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We discuss a coarse-graining procedure for describing the superhorizon dynamics of inflationary tensor
modes. Using basic principles of quantum mechanics, we determine a probability density for coarse-
grained tensor fields, which satisfies a stochastic Fokker-Planck equation. The corresponding noise and
drift are computable, and depend on the cosmological system under consideration. Our general formulas
are applied to a variety of cosmological scenarios, including cases seldom considered in the context of
stochastic inflation. We start obtaining the expected expressions for noise and drift in pure de Sitter and
power-law inflation, leading to a tensor spectrum whose properties match with quantum field theory
calculations. We also discuss how a nonattractor phase during inflation influences the drift of our stochastic
evolution equations. We then apply our method to scenarios with a transition from de Sitter to radiation and
matter domination phases, for determining the stochastic distribution of superhorizon tensor modes during
these eras. In particular, we show how interference effects between modes flowing through the
cosmological horizon, and modes spontaneously produced at superhorizon scales, affect the stochastic
evolution of coarse-grained quantities. The expression for the stochastic noise depends on the number of
e-folds of cosmic evolution, and it rapidly approaches a constant after a few e-folds of postinflationary
cosmic expansion. In an appropriate limit, the corresponding spectrum of tensor modes at horizon crossing
matches with the results of quantum field theory calculations.
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I. INTRODUCTION

Cosmological inflation is the most successful mecha-
nism at our disposal for generating the initial conditions for
our Universe [1–7]. During cosmological inflation, space-
time fluctuations produced by quantum effects at micro-
scopic distances are stretched to superhorizon scales, where
they freeze. Subsequently, after inflation ends, such large
scale fluctuations reenter the horizon, they become dynami-
cal, and seed the evolving cosmic structures we observe
today in the sky.
This picture for early universe cosmology is appealing

and physically well motivated; nevertheless it requires
some care when applying a quantum field theory (QFT)
perturbative approach to cosmological space-times. For
example, it is well known [8–10] that perturbative compu-
tations of correlation functions of light quantum fields in de
Sitter space can be affected by large infrared effects, which
make subtle a proper physical interpretation of the results:
see e.g., [11–16]. Among others, the stochastic approach to
cosmological inflation first proposed by Starobinsky [17]
provides a consistent framework for resumming large
infrared contributions: see e.g., [18–31] for works on this
topic. The starting point of stochastic inflation is the
observation that after crossing the cosmological horizon,
quantum fluctuations classicalize [32–40], and their
description is more conveniently formulated in terms of

a classical, stochastic Fokker-Planck evolution equation. In
fact, long wavelength modes at superhorizon scales receive
impulses from small-scale fluctuations as the latter cross
the horizon: intuitively, this process corresponds to a
cosmological version of Brownian motion.
In this work we study the stochastic distribution of

cosmological fluctuations at superhorizon scales, focusing
on the dynamics of primordial tensor modes predicted by
inflation [41–44]. Spin-2 inflationary tensor modes are
light fields in quasi-de Sitter space: their superhorizon
distribution is likely to be amenable of a classical descrip-
tion as in the stochastic approach to scalar fluctuations
during cosmological inflation. Our aim is to put in a firmer
footing the intuitive idea that the stochastic distribution of
tensor fields at superhorizon scales is due to the flow of
modes between subhorizon and superhorizon scales.
Specifically, we aim to address two questions:
(1) Is there a way to define coarse-grained tensor modes

at superhorizon scales, and study their correspond-
ing dynamics using a stochastic approach?

The definition of tensor “zero modes” can be subtle since
superhorizon spin-2 fields do not preserve the isotropy of
the underlying Friedmann-Robertson-Walker (FRW)
space-time. Starting from basic principles of quantum
mechanics, in Sec. II we propose a coarse-grained descrip-
tion of primordial tensor modes, based on the method of the
functional Schrödinger picture [45] used in [27,29] for a

PHYSICAL REVIEW D 105, 023521 (2022)

2470-0010=2022=105(2)=023521(16) 023521-1 © 2022 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.023521&domain=pdf&date_stamp=2022-01-24
https://doi.org/10.1103/PhysRevD.105.023521
https://doi.org/10.1103/PhysRevD.105.023521
https://doi.org/10.1103/PhysRevD.105.023521
https://doi.org/10.1103/PhysRevD.105.023521


stochastic analysis of the scalar sector of fluctuations. The
coarse-grained tensor quantity we define is representative
of the dynamics of long wavelength tensor modes once they
leave the cosmological horizon. Its definition does not
interfere with the symmetries of the background space-
time. In fact, we focus on a free theory described by a
quadratic tensor action, with the specific purpose of under-
standing how the properties of the coarse-grained quantities
depend on the curved cosmological space-time where they
are embedded. We obtain a probability density for the
coarse-grained superhorizon tensor modes, and we derive
its corresponding classical Fokker-Planck evolution equa-
tion. It is built in terms of noise and drift, which are
explicitly calculable from combinations of mode functions
evaluated at superhorizon scales. The definitions of noise
and drift are free from large infrared effects. The noise is
induced by a flow of modes as they cross the cosmological
horizon from small to large scales (or vice versa)—as in the
aforementioned cosmological analog of Brownian motion.
But it can also be affected by phenomena occurring around
horizon crossing scales, as for example interference among
the flow of modes with particles produced at superhorizon
scales by sizable space-time gradients.
The evolution of the coarse-grained probability density is

Markovian, up to non-Markovian contributions associated
with modes that rapidly decay at superhorizon scales. Such
non-Markovian effects are negligible in scenarios where
cosmological evolution is an attractor. However, they can
provide a sizable contribution to the drift term in scenarios
that include phases of nonattractor evolution, and our
general formulas can be applied to those set up.
We also derive formulas for the spectrum of tensor

fluctuations evaluated at horizon crossing, which is useful
for comparing with results from QFT computations.
Moreover, since we are dealing with coarse-grained quan-
tities, we can define a Gibbs entropy for the system at
superhorizon scales. We find that it increases with the
universe expansion, and we quantitatively characterize its
growth.
(2) Is there a consistent stochastic description for super-

horizon tensor modes after inflation ends?
One of our motivations is to apply our stochastic method

to cosmological backgrounds more general than de Sitter,
in order to better understand the dynamics of superhorizon
tensor modes during and after inflation. As far as we are
aware, this is the first time that this question is addressed in
the context of a stochastic description of superhorizon
tensor modes. We start in Sec. III A with the case of
inflation: we recover the expected results for the stochastic
distribution of coarse-grained tensor fields during de Sitter
and power-law cosmological expansion. We also consider
the case for nonattractor cosmological evolution, showing
explicitly how it affects the drift contributing to the Fokker-
Planck equation. In Sec. III B we apply our stochastic
formulas to the case radiation and matter dominated eras

occurring after inflation ends. These stochastic equations
describe the coarse-grained evolution of superhorizon
tensor modes that eventually reenter the horizon as cosmic
evolution proceeds. The computation of the stochastic
noise of coarse is instructive, and makes manifest inter-
ference effects among the flow of modes reentering the
horizon after inflation ends, and the superhorizon modes
semiclassically produced at large scales by large space-time
gradients, see e.g., [41,42,46,47]. The formula for the noise
depends on the number of e-folds of cosmic expansion, and
it rapidly approaches a constant value after a few e-folds.
Also, we prove that our final results do not depend on the
choice of infrared cutoff, the latter providing contributions
that are exponentially suppressed by the number of e-folds
of expansion. Our stochastic formalism can then be used to
compute the spectrum of tensor fluctuations at the horizon
exit, that in appropriate limits coincide with the results of
QFT calculations.
A general lesson of our approach is that a classical,

stochastic approach to primordial tensor fluctuations from
inflation is feasible and provides new physical insight in
cosmological situations not usually considered in a sto-
chastic context. Our results are consistent expectations
from a traditional QFT approach to cosmological fluctua-
tions from inflation. It can be used for better clarifying the
classical dynamics of tensor modes at large superhorizon
scales, and for dealing with large infrared effects from long
wavelength modes. We summarize and further discuss
physical implications of our results in Sec. IV, which is
followed by a technical Appendix. Throughout this work
we set ℏ ¼ c ¼ 1.

