�

k4
i

¼ ð2πÞ6fδðk⃗þÞδðk⃗0þÞPRðτf; k1ÞPRðτf; k3Þ
þ PRðτf; k1ÞPRðτf; k2Þ½δðk⃗1 − k⃗4Þδðk⃗2 − k⃗3Þ
þ δðk⃗1 − k⃗3Þδðk⃗2 − k⃗4Þ�g: ðD3Þ

On the other hand, the connected part of (D2) can be
defined as

hRk1ðτfÞRk2ðτfÞR�
k3
ðτfÞR�

k4
ðτfÞic

¼ ð2πÞ3δðk⃗þ − k⃗0þÞTRðk1; k2; k3; k4Þ; ðD4Þ

where TR is the trispectrum. Noting (D3) and (D4), we can
then make use of (D2) in (D1) to separate the angular
distortion autocorrelator into Gaussian and non-Gaussian
parts as Cμμ

l ¼ Cμμ
1;G þ Cμμ

l;NG.
Gaussian Cμμ

l . Inserting (D3) in (D1), notice that the
contribution associated with the first term in (D3) vanishes
unless the index of the spherical Bessel functions are zero,
i.e., l ¼ l0 ¼ 0 (m ¼ m0 ¼ 0). Therefore, after carrying the
integrals over d3k2 and d3k4, the contribution of the first
term is given by

haμ;�lm aμl0m0 iG;1 ¼ 4πδll0δmm0δl0ð2.3Þ2
Z

d3k1d3k3
ð2πÞ6 PRðτf; k1ÞPRðτf; k3Þe−2k21=k2DðzÞjzizfe−2k21=k2DðzÞjzizf ;

¼ 4πδll0δmm0δl0hμi2; ðD5Þ

where the average distortion is given by (C5). (D5) describes the average hμμi in the sky (i.e., a monopole l ¼ 0) and should
be subtracted from the total hμμi. Here our focus is on the nontrivial anisotropies with l ≠ 0 that originates from the second
term in (D3). Taking the integrals over d3k3 and d3k4 in (D1), this contribution to the Gaussian Cμμ

l;G reads as

haμ;�lm aμl0m0 iG;2 ¼ ð18.4πÞ2ilð−iÞl0
Z

d3k1d3k2
ð2πÞ6 Ylmðk̂þÞY�

l0m0 ðk̂þÞW
�
kþ
ks

�
2

jlðkþχ�Þjl0 ðkþχ�Þ

× hcos ðcsk1τÞ cos ðcsk2τÞi2pð½e−ðk21þk2
2
Þ=k2DðzÞ�zizfÞ2

�
2π2

k31
PRðτf; k1Þ

��
2π2

k32
PRðτf; k2Þ

�
: ðD6Þ

We then make the transformation d3k2 → d3kþ and carry out the integral over directions d2k̂þ. This gives

haμ;�lm aμl0m0 iG;2 ¼ ð4.6Þ2δll0δmm0

Z
dkþk2þjlðkþχ�Þ2W

�
kþ
ks

�
2
Z

d3k1
k31jk⃗þ − k⃗1j3

× hcos ðcsk1τÞ cos ðcsjk⃗þ − k⃗1jτÞi2pPRðτf; k1ÞPRðτf; jk⃗þ − k⃗1jÞð½e−ðk21þjk⃗þ−k⃗1j2Þ=k2DðzÞ�zizfÞ
2: ðD7Þ

Furthermore, making the replacement k⃗3 ↔ k⃗4 in the last term of (D3) and noticing the fact the rest of the integrand in
(D1) is symmetric under k⃗3 ↔ k⃗4, we have haμ;�lm aμl0m0 iG;2 ¼ haμ;�lm aμl0m0 iG;3. Therefore, the nontrivial part (l ≠ 0) part of the
Gaussian contribution to Cμμ

l is given by

Cμμ
l;G ¼ 2ð4.6Þ2

Z
dkþk2þjlðkþχ�Þ2W

�
kþ
ks

�
2
Z

d3k1
k31jk⃗þ − k⃗1j3

PRðτf; k1ÞPRðτf; jk⃗þ − k⃗1jÞ

× hcos ðcsk1τÞ cos ðcsjk⃗þ − k⃗1jτÞi2pð½e−ðk21þjk⃗þ−k⃗1j2Þ=k2DðzÞ�zizfÞ
2: ðD8Þ

Non-Gaussian Cμμ
l . To derive the non-Gaussian contribution to hμμi, we insert (D4) in (D1). In particular, transforming

