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By quantizing the background as well as the perturbations in a simple one fluid model, we show that
there exists an ambiguity in the choice of relevant variables (assuming factor ordering to have been taken
care of), potentially leading to incompatible observational physical predictions. There are, in such models,
two fundamental ambiguities, a well-known one (factor ordering) which can be removed by an actual
choice, and a new one, which depends on the choice of variables themselves. In a classical inflationary
background, the exact same canonical transformations lead to unique predictions, so the ambiguity we put
forward demands a background with a sufficiently strong departure from classical evolution. The latter
condition happens to be satisfied in bouncing scenarios, which may thus be having predictability issues.
Inflationary models could evade such a problem because of the monotonic behavior of their scale factor;
they do, however, initiate from a singular state which bouncing scenarios aim at solving.
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I. INTRODUCTION

Cosmological perturbations are usually studied on a
classical background in the framework of inflation [1].
Most models of bouncing alternatives are either based on
a classical background [2,3] or it is assumed that the
semiclassical approximation ensures similar behavior for
the perturbations. The purpose of this paper is to show that
there might be some important caveat that should be taken
into account as an unsolved ambiguity, not to be mistaken
with that due to operator ordering (also present but fixed
independently), can emerge in a quantum bouncing scenario.
It is worth mentioning that already in classical backgrounds,
the notion of the initial vacuum state depends on the choice of
perturbation variables for quantization as noted e.g., in [4].
Herein, we show that once the background is quantized,
the physical ambiguity gets much stronger and concerns the
dynamics of mode functions as well. A similar point was
considered in Refs. [5,6] for an inflationary background,
leading to a vanishingly small effect.
Before going on, we would like to introduce some

terminology. We define as “classical” a set of c–numbers-
valued variables following the underlying dynamical equa-
tions derived from the Euler-Lagrange variations of the
action. In the case of general relativity (GR), this means that
a classical solution not only permits to actually reconstruct a

full 4-dimensional spacetime, but one that satisfies Einstein
equations.
We shall call “semiclassical” a set of c–numbers-valued

variables (expectation values of quantum operators in a given
state for instance) not following the classical underlying
equations of the relevant theory. We thus emphasize on the
classical properties such trajectories have and merely con-
sider functions of these variables as those that would be
obtained if they were actually classical; quantum uncertain-
ties are here assumed to be negligible. For GR, this means a
regular 4-dimensional spacetime, seen as a classical object,
but now solving quantum corrected equations of motion
instead of Einstein equations. In the framework of cosmo-
logical perturbation theory, plugging such a solution into the
perturbation action does not lead to any ambiguity as one
then merely quantizes the perturbation modes, and the
(classical or quantum [7]) canonical transformation on those
does not require the background equations of motion to hold
but only demand that the trajectory be well defined functions
of time.
Finally, finding a trajectory as proposed above might

lead to new, purely quantum, effects, when the uncer-
tainties cannot be neglected. To avoid any confusion with
the semiclassical case as defined above, we coined the
neologism “semiquantum” in what follows for such
trajectories, to emphasize their quantum nature. It is those
we want to discuss in what follow, and we argue that
a fundamental ambiguity prevents a straightforward use
of such semiquantum trajectories. In practice, once a
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trajectory approximation is proposed, one needs to check
explicitly if it corresponds to a semiclassical or a semi-
quantum one before using it in the appropriate way.
To illustrate our point, we examine a simple model based

on canonical quantization of GR in which the matter
content is represented by a perfect fluid with constant
equation of state w ∈ ½0; 1½. This model is of course
classically singular, all trajectories being either expanding
from a singularity (vanishing scale factor) or contracting
toward one. We first recall the classical model in its
Hamiltonian formulation both for the background universe,
before moving to a quantum approach aiming at resolving
the classical singularity: instead of using the Wheeler-De
Witt equation to estimate the probabilities to connect
contracting and expanding branches, we propose a semi-
quantum approximation leading to regular, bouncing
behavior. With these, one can then proceed to evaluating
the behavior of perturbations.
The paper is organized as follows. Section II considers

the background. The classical model consists of general
relativity sourced by a simple constant equation-of-state
fluid, for which we define the Hamiltonian dynamics and
make explicit the singular solutions. A general quantization
scheme is then discussed in which the factor ordering
ambiguity is fully taken care of by inserting appropriate
unknown constants in the symmetrized operator version of
the classical c–numbers. This section ends with the semi-
quantum approximation leading to effective bouncing
(regular) trajectories.
In Sec. III, we move to the usual treatment of classical

perturbations over the classical background, which we
classify according to the times relevant for their description,
namely the fluid or conformal times, the relation between
these descriptions being based on a simple canonical
transformation. We move on to quantizing these perturba-
tions in Sec. IV by assuming a very general quantization
procedure allowing to account for self-adjointness issues on
the half line; the perturbations are then treated in the usual
(canonical) way. The ensuing quantum dynamics is exam-
ined in Sec. V where the semiquantum approximation for
the background is found to yield two different, and
incompatible, equations of motion for the perturbation
modes, leading to a potential ambiguity in the observational
predictions. Our conclusions are followed by an Appendix
showing an explicit example of quantization based on
coherent states with definite fiducial vectors.

II. BACKGROUND EVOLUTION

In this section we provide the definition of the classical
model at the background level. The physical phase space
for the model is introduced together with the physical
Hamiltonian that generates its dynamics with respect to an
internal clock. The background solution to the classical
dynamics is briefly discussed.

A. Classical dynamics

We assume the universe to be spatially compact,
M ≃ R × T3, with coordinate volume we note V0 below.
Its evolution is supposed to be driven by a perfect fluid
that satisfies a barotropic equation of state p ¼ wρ, with
− 1

3
< w < 1. The fully canonical formalism for the

perturbed Friedmann universe that can be easily adapted
to the present case can be found in [8]: we start from the
Einstein-Hilbert-Schutz action [9,10]

SEHS ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SEH

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Pðw;ϕÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SS

; ð1Þ

where P ¼ wρ is the pressure of the cosmic fluid while ϕ
defines its flow. The action SEHS is first expanded to
second order around the flat Friedmann universe. Next the
Hamiltonian description is obtained in which the truly
physical degrees of freedom are identified and the remain-
ing ones removed.

1. Hamiltonian evolution

Let us consider the usual Einstein-Hilbert action SEH at
zeroth order, omitting the integrated term

1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
R¼−

1

2κ

Z
dτNa3

Z ffiffiffi
γ

p
d3x|fflfflfflfflffl{zfflfflfflfflffl}

V0

6 _a2

a2N2

R

; ð2Þ

in which we used the background isotropic and
homogeneous flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric

ds2 ¼ −N2ðτÞdτ2 þ a2ðτÞγijdxidxj; ð3Þ

a dot meaning a derivative with respect to the coordinate
time τ, later to be identified with the fluid clock variable.
Written as SEH ¼ R

Lð0Þða; _aÞdτ, with Lagrangian Lð0Þ ¼
3V0a _a2=ðNκÞ, this yields the canonically conjugate
momentum pa ¼ ∂Lð0Þ=∂ _a ¼ 6V0a _a=ðκNÞ, and the gravi-
tational Hamiltonian at zeroth order Hð0Þ

