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The Universe may pass through an effectively matter-dominated epoch between inflation and big bang
nucleosynthesis during which gravitationally bound structures can form on subhorizon scales. In particular,
the inflaton field can collapse into inflaton halos, forming “large scale” structure in the very early universe.
We combine N-body simulations with high-resolution zoom-in regions in which the nonrelativistic
Schrödinger-Poisson equations are used to resolve the detailed, wave-like structure of inflaton halos.
Solitonic cores form inside them, matching structure formation simulations with axion-like particles in the
late-time universe. We denote these objects inflaton stars, by analogy with boson stars. Based on a
semianalytic formalism we compute their overall mass distribution which shows that some regions will reach
overdensities of 1015 if the early matter-dominated epoch lasts for 20 e-folds. The radii of the most massive
inflaton stars can shrink below the Schwarzschild radius, suggesting that they could form primordial black
holes prior to thermalization.
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I. INTRODUCTION

Cosmological inflation [1–4] is a period of accelerated
expansion in the early Universe. In simple scenarios this
phase ends with the scalar inflaton field oscillating about
the (possibly local) minimum of its potential. A fully viable
inflationary model must contain a mechanism that converts
the energy-density represented by the resulting inflaton
condensate into Standard Model particles, thermalizing the
universe at temperatures high enough to allow neutrino
freeze-out and nucleosynthesis.
Many mechanisms could accomplish this task, given that

in simple scenarios inflation typically ends with densities
near the grand unification scale but thermalization is not
absolutely required until interaction energies approach MeV
scales. In practice, thermalization is usually assumed to
occur at the TeV scale or above, given that baryogenesis and
dark matter production must occur prior to nucleosynthesis,
and both processes presumably involve physics beyond the
Standard Model. However, even in this case characteristic
energies could vary by a factor of 1012 between the end of
inflation and the onset of thermalization.
A number of mechanisms can fragment the initially near-

homogeneous, oscillating inflaton condensate. Quanta of
fields coupled to the inflaton or the inflaton itself can be
produced by resonance [5–7], leading to quasiexponential

growth in the occupation numbers of specific ranges of
momentum modes, rendering the early universe highly
inhomogeneous. These “preheating” mechanisms typically
produce a nonthermal initial distribution which would then be
thermalized by their mutual interactions [8]. In addition,
resonance can lead to long-lived collective excitations such as
oscillons [9–13] which are stable on scales much longer than
the postinflationary Hubble time.
In this work, we focus on scenarios in which the primary

inflaton interactions are gravitational. In these cases,
inflation is followed by an extended period of early matter
domination (EMD); integrating out the rapid inflaton
oscillations leads to an effective description of density
perturbations on a nonrelativistic, matter-dominated back-
ground. Small perturbations in the inflaton condensate
become gravitationally unstable inside the Hubble horizon
and collapse [14,15], eventually forming bound structures
[16–18].
It is possible that this era supports a lengthy period

during which the local gravitational dynamics are non-
linear, leading to large overdensities [17,18]. These struc-
tures are necessarily evanescent, since thermalization must
convert all remnant inflaton material into Standard Model
particles and dark matter. The details of this phase are
convolved with the predicted values of observables asso-
ciated with primordial perturbations [19–21]. Furthermore,
this complex nonlinear phase could conceivably source
stochastic gravitational waves via merging halos, primor-
dial black hole formation, as well as inhomogeneous
reheating prior to nucleosynthesis.
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Given that this epoch involves fully nonlinear gravitational
clustering three-dimensional simulations are required to
model its detailed evolution. The nonrelativistic description
of a generic self-gravitating scalar field is provided by the
Schrödinger-Poisson equations. Gravitational clustering in
the postinflationary epoch was first demonstrated in Ref. [16]
by numerically solving the Schrödinger-Poisson equations on
a comoving background. As with axionlike or fuzzy dark
matter (FDM) [22] structure formation simulations, the need
to spatially resolve the de Broglie wavelength limits the
achievable simulation volume [23,24]. On scales far greater
than the de Broglie length, the coarse grained behavior of
scalar fields converges to that of collisionless particles
[25,26], allowing the use of standard N-body methods if
only large-scale dynamics are of interest. The large-scale
correspondence between the coarse grained Schrödinger-
Poisson and the Vlasov-Poisson equations was exploited to
analyze the gravitational fragmentation of the inflaton field
after inflation in Ref. [18]. Large N-body simulations showed
that the inflaton condensate collapses into gravitationally
bound inflaton halos, reaching masses of up to 20 kg with
radii of the order of 10−20 m. The resulting inflaton halo mass
function (IHMF) is consistent with results from Press-
Schechter theory [17].
N-body methods are computationally efficient but do not