II. A FOKKER-PLANCK EQUATION FOR
TENSOR MODES FROM INFLATION

After crossing the cosmological horizon, single-field
inflationary scalar and tensor fluctuations become time
independent, and their spatial configurations can be
described in terms of classical, but stochastically distrib-
uted superhorizon modes.
Our aim in this section is to discuss a systematic method

for obtaining the classical evolution equation describing
stochastic, coarse-grained superhorizon modes, starting
from basic principles of quantum mechanics. We discuss
free theories in arbitrary cosmological backgrounds
equipped with a cosmological horizon, with the specific
aim of extracting the effects of curved space on the
derivation of the stochastic equation. We concentrate on
tensor fluctuations, being the stochastic approach for scalar
fluctuations already well developed (including the effects
of self-interactions).
For determining the desired stochastic equation, we

make use of the approach of [27,29] based on the
Schrödinger functional picture, first applied to inflationary
cosmology in [45]. (See instead [48–50] for derivations of
inflationary stochastic equations using a Schwinger-
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Keldish approach.) We start in Sec. II A setting the stage for
the system we consider, and reviewing how the
Schrödinger formalism leads to an evolution equation for
probability densities associated with quantum Fourier
modes of inflationary fluctuations. In Sec. II B we define
the coarse-grained superhorizon quantities we consider,
and we derive the classical stochastic evolution equation for
the distribution of the coarse-grained quantities. The result
is a Fokker-Planck evolution equation, for which we
provide the expressions for noise and drift. In Sec. II C
we discuss how to use these results for computing the
spectrum of tensor fluctuations evaluated at horizon cross-
ing, as well as the Gibbs entropy associated with super-
horizon coarse-grained tensor modes.

A. The system we consider

We consider a space-time described by a conformally flat
FRW metric perturbed by spin-2 tensor perturbations:

ds2 ¼ a2ðτÞ½−dτ2 þ ½δij þ hijðτ; x⃗Þ�dxidxj�; ð2:1Þ

where aðτÞ is the scale factor, while hij denotes the
linearized, transverse-traceless tensor fluctuation, gauge
invariant at first order in perturbations. We do not need
to specify the explicit time dependence of the scale factor
for developing our arguments, which can then be applied to
a variety of cosmological setups (see Sec. III). The effective
quadratic action controlling the tensor modes in Eq. (2.1) is

Sð2Þh ¼ M2
Pl

8

Z
dτd3xa2ðτÞ½h02ij − ð∇⃗hijÞ2�; ð2:2Þ

where prime denotes derivative along conformal time.
We express tensor fluctuations in Fourier space, defined

within a box of comoving size L (in due time we will
consider the limit of infinitely large box size):

hijðτ; x⃗Þ ¼
2

MPlL3

X
λ

X
k⃗

hðλÞk ðτÞeðλÞij ðk̂Þeik⃗ x⃗; ð2:3Þ

with k⃗ ¼ kk̂ the tensor 3-momentum, and λ its polarization.

eð�Þ
ij ðk̂Þ are (real) helicity tensors normalized as (we sum

over repeated spatial indexes)

eðλÞij ðk̂Þeðλ
0Þ

ij ðk̂Þ ¼ 2δλλ
0
: ð2:4Þ

To ensure that hijðτ; x⃗Þ is real, we demand ðhðλÞk ðτÞÞ� ¼
hðλÞ−kðτÞ, and in writing Eq. (2.3) we sum over positive as
well as negative values of k. Plugging Eq. (2.3) in (2.2), we
find the quadratic action for mode of momentum k:

Sk ¼
X
λ

Z
dτa2ðτÞ½h0ðλÞk h0ðλÞ−k − k2hðλÞk hðλÞ−k �: ð2:5Þ

The associated Lagrangian density Lk is the argument
of the previous integral, and allows us to define the
momentum

πðλÞk ≡ δLk

δh0ðλÞk

¼ a2ðτÞh0ðλÞ−k : ð2:6Þ

This information can be used to obtain the Hamiltonian
density

HðλÞ
k ¼ 1

a2ðτÞ π
ðλÞ
k πðλÞ−k þ a2ðτÞk2hðλÞk hðλÞ−k; ð2:7Þ

which is a basic ingredient for our next discussion.

1. The functional Schrödinger picture

We make use of the functional Schrödinger picture to
derive the evolution equation for probability densities for
the system under consideration. We apply the approach
developed in [27] to the case of spin-2 tensor modes. In this
subsection we make use of basic rules of quantum
mechanics; in Sec. II B we show how an appropriate
coarse-grained procedure leads to a classical, stochastic
evolution equation for the superhorizon quantities we are
interested in.
In the functional Schrödinger formalism, the quantities

hðλÞk and πðλÞk are promoted to operators ĥðλÞk and π̂ðλÞk . An
abstract quantum mechanical state in Fourier space is

realized by ΨðλÞ
k ðhðλÞk ; τÞ which is a wave functional of

the c-number quantity hðλÞk , and it is evaluated at a time τ.

The action of the operator ĥðλÞk on the quantum state is

realized by multiplying ΨðλÞ
k by hðλÞk , while the action of the

canonical momentum π̂ðλÞk is realized by functional differ-
entiation:

ĥðλÞk jΨðλÞ
k i → hðλÞk ΨðλÞ

k ; ð2:8Þ

π̂ðλÞk jΨðλÞ
k i → 1

i
∂ΨðλÞ

k

∂hðλÞk

: ð2:9Þ

The Schrödinger formalism dictates that for each mode k
and polarization λ the evolution of the quantum state is
controlled by the Schrödinger equation

i
∂ΨðλÞ

k ðτÞ
∂τ ¼ HðλÞ

k ΨðλÞ
k ðτÞ; ð2:10Þ

with Hamiltonian

HðλÞ
k ¼ −

1

a2ðτÞ
δ2

δhðλÞk δhðλÞ−k

þ a2ðτÞk2hðλÞk hðλÞ−k: ð2:11Þ
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Ours is a free theory, and we can use a Gaussian Ansatz for
parametrizing the wave function. We assume no parity
violation, hence the explicitly time-dependent functions
appearing in our Ansatz are assumed not to depend on the
polarization index λ:

ΨðλÞ
k ½hðλÞk ; τ�
¼ ΩkðτÞ exp f−a2ðτÞ½αkðτÞhðλÞk hðλÞ−k − β0ðτÞδk0hðλÞk �g:

ð2:12Þ
The zero-mode contribution proportional to β0 is not
forbidden hence we need to include it—as we will see it
is relevant when discussing the effects of the zero mode of
infinitely large wavelength.
Plugging Ansatz (2.12) in (2.10), the system of equations

to solve is (all quantities a part from k depend on time τ)