G reads

Hð0Þ
G ¼ −

κN
12V0a

p2
a; ð4Þ

which can also be expressed in terms of the canonical
variables,

q ¼ 4
ffiffiffi
6

p

3ð1 − wÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p a
3
2
ð1−wÞ ≡ γa

3
2
ð1−wÞ; ð5Þ

thereby defining the constant γ, and
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p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ wÞp
2κ0

a
3
2
ð1þwÞH; ð6Þ

where H ¼ _a=ðNaÞ is the Hubble rate and κ0 ¼ κ=V0. The

Hamiltonian Hð0Þ
G reads

Hð0Þ
G ¼ −

2κ0N
ð1þ wÞa3w p

2 ¼ −2κ0p2; ð7Þ

where in the last equality, we made the choice of the lapse
N ¼ ð1þ wÞa3w. It can be shown that for this particular

choice of the lapse the matter Hamiltonian Hð0Þ
M obtained

from the Schutz action SS equals the cosmic fluid conjugate
momentum (see, e.g., [11] for details). Therefore, the total
Hamiltonian generates a uniformmotion in the cosmic fluid
variable. It is a standard procedure at this point to promote
the cosmic fluid variable to the role of internal clock while
removing it and its conjugate momentum from the phase
space. The physical Hamiltonian that generates the dynam-
ics of the background geometry with respect to the fluid

variable is thus simplyHð0Þ
G . However, we find it convenient

to inverse the direction of time with respect to the fluid
variable in order to have the positive physical Hamiltonian,

Hð0Þ ¼ −Hð0Þ
G ¼ 2κ0p2: ð8Þ

We shall denote the internal clock by τ and assume it
coincides with the FLRW time set in (3) [1]. It can be shown
that the Hamiltonian Hð0Þ ¼ ð1þ wÞEf ja¼1 equals (1þ w)
times the energy of the fluid contained in the universe when
a ¼ 1 (we choose a dimensionless scale factor, so that the
canonical variable q is also dimensionless).

2. Singular solutions

The background Hamilton equations stemming from
Eq. (8) read

dq
dτ

¼ 4κ0p and
dp
dτ

¼ 0; ð9Þ

and are easily solved by

qðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κ0Hð0Þ

q
ðτ − τsÞ and pðτÞ ¼

ffiffiffiffiffiffiffiffiffi
Hð0Þ

2κ0

s
; ð10Þ

where Hð0Þ is the value of the zeroth-order Hamiltonian, a
constant by virtue of its definition (8) and the equation of
motion (9). The phase space trajectories that either termi-
nate at or emerge from the singularity at time τs are straight
lines in phase space fq; pg with constant p [12], shown as
straight lines in Fig. 1 below. Note that in order to assign
the correct trajectory to the background universe, one needs
to know the value of the energy of the fluid in the whole

universe when a ¼ 1. This value can be determined only
when one knows the size of the universe, size which can be
fixed by demanding that the volume of the observable patch
be a given ratio (less than unity) of the size of the full
universe.
Given our choice for the lapse functionN ¼ ð1þ wÞa3w,

the conformal time η, defined by Ndτ ¼ adη is found to be
given by

dη ¼ Z2dτ ¼ ð1þ wÞ
�
q
γ

�2ð3w−1Þ
3ð1−wÞ

dτ; ð11Þ

where use has been made of Eq. (5) and we have defined
the function

ZðτÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p �
q
γ

� 3w−1
3ð1−wÞ

: ð12Þ

Anticipating the quantum solution (25), we write the
classical solution as q ¼ qBωτ (setting the singularity time
to τS → 0), and therefore p ¼ qBω=ð4κ0Þ. Equation (11)
with this solution permits to integrate explicitly for the
conformal time η, also assuming η → 0 for τ → 0. One then
finds the “classical” conformal time to read

η ¼ 1þ w
r1 þ r2

�
qBω

γ

�
2r1
τr1þr2 ; ð13Þ

which is straightforwardly inverted to yield τðηÞ, and
finally

FIG. 1. Background phase space evolutions: the straight lines
represent Eqs. (10), either going to or emerging from a singularity
(q → 0), while the curves are the solutions (25) leading to the
same asymptotic classical lines. The semiquantum solution are
seen to consist of a bounce smoothly joining expanding (p > 0)
and contracting (p < 0) classical universes.
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qðηÞ ¼ qBω

�
r1 þ r2
1þ w

�
qBω

γ

�
−2r1

η

�
1=ðr1þr2Þ

∝ η
3ð1−wÞ
1þ3w ; ð14Þ

where we have set

r1 ¼
3w − 1

3ð1 − wÞ and r2 ¼ r1 þ 1 ¼ 2

3ð1 − wÞ : ð15Þ

B. A quantum background

The phase space for the cosmological background is the
half-plane rather than the full plane and hence the usual
canonical quantization rules seem to be inadequate. There
exist many quantization methods (see, e.g., [13] for a
comprehensive review) some of which one could find
more suitable in the present context. In order to account
for this issue, we introduce a family of quantum models,
all of which in correspondence with the underlying
classical model. They are given by a set of free parameters
that can be computed, for instance, in the framework of
the so-called affine quantization (see [14] for details) that
has been proposed for a consistent quantum gravity
program [15,16]; we briefly recap what is relevant for
our purposes of this method in Appendix. This approach
enables us to free ourselves from a particular quantization
of the background geometry, to take care of issues such as
ordering ambiguity in a straightforward way and, finally,
to emphasize the universal character of the ambiguity that
we discuss in the next sections.
Given the existing ambiguities due to factor ordering

when going from classical to quantum, we propose the
following set of operators to replace the Hamiltonian (8):

Hð0Þ ↦ Ĥð0Þ ¼ 2κ0ðP̂2 þ ℏ2c0Q̂
−2Þ; ð16Þ

where c0 ≥ 0 is a free parameter. The value c0 ¼ 0
corresponds to the “canonical quantization”, whereas the
values c0 > 0 can be justified in various ways, for instance
by using the affine group as the symmetry of quantization
[11,17]. In the latter case, the repulsive potential ∝ Q̂−2, of
quantum geometric origin, naturally prevents the universe
from reaching the singular point q ¼ 0 by reversing its
motion from contraction to expansion. If c0 ≥ 3

4
, then Ĥð0Þ is

essentially self-adjoint and no boundary condition needs be
imposed at Q̂ ¼ 0 to ensure a unique and unitary dynamics
(see, e.g., Ref. [18] and references therein). The only way to
determine the right value of the parameter c0 is to compare
the predictions of the model with the actual observations of
the Universe.
We will need quantum operators to replace other zeroth-

order quantities appearing in the Hamiltonians relevant for
describing perturbations (28) and (34) below. We propose
the following replacements

qα ↦ lðαÞQ̂α; ð17aÞ

qαp2 ↦ aðαÞQ̂αP̂2 þ iℏbðαÞQ̂α−1P̂þ ℏ2cðαÞQ̂α−2; ð17bÞ

where Q̂ and P̂ are the “position” and “momentum”
operators on the half-line, satisfying the usual commutation
relation ½Q̂; P̂� ¼ iℏ, and therefore ½Q̂α; P̂� ¼ iℏαQ̂α−1, so
that bðαÞ ¼ −αaðαÞ in order to ensure that the second-line
operator (17b) is symmetric, i.e., so that it reads

qαp2 ↦ aðαÞP̂Q̂αP̂þ ℏ2cðαÞQ̂α−2; ð18Þ

the power-depending numbers lðαÞ, aðαÞ and cðαÞ are
assumed positive and dimensionless.
It should be emphasized at this stage that the usual factor

ordering ambiguity is fully taken care of in this framework
by merely providing actual numbers for the gothic-style
parameters appearing in Eqs. (16) to (18). Assuming knowl-
edge of these (e.g., by comparison with some relevant
experimental result), one expects the ensuing predictions
to be unambiguous from the point of view of factor ordering;
whatever remaining ambiguity, as the one detailed below,
cannot follow from it.