d3k2 → d3kþ and d3k4 → d3k0þ we first take the integral over d3k0þ using (D4) (k⃗þ ¼ k⃗0þ) to obtain
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haμ�lmaμl0m0 iNG ¼ ð18.4πÞ2ilð−iÞl0
Z

d3kþd3k1d3k3
ð2πÞ9 Ylmðk̂þÞY�

l0m0 ðk̂þÞW
�
kþ
ks

�
2

jlðkþχ�Þjl0 ðkþχ�Þ

× hcos ðcsk1τÞ cos ðcsjk⃗þ − k⃗1jτÞiphcos ðcsk3τÞ cos ðcsjk⃗þ − k⃗3jτÞip
× ½e−ðk21þjk⃗þ−k⃗1j2Þ=k2DðzÞ�zizf ½e−ðk

2
3
þjk⃗þ−k⃗3j2Þ=k2DðzÞ�zizfTRðk1; jk⃗þ − k⃗1j; k3; jk⃗þ − k⃗3jÞ: ðD9Þ

In (D9), the presence of integration over d2k̂1 and d2k̂3 ensures the independence of the integrand on k̂þ except in the

arguments of Ylm ’s [70]. We can therefore take the integral over d2k̂þ using
R
d2k̂þYlmðk̂þÞY�

l0m0 ðk̂þÞ ¼ δll0δmm0 to yield

Cμμ
l;NG ≃

ð2.3Þ2
8π7

Z
dkþk2þj2l ðkþχ�ÞW

�
kþ
ks

�
2
Z

d3k1d3k3TRðk1; jk⃗þ − k⃗1j; k3; jk⃗þ − k⃗3jÞhcos ðcsk1τÞ cos ðcsjk⃗þ − k⃗1jτÞip

× hcos ðcsk3τÞ cos ðcsjk⃗þ − k⃗3jτÞip½e−ðk21þjk⃗þ−k⃗1j2Þ=k2DðzÞ�zizf ½e−ðk
2
3
þjk⃗þ−k⃗3j2Þ=k2DðzÞ�zizf ; ðD10Þ

where we extracted Cμμ
l from (D10) using the defini-

tion (4.4).

1. Cμμ
l;G in the collapsed k+ → 0 limit

We now provide an estimate for the Gaussian μμ
correlator (D8) in the collapsed limit. Taking kþ → 0 in
(D8) we have

Cμμ
l;G ≃ 5.9 × 10−16

Z
dkþk2þjlðkþχ�Þ2

×
Z

dk1
k41

Eðk1Þ2ð½e−2k21=k2DðzÞ�zizfÞ2; ðD11Þ

where we used PRðτf; k1Þ ≃ Eðk1ÞAs with As ¼ 2.1 ×
10−9 and Eðk1Þ ¼ fΠðk1Þ; jαk1 j2g for heuristic and gradient
approaches respectively. Using the dimensionless variables
k̃ ¼ k1=kdip and x ¼ kþχ�, we can rewrite (D11) as

Cμμ
l;G ≃ 5.9 × 10−16I ½kdip�

Z
dxx2jlðxÞ2; ðD12Þ

with the integral that depends on the location of kdip (and
model parameters) defined as

I ½kdip� ¼
�
k�
kdip

�
3
Z

dk̃

k̃4
Eðk̃Þ2ð½e−2k̃2=k̃2DðzÞ�zizfÞ2; ðD13Þ

where we defined k�¼χ−1� ≃1=ð14GpcÞ≃7.1×10−5Mpc−1

and k̃DðzÞ ¼ kDðzÞ=kdip. Notice that ðk�=kdipÞ3 factor in
(D13) introduces a large suppression factor to the ampli-
tude of I for phenomenologically interesting values around
kdip ≃ 103. To illustrate this, in Fig. 15, we plot I as a
function of kdip for representative parameter choices within
both the heuristic and the gradient approach. On the other
hand, for large enough multipoles l, j2l ðxÞ is highly
peaked around x ≈ l and acts like a delta function in the
last integral in (D12) and therefore we can approximateR
dxx2j2l ðxÞ ≈ l2. As a result, we anticipate that the

Gaussian contribution can be approximated as for l > 0 as

Cμμ
l;G ≈ 10−32l2: ðD14Þ

FIG. 15. The integral I (D13) for a grid of phenomenologically interesting kdip values using heuristic approach (Left) and the gradient
expansion formalism (Right).
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For scales we can probe with μ distortions, we have
lmax ¼ 200, this result above (D14) gives ðCμμ

1;GÞmax ≈
10−28 and therefore we can safely conclude that

in the collapsed limit, Cμμ
1;G ≪ Cμμ

l;NG holds for scales
we would like to probe μ-distortion anisotropies (See
Sec. IV B).
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