0 ¼ Ω0
k þ iαkΩk; ð2:13Þ

0 ¼ α0k þ iα2k þ
2a0

a
αk − ik2; ð2:14Þ

0 ¼ β00 þ iα0β0 þ
2a0

a
β0: ð2:15Þ

Combining the last two equations, we find the relation
β0ðτÞ ¼ Cβα0ðτÞ, with Cβ arbitrary constant (that will not
enter in our final results). To deal with Eq. (2.14), it is
convenient to define [45]

αkðτÞ ¼
1

i
∂τ ln

�
γ⋆kðτÞ
aðτÞ

�
: ð2:16Þ

Plugging in Eq. (2.14) we get a second order, linear
equation for γk:

γ00k þ
�
k2 −

a00

a

�
γk ¼ 0: ð2:17Þ

Since the definition (2.16) involves derivatives of a loga-
rithm, we can choose the preferred normalization for the
mode γk. We impose the Wronskian condition

γ0kγ
⋆
k − γ0⋆k γk ¼ i: ð2:18Þ

Given these conditions, the following relations hold:

αk þ α⋆k ¼ −
1

jγkj2
; ð2:19Þ

αk − α⋆k ¼ 1

i
∂τ ln

� jγkj2
a2ðτÞ

�
: ð2:20Þ

For any k ≠ 0, we can impose the Bunch-Davies initial
conditions at early times τ → −∞, since at very small

scales the effect of space-time curvature can be neglected.
As shown in [45], this is equivalent to ensure that the wave
function at early times is the one of a harmonic oscillator.
These conditions completely fix the solution for each
mode k ≠ 0.
We need special care in dealing with the zero mode. In

this case the Bunch-Davies condition does not apply, since
k ¼ 0 can never acquire a small-scale limit for any given
time τ. The Fourier mode k ¼ 0 is a linear combination of
the two independent solutions,

γ0ðτÞ ∝ aðτÞ; γ0ðτÞ ∝ aðτÞIðτÞ; ð2:21Þ

which solve Eq. (2.17). The quantity IðτÞ is defined as

IðτÞ ¼
Z

τ

τ⋆

dτ̃
a2ðτ̃Þ ; ð2:22Þ

with τ⋆ an arbitrary fiducial time. We find it convenient to
express the zero mode as

γ0ðτÞ
aðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2μ sin ðΔθÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μe2iΔθ

2 sin ðΔθÞ

s
IðτÞ; ð2:23Þ

with Δθ, and μ two arbitrary real quantities. Their values
can be associated with the initial conditions on the zero
mode at fiducial time τ�. The expression (2.23) automati-
cally satisfies the Wronskian condition. An overall phase
can be included in the zero-mode solution, but it has no
physical consequences. The solution for α0, as defined in
(2.16), reads

α0ðτÞ ¼
μe−iðΔθþπ=2Þ

a2ðτÞ
1

1þ μe−iΔθIðτÞ : ð2:24Þ

It depends on μ andΔθ, determined by the initial conditions
at time τ�. But notice that the value of α0ðτÞ depends also
on the integral IðτÞ which depends on the entire cosmo-
logical history from the fiducial initial time τ⋆ to τ.
Once we have control on the quantities entering in the

wave functional, we define a probability density associated
with the quantum state of momentum k. As usual in
quantum mechanics, this quantity is proportional to the
square of the wave functional1:

PðλÞ
k ¼ jΨðλÞ

k j2: ð2:25Þ

Using the relation (2.12), the normalized probability
reads

1We are focusing on the diagonal elements of the density
matrix; we do not consider off-diagonal elements, which can be
relevant for example to investigate decoherence processes and
quantum-to-classical transition. See e.g., [32–37,39,40].
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PðλÞ
k ¼ fk

π
exp

�
−fk

�
hðλÞk − g⋆0

δk0
fk

��
hðλÞ−k − g0

δk0
fk

��
;

ð2:26Þ

with

fk ¼ a2ðτÞðαkðτÞ þ α−kðτÞÞ; ð2:27Þ

g0 ¼ a2ðτÞβ0ðτÞ ¼ Cβa2ðτÞα0ðτÞ: ð2:28Þ

The probability density PðλÞ
k is an important building

block for the arguments we develop next. In fact, we will
work only in terms of probabilities for determining our
stochastic evolution equation. By differentiating along
time, and by making use of the evolution equation (2.14),
it is straightforward to prove that it satisfies a Fokker-
Planck–like equation:

∂PðλÞ
k

∂τ ¼ ωk
∂2PðλÞ

k

∂hðλÞk ∂hðλÞ−k

þ ω0

� ∂
∂hðλÞk

ðhðλÞk PðλÞ
k Þ þ ∂

∂hðλÞ−k

ðhðλÞ−kP
ðλÞ
−kÞ

�
; ð2:29Þ

with

ωk ¼
i

a2ðτÞ
αk − α0 − α⋆k þ α⋆0

αk þ α⋆k
; ð2:30Þ

ω0 ¼ −iðα0 − α�0Þ: ð2:31Þ

Using Eq. (2.16) we can also reexpress the previous
formula as

ωk ¼ −
jγ0ðτÞj2
a2ðτÞ ∂τ

�jγkðτÞj2
jγ0ðτÞj2

�
; ð2:32Þ

ω0 ¼ −∂τ ln

�jγ0ðτÞj2
a2ðτÞ

�
: ð2:33Þ

This is our starting point for developing a coarse-graining
procedure to describe the dynamics of superhorizon
modes.

B. Coarse-graining superhorizon tensor modes

We now apply the previous formulas to the development
of a convenient coarse-grained tensor field at superhorizon
scales, and its corresponding stochastic evolution equation.
We start defining long-wavelength (time-independent)

superhorizon fields as a sum over Fourier modes, with a
cutoff controlled by the comoving horizon scale kh:

hijðx⃗Þ ¼
2

MPlL3

X
λ

X
k⃗;jkj<kh

hðλÞk eðλÞij ðk̂Þeik⃗ x⃗; ð2:34Þ

where the cutoff scale is (we call H ¼ a0=a2)

kh ≡ σaðτÞHðτÞ; ð2:35Þ

and 0 ≤ σ ≤ 1 is a constant that quantifies what fraction of
long wavelength modes we include in the coarse-graining
procedure. We express the sum in (2.34) in terms of the

time-independent c-numbers hðλÞk we used in the previous
subsection for expressing the waveform Ψ. The coarse-
grained quantity hij in Eq. (2.34) is time independent and
we expect it to be stochastically distributed at superhorizon

scales. Being built in terms of the abstract c-numbers hðλÞk , it
does not spoil the isotropy of the underlying space-time
geometry.
In fact, the coarse-grained quantity hij of Eq. (2.34) is a

natural definition of coarse-grained superhorizon tensor
mode, and we use it in what follows. Being constituted by a

combination of hðλÞk modes at large scales k < kh, we define
the probability density related with the coarse-grained
quantity hij as the product of the independent probabilities
associated with each of the Fourier modes entering in
Eq. (2.34):

Pðτ; hijðx⃗ÞÞ≡ ΠλΠjkj<khP
ðλÞ
k : ð2:36Þ

Notice that the product depends only on the size of the

momenta, and not on their directions. Starting from the PðλÞ
k

evolution equation (2.29) for any given mode k, it is
straightforward to obtain an evolution equation for
Pðτ; hijÞ. Selecting any given k, we first multiply both
sides of (2.29) for all the remaining probability densities

…PðλÞ
k−2P

ðλÞ
k−1P

ðλÞ
kþ1…. Then, using Eq. (2.36) and the Leibniz

rule, we can reconstruct an equation for Pðτ; hijðx⃗ÞÞ.
As shown in the technical Appendix, the final result is a

Fokker-Planck equation controlling the probability density
Pðτ; hijÞ:

1

aðτÞHðτÞ
∂Pðτ; hijÞ

∂τ
¼ N ðτÞ ∂

2Pðτ; hijÞ
∂h2ij þDðτÞ ∂

∂hij ½hijPðτ; hijÞ�: ð2:37Þ

The time derivative in the left-hand side is assembled for
convenience in the combination

aHdτ ¼ Hdt ¼ dn; ð2:38Þ

with n the e-fold number
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n ¼ log ða=a�Þ; ð2:39Þ

a quantity that physically makes manifest the universe rate
of expansion, and that represents the physically correct time
variable in the context of stochastic inflation [28].
The noise and drift in Eq. (2.37) are given by2

N ¼ 2jγ0ðτÞj2
M2

Plπ
2HðτÞa3ðτÞ

Z
ks

kh

k2dk∂τ

�jγkðτÞj2
jγ0ðτÞj2

�
; ð2:40Þ

D ¼ −
2

HðτÞaðτÞ ∂τ ln

�jγ0ðτÞj2
a2ðτÞ

�
: ð2:41Þ

Notice that while the drift depends on the zero mode only,
the noise involves an integration over all the superhorizon
modes, with an horizon-size lower cutoff given by kh ¼
σaH as in Eq. (2.35), and an upper cutoff ks which controls
the total size of the superhorizon region experienced by the
long modes. As we will see, the final results do not depend
on ks, at least for physically relevant scenarios, hence there
are no large infrared effects depending on the total size of
the superhorizon region.
Up to an irrelevant constant overall factor, we can write

jγ0ðτÞj2 ∝ a2ðτÞf1þ σIðτÞ½2 cosΔθ þ σIðτÞ�g; ð2:42Þ

¼ a2ðτÞf1þ σΠðτÞg; ð2:43Þ

where IðτÞ ¼ R
τ
τ⋆ dτ̃=a

2ðτ̃Þ as given in Eq. (2.22). We
introduce

ΠðτÞ≡ 2IðτÞ cosΔθ þ μI2ðτÞ; ð2:44Þ

with μ the constant parameter appearing in the solution for
the zero mode, see Eq. (2.24). Substituting these expres-
sions in formulas (2.40) and (2.41) we get

N ¼ 2ð1þ μΠðτÞÞ
M2

Plπ
2HðτÞaðτÞ

Z
ks

kh

k2dk∂τ

� jγkðτÞj2
a2ðτÞð1þ μΠðτÞÞ

�
;

ð2:45Þ

D ¼ 2

HðτÞaðτÞ ∂τ ln

�
1

1þ μΠðτÞ
�
: ð2:46Þ

It is also interesting to explicitly consider cases where the
decaying mode contribution is set to zero, by selecting
μ ¼ 0. Then the drift vanishes, D ¼ 0, since Eq. (2.46) is
proportional to μ. The noise instead simplifies to

N ¼ 2

π2M2
PlHðτÞaðτÞ

Z
ks

kh

k2dk∂τ

�jγkðτÞj2
a2ðτÞ

�
ð2:47Þ

a formula that plays an important role for our applications.
The following physically relevant properties are worth
emphasizing:

(i) Expressions (2.37), (2.45) and (2.46) are general and
valid for any cosmological space-time aðτÞ. Once
we have control on the expressions for γkðτÞ for each
k, we can compute—analytically or numerically—
the expressions for noise and drift (2.45), (2.46) in a
broad variety of physically interesting situations.

(ii) The noise N in Eq. (2.45) is controlled by a sum of
time derivatives of superhorizon modes, and de-
pends on the time dependence of all the super-
horizon modes ks ≤ k ≤ kh.

As we will see in the next section, such time
dependence is a feature of rapidly expanding space-
times, and the integral (2.45) is associated with the
rate of change of the comoving horizon. This
phenomenon controls the flow of modes crossing
the horizon, and fits well with the heuristic picture
that a source for the stochastic noise N is due to
modes continuously crossing the cosmological hori-
zon separating large and small scales. Effectively,
we are dealing with an open system [27], and the
flow of modes produces an analog of Brownian
motion at cosmological scales.

Importantly, the order of integration in Eq. (2.45)
is from kh to ks, and physically assumes that the
noise is due to the flow of modes crossing the
horizon from subhorizon to superhorizon scales. In a
case where the situation is reversed, as what happens
during standard cosmological epochs after inflation
ends, the order of integration should be reversed for
obtaining a noise with positive sign (see examples in
Sec. III).

Also, Eq. (2.45) can include additional sources of
noise in the superhorizon regime, due to correlations
among positive and negative frequency modes with
the same momentum k. As an example, noise can be
generated by particle production at superhorizon
scales after the transition between distinct cosmo-
logical space-times, as what happens between in-
flation and radiation domination. As far as we are
aware, this is the first time these phenomena are
explored in the context of a stochastic approach to
tensor fluctuations. We will discuss explicit exam-
ples of these possibilities in Sec. III.

(iii) The drift term (2.46) depends on the physics of the
zero mode γ0: the decaying mode appearing in γ0
introduces a non-Markovian contribution to (2.37)
through the integral I being dependent on the entire
cosmological evolution between τ⋆ and τ—and not
only on the scale factor at time τ. On the other hand,
if the cosmological evolution corresponds to an
attractor, I and Π become rapidly a constant: all
the effects of the decaying mode drop out from

2We pass to the continuous limit taking a large size L, and
expressing the sum as an integral: ð1=L3ÞPk ¼ 1=ð2πÞ3 R d3k.
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expressions (2.45) and (2.46), and the dynamics is
well described by Markovian evolution. In this limit
(or alternatively switching off the effects of the
decaying mode by selecting μ ¼ 0) the drift van-
ishes, and the noise reduces to Eq. (2.47).

C. The spectrum and entropy
of inflationary tensor modes

1. The spectrum

In many cosmological situations it is important to
compute the spectrum of tensor modes at horizon crossing.
It is straightforward to obtain its expression starting from
the Fokker-Planck equation we derived. For simplicity we
consider an attractor cosmological evolution, where the
decaying mode becomes rapidly negligible, and the drift
vanishes. The Fokker-Planck equation (2.37) corresponds
to Einstein formulation of the theory of Brownian motion,
and reads (we express it in terms of the e-fold number,
dn ¼ aHdτ)

∂P
∂n ¼ N ðnÞ ∂

2P
∂h2ij : ð2:48Þ

This equation can be easily integrated providing the
Gaussian probability density, when assuming a positive N

Pðn; hijÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πBðnÞp e−
h2
ij

2BðnÞ; with B0ðnÞ ¼ 2N ðnÞ:

ð2:49Þ

Such probability density leads to the two-point function for
superhorizon tensor modes as

hh2ijðτ; xÞi ¼
Z

dhijh2ijP ¼ BðnÞ: ð2:50Þ

The two-point function depends on the e-fold number, and
it is independent from the spatial position. The same
quantity hh2iji can also be expressed in Fourier space, as
an integral over the long wavelength tensor spectrum up to
the cutoff scale:

hh2ijðτ; xÞi ¼
Z

ln kh

ln ks

PTd ln k: ð2:51Þ

To compute the value of the tensor spectrum at horizon
scales we can use Eqs. (2.50) and (2.51) together, as
discussed in [51], and use d ln kh ¼ d lnðaHÞ.

