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Upcoming measurements of the small-scale primary cosmic microwave background (CMB) temperature
and polarization power spectra (TT=TE=EE) are anticipated to yield transformative constraints on new
physics, including the effective number of relativistic species in the early universe (Neff ). However, at
multipoles l ≳ 3000, the CMB power spectra receive significant contributions from gravitational lensing.
While these modes still carry primordial information, their theoretical modeling requires knowledge of the
CMB lensing convergence power spectrum, Cκκ

L , including on small scales where it is affected by nonlinear
gravitational evolution and baryonic feedback processes. Thus, the high-l (lensed) CMB is sensitive to these
late-time, nonlinear effects. Here, we show that inaccuracies in the modeling of Cκκ

L can yield surprisingly
large biases on cosmological parameters inferred from the lensed CMB power spectra measured by the
upcoming Simons Observatory and CMB-S4 experiments. For CMB-S4, the biases can be as large as 1.6σ on
the Hubble constant H0 in a fit to ΛCDM and 1.2σ on Neff in a fit to ΛCDMþ Neff . We show that these
biases can be mitigated by explicitly discarding all TT data at l > 3000 or by marginalizing over parameters
describing baryonic feedback processes, both at the cost of slightly larger error bars. We also discuss an
alternative, data-driven mitigation strategy based on delensing the CMB T and E-mode maps. Finally, we
show that analyses of upcoming data will require Einstein-Boltzmann codes to be run with much higher
numerical precision settings than is currently standard, so as to avoid similar— or larger—parameter biases
due to inaccurate theoretical predictions.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) temperature and polarization anisotropy power
spectra have revolutionized our understanding of cosmology
in the past few decades (e.g., [1–4]). Upcoming CMB
anisotropymeasurements promise to build upon this success,
with unprecedented sensitivity to signals of new physics in
the early universe [5,6]. Key to this success is the robust
theoretical foundation upon which CMB anisotropy power
spectrum calculations rest. In particular, the primary CMB
fluctuations are described to very high accuracy by linear
cosmological perturbation theory. As first recognized long
ago (e.g., [7–10]), high-precision measurements combined
with this robust theoretical foundation allow constraints on
all of the fundamental cosmological parameters (in ΛCDM)
to be inferred solely from the CMB. Upcoming experiments
will utilize this power to put leading constraints on many
new-physics parameters, including the effective number of
relativistic species (Neff ), the sum of the neutrino masses

(Mν), the running of the spectral index of primordial
perturbations, models to resolve the H0 tension, and many
other scenarios. All of these constraints rely on the precise
modeling of the CMB power spectra within linear perturba-
tion theory.
However, on small angular scales in the CMB, crucial

assumptions in this picture begin to break down.
Gravitational lensing of CMB photons, which distorts their
paths as they travel from the surface of last scatter to our
telescopes, leads to subtle but non-negligible changes to the
CMB power spectra (for a comprehensive review of CMB
lensing, see [11]). In particular, gravitational lensing
smooths the acoustic peaks and pushes anisotropy power
into the high-multipole “Silk damping tail” of the CMB
power spectra [12–14]. Thus, due to lensing, the CMB is
influenced by the properties of the matter density field at
low redshifts, as captured in the CMB lensing potential
field, which is a particular redshift-weighted projection of
the density field along the line-of-sight (LOS). The CMB
lensing potential field is well-described by linear perturba-
tion theory on angular scales greater than ≈10 arcmin [11],
but on smaller scales it is affected by nonlinear gravitational*fmccarthy@flatironinstitute.org
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evolution and processes associated with baryons, such as
feedback from active galactic nuclei (AGN) [15–25]. Thus,
one may wonder to what extent these highly nonlinear
processes could affect the CMB 2-point function itself
through gravitational lensing, and whether these effects
could influence cosmological parameter inference from
upcoming high-resolution CMB experiments.
In this paper, we show that nonlinear and baryonic effects

can indeed produce significant biases in the analysis of data
from upcoming CMB experiments. The small-scale (multi-
poles l≳ 3000) CMB receives sufficiently large contribu-
tions from the small-scale (L≳ 2000) CMB lensing potential
field that these effects cannot be ignored.We consider a range
of models for the effects of nonlinear evolution and baryonic
feedback on the small-scale CMB lensing power spectrum,
and compute their effects on the lensed CMB power spectra.
We then propagate these models through a Fisher analysis to
forecast biases on cosmological parameters that would be
inferred when assuming an incorrect (but currently standard)
model. For concision, we focus on theΛCDM andΛCDMþ
Neff models, where Neff is the effective number of relativistic
species. The latter is of particular interest, as constraints on
Neff are strongly driven by measurements of the damping tail
in the CMB power spectra, which is also the region most
altered by the effects identified in this work. However, similar
biases for other parameters (e.g., the sum of the neutrino
masses or the running of the spectral index) are also likely to
exist, and should be considered (and mitigated) in upcoming
CMB data analyses.
A brief summary of our results is as follows. We show that

constraints on Neff from the upcoming Simons Observatory
(SO) [5] and CMB-S4 [6] experiments could be biased by up
to 0.4σ and 1.2σ, respectively, due to the neglect of baryonic
feedback in modeling of the lensed CMB power spectra.
Similarly, constraints on the physical cold dark matter
density, Ωch2, could be biased by up to 1.0σ (SO) and
1.6σ (CMB-S4) in ΛCDM, or up to 0.8σ (SO) and 2.0σ
(CMB-S4) in ΛCDMþ Neff . The Hubble constant H0,
which is a derived parameter in the analysis of CMB data,
could be biased by up to 1.0σ (SO) and 1.6σ (CMB-S4) in
ΛCDM. In general, the bias on a given parameter depends on
the model under consideration, as parameter degeneracies
will change. Table I summarizes the biases on the cosmo-
logical parameters for SO and CMB-S4 in the ΛCDM and
ΛCDMþ Neff models. As a by-product of this analysis, we
also investigate the effects of numerical precision errors in
Einstein-Boltzmann codes (e.g., CAMB

1 [26] or CLASS2 [27])
on the high-l CMB, which can lead to similar (or even larger)
parameter biases if increased accuracy settings are not
adopted when running these codes.
We suggest multiple mitigation strategies to avoid these

potentially significant baryonic feedback-induced biases.