C. Phase space semiquantum approximation

We now introduce a semiquantum approximation (as
suggested in the introduction) to the quantum dynamics of
the background geometry. It should be noted that any
ambiguous effect such as the one we obtain here at a
semiquantum level may only be enhanced if a fully
quantum description of the background were to be used.
We carefully construct the semiquantum description with
the use of coherent states.
It is very useful to have at disposal background solutions

jψBðτÞi corresponding to various energies and with various
spreads in Q̂ and P̂. One can find a wide class of solutions by
approximating the Hilbert space with a family of coherent
states built from a singlewave function, the so-called fiducial
vector; this construction is presented in Appendix. For the
present purpose, suffice it to note that any fixed family of
coherent states is given by state vectors ðq; pÞ ↦ jq; pi in
one-to-one correspondence with the phase space. In practice,
from a fiducial state jξ̃i, for which hξ̃jQ̂jξ̃i ¼ 1 (recall q, and
therefore Q̂, is dimensionless) and hξ̃jP̂jξ̃i ¼ 0, one builds
the coherent state through [16]

jqðτÞ; pðτÞi ¼ eipðτÞQ̂=ℏe−i ln qðτÞD̂=ℏjξ̃i; ð19Þ

where D̂ ¼ 1
2
ðQ̂ P̂þP̂ Q̂Þ is the dilation operator. The

expectation values of Q̂ and P̂ in jqðτÞ; pðτÞi are respec-
tively qðτÞ and pðτÞ.
The dynamics confined to the vectors jqðτÞ; pðτÞi can be

deduced from the quantum action
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SB ¼
Z

hqðτÞ; pðτÞj
�
iℏ

∂
∂τ − Ĥð0Þ

�
jqðτÞ; pðτÞidτ; ð20Þ

which, upon using the properties of the state (19), can be
transformed into

SB ¼
Z

f _qðτÞpðτÞ −Hsem½qðτÞ; pðτÞ�g dτ; ð21Þ

with the semiquantum Hamiltonian given by

Hsem ¼ hq; pjĤð0Þjq; pi; ð22Þ

from which one derives the ordinary Hamilton equations

_q ¼ ∂Hsem

∂p and _p ¼ −
∂Hsem

∂q : ð23Þ

Given the quantum Hamiltonian (16), we find that the
semiquantum background Hamiltonian reads, by virtue of
our ordering choice (18) (with α ¼ 0)

Hsem ¼ 2κ0

�
p2 þ ℏ2K

q2

�
; ð24Þ

where the constant K is positive (K > 0), irrespective of
whether c0 ¼ 0 or c0 > 0. The actual value ofK depends on
the choice of family of coherent states, as illustrated in
Appendix. We find the solution to (23) to read

q ¼ qB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτÞ2

q
; ð25aÞ

p ¼ qBω
2

4κ0

τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτÞ2

p ; ð25bÞ

where q2B ¼ 2κ0ℏ2K=Hsem and ω ¼ 2Hsem=ðℏ
ffiffiffiffiffi
K

p Þ. We
display in Fig. 1 a few trajectories in the phase space
illustrating these solutions and comparing them with their
classical counterparts (10).
With this semiquantum solution, one can also integrate

(11) to yield the conformal time η, as a function of τ

η ¼ ð1þ wÞτ
�
qB

γ

�
2r1
F
�
1

2
;−r1;

3

2
;−ðωτÞ2

�
; ð26Þ

where F ða; b; c; zÞ is the hypergeometric function (see
Sec. 15 of Ref. [19]). As expected, one recovers the
classical power law (13) in the large-time classical limit
τ ≫ ω−1, up to a constant depending on the equation of
state w and vanishing for w ¼ 1

3
. Figure 2 shows the

classical and semiquantum relationships ηðτÞ.

III. CLASSICAL PERTURBATIONS

Having clarified the status of the background evolution
and found a way to regularize it through quantization, we
now move on to identifying the truly physical degrees of
freedom also at linear order. We restrict attention in this
section to classical perturbations over the classical back-
ground, following the terminology introduced in the
introduction.

A. Fluid perturbations

We write the full classical Hamiltonian Hfull as

Hfull ¼ Hð0Þ −
X
k

Hð2Þ
k ; ð27Þ

where the second-order Hamiltonian Hð2Þ
k , depending only

on the discrete (recall the Universe considered is compact)
wave vector k, reads

Hð2Þ
k ¼ 1

2
jπϕ;kj2 þ

1

2
wð1þ wÞ2

�
q
γ

�
4r1
k2jϕkj2; ð28Þ

with γ defined in (5) and r1 in (15) above. The Fourier
component ϕk of the perturbation field is a combination of
the fluid perturbation1 δϕk and the intrinsic curvature
perturbation δRk, namely [8]

ϕk ¼
p

1−w
1þwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2wð1þ wÞκ0
p δϕk þ

ffiffiffiffiffiffiffiffi
3

wκ0

s
a−

3w−7
2

4k2
δRk; ð29Þ

FIG. 2. Conformal time η as a function of τ, for the classical (13)
and semiquantum (26) solutions for w ¼ 0 (thin line), w ¼ 0.1
(thick), w ¼ 0.2 (dashed) and w ¼ 0.3 (dotted). The quantum
conformal time tends to the classical one up to a constant factor,
which vanishes for ¼ 1

3
.

1The background fluid time τ is actually a combination of the
fluid variable and its momentum, ð1þ wÞτ ¼ ϕjpϕj−1=w. For
more details, see e.g., [8].
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with k≡ jkj the amplitude of the wave vector; note that
since the FLRW background (3) is isotropic, it is expected,
as usual, that the initial conditions, and therefore the
solutions of the perturbation evolution equation should
depend only on the amplitude k and not on its direction
k=k. Given our conventions, the physical dimensions are
½ϕk� ¼

ffiffiffiffiffi
M

p
L and ½πϕ;k� ¼

ffiffiffiffiffi
M

p
. The Poisson bracket reads

fϕk1 ; πϕ;−k2g ¼ δk1;k2 . The equation of motion expressed in
the conformal time η defined by Eq. (11), is found to read

ϕ00
k þ

�
q
γ

�
4r1
wð1þ wÞ2k2ϕk ¼ 0: ð30Þ

It shows that for radiation, i.e., for w ¼ 1
3
, which implies

r1 ¼ 0, the dynamics of ϕk becomes decoupled from the
dynamical background.
There exist infinitely many parametrizations of the

reduced phase space of perturbations and the pair ðϕ; πϕÞ
can be seen as merely one example. As the relevant time for
that description is τ, which stems from the fluid, in terms of
which the kinetic term in Eq. (27) is canonical, we shall call
it the fluid-parametrization.