We obtain

PT ¼ dhh2ijðτ; xÞi
d ln kh

¼
�

dn
d lnðaHÞ

�
dhh2ijðτ; xÞi

dn
¼

�
dn

d lnðaHÞ
�
dBðnÞ
dn

¼ 2a2H2

ja2H2 þ aH0jN : ð2:52Þ

Hence,3 knowing the profile of N as a function of the
e-fold number n, Eq. (2.52) provides the tensor spectrum at
horizon crossing. For the three cases of pure de Sitter,
radiation domination, and matter domination that we study
next we find

2a2H2

ja2H2 þ aH0j ¼
8<
:

2 for de Sitter;

2 for radiation domination;

4 for matter domination:

ð2:53Þ

It is interesting to compare it with the tensor spectrum
deep at superhorizon scales, computed with standard QFT
methods (see e.g., [52]). One gets

PT ¼ lim
k→0

4k3

π2
jγkj2
a2

; ð2:54Þ

where the modes γk are solutions of Eq. (2.17). Notice that
while Eq. (2.54) depends only on very large-scale modes
with k → 0, the stochastic prediction (2.52) depends on the
noise N which involves a combination over all the super-
horizon modes.

2. The Gibbs entropy

It is also interesting to compute the classical Gibbs
entropy associated with our coarse-grained definition of
superhorizon tensor fluctuations, see Eq. (2.34). (See also
[53] for a discussion on the entropy of tensor fluctuations
from inflation.) From the expression (2.49) (we set to one
the Boltzmann constant), we get

SðnÞ ¼ −
Z

dhijPðn; hijÞ ln ½Pðn; hijÞ�; ð2:55Þ

¼ 1

2
ln ½BðnÞ� þ constant: ð2:56Þ

3In cosmological phases following the end of inflation the
denominator of the overall coefficient in Eq. (2.52) would be
negative, in the absence of the absolute value. However, in these
cases the flow of modes is from superhorizon to subhorizon
scales [see comment in the second point after Eq. (2.47)]. This
fact changes our arguments here by an overall sign, leading to
expression in Eq. (2.52) (with the absolute value).
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We learn that the entropy increases with the universe
expansion, as long as the noise is positive:

dS
dn

¼ B0ðnÞ
2BðnÞ ¼

1

2

N ðnÞR
nN ðn0Þdn0 : ð2:57Þ

If the noise N is constant (or if it rapidly approaches a
constant), then B ∝ 2n, and we find that the rate of
variation of the entropy is inversely proportional to the
e-fold number: dS=dn ¼ 1=ð2nÞ. In our setup the Gibbs
entropy grows logarithmically with the number of e-folds
n: S ∝ ðlog nÞ=2.
Let us briefly discuss the conceptually important case of

de Sitter space, and compare our coarse-grained entropy
with the Gibbons-Hawking entropy SdS ¼ πM2

Pl=H
2
0 (with

H0 the constant Hubble parameter). As we are going to
learn in Sec. III, the noise is constant in de Sitter, hence the
coarse-grained entropy associated with superhorizon tensor
modes grows logarithmically as Scg ¼ log

ffiffiffiffiffiffiffiffiffiffi
n=n⋆

p
, with n⋆

a reference e-fold number. Scg contributes to the energy
budget, and keeps smaller than SdS as long as n ≤ e2SdS , a
limit on the e-fold number imposed by the entropy bound.
We point out however that here we only considered the
coarse-grained Gibbs entropy, while we do not include
entanglement effects that have been argued to contribute to
the entropy budget by a function linearly growing with the
number of e-folds: see [37].

III. APPLICATIONS

The general formulas we obtained in the previous
section will now be applied to physically interesting cases,
also in contexts that are seldom considered in stochastic
approaches to cosmological inflation.
In Sec. III Awe use our stochastic approach to reproduce

in this context well-known QFT results for the spectrum of
superhorizon tensor modes during inflation. We also go
beyond the standard case, including in our stochastic
approach a scenario with a phase of nonattractor evolution.
In Sec. III B we consider the case of power-law inflation

controlled by a parameter ϵ controlling the departure from a
pure de Sitter expansion. We show that our formalism is
sufficiently flexible to provide an exact, analytic expression
for the noise that reduces to the de Sitter one in the limit
ϵ → 0. We also show that the tilt nT of the tensor spectrum
obtained by our stochastic method satisfies the expected
consistency relation nT ¼ −2ϵ. We derive an expression for
the tensor spectrum using the stochastic formulation that
does not require ϵ to be small.
In Sec. III C we then consider cosmological scenarios

where epochs of radiation and matter domination follow the
phase of inflation. In this situation, we are interested to
derive a stochastic formulation able to describe super-
horizon tensor modes in the process of reentering the
horizon after inflation ends. We find that this flow of modes

from large towards small scales can be influenced by those
genuinely superhorizon modes created by space-time
curvature during radiation and matter dominated eras.
We derive the corresponding expressions for the tensor
spectrum at horizon exit, and compute the associated
coarse-grained Gibbs entropy.

A. Pure de Sitter expansion (plus an extension
to nonattractor evolution)

We start discussing the simplest case of a de Sitter
universe, described by the conformal scale factor

a ¼ −
1

H0τ
; ð3:1Þ

with τ < 0, and H0 a constant of dimensions of inverse
time, corresponding to the Hubble parameter HðτÞ¼a0=a2.
For this choice of the scale factor, one has

a00

a
¼ 2

τ2
: ð3:2Þ

The mode function solving Eq. (2.17), satisfying the
Bunch-Davies conditions, results

γk ¼
1ffiffiffiffiffi
2k

p e−ikτ ×

�
1 −

i
kτ

�
; ð3:3Þ

up to an overall phase that does not enter into the final
results. The integral IðτÞ of Eq. (2.22) controlling the effect
of the decaying mode is (τ⋆ ≤ τ ≤ 0)

IðτÞ ¼
Z

τ

τ⋆
dτ0H2

0τ
02 ¼ H2

0

2
ðτ3 − τ3⋆Þ; ð3:4Þ

¼ −
H2

0τ
3⋆

2
ð1 − e−3nÞ; ð3:5Þ

where the number n of e-folds is defined as n ¼
ln ½aðτÞ=aðτ⋆Þ�. This implies that the quantity I rapidly
approaches a constant during inflation, and its contributions
to noise and drift are exponentially suppressed: we can
safely assume that contributions proportional to σ vanish in
all our expressions. Hence the drift contribution to the
Fokker-Planck equation is zero in this limit. For computing
the noise we need the combination

jγkj2
a2

¼ H2
0

2k3
ð1þ k2τ2Þ ¼ H2

0

2k3

�
1þ k2

H2
0a

2

�
;

¼ H2
0

2k3

�
1þ k2

H2
0a

2⋆
e−2n

�
: ð3:6Þ

Its time (or e-fold) dependence—which controls the noise,
see Eq. (2.47)—is limited to the second term inside the
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parentheses, characterizing the rate of change of the
comoving horizon.
Substituting Eq. (3.6) in the expression (2.47) for the

noise, we can easily perform the integral. We get the
expression

N ¼ H2
0

M2
Plπ

2
ðσ2 − k2sτ2⋆e−2nÞ: ð3:7Þ

The result depends on the choice of the cutoff kh ¼ σaH,
and the infrared cutoff ks. For the cutoff kh we choose
σ ¼ 1: we include all the superhorizon modes starting from
horizon crossing, assuming all of them contribute in
forming the noise. The choice of the infrared cutoff ks is
instead not important, since its contribution is exponen-
tially suppressed as the e-fold number increases. After a
few e-folds we then get the following expression:

N ¼ H2
0

M2
Plπ

2
: ð3:8Þ

This is the expected result for the noise coefficient. Indeed,
using the fact that dn ¼ d ln aH for a pure de Sitter
evolution, Eq. (2.52) provides