The simplest approach is to explicitly discard all high-
lTT power spectrum data. At a fixed multipole in the
damping tail, the small-scale TT power spectrum is most
affected by the lensing contributions described above (com-
pared to TE or EE), due to the larger gradient in the unlensed
T field as compared to E. Moreover, due to the much larger
amplitude of the TT signal, CMB experiments measure more
signal-dominated modes in the TT damping tail than in TE
or EE (even after accounting for foregrounds). Thus, the
biases that we compute are generally driven most strongly by
TT. Explicitly, we find that biases on all parameters inves-
tigated here can be kept to ≲0.3σ if all TT data at l≳ 3000
are discarded (see Figure 6 and Table II). However, discarding
theTT data comes at the price of increased statistical error bars
on cosmological parameters. Fortunately, the increase is not
dramatic: at most ≈21% for Ωch2 and ≈13% for Neff.
Another mitigation approach is to explicitly parametrize

the nonlinear/baryonic effects on the CMB lensing power
spectrum, and subsequently marginalize over these param-
eters in the cosmological analysis of the CMB power spectra
(e.g., as done in [25] for the cosmological analysis of the
CMB lensing power spectrum). We perform this exercise in
our Fisher calculations below. We find that this approach
can successfully mitigate the biases, but, like the approach
suggested above, comes at the price of increased error bars
on cosmological parameters. However, we note that this can
likely be improved by performing a joint analysis of the
lensed CMB power spectra with the reconstructed CMB
lensing potential power spectrum itself. This will require a
precise treatment of the joint covariance between these
probes [29].
Finally, the most data-driven approach would be to

“delens” the temperature and polarization anisotropy maps
using the measured CMB lensing potential, e.g., as recon-
structed using quadratic estimators [30,31] or maximum-
likelihood methods [32,33], or as traced by external probes

TABLE I. Fractional biases (in units of the forecast 1σ statistical
error bar) on each of the parameters in the various setups, if
baryonic effects are ignored. Note that the biases are different for
the same parameters in the ΛCDM and ΛCDMþ Neff models due
to effects of the marginalization over Neff. We assume a maximum
multipole lmax ¼ 5000 here, with noise power spectra for SO and
CMB-S4 shown in Fig. 1. The OWLS-AGN [18,28] baryonic
model is assumed here.

SO CMB-S4

ΛCDM ΛCDM þ Neff ΛCDM ΛCDMþ Neff

H0 0.96 0.15 1.6 0.035
Ωbh2 0.070 0.27 0.44 0.56
Ωch2 1.0 0.96 1.6 2.0
τ 0.37 0.42 0.28 0.42
As 0.57 0.68 0.52 0.81
ns 0.36 0.16 0.48 0.69
Neff 0.44 1.2

1http://camb.info.
2http://class-code.net/.
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like the cosmic infrared background [34–37]. If the dele-
nsing operation were 100% efficient, then because delensing
uses the observed (true) lensing potential field to undo the
lensing effects, it is clear that all biases related to modeling
of the late-time density field would be removed in the CMB
power spectra (since no such modeling would be required).
Assessing the fidelity of this operation for realistic exper-
imental configurations, which will yield less-than-perfect
delensing efficiencies, will be a useful exercise in upcoming
work. In particular, the feasibility of delensing on such small
scales has not yet been explored. It is interesting to note that
due to the effects identified here, in addition to statistical
optimality arguments identified in earlier work [38], dele-
nsing now appears to be an important operation not only for
enabling precise constraints on the tensor-to-scalar ratio r
[5,6,34,39], but also for enabling unbiased constraints on
Neff and other new-physics parameters in upcoming CMB
experiments.
The remainder of this paper is organized as follows. In

Sec. II we discuss gravitational lensing of the CMB and how
uncertainties in the lensing power spectrum can propagate to
uncertainties in the lensed power spectra. In Sec. III we
introduce the Fisher formalism we use to forecast error bars
and systematic biases. In Sec. IV we discuss biases from the
mismodeling of unknown baryonic effects, and present
several ways to remove these biases. In Sec. V we discuss
potential biases due to numerical precision errors in calcu-
lating the lensed power spectra, and quantify how this
translates to biased parameter inferences. We discuss our
results and conclude in Sec. VI.
All of our power spectrum calculations are performed

with CAMB [26].We assume a fiducial cosmology through-
out of fH0 ¼ 67.32 km=s=Mpc;Ωbh2 ¼ 0.022383;Ωch2 ¼
0.12011;ns ¼ 0.96605;As ¼ 2.1× 10−9;τ¼ 0.0543;Mν ¼
0.06 eV;Neff ¼ 3.046g, corresponding to the best-fit val-
ues of the six primary ΛCDM parameters found in Table 1
of [40] along with the minimum allowed value of the
neutrino mass Mν and the standard value of the effective
number of neutrino species Neff (which are the values
assumed in [40]).

II. THE LENSED CMB POWER SPECTRA

Significant cosmological analysis is performed with the
two-point statistics of the observed CMB, for which we
have well-understood theoretical predictions. In particu-
lar, we consider the power spectrum of the CMB intensity
anisotropies, CTT

l , and the power spectrum of the E-mode
CMB polarization anisotropies, CEE

l . As these probes are
not fully independent (the CMB is roughly 10% polar-
ized), we also consider their cross-power spectrum, CTE

l .
The effect of gravitational lensing on these quantities is
shown in Fig. 1. We provide a brief summary of the
relevant physics here, and refer the reader to Ref. [11] for
full details.

The lensed power spectra, Clensed
l , are functions of the

unlensed power spectra Cunlensed
l , and the lensing potential

power spectrum, Cϕϕ
L . It is also common to consider,

instead of Cϕϕ
L , the lensing convergence power spectrum

Cκκ
L , which is related to Cϕϕ

L in harmonic space by

Cκκ
L ¼ ðLðLþ 1ÞÞ2

4
Cϕϕ
L : ð1Þ

Cκκ
L is given in the Limber [41] and Born approximations by

Cκκ
L ¼

Z
χCMB

0

dχ

�
Wκ

CMBðχÞ
χ

�
2

Pm

�
k ¼ Lþ 1=2

χ
; z

�
; ð2Þ

where Pmðk; zÞ is the matter power spectrum andWκ
CMBðχÞ

is the CMB lensing efficiency kernel

Wκ
CMBðχÞ ¼

3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
χCMB − χ

χCMB
ð3Þ

with χCMB the comoving distance to the surface of last
scattering.
The lensing potential affects the observed temperature

anisotropies. In particular, when we look in a direction n̂,
we do not observe the temperature emitted at n̂ but the
temperature that has been lensed into that direction, which
was in fact sourced in the direction n̂þ α⃗, where the total
deflection angle induced by lensing α⃗ is given by the
gradient (in the plane of the sky) of the lensing potential ϕ.
Section 4 of Ref. [11] provides a thorough review of the
calculation of the Clensed

l from Cunlensed
l and Cϕϕ

l , and we
refer the interested reader to Sec. 4.2 of that paper for
details of the exact calculation. Note, however, that to first
order inCϕϕ

l (∼ to second order in α⃗) the lensed temperature
power spectrum can be expressed as a convolution between
the unlensed temperature power spectrum and the lensing
potential power spectrum

CTT lensed
l ≈ ð1 − l2RϕÞCTT unlensed

l

þ
Z

d2l⃗0

ð2πÞ2 C
ϕϕ

jl⃗−l⃗0jC
TT unlensed
l0 ; ð4Þ

where Rϕ is given by

Rϕ ≡ 1

4π

Z
dl
l

l4Cϕϕ
l : ð5Þ

In the small-scale limit, while the expansion in small Cϕϕ
l is

not accurate, the fact that the unlensed power is so small
and can be described by a single gradient term also allows
for an approximation:

CTT lensed
l ≈ l2Cϕϕ

l RΘ; ð6Þ
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where

RΘ ¼ 1

4π

Z
dl
l

l4CTT unlensed
l : ð7Þ

For details of the above approximations we refer the reader
to Sec. 4.1 of [11] and references therein; the calculation of
the exact lensed TT spectrum by means of the correlation
function, which is the method used in CAMB and CLASS, is
also discussed in Sec. 4.2 therein. Similarly, the lensing of
theEE spectrum is discussed in Sec. 5.3 of [11]. There are a
number of important aspects to consider in the accurate
calculation of Cκκ

L (and thus the accurate calculation of the
lensed CTT

l , CTE
l , and CEE

l ). Upcoming CMB surveys,
including SO and CMB-S4, will be sufficiently sensitive
that seemingly small effects need to be taken into account
(our modeling of the noise for these surveys is discussed in
the next section). First, inaccuracies in the modeling of
Pmðk; zÞ due to gravitational nonlinearities and baryonic
feedback effects will become sufficiently important as to
affect not only the interpretation of the reconstructed

lensing power spectrum [24], but also the lensed CMB
power spectra themselves. Second, the inferences we will
make with upcoming CMB surveys will be sensitive to the
numerical precision parameters used in the calculation; in
particular the default precision settings of CAMB will be
insufficient for SO and CMB-S4. We will quantify these
statements in the following sections.
The linear matter power spectrum is computed with

cosmological perturbation theory, with nonlinearities incor-
porated through, e.g., a halo-model-based fitting function
such as Halofit [42,43] or HMCode [44,45]. HMCode further
includes free parameters intended to capture the effects of
complex baryonic phenomena on the matter power spectrum,
including gas cooling and AGN and supernova feedback.
These baryonic effects significantly alter the clustering of
matter on ≲10 Mpc scales. We do not currently have a first-
principles calculation of such effects, and as such they are
sources of systematic error in the modeling of nonlinear
power spectra. To gain some understanding of the effects of
baryonic interactions on matter clustering, we can perform
cosmological hydrodynamics simulations (e.g., [20–22]);

FIG. 1. The lensed (blue) and unlensed (orange) CMB TT (top left), EE (top right), and TE (bottom left) power spectra and their ratios
(bottom right). We see in the lensed spectra an increase of power on small scales, also clearly illustrated in the bottom right plot. We also
see the smoothing effect of lensing, in the lowering of peak heights and the raising of trough heights. The post-component-separation
noise power spectra (including residual foregrounds) expected from SO [5] and CMB-S4 [6], both including Planck data as well, are also
indicated on the CTT

l and CEE
l plots (see Sec. III for details). It is clear that for precision cosmology with these experiments we will need

to have an accurate calculation of the lensed CMB power.

MCCARTHY, HILL, and MADHAVACHERIL PHYS. REV. D 105, 023517 (2022)

023517-4



indeed, hydrodynamical simulations are used to construct the
parametric HMCode model. However, one should keep in
mind that the true nonlinear power spectrum in our universe
could (and likely does) differ at some level from these models
(see, e.g., [46,47]). As we will show, accounting for this
uncertainty will be important in upcoming CMB experiments
focused on the small-scale 2-point CMB power spectra.

III. INFERENCE OF COSMOLOGICAL
PARAMETERS: STATISTICAL AND

SYSTEMATIC ERRORS

A. The Fisher matrix formalism

The Fisher matrix formalism is widely used to calculate
the uncertainties expected from statistical error alone
on the analysis of a given parameter, assuming a
(theoretical) calculation of the covariance of the data
expected, including noise contributions. We summarize
this approach briefly here.
We take as a data vector the (lensed) CMB power

spectra:

Cl ¼ fClensedTT
l ; ClensedEE

l ; ClensedTE
l g: ð8Þ

We calculate the theoretical Cl with CAMB. The covarian-
ces between the different Cl’s are given by

CðĈαβ
l ; Ĉγδ

l Þ ¼
1

ð2lþ 1Þfsky
½ðCαγ

l þ Nαγ
l ÞðCβδ

l þ Nβδ
l Þ

þ ðCαδ
l þ Nαδ

l ÞðCβγ
l þ Nβγ

l Þ�; ð9Þ

where NXY
l is the noise on the measurement of CXY

l ,
including contributions from the instrument, atmosphere,
and residual foregrounds after component separation. We
assume the noise on the polarization and intensity measure-
ments to be uncorrelated, i.e., NTE

l ¼ 0. Finally, in Eq. (9)
fsky is the sky fraction covered by the survey; we take
fsky ¼ 0.4 for SO and fsky ¼ 0.45 for CMB-S4.
We include post-component-separation noise power spec-

tra NTT
l and NEE

l , as computed for either SO (using the
“Goal” noise levels)3 [5] or CMB-S44 [6], both in combi-
nation with Planck data. The noise power spectra include
contributions from instrumental and atmospheric noise, as
well as residual foregrounds after multifrequency internal
linear combination (ILC) foreground cleaning has been
applied in the harmonic domain (e.g., [48,49]). The fore-
grounds include models for Galactic dust and synchrotron in
both temperature and polarization, as well as Galactic free-
free, Galactic spinning dust, extragalactic radio and infrared
point sources, the thermal and kinematic Sunyaev-Zel’dovich

effects, and the cosmic infrared background in temperature,
with realistic correlations among the constituent Galactic and
extragalactic components (full details can be found in [5,6]).
While the modeling of these components is not perfectly
known, this uncertainty will only affect the post-component-
separation noise power spectra in Fig. 1 at the ∼10% level;
the biases computed in this paper will thus be expected to
differ slightly in practice compared to our forecasts, but not
dramatically so. However, we note that in a fully realistic
analysis of multifrequency power spectrum data, the con-
tributions from various foregrounds would be parametrized
and explicitly marginalized over in the likelihood (e.g.,
[50,51]). If the foregrounds are sufficiently orthogonal to
the primary CMB (as is the case with nonblackbody fore-
grounds probed in multiple frequency channels) and the
model has sufficient flexibility, then the foregrounds will not
bias cosmological parameter estimation, and their effect is
primarily to contribute to the noise power captured in our
post-ILC noise curves.5 Non-Gaussian contributions of the
foregrounds to the post-ILC noise covariance matrix, as well
as the question of whether currently used foreground models
are sufficiently flexible so as to not bias cosmological
parameters are outside the scope of this work. Similarly,
in this work, we do not include contributions from non-
Gaussian covariance due to lensing and supersample variance
[29,52,53], which would especially be of importance in a
mitigation strategy involving joint analysis with the CMB
lensing four-point function (see Sec. IVB 2).
The Fisher matrix for the parameter vector Πi can be

calculated from the covariance Cl and derivatives of the
data vector Cl with respect to Πi6:

Fij ¼
X
l

∂CT
l

∂Πi C
−1
l

∂Cl

∂Πj : ð10Þ

Within this formalism, the forecast statistical error on the
parameter i, marginalized over the other parameters in Π, is

σðΠiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
: ð11Þ

Note that Eq. (11) represents a lower bound on the true
error bars, with the actual error bar approaching

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
in the case of Gaussian covariances.
The standard Fisher formalism above can be extended to

consider errors that are not statistical, but instead are caused
by a systematic miscalculation of the theoretical signal,
e.g., an incorrect theory model. If we perform data analysis
with incorrect theoretical power spectra—let us call this

3https://simonsobservatory.org/assets/supplements/20180822_
SO_Noise_Public.tgz.