B. Conformal perturbations

Another example of canonical fields is provided by the
pair ðv; πvÞ, that is commonly used for solving the dynamics

of scalar perturbations. It is defined by the canonical
transformation

vk ¼ Zϕk; ð31aÞ

πv;k ¼ Z−1πϕ;k þ
_Z
Z2

ϕk; ð31bÞ

where the function Z is defined in (12) above.
It can be noted that in the comoving gauge, one

has δϕk ¼ 0, and thus vk ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
3ð1þwÞ
16wκ0

q
aΨk, where Ψk ¼

−a2δRk=k2 is the comoving curvature.
We easily obtain the second-order Hamiltonian Hð2Þ

k in
terms of ðv; πvÞ, namely

Hð2Þ
k ¼ 1

2
Z2fjπv;kj2 þ ½wk2 − VclðτÞ�jvkj2g; ð32Þ

with the potential Vcl defined through

Vcl ¼
1

Z4

�
Z̈
Z
− 2

�
_Z
Z

�2�
ð33Þ

which can be written explicitly in terms of the background
canonical variables q and p as

Hð2Þ
k ¼ 1

2
ð1þ wÞ

�
q
γ

�
2r1
�
jπv;kj2 þ

�
wk2 −

8

9q2

�
q
γ

�
−4r1 ð2κ0Þ2ð1 − 3wÞp2

ð1þ wÞ2ð1 − wÞ2
�
jvkj2

	
; ð34Þ

where we used the background equations of motion by
assuming p → const.
The coefficient in front of the Hamiltonian (34) can be

removed by switching to the internal conformal time η
(11) [12], in terms of which the potential (33) takes the
simpler and usual form Vcl ¼ Z00=Z, where a prime means
a derivative with respect to the conformal time η

(Z0 ≡ dZ=dη). The second-order Hamiltonian Z−2Hð2Þ
k is

then found to generate

v00k þ
�
wk2 −

8

9q2Z4

ð2κ0Þ2ð1 − 3wÞ
ð1 − wÞ2 p2

�
vk ¼ 0; ð35Þ

which can be written in the usual Mukhanov-Sasaki form

v00k þ ½wk2 − VclðηÞ� ¼ v00k þ
�
wk2 −

z00

z

�
vk ¼ 0; ð36Þ

thereby identifying the classical potential

VclðηÞ ¼
8

9q2Z4

ð2κ0Þ2ð1 − 3wÞ
ð1 − wÞ2 p2 ¼ z00

z
; ð37Þ

where the last equality is obtained by applying the
classical equations of motion Eq. (9) below and we have
used the generic function z, as there are in fact two
different and equivalent choices that can be made, namely
z1 ¼ qr1 and z2 ¼ qr2 , namely

Vcl ¼
ðqr1Þ00
qr1

¼ ðqr2Þ00
qr2

¼ 2ð1 − 3wÞ
ð1þ 3wÞ2η2 ; ð38Þ

as usual for a background dominated by a perfect fluid with
constant equation of state. These two power laws stem from
the fact that although what enters into (32) is Z00=Z, with
Z ∝ z1, one can then just as well choose the second solution
of z00=z ¼ Z00=Z, namely z2 ∝ Z

R
dη=Z2 ¼ Z

R
dτ ¼ Zτ

which, taking the background solution q ∝ τ [see
Eq. (10)] yields z2 ∝ Zq ¼ z1q ¼ qr1þ1, as indeed one
has r2 ¼ r1 þ 1.
The internal conformal time provides a convenient form

of the equation of motion for perturbations. We shall,
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however, quantize the dynamics of both the background
and the perturbations reduced with respect to a unique
internal time, the internal fluid time. The term z00=z is
usually referred to as the potential for the perturbations, as
Eq. (36) is mathematically identical to a time-independent
Schrödinger equation in such a potential [20]. As

Vcl ¼
z00

z
¼ 1 − 3w

2
H2 ð39Þ

has the clear physical meaning of the conformal Hubble
rate H squared (w < 1

3
), the conformal Hubble rate deter-

mines the coordinate scale at which the amplification of
perturbations starts to take place.
We shall call the set of variables ðvk; πv;kÞ the conformal

parametrization, as it involves naturally the conformal time.
It differs from the fluid parametrization (28) by the non-
trivial coefficient standing in front of the entire expression
as well as the frequency that now depends on both back-
ground variables, q and p.

C. Solutions for perturbations

The two parametrizations described above, ðϕ; πϕÞ and
ðv; πvÞ, being related by a canonical transformation, are
physically equivalent and therefore it is sufficient to
consider just one of them, e.g., the conformal one, in order
to determine the dynamics of perturbations. It is also true at
the quantum level [7] provided the background evolution is
described by a classical or semiclassical trajectory.
Using the definition (11) to derive the power-law

behavior of qðηÞ in (10), the potential z00=z in Eq. (36)
is found to yield the specific form (38) (independently of
the choice z ¼ qr1 or z ¼ qr2), so that the classical
evolution of perturbation modes is

d2vk
dη2

þ
�
wk2 −

2ð1 − 3wÞ
ð1þ 3wÞ2η2

�
vk ¼ 0: ð40Þ

Clearly, the potential Vcl ∝ η−2 is singular at the singularity
η → 0. The solution can be expressed in terms of Hankel
functions, namely

vkðηÞ ¼
ffiffiffi
η

p ½c1ðkÞHð1Þ
ν ð ffiffiffiffi

w
p

kηÞ þ c2ðkÞHð2Þ
ν ð ffiffiffiffi

w
p

kηÞ�; ð41Þ

where ν ¼ 3ð1−wÞ
2ð3wþ1Þ and c1ðkÞ, c2ðkÞ are constants depending

on the comoving wave vector k through the initial con-
ditions; for isotropic initial conditions as those used for
quantum vacuum fluctuation, they can depend only on the
amplitude k and not on the direction k=k. The solution is
finite but discontinuous at η ¼ 0. Therefore, the comoving
curvature Ψk ∝ vk=a in general blows up at η ¼ 0 where
the scale factor reaches the singularity a → 0; see Ref. [21]
for a full treatment of the relevant cases.

IV. QUANTUM PERTURBATIONS

In the present section, we quantize the Hamiltonian (27)
in the two classically equivalent parametrizations we
introduced above. Next we apply some approximations
in order to integrate the dynamics. We find that the two
classically equivalent parametrizations lead to two unitarily
inequivalent quantum theories. This dependence on para-
metrization is a natural consequence of the nonlinearity of
the theory of gravity. The subsequent ambiguity is not a
consequence of ordering of operators associated with non
commutative sets at the quantum level, but rather the result
of a choice of such sets. In fact, it follows directly from the
fact that the quantum-regularized trajectories are semi-
quantum and not semiclassical.
Recall that Dirac’s “Poisson bracket → commutator”

quantization rule [22] works only for simplest observables.
It is well-known that there exists no quantization of any given
classical system that is an isomorphism between the Poisson
and commutator algebras (there is actually one known
exception that nevertheless is irrelevant in the present context,
see [23] for an exhaustive review). As a result, a quantized
observable is in general unitarily inequivalent if its quantiza-
tion is madewith a different choice of basic observables. Note
that this “obstruction” is absent when quantum perturbations
evolve linearly in classical or semiclassical backgrounds as in
the latter case all the possible sets of basic variables are
related by linear transformations that enjoy unique unitary
representations consistent with Dirac’s rule.

A. Fluid parametrization

The canonical perturbation variables of the fluid para-
metrization satisfy the reality condition ϕ�

k ¼ ϕ−k and
π�ϕ;k ¼ πϕ;−k and it is possible to promote their real and

imaginary parts to canonical operators in L2½R2; i
2
dϕkdϕ�

k�
for each direction k. It is, however, more convenient to
work with the Fock representation,

ϕk ↦ ϕ̂k ¼
ffiffiffi
ℏ
2

r
½akϕ�

kðτÞ þ a†−kϕkðτÞ�; ð42Þ

where the time-dependent mode functions ϕkðηÞ are assumed
to be isotropic and ak and a†k are fixed annihilation and
creation operators that satisfy ½ak1 ; a†k2 � ¼ δk1;k2 (recall the
compactness of space implies discrete eigenvectors k). As
shown later, it follows that the mode functions must satisfy a
suitable normalization condition. Note that the whole evo-
lution of the operators ϕ̂k and π̂ϕ;k in the Heisenberg picture
is encoded into the mode functions.
Combining the background quantization with the

quantization of perturbations, using the definition (15) of
the classical power laws, yields the quantized Hamiltonian
(28) in the fluid parametrization (henceforth dubbed
F-parametrization)

UNITARILY INEQUIVALENT QUANTUM COSMOLOGICAL … PHYS. REV. D 105, 023522 (2022)

023522-7



Ĥð2Þ
k ¼ 1

2
jπ̂ϕ;kj2 þ

LQ

2
wð1þ wÞ2

�
Q̂
γ

�
4r1
k2jϕ̂kj2; ð43Þ

where LQ ¼ lð4r1Þ [see Eq. (17a)] is a free parameter of the
quantization.