capture phenomena arising from wave interference pat-
terns, whose characteristic scale is set by the de Broglie
wavelength. These include the formation of gravitationally
bound solitonic objects equivalent to nonrelativistic Bose
stars. These have received attention in the context of FDM
structure formation [23,27–31] and QCD axion minihalos
[32–35] where they are known as solitonic halo cores and
(dilute) axion stars, respectively. The similarity of initial
conditions on sub-horizon scales—a homogeneous, cold
field with small density perturbations—suggests that the
Schrödinger-Poisson dynamics of the inflaton field during
EMD give rise to equivalent bound structures, referred to as
inflaton stars in Ref. [17].
Confirming this hypothesis requires simulations using the

Schrödinger-Poisson equations on small scales with appro-
priate initial conditions for mass density and momentum in a
cosmological box large enough to follow the evolution of
structures akin to the present-day cosmic web. The analogous
problem in the context of FDM structure formation was
solved by using a hybrid approach with adaptive-mesh
refinement (AMR) techniques [29]. Using an N-body particle
representation of the scalar field on coarse grid levels and
only solving the Schrödinger-Poisson equations in isolated,
highly refined regions surrounding pre-selected halos made it
possible to observe the formation and growth of solitonic
cores from cosmological initial conditions.
We use the same hybrid methods to extend our previous

N-body simulations of the early matter-dominated postinfla-
tionary era [18] to much smaller length scales. This confirms
the formation of inflaton stars at the center of inflaton halos

during EMD. Using the IHMF from our previous N-body
simulations and the knowledge that these solitons are in virial
equilibrium with their host halos we determine the inflaton
star mass function (ISMF) and find that it can be well
approximated by a modified Press-Schechter approach [36].
With overdensities of up to 1015 the existence of inflaton stars
might lead to new possible observational hints of the early
matter-dominated epoch. If the universe thermalizes at the
TeV scale, typical overdensities of 1032 will be reached and
the most massive inflaton stars can collapse into primordial
black holes (PBHs).
The structure of this paper is as follows. In Sec. II we

review the formation of gravitational bound structures after
inflation and describe our numerical methods and simulation
setup.We present our results in Sec. III. The mass distribution
of inflaton stars and the possible formation of black holes is
discussed in Sec. IV. We conclude in Sec. V.

II. SIMULATION SETUP AND NUMERICAL
METHODS

In single-field models the accelerated expansion of the
Universe is driven by the scalar inflaton field φ with potential
VðφÞ. In the homogeneous limit of a flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) space-time, the inflaton
obeys the Klein-Gordon equation

φ̈þ 3H _φþ dV
dφ

¼ 0; ð1Þ

while the Friedmann equation

H2 ¼ 1

3M2
Pl

�
1

2
_φ2 þ VðφÞ

�
ð2Þ

describes the expansion of space. Here, MPl ¼ ð8πGÞ−1=2 is
the reduced Planck mass andH ¼ _a=a the Hubble parameter
with scale factor a.
After slow-roll inflation, the homogeneous inflaton

condensate oscillates around its potential minimum.
While the full potential must be shallower than quadratic
at large field values φ > MPl for compatibility with
observations [37], most inflationary potentials can be
described by VðφÞ ∼ φ2 around potential minima, or

VðφÞ ¼ 1

2
m2φ2: ð3Þ

The power spectrum of density perturbations for this
potential decays as k−5 on subhorizon scales [14,18].
Assuming that the full potential does not support

resonance and solving Eq. (1) we find that in the quadratic
limit the inflaton field evolves as φ ∼ sinðmtÞ=t in the
postinflationary epoch. Furthermore, the scale factor
behaves as aðtÞ ∼ t2=3 and the Hubble parameter decreases
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as H ∼ a−3=2, similar to the expansion in a matter-
dominated universe [38].
If the inflaton coupling to other fields is small, this

matter-dominated era can last for multiple e-folds. For
example with a reheating temperature of Trh ≃ 107 GeV,
the universe grows by 24 e-folds [18]. During this period,
sub-horizon density perturbations grow linearly with the
scale factor and eventually collapse into gravitationally
bound structures [14,15].
At the end of slow-roll inflation, φend ∼MPl and thus