4https://cmb-s4.uchicago.edu/wiki/index.php/Survey_
Performance_Expectations.

5This statement was explicitly verified for SO forecasts by
comparing the post-ILC effective noise curve approach to a full,
parametric likelihood calculation in Sec. 4.1.2 of Ref. [5].

6Here we have assumed that the covariance matrix C does not
depend on the parameters, i.e., it is computed at a fixed
cosmology.
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Cfiducial
l —the dependence of Cfiducial

l on the parameters Πi

will be different to those of the true theory (Ctrue
l ), and we

will get a biased inference of Πi. The size of the bias is
given by the bias vector (see, e.g., [54,55])

BðΠiÞ ¼ F−1
ij

X
l

∂Cfiducial;T
l

∂Πj C−1
l ΔCl; ð12Þ

where

ΔCl ≡ Ctrue
l − Cfiducial

l : ð13Þ

Equation (12) thus allows us to compute systematic errors
in the Fisher formalism, arising due to differences between
the correct and assumed theoretical power spectra.

B. Constraints from upcoming surveys

We can use the Fisher formalism to predict the statistical
error bars on cosmological parameters for upcoming
experiments, e.g., SO and CMB-S4. In particular, we show
in Fig. 2 the predicted CMB-S4 constraints on the six
parameters of the ΛCDM model, and on an extension of
this model where the effective number of relativistic species
Neff is allowed to vary. We sum over all multipoles from
lmin ¼ 100 to lmax, the quantity labeled on the x-axis. We
also include a Gaussian prior on the parameter τ of
0.0543� 0.007, which is constrained to this level by the
large-scale Planck EE data [40].7 From the figure, it is clear
that CMB-S4 can constrain all parameters in the base
ΛCDM model to sub-percent precision (except τ), and Neff
to near-percent precision, solely using the (lensed) CMB
power spectra. As expected, the constraints begin to
saturate once lmax is greater than the multipole at which
CMB-S4 is cosmic-variance-limited (roughly l ≈ 3500 in
TT and l ≈ 3000 in EE, as shown in Fig. 1). For experi-
ments with even lower noise levels than CMB-S4, these
constraints would continue to improve with increasing lmax
(e.g., [56,57]). While we only show the lmax-dependence of
the CMB-S4 statistical forecast here for brevity, we note
that SO will yield very precise constraints as well (prior to
the start of the CMB-S4 survey), e.g., with a forecast error
bar on Neff of roughly 2% [5]; the values of the constraints
that we calculate are listed in Tables IV and V in the
Appendix. Thus, it is well-motivated to consider both
experiments in our analysis.

IV. PHYSICAL SYSTEMATICS:
MISMODELING OF BARYONS

A. Quantifying the bias from baryons

The lensed CMB power spectra are sensitive to non-
linearities in the CMB lensing potential. On small scales,
poorly understood “baryonic” processes, caused by the
behavior of complex visible (“baryonic”) matter (such as
AGN feedback and gas cooling) can cause a non-negli-
gible suppression in the matter power spectrum PmðkÞ,
and therefore the lensing power spectrum Cκκ

L ; this lends
uncertainties to the modeling which propagate to the
lensed CMB power spectra.
As we do not have first-principles calculations of these

effects, much of our current understanding comes from
performing large numerical simulations, and comparing
runs with and without baryonic effects included, to
measure the power spectrum suppression. In this section
we explore the bias induced by not incorporating these
effects into the analysis of the lensed CMB.
In Fig. 3, we show the suppression in Cκκ

L induced by
baryonic feedback effects in various hydrodynamical sim-
ulations [24,25].8 The figure also shows how the baryonic
suppression in the CMB lensing power spectrum propagates
to suppression in the lensed CMB power spectra. We show
results for the OWLS-AGN simulation [18,28], the fiducial
BAHAMAS simulation as well as its “low-AGN” and “high-
AGN” variants [20,28,58], the Horizon-AGN simulation
[22,59,60], and the TNG100 and TNG300 runs from the
Illustris-TNG simulation suite [21,61–65]. All of the sim-
ulations yield qualitatively similar predictions for the power
suppression due to baryonic feedback on the range of scales
of interest here; however, the exact shape and amplitude of
the suppression varies depending on the exact implementa-
tion (e.g., comparing the three BAHAMAS runs, one can

FIG. 2. The forecast CMB-S4 constraints on the parameters of
the ΛCDM model (dashed) and of ΛCDMþ Neff (solid), plotted
against the maximum multipole included in the analysis. The
constraints are shown as the fractional statistical uncertainty on
each parameter, in units of percent.

7The SO and CMB-S4 large aperture telescopes are not
expected to measure the largest-scale modes on the sky due to
atmospheric 1=f noise [5,6], which necessitates the use of our
prior on τ here.

8The CMB lensing power spectrum suppression calculations are
available at https://github.com/sjforeman/cmblensing_baryons.
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see that the stronger the feedback prescription, the larger the
predicted suppression, as gas is blown further out of
halos into the intergalactic medium). We consider all eight
of these baryonic models in the following, although our
tabulated numerical results (e.g., Table I) will generally focus
on the OWLS-AGN run from the OWLS simulation
suite [18,28].
The power suppression can be computed from each

simulation by comparing the power spectrum from a “dark-
matter-only” (DMO) run with the full baryonic physics
(“AGN”) run. The measured power spectrum ratio,

R̂ðk; zÞ≡ P̂AGNðk; zÞ
P̂DMOðk; zÞ ; ð14Þ

can be constrained from the simulations much better
than either of the power spectra P̂DMO;AGNðk; zÞ directly,
as much of the sample variance in the measurements of
the separate power spectra cancel in their ratio. We can
then incorporate baryons into the nonlinear matter power

spectrum bymodifying a theoretically calculated PDMOðk; zÞ
according to

Pbaryðk; zÞ ¼ R̂ðk; zÞPDMOðk; zÞ: ð15Þ

While R̂ðk; zÞ has some dependence on the cosmology [28]
we do not consider this effect here; this is sufficient for our
forecasts, particularly as derivatives with respect to power
spectra computed with R̂ðk; zÞ are never computed.
By using Pbaryðk; zÞ in Eq. (2), we compute the CMB

lensing power spectrum incorporating baryonic feedback,
Cκκ bary
L . We then use the pyCAMB function get_

lensed_cls_with_spectrum(clkk) to obtain the
CTT;TE;EE bary
l from Cκκ bary

L .9 We then define our ΔCl to be
used in Eq. (12),

FIG. 3. Suppression in power due to baryonic feedback effects in various different hydrodynamical simulations. The top left panel
shows the suppression in the CMB lensing power spectrum relative to a (nonlinear) dark-matter-only calculation. The other panels show
the resulting impact on the lensed CMB power spectra (TT=TE=EE), as labeled.