B. Conformal parametrization

We repeat the same quantization for the conformal
parametrization (C-parametrization in what follows),

vk ↦ v̂k ¼
ffiffiffi
ℏ
2

r
½akv̄kðτÞ þ a†−kvkðτÞ�; ð44Þ

and obtain the quantum Hamiltonian derived from (34) as

Ĥð2Þ
k ¼ 1

2
ð1þ wÞ

�
Q̂
γ

�
2r1
MQH

ð2Þ
k;eff ; ð45Þ

with

Ĥð2Þ
k;eff ¼ jπ̂v;kj2 þ

�
wk2 −

8M−1
Q

9Q̂2

ð2κ0Þ2ð1 − 3wÞ
ð1 − wÞ2ð1þ wÞ2

�
Q̂
γ

�−4r1
ðNQP̂

2 þ iℏRQQ̂
−1P̂þ ℏ2TQQ̂

−2Þ
�
jv̂kj2; ð46Þ

where MQ ¼ lð2r1Þ, NQ ¼ að−2r2Þ, RQ ¼ bð−2r2Þ ¼
2r2NQ and TQ ¼ cð−2r2Þ are free parameters in the
quantization map [see Eqs. (17)]. Note that there are more
free parameters and hence more quantization ambiguities in
the C-parametrization.

V. SEMIQUANTUM DYNAMICS

A general approach to solving the dynamics of quantum
perturbations in quantum spacetime was recently given in
[24]. In what follows, we assume the full state vector to be a
product of background and perturbation states, i.e.,

jψðτÞi ¼ jψBðτÞi · jψPðτÞi: ð47Þ

The canonical formalism for cosmological perturbations
has been developed under the assumption that the pertur-
bations do not backreact on the background spacetime.
Therefore, the dynamics of jψBðτÞi should be determined
independently of the state jψPðτÞi.
Given that the dynamics of the background state is fixed

by jψBi → jqðτÞ; pðτÞi, the dynamics of the perturbation
state jψ PðτÞi can be deduced from the quantum action at
second order Sð0Þþð2Þ ¼ SB þ SP

Sð0Þþð2Þ ¼
Z

hψðτÞj
�
iℏ

∂
∂τ − Ĥð0Þ þ

X
k

Ĥð2Þ
k

�
jψðτÞidτ;

ð48Þ

with the state vector given by (47). Extracting the zeroth
order action SB, one finds

SP ¼
Z

hψPj
�
iℏ

∂
∂τ þ

X
k

Ĥð2Þ
k

�
jψPidτ; ð49Þ

and setting jψPi ¼
Q

k jψki with hψk1 jψk2i ¼ δk1;k2 , one
gets the associated Schrödinger equation for each Fourier
mode jψki (up to an irrelevant phase factor), namely

iℏ
∂
∂τ jψki ¼ H̃kjψki; ð50Þ

where the operator H̃k ≡ −hq; pjĤð2Þ
k jq; pi is obtained

from either (43) or (45) depending on the choice of
parametrization. We discuss those in turn below.

A. Fluid modes

In the F-parametrization case, the second-order
Hamiltonian generating the dynamics of perturbations
reads

hq; pjĤð2Þ
k jq; pi ¼ 1

2
jπ̂ϕ;kj2 þ

LS

2
wð1þ wÞ2

�
q
γ

�
4r1
k2jϕ̂kj2;

ð51Þ

where the value of LS depends on the value of LQ and the
family of coherent states used to approximate the back-
ground dynamics.
The Heisenberg equations of motion are

d
dτ

ϕ̂k ¼ −π̂ϕ;k; ð52aÞ

d
dτ

π̂ϕ;k ¼ LSwð1þ wÞ2
�
q
γ

�
4r1
k2ϕ̂k; ð52bÞ

and it follows from (52a) that

π̂ϕ;k ¼
ffiffiffi
ℏ
2

r
½ak _ϕ�

kðτÞ þ a†−k _ϕkðτÞ�;

and hence the canonical commutation rule, namely
½ϕ̂−k; π̂ϕ;k� ¼ iℏ, implies the normalization condition on

the mode functions _ϕkϕ
�
k − ϕk

_ϕ�
k ¼ 2i. By combining the

above equations, we may obtain the second-order dynami-
cal equation for ϕ̂k, which must also be obeyed by the mode
function ϕk. We switch to the internal conformal clock
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given by Eq. (11) and rescale the mode functions,
vF
k ¼ Zϕk, where vF

k is the Mukhanov-Sasaki variable.
The superscript “F” indicates that its dynamics is generated
by the fluid Hamiltonian. More specifically, we find that the
dynamics of vF

k generated by the Hamiltonian (51) reads

d2vF
k

dη2
þ ½k2F − VFðηÞ�vF

k ¼ 0; ð53Þ

with the effective wave number kF ≡ ffiffiffiffiffiffiffiffiffi
LSw

p
k, and the fluid

potential given by

VF ¼
8

9q2Z4

ð2κ0Þ2ð1 − 3wÞ
ð1 − wÞ2

�
p2 −

3ð1 − wÞK
2q2

�
: ð54Þ

Note that for large q, i.e., away from the bounce, the
quantum correction becomes negligible so that the semi-
quantum potential (53) approaches the classical one (34).
Indeed, using _Z=Z ¼ r1 _q=q and q0 ¼ _q=Z2, one finds

Z00

Z
¼ r1

Z4

�
q̈
q
− ð1þ r1Þ

�
_q
q

�
2
�
;

and replacing the function qðτÞ by the solution (25) for the
background semiquantum trajectory, it is straightforward to
check that, for all times, the potential VF can be given the
familiar form VF ¼ Z00=Z ¼ ðqr1Þ00=qr1 . Since the semi-
quantum trajectory (25) is asymptotic to the classical one
(10) for ωτ → ∞, i.e., for η → ∞, the fluid potential
satisfies

lim
η→∞

VFðηÞ ¼ VclðηÞ;

where Vcl is given by (38); it is illustrated in Fig. 3.