PT ¼ 2H2
0

π2M2
Pl

; ð3:9Þ

which is the well-known spectrum of tensor modes at very
large scales in the limit of pure de Sitter expansion,
obtained using QFT methods and formula (2.54). The
statistics of the stochastic spectrum of coarse-grained
modes maintains its properties from horizon exit up to
very large scales, as expected given that the influence of
decaying modes is negligible.
We now briefly discuss how these classic results can

change, modifying one of the assumptions made so far for
the case of pure de Sitter expansion. During inflation,
transitory phases of nonattractor can enhance the spectrum
of fluctuations—this mechanism is particularly interesting
in view of producing primordial black holes (see e.g.,
[54,55] for reviews). While this possibility has been mostly
explored in the scalar sector, it might occur in the tensor
sector as well [56,57]. During nonattractor, the would-be
decaying mode proportional to the quantity

R
τ dτ̃=a2ðτ̃Þ

does not decay but grows. Possible effects of this phe-
nomenon for what respects quantum contributions to
stochastic quantities have been explored in recent literature,
see e.g., [58–61].
Here we focus our analysis on understanding how a

nonattractor regime influences the classical drift in the
stochastic Fokker-Planck equation, using the formalism we
developed.
The simplest possibility to consider is a model of

nonattractor corresponding to a contracting universe, with

aðτÞ¼a0τ2 (a0 is a normalization factor, and −∞ < τ < 0)
so that a00=a ¼ 2=τ2, as for the case of de Sitter [see
Eq. (3.2)]. This implies that the solution for the mode
function γk is the same as in de Sitter expansion. The
number n of e-folds of contraction is connected to the time
variable by τ ¼ τ�e−2n, for τ� < τ < 0.
We find that the integral I is

I ¼ −
1

3a20τ
3⋆
ðe3n=2 − 1Þ; ð3:10Þ

so it exponentially grows with the number n of e-folds of
contraction [instead of approaching a constant as in de
Sitter, see Eq. (3.5)]. Calculating the drift as in Eq. (2.46),
in the limit of large e-fold number we find the expression

D ¼ −6 − 6e−3n=2
�
1þ 3a20τ

3⋆ cosΔ
μ

�
þOðe−3nÞ: ð3:11Þ

So the drift approaches an order-one constant as contraction
proceeds, and can influence considerably the stochastic
evolution. It would be interesting to study more generally
stochastic features of nonattractor inflation using our
method: we postpone this investigation to future analysis.

B. Power-law expansion

We now apply our formalism to power-law expansion,
described by the scale factor

aðτÞ ¼ −
1

H0τ
1=ð1−ϵÞ ; ð3:12Þ

for constant ϵ, with de Sitter space corresponding to ϵ ¼ 0.
The parameter ϵ is associated with derivatives of the
Hubble parameterH ¼ ðdaÞ=ða2dτÞ through the definition

ϵ ¼ −
1

H2

dH
adτ

: ð3:13Þ

We are interested here in cosmological space-times with
0 ≤ ϵ < 1. We can then express the Hubble parameter and
second time derivative of the scale factor as

aH ¼ −
1

ð1 − ϵÞτ ; ð3:14Þ

a00

a
¼ 1 − ϵ=2

ð1 − ϵÞ2
2

τ2
: ð3:15Þ

It is a textbook exercise to obtain the solution for the mode
functions that approaches a Bunch-Davies vacuum at early
times—see e.g., [52]. From such a solution one gets

(Hð1Þ
ν ðyÞ as the Hankel function of the first kind)
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jγkj2
a2ðτÞ ¼

πð−kτÞ
2ka2ðτÞ jH

ð1Þ
ν ð−kτÞj2; ð3:16Þ

¼ πH2
0

2

ð−kτÞð3−ϵÞ=ð1−ϵÞ
kð3−ϵÞ=ð1−ϵÞ

jHð1Þ
ν ð−kτÞj2; ð3:17Þ

where we denote

ν ¼ 3

2

1 − ϵ=3
1 − ϵ

: ð3:18Þ

For calculating the noise, we assume that the UV cutoff is
kh ¼ aH, selecting σ ¼ 1 in Eq. (2.35): in other words, as
in Sec. III A we include all superhorizon modes in our
definition of coarse-grained tensor quantity. The value of ks
is not important, since its contributions to the integral
exponentially decay to zero as a function of the e-fold
number: in what follows for simplicity we set ks ¼ 0. The
noise is, always assuming ϵ < 1,

N ¼ 2

M2
Plπ

2HðτÞaðτÞ
Z

0

aH
k2dk∂τ

�jγkðτÞj2
a2ðτÞ

�
; ð3:19Þ

¼ H2
0

2πM2
Pl

ð1 − ϵÞð−τÞ 2ϵ
1−ϵ

Z
1−ϵ

0

dð−kτÞð−kτÞ−2ϵ1−ϵ

×
d

dð−kτÞ ðð−kτÞ
3−ϵ
1−ϵjHð1Þ

ν ð−kτÞj2Þ;

¼ 2H2
0GðϵÞ

π2M2
Pl

ð−τÞ 2ϵ
1−ϵ; ð3:20Þ

where the overall coefficient GðϵÞ is given by

GðϵÞ ¼ πð1 − ϵÞ
Z

1=ð1−ϵÞ

0

x3dx

× ½J1þϵ
2−ϵ
ðxÞJ3−ϵ

2−ϵ
ðxÞ þ Y1þϵ

2−ϵ
ðxÞY3−ϵ

2−ϵ
ðxÞ�; ð3:21Þ

with JνðxÞ, YνðxÞ denoting respectively Bessel functions of
the first and second kind. The functionGðϵÞ tends to 1 for ϵ
small:

GðϵÞ ≃ 1þ 2.94ϵþOðϵ2Þ; ð3:22Þ

and is represented in Fig. 1.
Since in this cosmological era the number of e-folds is

connected to time by (τ� being a fiducial time τ⋆ ≤ τ ≤ 0)

τ ¼ τ⋆e−nð1−ϵÞ: ð3:23Þ

We can then write the expression for the noise (choosing for
definiteness τ⋆ ¼ −1)

N ¼ H2
0GðϵÞ
4π2

e−2ϵn: ð3:24Þ

The corresponding tensor spectrum is given by for-
mula (2.52). Its tilt satisfies the well-known relation

nT ¼ d lnPT

d ln k
¼ d lnN

dn
¼ −2ϵ; ð3:25Þ

in agreement with standard QFT methods.