9We have explicitly checked that the output of this function
when using CκκDMO

L agrees with the usual CAMB output for the
lensed CMB power spectra, i.e., the DM-only model here
matches that in fiducial CAMB calculations.
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ΔCl ≡ Cbary
l − CDMO

l ; ð16Þ

where Cl
DMO is the fiducial CTT;TE;EE

l computed with
CκκDMO
L . Note that the Fisher matrix (Eq. (10) in this section

is always computed by taking derivatives of CDMO
l , as this

is the fiducial model that would be used in data analysis in
this scenario (and indeed, this is the fiducial model used in
standard CMB analyses to date).10

Figure 4 presents a key result of this work. In this plot,
we show the fractional biases (in units of σ) on the
parameters in the ΛCDM and ΛCDMþ Neff models
induced by neglecting the baryonic suppression in Cκκ

L ,
using the method described above. We use the OWLS-
AGN baryonic model here, and show results for the
CMB-S4 post-ILC noise power spectra presented in
Fig. 1. The biases are presented as a function of lmax,
the maximum multipole considered in the analysis of the
TT, TE, and EE power spectra (lmax is taken to be the
same for all three spectra here). At high lmax the biases
become increasingly significant, with some parameter
biases exceeding their forecast statistical error bar. For
example, with lmax ¼ 5000, the bias on H0 reaches 1.6σ
in ΛCDM, while the bias on Neff reaches 1.2σ in
ΛCDMþ Neff . The exact numerical values are given in
Table I for lmax ¼ 5000, along with analogous results
computed for SO. These results clearly illustrate that these
biases are potentially significant for upcoming high-
precision, high-resolution CMB experiments.

B. Strategies to mitigate the baryonic biases

1. Removing small-scale TT information

If unaccounted for, baryonic feedback effects will bias
cosmological parameter inference from the CMB 2-point
function; these systematic effects will require mitigation. A
simple approach is to impose a lower lmax cut than 5000 on
the data used for the analysis; it is clear from Fig. 2 that
there is not much constraining power at l≳ 3000, while in
Fig. 4 we see that the biases increase significantly on these
scales. Indeed, if one removes only the TT information at
l > 3000, while keeping the TE and EE spectra in the
analysis, the bias is significantly reduced, as we now show.
The forecast constraints with TT data discarded at l >

3000 are shown in Fig. 5 in the dash-dotted curves for the
ΛCDMþ Neff model (the results for the ΛCDM model
are similar). For comparison, the previous case where TT
data are included up to l ¼ 5000 is shown in the solid
curves. While it is clear that the marginalized parameter
error bars increase somewhat, the overall penalty is
generally mild (≲5%, except for Ωch2, which is impacted
somewhat more than this). Numerical results for this
increase in error bars are collected in the Appendix in
Tables IV (ΛCDM) and V (ΛCDMþ Neff ).
The parameter biases in this case (when no TT infor-

mation is considered above l ¼ 3000) are shown in Fig. 6
for all eight baryonic physics models. It is clear from the
flattening of the bias curves at l≳ 3000, above which TT
data are excluded, that most of the bias is incurred from
CTT
l in this small-scale regime. Thus, the baryonic biases

can be controlled with a strict lmax cut on TT. Numerical
results for this approach, analogous to those in Table I, are
collected in Table II (for the OWLS-AGN simulation) in the
Appendix.

FIG. 4. Baryonic-feedback-induced fractional biases (in abso-
lute value) on the inferences of parameters in the ΛCDM and
ΛCDMþ Neff models, as a fraction of the forecast 1σ constraints
(which are shown in Fig. 2), plotted against the maximum
multipole included in the analysis, lmax. Results are shown
specifically for CMB-S4 here (see Table I for numerical results,
including for SO). The baryonic model used here is from the
OWLS-AGN simulation.

FIG. 5. The impact of the various mitigation methods—a strict
lmax ¼ 3000 cut on TT and marginalization over baryonic
feedback parameters ðA; ηÞ—on the constraints in the ΛCDMþ
Neff model. The errors are only marginally increased in both
cases, with the biggest increase seen in Ωch2; similar conclusions
hold for the ΛCDM model analysis. Note that the horizontal axis
here has the same meaning as in Fig. 4, but that lTT

max is not
increased above 3000 in the case shown in the dash-dotted
curves.

10Note that the default HMCode setting in CAMB, as of writing,
is a DM-only model.

MCCARTHY, HILL, and MADHAVACHERIL PHYS. REV. D 105, 023517 (2022)

023517-8



There are two primary reasons why the baryonic biases
are dominated by the TT power spectrum: (1) SO and CMB-
S4 will measure more signal-dominated modes in temper-
ature than in polarization (see the noise curves in Fig. 1);
(2) at a given multipole in the damping tail, the fractional
contribution of lensing to the total power is larger in TT than
in TE or EE, due to the larger gradient in the unlensed
temperature field. Thus, since the high-lTT data are more
sensitive to lensing (at fixed l), and a greater number of such
modes are measured in temperature than in polarization, the
baryonic feedback biases that enter via CMB lensing will be
dominated by their effects on TT. Explicitly discarding the
TT data on small scales is thus a simple and relatively robust
approach to mitigate these biases.
In fact, this approach is consistent with the methodology

often used in forecasts to account for the presence of
extragalactic foregrounds at l > 3000 in TT, i.e., the data
in this region are frequently assumed to be unusable for
primary CMB science. This approach was used for the SO
forecasting analysis, which set lTT

max ¼ 3000, lTE
max ¼ 5000,

and lEE
max ¼ 5000 (see Sec. 4 of Ref. [5]). However, for

the CMB-S4 forecasting analysis, it was assumed that
lmax ¼ 5000 for all of the spectra, including TT (see
Sec. A.2.4 of Ref. [6]). In addition, the Atacama
Cosmology Telescope (ACT) DR4 CMB likelihood con-
siders TT=TE=EE data to lmax ¼ 4325 for all of the
spectra (see Table 18 of Ref. [66]). Our results provide
motivation to explicitly discard the TT data at l > 3000

when performing 2-point CMB data analysis.