B. Conformal modes

The same procedure applied to the conformal para-
metrization yields

hq; pjĤð2Þ
k jq; pi ¼ 1

2
Z2MSðjπ̂v;kj2 þΩ2

vjv̂kj2Þ; ð55Þ

with

Ω2
v ¼wk2−

8M−1
S

9q2Z4

ð2κ0Þ2ð1− 3wÞ
ð1−wÞ2

�
NSp2þℏ2TS

q2

�
; ð56Þ

whereMS,NS, TS depend on the family of coherent states
used to approximate the background dynamics and on
the values of MQ, NQ, RQ and TQ and NQ, respectively.
For the following discussion, one should bear in mind
that all the quantities KS, LS, MS, NS and TS are positive
definite. The canonical commutation rule implies the
normalization condition on the mode functions

_vkv�k − vk _v�k ¼ 2ið1þ wÞ
�
q
γ

�
−2r1

MS ¼ 2iZ2MS:

After switching to the internal conformal clock, the
normalization condition reads v0kv

�
k − vkv�0k ¼ 2iMS and

the Hamiltonian (55) is found to generate the following
dynamics of the mode function vC

k (the subscript “C” now
indicating that its dynamics is generated by the conformal
Hamiltonian)

d2vC
k

dη2
þ ½M2

Swk2 −MSNSVCðηÞ�vC
k ¼ 0; ð57Þ

where the potential, shown in Fig. 4 for different numeri-
cal values of the relevant parameter, reads

VC ¼ 8

9q2Z4

ð2κ0Þ2ð1 − 3wÞ
ð1 − wÞ2

�
p2 þ ℏ2TS=NS

q2

�
; ð58Þ

whose limit for large q yields back the classical case (37).
The usual Mukhanov-Sasaki equation is recovered from
(57) provided one defines a rescaled conformal time ς
through ς ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

MSNS

p
η, leading to

FIG. 3. The gravitational potentials VC (full line), from (57),
and VF (dashed line), from (53), as functions of the conformal
time η; the parameter values are chosen as qB → 1, ω → 1,
κ0 → 1 and w ¼ 0.2 for the purpose of illustration. These
potentials are deduced from the quantum fluid (51) and
conformal (55) Hamiltonians and the classical Hamiltonian.
They all asymptotically decay as η−2 far from the bounce where
they are well-approximated by their classical counterpart given

by Vcl ¼ 2ð1−3wÞ
ð1þ3wÞ2η2 (dotted line) [cf. Eq. (40)].
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d2vC
k

dς2
þ ½k2C − VCðςÞ�vC

k ¼ 0; ð59Þ

as expected; in Eq. (59), the effective wave number
is kC ≡ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wMS=NS

p
.

We have seen above that VF ¼ ðqr1Þ00=qr1 . Let us see
under what conditions the potential VC can also be put
in a similar form X00=X ¼ ðqrÞ00=qr for a given function
XðηÞ¼qr with a power r to be determined. Straightforward
calculation yields

X00

X
¼ r

Z4

�
q̈
q
þ ðr − 2r1 − 1Þ

�
_q
q

�
2
�

¼ 4ð2κ0Þ2
Z4q2

rðr − 2r1 − 1Þ
�
p2 þ K

ðr − 2r1 − 1Þq2
�
;

where in the second equality we have made use of
the semiquantum solution (25). In order to recover
the classical limit (35), the power r should satisfy
rðr − 2r1 þ 1Þ ¼ 2

9
ð1 − 3wÞ=ð1 − wÞ2, whose two roots

happen to coincide with r1 and r2. Setting r ¼ r1 yields
(54), with a negative coefficient in the q−2 term (we
assume 0 < w < 1), as could have been anticipated. The

second root r ¼ r2 yields instead a positive coefficient
in the q−2 term, and reproduces (58) if we demand that
w < 1

3
and

TS

NS

¼ 3Kð1 − wÞ
1 − 3w

⇒ VC →
ðqr2Þ00
qr2

: ð60Þ

Both potentials are shown in Figs. 3 and 5.
It is clear from (54) and (58) that the two equivalent

parametrizations of the classical model induce two inequi-
valent quantum theories, as is clear from Figs. 3 and 5
showing a comparison of the respective gravitational
potentials. The difference is perhaps even clearer when
the gravitational potentials are given in the familiar form
based in the configuration space and the semiclassical
variable q is raised to two distinct powers, i.e., r1 ¼ 3w−1

3ð1−wÞ
and r2 ¼ 2

3ð1−wÞ. In some sense these two parametrizations

are exhaustive in regard to the quantization ambiguity
as these are the only powers possible for theories that

FIG. 4. Shape of the conformal potential VC (58) for w ¼ 0.2
and various values of TS=NS, decreasing to 0 according to the
arrow, compared with the classical Vcl (38) and fluid VF (54)
potentials. The special value (we assume K → 1) TS=NS ¼
3ð1 − wÞ=ð1 − 3wÞ ≃ 0.375 (not shown) corresponds to that in
Fig. 3 for which VC ¼ ðqr2Þ00=qr2 . Shown are TS=NS ¼ 0.125
(dotted line), 0.075 (dashed), 0.036 (full), 0.025 (dot-dashed),
0.005 (dashed) and 0 (dotted). The full line represents a critical
point above which the potential has only one maximum. For
TS=NS ¼ 0, the potential is minimum at the bounce where it
vanishes.

FIG. 5. Same as Fig. 3 in logarithmic scale for the potentials,
with different wave numbers (k̄ standing for either kF or kC

depending on the case at hand), illustrating the various possible
predictions. For k̄ ∼ k̄3, the quantum potentials is not felt by the
perturbations, and only the classical potential induce a nontrivial
spectrum. In the region of wavelengths around k̄ ∼ k̄2, the
perturbations enter the potentials at different points, but the
characteristic behavior is more or less comparable; one would
expect in this regime to have different amplitudes and even
perhaps power indices, but an overall similar shape. For k̄ ∼ k̄1 on
the other hand, the number of entries and exits of the perturbation
in and out of the potentials VF and VC being different, predictions
between the two models could radically differ, e.g., with super-
imposed oscillations changing the shape of the primordial power
spectrum.
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satisfy the classical limit, as follows from our discussion
below (36).
The source of the ambiguity is the nonlinearity of

the theory of gravity. Since the quantization concerns both
the linear perturbations and the background variables, the
transformation of the perturbation variables (31) is nonlinear,
contrary to the situation of Ref. [7], and therefore, it leads to
unitarily inequivalent theories.
In our framework, the non-equivalence is responsible for

the discrepancy between the two semiquantum F-potential
(54) and C-potential (58). The formula (33) that is used to
derive the F-potential depends on the expectation value of
Z that is a function of Q̂ only. On the other hand, the
C-potential comes from the expectation value of a compound
observable, involving both Q̂ and P̂, and given in (46). These
two potentials cannot coincide because the classical relations
between basic and compound observables do not apply to
the expectation values of the respective operators due to the
quantum uncertainty.

VI. CONCLUSIONS

We have suggested a finite cosmological model in
which quantum gravitational effects play a leading role,
resolving the classically expected singularity to a bounc-
ing scenario. Our model consists in adding to general
relativity a perfect fluid with constant equation of state w.
Classically, the FLRW solution initiates out of or contracts
to a singularity at which the scale factor a vanishes. The
perturbations around such a background also tend to
diverge at the singularity.
Upon quantizing the background, factor ordering ambi-

guities permit to add to the zeroth order Hamiltonian a
repulsive potential term, whose strength is thus undeter-
mined. Choosing the canonical ordering removes it alto-
gether. The fact that the trajectories are nonsingular results
from our definition of these trajectories as expectation
values. For coherent states, that leads to Eq. (25).
The ordering ambiguity also translates into the fact that
the coefficients appearing in this equation, i.e., the minimum
scale factor qB and its acceleration ω at the bounce, are free
parameters which cannot be calculated from first principles.
In that sense, the ordering ambiguity is always present in our
model and, at the perturbation level, is conveniently encoded
in the free parameters LQ,MQ,NQ,RQ andTQ. Assuming a
coherent state to describe the evolution in terms of an actual
spacetime, i.e., a trajectory aðτÞ for the scale factor, one can
then calculate a phase space trajectory which, thanks to the
quantum effective potential, smoothly connects the con-
tracting and expanding solutions, avoiding the singularity in
the process.
Most model-building approaches would then identify