C. From inflation to radiation and
to matter domination

After inflation ends, the standard picture of big bang
cosmology starts, and the universe enters in a phase of
radiation followed by matter domination. Inflationary
superhorizon modes reenter the horizon during these
phases, and begin evolving and propagating through
cosmological distances. During radiation or matter domi-
nation, the stochastic distribution of superhorizon modes
can be described in terms of the physical arguments we
developed in the previous sections. The time-varying size
of the cosmological horizon leads to a flow of modes back
from superhorizon to subhorizon scales—a process con-
tributing to the stochastic noise in the Fokker-Planck
equation for our coarse-grained quantity. In fact, we have
an open system where the Brownian motionlike phenome-
non is induced by the “holes” left by the modes that leave
the superhorizon regime. Moreover, the transition from
inflation to radiation domination leads to particle produc-
tion at superhorizon scales, see e.g., [41,42,46,47], and [52]
for a textbook discussion. We might suspect that the
superhorizon stochastic distribution gets affected by such
phenomena.
In order to describe a universe where inflation (approxi-

mated as de Sitter space) is followed by radiation domi-
nation, we parametrize the scale factor as

aðτÞ ¼ −
1

H0ðτ − τ0Þ
τ < 0; ð3:26Þ

aðτÞ ¼ τ þ τ0
H0τ

2
0

τ > 0; ð3:27Þ

FIG. 1. Plot of the function GðϵÞ given in Eq. (3.21) as a
function of ϵ.
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for a continuous transition among the two regimes at τ ¼ 0
(τ0 > 0 is a fiducial time). During radiation domination, the
solution for mode function γk is a linear combination of
plane waves

γk ¼ c1ðkÞeikτ þ c2ðkÞe−ikτ τ > 0; ð3:28Þ

whose scale-dependent coefficients are determined by the
Israel conditions with inflationary modes in Bunch-Davies
vacuum at τ < 0:

c1 ¼
eikτ0ffiffiffiffiffiffiffi
8k5

p
τ20
; ð3:29Þ

c2 ¼ −
eikτ0ffiffiffiffiffiffiffi
8k5

p
τ20
ð1 − 2ikτ0 − 2k2τ20Þ: ð3:30Þ

We call negative frequency modes (in analogy with their
Minkowski counterparts) the terms weighted by c2ðkÞ in
Eq. (3.28). Their contribution leads to particle production
and amplification of particle number at superhorizon scales.
We can compute the quantity entering in the noise
integrand in Eq. (2.47). We get for τ > 0

jγkj2
a2ðτÞ ¼

H2
0

4k5ðτ þ τ0Þ2
½1þ 2k4τ40 þ 2kτ0 sinð2kτÞ

− ð1 − 2k2τ2Þ cosð2kτÞ�: ð3:31Þ

The oscillatory contributions within the parentheses are due
to interferences between positive and negative frequency
modes with the same k. Starting from expression (3.31),
using the definition in Eq. (2.54), it is straightforward to
compute the spectrum of tensor fluctuations at late times
τ=τ0 ≫ 1. We obtain [46]

PT ¼ 2H2
0

π2M2
Pl

�
sin kτ
kτ

�
2

; ð3:32Þ

at very large scales, kτ ≪ 1, we find PT ¼ 2H2
0=ðπ2M2

PlÞ.
We now analyze the problem from the perspective of the

stochastic formalism developed in the previous sections.
The number of e-folds from the onset of radiation domi-
nation is

τ

τ0
¼ en − 1: ð3:33Þ

The integral I of Eq. (2.22) results

IðnÞ ¼
Z

τ

τ0

dτ̃
a2ðτ̃Þ ; ð3:34Þ

¼ τ30H
2
0ð1 − e−nÞ; ð3:35Þ

hence for increasing n it approaches a constant, although
more slowly than in de Sitter space: the drift and all the
effects of the zero mode nevertheless are suppressed after a
few e-folds, and we neglect them. Starting from Eq. (3.31),
it is straightforward to perform the analytic integrations4

associated with the noise of Eq. (2.47). A mixing between
positive and negative frequency modes of momentum k is
induced by the square of the mode function jγkj2=a2ðτÞ,
and leads to interesting effects.
The noise N controlling superhorizon modes during

radiation domination is computed by the integral in
Eq. (2.47), choosing kh ¼ σaH, and leaving an arbitrary
small ks as infrared cutoff. The quantity N ðnÞ written as a
function of the e-fold number results:

N ðnÞ ¼ H2
0

π2M2
Pl

sin2σ
σ2

�
1 −

H2
0σ

2e−2n

2k2ssin2σ
½1 − 2k4sτ40 − ð1 − 2k2sτ20Þ cos

�
2ksτ0

�
1 −

en

H0τ0

��

− 2ksτ0 sin

�
2ksτ0

�
1 −

en

H0τ0

����
þOðe−3nÞ; ð3:36Þ

where the quantity Oðe−3nÞ decays at least as fast as e−3n
with the number of e-folds of evolution. We checked that
the complete expression for the noise is continuous when
sending ks → 0. Notice that the explicit dependence on ks
of Eq. (3.36) is exponentially suppressed with the e-fold
number: after a few e-folds, the noise approaches a constant
given by

N ðn ≫ 1Þ ¼ H2
0

π2M2
Pl

sin2 σ
σ2

: ð3:37Þ

Using Eqs. (2.52) and (2.53), we find for the tensor
spectrum at horizon crossing, evaluated after a few e-folds
of expansion, results:

PTðn ≫ 1Þ ¼ 2H2
0

π2M2
Pl

sin2 σ
σ2

: ð3:38Þ

4Recall that we are in a situation where the flow of modes is
from superhorizon to subhorizon scales, hence we should place
an overall minus sign in Eq. (2.47), as explained in the second
point after that formula.
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When σ ≪ 1, the quantity in Eq. (3.38) coincides with
the QFT tensor spectrum of Eq. (3.32) when evaluated deep
at superhorizon scales kτ → 0. Physically, this choice for σ
implies that we include in the coarse-graining procedure
only modes at very large scales, well beyond the horizon
size—see our definition of UV cutoff in Eq. (2.35).
This result is intuitively clear since the QFT approach
focuses precisely on modes at very large scales, hence
there is no surprise that in this limit the two approaches
agree. Spanning the value of σ within the interval
0 ≤ σ ≤ 1, the size of the spectrum reduces around 70%
with respect to its σ ¼ 0 value. We interpret this suppres-
sion as due to interference effects among modes
spontaneously created by space-time gradients at super-
horizon scales, and modes flowing from superhorizon to
subhorizon scales. Such interference is reduced when
coarse graining only over modes deep in the superhorizon
regime, σ → 0.
We can also consider the case where a phase of matter

domination follows the radiation-dominated era considered

above. The scale factors in the three epochs read (τ0 > 0
and τb > 0)

aðτÞ ¼
�− 1

H0ðτ−τ0Þ for τ ≤ −τb;
τþτ0þ2τb
H0ðτbþτ0Þ2 for − τb ≤ τ ≤ 0;

ðτþ2τ0þ4τbÞ2
4H0ðτbþτ0Þ2ðτ0þ2τbÞ for τ ≥ 0;

ð3:39Þ

and are continuous with their first derivative continuous at
the transition epochs. In the limit of very short radiation-
dominated era, τb=τ0 ≪ 1, the solution for the mode
function in matter domination for τ ≥ 0 reads

γk ¼
3

8
ffiffiffi
2

p e−ikðτþτ0Þ

τ30k
9=2

ðiþ kτ0Þð−iþ kτ þ 2kτ0Þ
τ þ 2τ0

: ð3:40Þ

Proceeding as above in the radiation-dominated case, we
find the following expression for the noise as a function of
e-folds in the matter-dominated era, n ≥ 0:

N ðnÞ ¼ 9H2
0

128π2M2
Pl

ðsin ð2σÞ − 2σ cos ð2σÞÞ2
σ6

þ 9H2
0

512σ4π2M2
Pl

e−n½3þ 16σ2 þ ð8σ2 − 3Þ cos ð4σÞ − 12σ sin ð4σÞ� þOðe−2nÞ: ð3:41Þ

After a few e-folds of matted-dominated expansion, the
noise approaches a constant. In this limit, using Eqs. (2.52)
and (2.53), we find the tensor spectrum at horizon crossing:

PT ¼ 18H2
0

π2M2
Pl

ðsin ð2σÞ − 2σ cos ð2σÞÞ2
ð2σÞ6 ; ð3:42Þ

which approaches the standard large-scale value PT ¼
2H2

0=ðπ2M2
PlÞ in the limit σ ≪ 1. As for the case of

radiation domination, the limit of small-σ implies
the inclusion only of very large-scale modes in the

coarse-graining procedure. In spanning through the interval
0 < σ < 1, PT monotonically decreases, reducing to a size
of 43% with respect to the σ ¼ 0 value.
We conclude with a few words about the behavior of the

coarse-grained Gibbs entropy, as derived in Eq. (2.56).
Both for the cases of radiation and matter domination the
noise approaches a constant as the cosmological evolution
proceeds, and the number of e-folds increases. In the
transition between inflation andmatter domination the noise
has a richer profile: we use it for plotting the expression of
the entropy in Fig. 2. We notice that in both cases the

FIG. 2. Plot of the coarse-grained entropy of superhorizon tensor modes as a function of the e-fold number. We apply Eq. (2.56) to
epochs of radiation and matter domination. The integration constant of Eq. (2.56) has been chosen in such a way that the entropy
vanishes at n ¼ 0. We choose H0τ0 ¼ 4, and ksτ0 ¼ 0.1, σ ¼ 0.02. In both cases the entropy scales as lnðn1=2Þ for large n.
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entropy increases as a function of the e-fold number, with a
steep slope for n between 2 and 6. Then, for large n, the
entropy scales as lnðn1=2Þ, as expected.

IV. CONCLUSIONS

In this work we discussed a coarse-grained prescription
for describing the stochastic superhorizon dynamics of
primordial tensor modes from inflation. Our aim was to put
in a firmer footing the intuitive idea that the stochastic
distribution of tensor fields at superhorizon scales is due
to the flow of tensor modes between subhorizon and
superhorizon scales. Using basic principles of quantum
mechanics, we showed how the probability density for the
coarse-grained tensor modes satisfies a stochastic Fokker-
Planck equation, whose noise and drift are computable and
depend on the cosmological system under consideration.
The evolution is well described by a Markovian process if
the cosmological expansion follows an attractor, otherwise
non-Markovian contributions affect the noise and above all
the drift. Our stochastic formulas are applied to a variety of
cosmological frameworks, seldom considered in the con-
text of stochastic inflation. We obtained the expected
results for noise and drift in pure de Sitter and power-
law inflation. But we also explored consequences of
nonattractor phases as for example a contracting universe.
Most notably, we considered a cosmological space-time
with transition from de Sitter (inflationary) phase to
radiation and to matter domination. This is the first time
this topic is discussed in the context of a stochastic
approach to superhorizon tensor modes. The computation
of the stochastic noise made manifest interference effects
among the flow of modes reentering the horizon after
inflation ends, and the superhorizon modes semiclassically
produced at large scales by large space-time gradients. The
formula for the noise depends on the number of e-folds of
cosmic evolution, and it rapidly approaches a constant
value after a few e-folds of expansion. We proved that our
final results do not depend on the choice of infrared cutoff.
Our stochastic results are then compared with the standard
predictions of QFT applied to cosmology. The two
approaches give the same results for the power spectrum
of tensor fluctuations if the coarse-graining procedure
includes only modes deep in the superhorizon regime.
This fact is intuitively clear since the QFTapproach focuses
precisely on modes at very large scales. We also quanti-
tatively computed the effect of including a larger portion of
superhorizon modes in the coarse-graining prescription,
showing that it can change the amplitude of the tensor
spectrum by a number of order 1.
This work contains various novel results both for

developing a stochastic approach to tensor fields from
inflation, and for applying it to a variety of cosmological

settings. It would be interesting to further extend this
approach to other situations. It is important to better
understand how much our results for noise and drift depend
on the detailed features of cosmological space-times and on
the transitions among different cosmological eras, which
can influence the aforementioned interference effects
among superhorizon modes. It would also be interesting
to include self-interactions (cubic or higher) among tensor
fluctuations, and then also include the effects of scalar
perturbations in the analysis.
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APPENDIX: FOKKER-PLANCK EQUATION
AND COARSE GRAINING

In this Appendix we show how to make use of our
coarse-graining procedure to pass from the evolution
equation (2.29) for a single-mode k to the coarse-grained
Fokker-Planck equation (2.37). The idea is to multiply both
sides of (2.29)—defined for a certain fiducial mode k—for

all the remaining probability densities …PðλÞ
k−2P

ðλÞ
k−1P

ðλÞ
kþ1…

of the remaining modes. Then, using the definition of
Eq. (2.36), we reconstruct an evolution equation for
Pðτ; hijðx⃗ÞÞ. To do so, we also need the fact that

∂hijðx⃗Þ
∂hðλÞk

¼ 2eik⃗ x⃗eðλÞij ðk̂Þ
MPlL3=2 ;

∂hijðx⃗Þ
∂hðλÞ−k

¼ 2e−ik⃗ x⃗eðλÞij ðk̂Þ
MPlL3=2 : ðA1Þ

We proceed to discuss this procedure analyzing its conse-
quences for each term of Eq. (2.29).

(i) The time derivative in the left-hand side (lhs). We
multiply the lhs of Eq. (2.29) by all the PðλÞ

k0 with
k0 ≠ k. We sum over momenta (positive and neg-
ative) and polarizations, obtaining

X
λ

X
k

� � �Pð−λÞ
k−1 P

ðλÞ
k−1P

ð−λÞ
k

∂PðλÞ
k

∂τ PðλÞ
kþ1P

ð−λÞ
kþ1 � � � ¼

∂P
∂τ :

ðA2Þ

(ii) The first derivatives in the right-hand side (rhs). We
multiply the rhs of Eq. (2.29) by all the PðλÞ

k0 with
k0 ≠ k. We sum over momenta (positive and neg-
ative) and polarizations, obtaining
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X
λ

X
k

� � �Pð−λÞ
k−1 P

ðλÞ
k−1ω0

�
hðλÞk

∂
∂hðλÞk

ðPðλÞ
k Þ

�
Pð−λÞ
k PðλÞ

kþ1P
ð−λÞ
kþ1 � � � ¼ ω0

X
λ

X
k

�
hðλÞk

∂P
∂hðλÞk

�
;

¼ ω0

X
λ

X
k

�
hðλÞk

∂hij
∂hðλÞk

� ∂P
∂hij ;

¼ ω0hij
∂P
∂hij ; ðA3Þ

since we recall ω0 is independent from k. In the previous expression, we sum over indexes ij.
(iii) The second derivatives in the rhs. We proceed as before, and we express it as

X
λ

X
k

� � �Pð−λÞ
k−1 P

ðλÞ
k−1ωk

� ∂2PðλÞ
k

∂hðλÞk ∂hðλÞ−k

�
Pð−λÞ
k PðλÞ

kþ1P
ð−λÞ
kþ1 � � � ¼

X
λ

X
k

ωk
∂2P

∂hðλÞk ∂hðλÞ−k

;

¼
X
λ

X
k

ωk
∂hij
∂hðλÞk

∂hij
∂hðλÞ−k

∂2P
∂h2ij ;

¼
�X

k

ωk

��X
λ

eðλÞij e
ðλÞ
ij

� ∂2P
∂h2ij ;

¼ 2

�X
k

ωk

� ∂2P
∂h2ij : ðA4Þ

Collecting the results we just obtained, we can write a stochastic Fokker-Planck evolution equation for the coarse-grained
probability P, which reads

1

aH
∂P
∂τ ¼ N

∂2P
∂h2ij þD

∂
∂hij ðhijPÞ; ðA5Þ

and noise and drift given in the main text: see Eqs. (2.45) and (2.46).
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