2. Marginalizing over a model for baryons

An alternative way to avoid biases from mismodeling
baryons is to incorporate them into the model for Cκκ

L .
While we do not know the true theory describing baryonic
effects in our universe, certain (semi-)analytic models have
been shown to accurately capture these effects on the matter
power spectrum. We focus specifically on the approach of
Ref. [44], in which a two-parameter model is introduced to
incorporate the effects of baryons. In particular, the non-
linear matter power spectrum is modelled with a modified
halo model. While we will not go into the details of the halo
model here (see, e.g., [67] for a comprehensive review), we
note that [44] extends the halo model by introducing two
parameters A and η, which can be varied to allow for
different prescriptions of baryonic effects. A modifies the
halo concentration cðM; zÞ in a parametric way:

cðM; zÞ ¼ A
1þ zf
1þ z

; ð17Þ

where zfðMÞ is the formation redshift of halos of mass M
and redshift z. The parameter η modifies the Fourier-
transformed halo density profile according to

uðk;M; zÞ → uðνηk;M; zÞ; ð18Þ

where ν ¼ δc
σðMÞ with δc the critical density required for

spherical collapse and σðMÞ the variance in the initial
density fluctuation field when smoothed with a top-hat

FIG. 6. The lmax dependence of the biases for each parameter in the ΛCDM model, and also for Neff in the ΛCDMþ Neff model, for
the different simulations shown in Fig. 3. The solid curves show the unmitigated biases (as in Fig. 4 for OWLS-AGN), while the dashed
curves show the results after mitigating the biases by imposing an lTT

max ¼ 3000 cut. All results here are computed for CMB-S4.
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filter with the size of the virial radius of the halo. η is
parametrized as

η ¼ η0 − 0.3σ8ðzÞ; ð19Þ

where σ8ðzÞ is the linear-theory rms amplitude of
density fluctuations over a sphere with radius 8h Mpc−1

at redshift z; η0 is the parameter that is modified to
incorporate baryons. The fiducial values used for η0 and
A are η0 ¼ 0.603 and A ¼ 3.13.
The model described above is implemented in the

HMCode module within CAMB; thus, we can include the
two extra parameters, A and η0, in our Fisher matrix and
marginalize over them in order to mitigate the impact of
baryons in a parametric manner. Such an approach has been
shown to be effective in removing the bias induced by
baryons on the neutrino mass inference from the CMB
lensing power spectrum, for a range of different baryon
models [25].
Figure 5 (dashed curves) shows the effect of this

marginalization on the ΛCDMþ Neff parameter con-
straints for CMB-S4. In contrast to the approach of
discarding high-lTT data, this method increases the error
bars somewhat more noticeably. However, the penalties are
still relatively mild, generally ≲10%. Numerical results
illustrating the increase in error bars are collected in the
Appendix in Tables IV (ΛCDM) and V (ΛCDMþ Neff ).
We note that these penalties could be decreased by
performing a joint analysis of the lensed CMB power

spectra with Cκκ
L inferred from the CMB four-point func-

tion; the latter observable would constrain ðA; ηÞ, thus
yielding a smaller penalty when marginalizing over these
parameters in the analysis. However, a careful treatment of
the joint covariance [29,52] would be required, which we
defer to a dedicated analysis of this method.
In Figure 7, we show the effect of this marginalization on

the baryonic-feedback biases for CMB-S4 for the ΛCDM
parameters and also for Neff for the full set of baryonic
models; the biases generally decrease by factors of > 100,
illustrating that the marginalization is extremely effective.
Numerical results for this approach (for OWLS-AGN),
analogous to those in Table I, are given in Table III in the
Appendix.
Overall, we conclude that this method is very promising,

although one may worry that if there is a significant
mismatch between the assumed parametrization and the
actual baryonic effects in our universe, its effectiveness
could be curtailed (note that Fig. 7 provides evidence
against this concern). A range of hydrodynamical simu-
lations should be used to ensure its robustness in upcoming
high-precision CMB analyses.
We also note that marginalization over other parameters

that become important at high l—such as the neutrino
mass or the amplitude of the kSZ power spectrum—which
is also commonly done in analyses (e.g., [3]), should also
prove effective at removing bias, as such marginalization
removes information from these scales. Such marginaliza-
tion would be at the expense of a bias on these parameters;

FIG. 7. The lmax dependence of the biases for each parameter in the ΛCDM model, computed for the different hydrodynamical
simulations shown in Fig. 3. The dashed curves show the unmitigated biases (as in Fig. 4 for OWLS-AGN), while the solid curves show
the results after mitigating the biases by marginalizing over baryonic feedback parameters ðA; ηÞ. We also include (bottom right) the
biases on Neff in the ΛCDM þ Neff model. All results here are computed for CMB-S4.
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however, as they are not as well constrained as the ΛCDM
parameters, the bias would be small compared to the
statistical error.

3. Delensing

Delensing is the process of “undoing” the effects of
gravitational lensing on the CMB. It requires knowledge
of the actual CMB lensing potential on our sky, as derived
from a reconstructed lensing map—or proxies for it,
such as the measured CIB field or galaxy surveys (e.g.,
[34,35,68]). In the ideal case, the “delensed” CMB maps
will recover the unlensed CMB temperature and polari-
zation fields. This procedure is very important for
enabling tight constraints on the tensor-to-scalar ratio
in upcoming B-mode surveys [6]. For T and E-mode
maps, delensing can provide slightly improved con-
straints on some of the parameters [52], but we note
here that it is to be expected that it will provide unbiased
constraints on the parameters as well, as sensitivity to
low-z baryonic feedback effects will be reduced (or,
ideally, removed).
Note that as we want to delens the high-l power spectra

here, a good proxy of the high-L CMB lensing potential
will be required. In particular, Eq. (4) indicates that to
delens the CMB spectra up to l ≈ 5000, we will need to
have knowledge of Cϕϕ

L also out to L ≈ 5000. This is a
much smaller-scale regime than has been focused on
in most previous delensing work, e.g., for primordial
B-mode delensing. The reconstructed CMB lensing
potential maps from SO or CMB-S4 are unlikely to have
high fidelity at L ≈ 5000 (e.g., see Fig. 6 of Ref. [5]),
although improved small-scale estimators could help to
some extent [69]. Fortunately, external delensing tracers
could be reasonably effective in this domain. In particu-
lar, dense galaxy samples from LSST and other photo-
metric surveys may present a feasible option—see, e.g.,
Appendix B of Ref. [68]. However, a dedicated study
would be needed to forecast the effectiveness of small-
scale delensing.
One advantage of the delensing approach is that (at

least in an ideal case), a model of the baryon-affected
nonlinear lensing power would no longer be needed for
the interpretation; if one delensed the maps perfectly,
then clearly there would be no need for a model of the
nonlinear lensing power to interpret the primary CMB
data at all. In a more pessimistic case in which the
delensing efficiency is much less than 100%, it may
simply introduce more complexity to consider the dele-
nsing operation for mitigating baryonic biases, and one
may prefer to simply use a forward model of the nonlinear
lensing power as we considered in the previous two
subsections. We leave to future work the calculation of
the baryonic feedback biases from delensed CMB power
spectra.