these bouncing trajectories as semiclassical, and would
then go on to quantize the perturbations on top. By
doing so, one would then be allowed whatever canonical

transformation on the perturbation variables, leading to
classically and quantum mechanically undistinguishable
theories.2 Here however, we take seriously the quantum
nature of the background time development and show that
the classically harmless canonical transformations become
unitarily inequivalent theories with potentially different
physical predictions: the bouncing trajectories are semi-
quantum and not semiclassical.
Summarizing, we found that upon quantizing the back-

ground to regularize the classical singularity, one finds two
qualitatively different perturbation theories. It is important
to note that had the background dynamics been given
by a classical or semiclassical trajectory, singular or non-
singular, the relation between the two quantum perturbation
theories would be unitary as the change of perturbation
variables would be given by a linear (time-dependent)
canonical transformation. However, the introduction of a
background wave function and the subsequent replacement
of the background variables with the respective expectation
values is not equivalent to the background following an
actual trajectory. One should not be misled by the existence
of semiquantum trajectories in Fig. 1, representing expect-
ation values of q ¼ hQ̂i and p ¼ hP̂i only; they cannot be
assumed to provide a semiclassical dynamics, and therefore
cannot be used to determine the other expectation values
that are involved in the transformation (31) between the two
sets of perturbation variables.
In other words, in this instance, the notion of a classical or

even semiclassical spacetime in which quantum perturba-
tions evolve needs be replaced by a more general “quantum
spacetime.” Somehow, the perturbative expansion breaks
down and the transformation between the sets of variables
should be generalized to account for the uncertainties of the
background in order to permit unambiguous predictions.
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APPENDIX: AFFINE COHERENT STATES
AND AFFINE QUANTIZATION

In what follows we discuss the affine coherent states and
how they can be used as a means to implement affine
quantization as well as to provide useful trajectories
[11,25–27].

2The calculations we showed concern the scalar part of the
perturbation, but is not restricted to it, the tensor component being
also presumably affected by a similar ambiguity.
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1. Coherent states and quantization

The background phase space ðq; pÞ is the half-plane
that is not invariant under the usual group of q–and
p–translations. For this reason the application of “canonical
quantization” based on the unitary and irreducible repre-
sentation of the group of translations, the Weyl-Heisenberg
group, is problematic. It is however possible to consider a
more general quantization that is based on any minimal
group of canonical transformations that enjoys a nontrivial
unitary representation, the so-called covariant integral quan-
tization. In the case of the half-plane the natural choice is the
affine group of a real line, ðq; pÞ ∈ Rþ ×R,

ðq0; p0Þ∘ðq; pÞ ¼
�
q0q;

p
q0
þ p0

�
: ðA1Þ

Its unitary, irreducible and square-integrable representation
in the Hilbert space H ¼ L2ðRþ; dxÞ reads

hxjUðq; pÞjψi ¼ hxjq; pi ¼ eipx=ℏffiffiffi
q

p ψ

�
x
q

�
; ðA2Þ

where ψðxÞ ¼ hxjψi ∈ H.
Let us consider a particular example of the covariant

integral quantization that is based on coherent states. In the
present case, they are the affine coherent states,

Rþ ×R ∋ ðq; pÞ ↦ jq; pi ≔ Uðq; pÞjξi ∈ H; ðA3Þ

where jξi is the so-called fiducial vector, a fixed normalized
vector in Hilbert space such that N ¼ ρð0Þ < ∞, with

ρðαÞ ¼
Z jξðxÞj2

xαþ1
dx;

and the operator Uðq; pÞ is given by Eq. (19). The
resolution of unity is

Z
dqdp
2πℏN

jq; pihq; pj ¼ 1; ðA4Þ

as can be verified in a straightforward manner using
Eq. (A2) and applying the above operator on two arbitrary
states hϕ1j and jϕ2i:Z

dqdp
2πℏN

hϕ1jq;pihq;pjϕ2i¼
Z

dxϕ�
1ðxÞϕ2ðxÞ¼hϕ1jϕ2i;

using the usual closure relation

Z
dxjxihxj ¼ 1

and the property

δðx − yÞ ¼
Z

dp
2πℏ

eipðx−yÞ=ℏ

for the Dirac distribution.
The affine coherent state quantization is obtained by

substituting functions of q and p by

fðq; pÞ ↦ Af ≔
Z
Rþ×R

dqdp
2πℏN

jq; pifðq; pÞhq; pj; ðA5Þ

with N the normalization constant. Let us also introduce

σðαÞ ¼
Z 



 dξðxÞdx





2 dx
xαþ1

; ðA6Þ

which is the same as ρwith the function ξðxÞ replaced by its
derivative ξ0ðxÞ.
One may easily find the affine coherent state quantiza-

tion (A5) of the following observables through (see, e.g.,
Appendixes of [27] or [28] for explicit computations)

A1 ¼ 1; ðA7aÞ

Aqα ¼ aðαÞQ̂α; ðA7bÞ

Ap ¼ P̂; ðA7cÞ

Aqαp2 ¼aðαÞQ̂αP̂2− iαℏaðαÞQ̂α−1P̂þcðαÞℏ2Q̂α−2; ðA7dÞ

where Q̂ and P̂ are the “position” and “momentum”
operators on the half-line: Eqs. (A7b) and (A7c) are to be
understood as hxjAqα jϕi ¼ aðαÞxαϕðxÞ and hxjApjϕi ¼
−iℏdϕ=dx, where ϕðxÞ ≔ hxjϕi.
The parameters

aðαÞ ¼ ρðαÞ
ρð0Þ

and

cðαÞ ¼ 1

2
αð1 − αÞaðαÞ þ σðα − 2Þ

ρð0Þ
are calculable for any real fiducial vector ξðxÞ, which
should be chosen such that að1Þ ¼ 1, i.e., ρð1Þ ¼ ρð0Þ
in order to ensure that Aq ¼ Q̂ so that Eqs. (A7b) and
(A7c) implement the required usual commutation rela-
tion ½Aq; Ap� ¼ ½Q̂; P̂� ¼ iℏ.
From the above, it follows that the application of the

affine quantization (A5) to the background Hamiltonian (8)
yields

Hð0Þ ↦ Ĥð0Þ ¼ 2κðP̂2 þ ℏ2c0Q̂
−2Þ; ðA8Þ

with c0 ¼ cð0Þ ¼ σð−2Þ=ρð0Þ.
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Furthermore, using again (15), one may easily calculate
the various constants appearing in the perturbation
Hamiltonians, namely

LQ ¼ ρð4r1Þ
ρð0Þ ðA9Þ

for (43), as well as

MQ ¼ ρð2r1Þ
ρð0Þ ;

NQ ¼ ρð−2r2Þ
ρð0Þ ;

RQ ¼ 2ℏr2NQ; ðA10Þ
and

TQ ¼ −r2ð1þ 2r2ÞNQ þ
σð−2r2 − 2Þ

ρð0Þ ; ðA11Þ

which appear in (45). Obviously, these parameters are to a
large extent free as the affine quantization depends on the
fiducial vector jξi. One might think about the coherent state
quantization based on the fiducial vector as a convenient
method for parametrizing natural ordering ambiguities.