Hend ∼m, so that a few e-folds after the end of inflation
we have m ≫ H, allowing the nonrelativistic approxima-
tion of the Klein-Gordon equation on subhorizon scales.
Additionally, large occupation numbers allow a classical
treatment of the inflaton field, which is often referred to
as a condensate. In the absence of self-interactions or
interactions with other fields, the inflaton condensate
evolves solely under the influence of its own self-gravity.
As demonstrated in Ref. [16], these conditions justify the
use of the WKB approximation in that the Klein-Gordon-
Einstein equation approaches its nonrelativistic limit, the
(comoving) Schrödinger-Poisson equations [39,40]:

iℏ∂tψ ¼ −
ℏ2

2ma2
∇2ψ þmψVN; ð4Þ

∇2VN ¼ 4πG
a

ðρ − ρ̄Þ: ð5Þ

Here, ρ ¼ jψ j2 is the density of the scalar field with mean
density ρ̄.
Numerical simulations of the Schrödinger-Poisson equa-

tions [16] demonstrated the gravitational fragmentation and
clustering of the inflaton field, but limited spatial resolution
and box size prevented the computation of halo statistics or
the detailed simulation of solitonic core formation.1 Their
properties were estimated in Ref. [17] using a Press-
Schechter analysis and the core-halo mass relation mea-
sured in FDM simulations [28], predicting characteristic
masses of 10−3 kg for inflaton halos and 10−6 kg for their
solitonic cores (inflaton stars), with typical overdensities
reaching Oð106Þ.
Large N-body simulations in the Vlasov regime of

gravitational clustering were reported in Ref. [18]. They
confirmed the formation of inflaton halos with halo mass
functions consistent with Press-Schechter models with a
sharp-k filter. Moreover, the averaged halo density profiles
were shown to agree well with NFW-fits, providing further
evidence for the structural equivalence of nonlinear

gravitational clustering in EMD and late-time cosmological
structure formation in the collisionless kinetic regime.
We extend these N-body simulations by finely resolving

preselected isolated inflaton halos to below the de Broglie
wavelength λdB ¼ 2πℏ=ðmvvirÞ that is set by their virial
velocity vvir. Implementing the hybrid method introduced in
Ref. [29] within AXIONYX [41] enables us to solve the
Schrödinger-Poisson equations on adaptively refined regular
grids while using the standard N-body solver for most of the
simulation volume. This reduces the computation time
significantly while resolving the wavelike properties of
the inflaton field in regions of interest, which cover only
1.5 × 10−3% of the full simulation domain.

A. Classical wave approximation

The hybrid method relies on the reconstruction of the
wave function from particle information at the N-body/
Schrödinger-Poisson boundary. We employ the classical
wave approximation (CWA) described in Ref. [29] for
FDM structure formation to achieve this transition. In this
hybrid scheme a classical wave function (CWF) is created
from information provided by N-body particles. Apart from
their massesmi, positions xi and velocities vi, these particles
also need to carry information about the wave function’s
complex phase. Applying periodic boundary conditions to
the Schrödinger-Poisson equations, the initial phases Si of
the N-body particles in the simulation volume can be
obtained from the initial particle velocity field v ¼ a−1∇S
(in physical units) by solving

∇ · v ¼ a−1∇2S; ð6Þ

with AXIONYX’s Poisson solver. After initialization, the
particle phases are evolved in each time step according to
the Hamilton-Jacobi equation [29]

dSi
dt

¼ 1

2
v2i − VNðxiÞ: ð7Þ

Before a selected halo starts to collapse, the CWF is
constructed in each subsequent time step at the N-body/
Schrödinger-Poisson boundary encompassing the halo under
the assumption that interference effects can be neglected.
This is justified in low-density regions with linear dynamics,
where the Schrödinger-Vlasov correspondence is valid and
wavelike effects are suppressed, but does not hold in the
multistreaming regime of a collapsing halo or filament. It is
therefore important to construct the CWF before the collapse
of nonlinear structures and in a large enough volume in order
to avoid boundary effects in regions of interest (cf. Fig. 1).
Before each time step on the finite-difference level where the
Schrödinger-Poisson equations are solved, the amplitude and
the phase of the CWF are constructed at the boundaries. Its
amplitude is given by [29]