V. USER-INDUCED SYSTEMATICS:
MISCALCULATING OF Cl

The biases considered thus far are physical, in the sense
that they arise from inaccuracy in the nonlinear lensing
model due to our imperfect knowledge of nonperturbative
baryonic physics. However, similar biases can also arise
due to purely numerical accuracy issues in theoretical
calculations. In this section, we show that it is imperative
to use higher numerical accuracy than is currently standard
in calculations of Clensed

l when performing high-precision
CMB data analysis. In particular, the default accuracy
parameters used in calculating Clensed

l in the most widely-
used Einstein-Boltzmann codes, CAMB and CLASS, are not
adequate for SO- and CMB-S4-like analyses. Here, we
compute the bias one would obtain from an analysis of SO
or CMB-S4 2-point CMB data when using the default
accuracy parameters of CAMB.
For clarity, it will be useful in this section to show

explicitly the code we use to calculate Clensed
l with CAMB.

The power spectra are calculated from an instance of the
pyCAMB class CAMBparams as follows:
pars = camb.CAMBparams()
pars.set_cosmology(H0=67.32,

ombh2=0.022383, omch2=0.12011, mnu=0.06,
omk=0, tau=0.0543)
pars.InitPower.set_params(As=2.1e-9,

ns=0.96605, r=0)
pars.NonLinear = model.NonLinear_both
pars.NonLinearModel.set_params

(‘mead2016’, HMCode_A_baryon = 3.13,
HMCode_eta_baryon = 0.603)
pars.set_for_lmax(10000, lens_poten-

tial_accuracy=8, lens_margin=2050);
pars.set_accuracy(AccuracyBoost=2.0,

lSampleBoost=2.0, lAccuracyBoost=2.0,
DoLateRadTruncation=False);
results = camb.get_results(pars)
powers = results.get_cmb_power_spec-

tra(pars)
totCL = powers[‘total’].
The default values of the accuracy parameters are much

lower, being in fact
pars.set_for_lmax(lmax, lens_potentia-

l_accuracy=0, lens_margin=150);
pars.set_accuracy(AccuracyBoost=1.0,

lSampleBoost=1.0, lAccuracyBoost=1.0,
DoLateRadTruncation=True);
although the pyCAMB documentation11 notes that

lens_potential_accuracy=1 is necessary
for Planck-level accuracy in the lensing potential
calculation.

11https://camb.readthedocs.io/.
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We define our Cfiducial
l by calculating the Cl using these

default parameters, except with lens_potential_ac-
curacy=1 and lmax ¼ 5000 as opposed to 10000; the
latter further degrades the accuracy by a significant amount,
even for l < 5000. We use derivatives of this quantity
when calculating the Fisher matrix in Eq. (10).
We show the inaccuracies in the lensing convergence

power spectrum and the lensed power spectra, when run at
these lower-precision settings, in Fig. 8. By coincidence,
these (purely numerical) effects are similar to those seen for
the (physical) baryonic suppression in Fig. 3, but here they
are larger in magnitude, reaching 25% for the lensing
convergence power spectrum at L ¼ 4000.
Using the formalism from Sec. III, we calculate the biases

induced in the inference of the ΛCDM or ΛCDMþ Neff
parameters if the analysis were to be done with the incorrect
Cl shown in Fig. 8. The biases are shown as a function of the
maximum multipole included in the analysis lmax in Fig. 9
(lmax is assumed to be the same for TT=TE=EE here). It is
clear that the default accuracy settings are insufficient for
these low-noise, high-resolution experiments, and their use
would bias significantly any parameter inferences, with
systematic errors as large as ≈5–6σ on Ωch2 and H0, and
4σ on Neff . Fortunately, it is straightforward to remedy these
biases by running the Einstein-Boltzmann codes with
increased numerical accuracy settings. For computational
efficiency in MCMC analyses, one should determine the
minimal accuracy settings needed to obtain sufficiently
accurate predictions given the data under consideration
(as done for CLASS, considering Planck data, in
Ref. [70]). We leave the detailed determination of the
optimal settings, given computational constraints, to future
analyses focused on each particular experiment. Our results
indicate that attention should be paid to this issue for SO and
CMB-S4, and likely for the analysis of upcoming ACT and
South Pole Telescope data as well, given the large biases
seen in Fig. 9.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have shown that inadequate modeling of
baryonic feedback can lead to significant biases on cos-
mological parameters inferred from the lensed CMB power
spectra. The biases enter through the gravitational lensing
contribution in the damping tail of the CMB power spectra,
which in turn is dependent on the matter power spectrum
and hence susceptible to mismodeling of nonlinear and
baryonic feedback effects. As can be seen from Table I, for
the number of light relativistic speciesNeff , the biases are as
large as 0.38σ (1.2σ) for SO (CMB-S4). For the Hubble
constantH0 in a fit to theΛCDMmodel, they are as large as
0.96σ (1.62σ) for SO (CMB-S4). These biases are esti-
mated by assuming that the OWLS-AGN baryonic feed-
back model is the true model that describes the matter
power spectrum in our universe, while the parameter
inference is performed assuming no baryonic feedback
prescription. The OWLS-AGN model is a reasonable
prescription to consider in this context, given the large
spread of predictions from various subgrid prescriptions
and AGN feedback strengths in modern hydrodynamical
simulations (see, e.g., [23,28]).
We have suggested multiple mitigation methods to avoid

these uncertain late-universe effects in the lensed CMB.
Our first recommendation is to explicitly discard all data at
l > 3000 in the TT spectra; we find that this choice
reduces the biases on parameters considered here to be
no more than 30% of the statistical error bar (for both SO
and CMB-S4). Alternatively, or in addition, we show that
one can marginalize over a two-parameter model describ-
ing the effects of baryonic feedback. We find that this
procedure reduces the biases on cosmological parameters
by factors of Oð100–1000Þ. For both of these mitigation
strategies, the size of the statistical uncertainties on
cosmological parameters increases, albeit not dramatically
(generally ≲10%, with a maximum increase of 21% on
Ωch2; the Neff error bar increases by 13% for CMB-S4).
For the baryonic-parameter-marginalization approach, the

FIG. 8. The level of inaccuracy in the power spectra caused by
using the default parameters in CAMB, as quantified by the ratio of
the power spectra computed with default precision settings to
those computed with high-precision settings. The blue curve
shows the CMB lensing convergence power spectrum, while the
others show the lensed CMB power spectra, as labeled.