2. Coherent state expectation values

The most important application of the affine coherent
states in the present work is to derive a useful trajectory
description. As discussed around Eq. (19), one needs to
ensure the so-called physical centering condition
hQ̂i ¼ 1, where the expectation value is taken in the
fiducial state. This condition may not be satisfied by the
state jξi, already normalized to enforce the canonical
commutation relation, and so we introduce a new real
fiducial vector jξ̃i and the associated moments ρ̃ðαÞ ¼R
Rþ dx

xαþ1 jξ̃j2 and σ̃ðαÞ ¼ R
Rþ dx

xαþ1 jξ̃0j2. We find

hq;pjQ̂αP̂2jq;pi¼ ρ̃ð−α−1Þqαp2þ iαρ̃ð−αÞqα−1p

þ
�
σ̃ð−α−1Þþαð1−αÞ

2
ρ̃ð−αþ1Þ

�
qα−2;

ðA12aÞ

hq;pjQ̂αP̂jq;pi ¼ ρ̃ð−α− 1Þqαpþ i
α

2
ρ̃ð−αÞqα−1; ðA12bÞ

hq; pjQ̂αjq; pi ¼ ρ̃ð−α − 1Þqα: ðA12cÞ

Note that the special case α ¼ 0 in (A12c) yields the
normalization hq; pjq; pi ¼ ρ̃ð−1Þ ¼ hξjξi ¼ 1.
For the quantum Hamiltonian (A8), we introduce the

following semiquantum Hamiltonian

Hsem ≔ hq; pjĤð0Þjq; pi ¼ 2κ0

�
p2 þ ℏ2K

q2

�
; ðA13Þ

where the new constantK is given byK ¼ c0ρ̃ð1Þ þ σ̃ð−2Þ.
As for perturbations, it is straightforward to determine the
constant in (51), namely

LS ¼ LQρ̃ð−4r1 − 1Þ; ðA14Þ
whereas one gets

MS ¼ MQρ̃ð−2r1 − 1Þ;
NS ¼ NQρ̃ð2r2 − 1Þ; ðA15Þ

and

TS ¼ NQσ̃ð2r2 − 1Þ þTQρ̃ð2r2 þ 1Þ ðA16Þ
for those appearing in (55).

3. Fiducial vectors

For the sake of concreteness in the present discussion,
let us consider some examples of fiducial vectors and the
specific values of ρðαÞ, σðαÞ, ρ̃ðαÞ and σ̃ðαÞ that they
produce. We use two distinct families of fiducial vectors,
namely one for quantization and another one for the semi-
quantum approximation. This is due to the fact that they
satisfy special and distinct conditions. Namely, the fiducial
vectors for quantization are such as to preserve the canonical
commutation rule (on the half-line), whereas the fiducial
vectors for semiquantum approximations are such as to yield
the expectation values for the momentum and position
operators in any coherent state, aligned with the phase space
point to which a given coherent state is assigned.
We consider the following family of fiducial vectors for

quantization

ξνðxÞ ¼
�
ν

π

�1
4 1ffiffiffi

x
p exp

�
−
ν

2

�
ln x −

3

4ν

�
2
�
; ðA17Þ

where ν > 0 is assumed, and for which we obtain the
corresponding coefficients

ρνðαÞ ¼ exp

�ðα − 2Þðαþ 1Þ
4ν

�
;

σνðαÞ ¼
�
ν

2
þ
�
αþ 2

2

�
2
�
exp

�
αðαþ 3Þ

4ν

�
; ðA18Þ

which are positive definite. As expected, one verifies that
ρνð1Þ ¼ ρνð0Þ ¼ e−1=ð2νÞ, as needed to ensure the correct
commutation relation between the position variable and
its associated canonical momentum. We also note that
hξjQ̂jξi ¼ ρνð−2Þ ¼ e3=ð2νÞ ≠ 1, so the physical centering
condition is not fulfilled by this fiducial state.
As for the semiquantum description, we consider the

following family of fiducial vectors
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ξ̃μðxÞ ¼
�
μ

π

�1
4 1ffiffiffi

x
p exp

�
−
μ

2

�
ln xþ 1

4μ

�
2
�
; ðA19Þ

where now μ > 0 is assumed. In this case, we obtain

ρ̃μðαÞ ¼ exp

�ðαþ 1Þðαþ 2Þ
4μ

�
;

σ̃μðαÞ ¼
�
μ

2
þ
�
αþ 2

2

�
2
�
exp

�ðαþ 3Þðαþ 4Þ
4μ

�
: ðA20Þ

These are also positive definite as expected. It is now
clear that ρ̃μð−2Þ ¼ 1, as expected for this description to
satisfy the centering condition, but that now ρ̃ð1Þ ¼
e3=ð2μÞ ≠ e1=ð2μÞ ¼ ρ̃ð0Þ so that these fiducial vectors cannot
be used for quantization. Some example functions ξν and ξ̃μ
are displayed in Fig. 6.
The above relations permit to actually calculate the

various coefficients appearing in the previous sections.
First, one finds that c0 ¼ ν=2, so that it suffices to demand

ν ≥ 3
2
to ensure self-adjointedness of the Hamiltonian

(16). As for its semiclassical counterpart (24), one finds

K ¼
�
ν

2
þ 2μþ 1

4

�
exp

�
3

2μ

�
;

whose minimum value Kmin is reached for ν ¼ 0 and
μmin ¼ ð3þ ffiffiffiffiffi

21
p Þ=4 ≈ 1.89, at which point one has

Kmin ≈ 2.64.
Moving to the quantum corrections to the evolution of

perturbations, we find

TS

NS

¼
�
1

4
þ μþ ν

2

�
exp

�
17 − 9w
6μð1 − wÞ

�
;

so that the conformal potential can be cast into the usual
z00=z form if the equation

�
μþ νþ 1

2

�
exp

�
17 − 9w
6μð1 − wÞ

�
¼ 3ð1 − wÞ

1 − 3w

�
νþ

�
μþ 1

2

�
exp

�
3

2μ

��

has non trivial solutions for μ, ν > 0. This is solved for ν as a function of μ and w through

νðw; μÞ ¼
exp

� 3

2μ

�
−

1 − 3w
3ð1 − wÞ exp

�
17 − 9w
6μð1 − wÞ

�
1 − 3w
3ð1 − wÞ exp

�
17 − 9w
6μð1 − wÞ

�
− 1

�
μþ 1

2

�
: ðA21Þ

Figure 7 illustrates the behavior of (A21) for various
values of w. For the conformal radiation case w ¼ 1

3
,

Eq. (A21) may only be satisfied for ν < 0, in contra-
diction to the assumption. As expected from the form

(58) of the potential VC, the limit w ¼ 1
3

yields an
identically vanishing potential, and (60) is undefined
unless K vanishes, which does not happen with the
basis used.

FIG. 6. Fiducial functions ξνð10xÞ and ξ̃μðx=10Þ (blue), for ν,
μ ¼ 1 (thin line), 2 (full), 3 (dashed) and 4 (dotted). For better
readability of the figure, the functions have been shifted so that ξν
appears centered around 0.1 and ξ̃μ around 10. As functions of x,
they should all be centered around x ¼ 1.

FIG. 7. Condition (A21) on νðw; μÞ ensuring the potential VC in
(59) takes the form ðqr2Þ00=ðqr2Þ; shown are νðw; μÞ for w ¼ 0
(thin line), w ¼ 0.1 (full line), w ¼ 0.2 (dashed line), w ¼ 0.3
(dotted line) and w ¼ 1

3
(full blue line). As both μ and ν are

positive definite, it is clear that for a given value of w, there is only
a very limited range of μ satisfying the condition. For w ¼ 1

3
, the

positive branch disappears and there is no such solution.
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