FIG. 9. The bias on each parameter, if the default accuracy
CAMB settings were used to model the CMB power spectra in
the analysis of CMB-S4 data (see Fig. 8). The bias is shown as a
fraction of the forecast 1σ error.
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increase could be mitigated by performing a joint analysis
with Cκκ

L . It is conceivable that delensing will be useful as a
data-driven solution—that is, a solution without margin-
alization over a baryonic feedback model—to avoid these
biases. However, this will require significant delensing of
the small-scale maps (l > 3000); we leave to future work a
quantitative study of the effectiveness of delensing with
efficiencies expected for SO and CMB-S4 in combination
with Planck CIB and galaxy surveys. Finally, we note that
in the coming decade, cross-correlations between CMB
experiments like SO and CMB-S4 and galaxy surveys like
DESI and LSSTwill allow for percent-level measurements
of the distribution of ionized electrons across a wide range
of redshifts through the kinematic Sunyaev-Zel’dovich
(kSZ) effect (e.g., [46,47,71–79]). In tandem, percent-level
measurements of the ionized gas pressure across a wide
range of halo masses and redshifts will be enabled by cross-
correlations of these galaxy surveys with thermal Sunyaev-
Zel’dovich (tSZ) maps (e.g., [80–89]), enabling joint
constraints on all thermodynamic quantities describing
the ionized gas in and around galaxies [90]. Awide variety
of other probes will also be crucial in this endeavor,
including x-ray measurements, fast radio burst dispersion
measures, absorption line measurements, intensity-map-
ping measurements, and more. These measurements will
significantly reduce uncertainties on baryonic feedback
models, thus motivating joint analyses of CMB power
spectra and the kSZ and tSZ effects, as well as folding in
external information from the full complement of baryonic
probes.
Given the non-negligible size of the baryonic-feedback

biases for upcoming experiments, it is possible that
ongoing experiments like ACT and the South Pole
Telescope (SPT) that probe the CMB damping tail could
also be mildly impacted by these effects. While recent
SPT analyses have either used lmax ¼ 3000 [91] or
excluded TT data altogether [4,92], the recent ACT
DR4 analysis [3,66] used TT data out to l ¼ 4325.
However, we expect any biases in analyses to date to
be well below the 0.2σ level given that (a) the uncertainties
on H0 are more than five times larger than the forecast for
SO (with a bias from baryonic feedback of ΔH0 ¼ 0.96σ,
cf. Table I) and (b) the absolute bias should also be lower
than found here since the instrument noise level is larger
in comparison with the gravitational lensing contribution
to the power spectra. We also emphasize that these biases
are irrelevant for Planck CMB power spectra, which do
not probe multipoles l≳ 3000 where the baryonic effects
become important. These considerations do, however,
highlight that mitigation strategies should be adopted
for upcoming analyses from Advanced ACT [93] and
SPT-3G [94–96].
We have also investigated biases that would arise if

(default) low-accuracy settings in Einstein-Boltzmann
codes are used to calculate the CMB power spectra.

These biases are highly significant (up to 6σ on some
cosmological parameters), highlighting the need for care
when using these codes, as well as the need for a systematic
study of the accuracy parameters required for upcoming
experiments. Our results also motivate a new, detailed
comparison between CAMB and CLASS in preparation for
high-precision, high-resolution CMB surveys like SO and
CMB-S4, as we have shown that the data will be sensitive
to effects that had previously escaped attention.
Our work has only considered the ΛCDM parameters

and the Neff parameter, but similar considerations may
apply to other parameters that affect the damping tail of
the CMB. Inference of the sum of the neutrino masses
may be of concern, but we note that the dominant
constraint on this parameter comes from a more direct
reconstruction of the gravitational lensing signal through
the four-point function of the CMB, where the contribu-
tion from small scales in the matter power spectrum is
easier to control (see [25] for a detailed study).
Combining constraints from the lensed CMB power
spectra with the CMB lensing power spectrum is non-
trivial [29] and outside the scope of this work, which
focuses on biases in the 2-point CMB statistics; we defer
the study of the full spectrum of biases to future work.
Inference of blackbody secondary anisotropy parameters

like the amplitude of the kSZ power spectrum (both late-
time as well as from the reionization epoch) could also be
affected, as these parameters can be degenerate with the
primary cosmological parameters (which can be biased, as
we have shown). For the same reason, free parameters in
the blackbody components in the foreground model (e.g.,
the kSZ power spectrum amplitude) could also mitigate the
baryonic feedback biases considered in this work to some
extent, by absorbing their effects (at the cost of a biased
inference of the kSZ amplitude). We leave investigation of
these issues to future work.
Several decades of cosmological inference from the

primary CMB have benefited from the simplicity of the
linear physics responsible for the observed temperature
and polarization anisotropies. This will change in the
coming decade with the next generation of CMB surveys.
While these surveys extract new cosmological and astro-
physical information from late-time effects, the (lensed)
CMB signal also becomes increasingly sensitive to
uncertain astrophysical phenomena. A careful consider-
ation of mitigation strategies, including delensing and/or
joint analyses with the kSZ and tSZ effects, will therefore
be of great importance in the coming decade of CMB
surveys.
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APPENDIX: BIAS RESULTS FOR lTT
max = 3000

CUTOFF AND BARYONIC PARAMETER
MARGINALIZATION APPROACHES

In this appendix, we present the numerical values of the
biases on each parameter (for the OWLS-AGN simulation,
with either the SO or CMB-S4 configuration) after apply-
ing the mitigation methods; the lTT

max ¼ 3000 results are
shown in Table II and the marginalization results are shown
in Table III.

TABLE II. Fractional biases from the OWLS-AGN model (in units of the forecast 1σ statistical error bar) on each
of the parameters in the various setups, when an lTT

max ¼ 3000 cutoff is imposed (to be compared with Table I.)

SO (lTT
max ¼ 3000) CMB-S4 (lTT

max ¼ 3000)

ΛCDM ΛCDM þ Neff ΛCDM ΛCDMþ Neff

H0 0.098 0.25 0.18 0.23
Ωbh2 0.13 0.085 0.15 0.065
Ωch2 0.12 0.12 0.20 0.05
τ 0.15 0.11 0.19 0.15
As 0.18 0.076 0.23 0.15
ns 0.016 0.19 0.0084 0.18
Neff 0.24 0.23

TABLE IV. Forecast constraints (as percentages of the fiducial parameter values) for the ΛCDM parameters, for
the various mitigation methods for SO and CMB-S4.

1σ error (%): SO 1σ error (%): CMB-S4

lTT
max ¼ 5000 lTT

max ¼ 3000 lTT
max ¼ 5000þ Aþ η lTT

max ¼ 5000 lTT
max ¼ 3000 lTT

max ¼ 5000þ Aþ η

H0 0.40 0.43 0.44 0.34 0.37 0.38
Ωbh2 0.22 0.23 0.23 0.15 0.15 0.16
Ωch2 0.58 0.63 0.64 0.50 0.55 0.56
τ 10 10 10 9.3 9.3 9.5
As 0.95 0.97 1.0 0.86 0.87 0.90
ns 0.26 0.27 0.27 0.23 0.23 0.23

TABLE III. Fractional biases from the OWLS-AGN model (in units of the forecast 1σ statistical error bar) on each
of the parameters in the various setups, when the baryonic parameters A; η0 are marginalized over (to be compared
with Table I).

SO CMB-S4

ΛCDM ΛCDMþ Neff ΛCDM ΛCDM þ Neff

H0 0.0028 0.0022 0.0030 0.0026
Ωbh2 0.00048 0.00098 0.00030 0.00060
Ωch2 0.0028 0.00091 0.0031 0.0012
τ 0.0026 0.0025 0.0038 0.0036
As 0.0035 0.0031 0.0051 0.0046
ns 0.0014 0.0015 0.0016 0.0018
Neff 0.00091 0.0011
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