1In principle one could evolve the inflaton field via the
Einstein-Klein-Gordon equations but it is computationally costly
to do this over many e-folds and there is also no reason to use the
full formalism, given that the nonrelativistic approximation is
valid.
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jψðxÞj ¼
�X

i
Wðx − xiÞ

�
1=2

; ð8Þ

where the particle masses are smoothed by the mass
conserving interpolation kernel

Wðx − xiÞ ¼ mi
3

πξ3

�
1 −

jx − xij
ξ

�
ð9Þ

for jx − xij < ξ and 0 elsewhere. Thus, ξ serves as a
smoothing radius for the interpolation of the particles onto
the grid.
The phase SðxÞ is the argument of the superposition of

particles weighted by their interpolation kernel and given
by [29]

SðxÞ ¼ ℏ
m
arg

�X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðx − xiÞ

p
ei½Siþvi·aðx−xiÞ�m=ℏ

�
: ð10Þ

B. Simulation setup

We use the same model parameters and unit system as in
our previous N-body simulations of the matter-dominated
(Ωm ¼ 1) postinflationary era [18]. Explicitly, we assume the
quadratic potential of Eq. (3), φend ≈MPl and Hend ≈m=

ffiffiffi
6

p
at the end of inflation, where m ¼ 6.35 × 10−6MPl is the
inflaton mass. The comoving length unit lu of our simulations

is determined by the physical size of the horizon N ¼ 20

e-folds after the end of inflation, i.e., lu ¼ e20H−1
end ¼

1.51 × 10−20 m. Setting the mass unit mu ¼ 10−10 g and
choosing the time unit tu ¼ 7.23 × 10−24 s, the gravitational
constant is G ¼ 10−10l3u=ðmut2uÞ. The Hubble parameter and
the mean density N ¼ 20 e-folds after inflation are H20 ¼
6.49t−1u and ρ̄ ¼ 5.02 × 1010mu=l3u, respectively. The
comoving length of our simulation box is set to L ¼ 50lu.
We make use of one further stratagem to ensure that

the numerical simulations are tractable. The overall
cosmological parameters are set relative to the choice
m ¼ 6.35 × 10−6MPl, as noted above. However, we arti-
ficially increase λdB in the simulations by reducing m by
a factor of 80, so that ℏ=m ¼ 9.84 × 10−3l2u=tu. This
increases the lengths at which wave effects become
apparent and reduces the number of nested levels we
need to resolve, and allows a larger time step within the
simulation. Taken together these choices prevent the
simulations from becoming computationally intractable.
This approach is justifiable given the scaling symmetry
[42] of the Schrödinger-Poisson equations which maps
soliton quantities to rescaled inflaton masses. Hence, our
results are qualitatively independent of the inflaton mass.
We use the same matter power spectrum as in Ref. [18]

(see Fig. 2 therein) to create the initial conditions for our
simulations starting N ¼ 14 e-folds after the end of

FIG. 1. Scaled sequence of the inflaton density N ¼ 17 e-folds after the end of inflation. The rectangular region shows the projected
inflaton density of 15% of the full simulation box centered on a selected halo. A slice through the maximum density of the halo
illustrates the setup of several refinement levels in our simulation. Note that the white space in the last N-body level correspond to cells
without any particles. Compared to the root grid the spatial resolution of the finest finite-difference (FD) level, which is displayed in an
enlargement in the upper right panel, is increased by a factor of 28 ¼ 256. One can clearly recognize the interference patterns in the
filaments, the granular structure inside the collapsed inflaton halo and the solitonic core in its center.
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inflation. The power spectrum of density perturbations was
computed numerically in Ref. [14] over a wide range of k.
Since the nonlinear evolution of the density perturbations is
not sensitive to its precise form, it is sufficient to interpolate
between the super- and subhorizon limits of the power
spectrum [17,18].
The 5123 unigrid N-body simulations described in

Ref. [18] are used to determine the Lagrange patches of
five isolated halos that experience no major mergers during
the entire simulation time. In five separate simulations,
these regions are individually refined with two additional
static refinement levels with a comoving side length of
up to 7.5lu. The number of particles in these regions is
increased accordingly. We employ MUSIC [43] to generate
particle positions and velocities for these nested initial
conditions.
Initially, the particles are in the single-streaming regime

and can be evolved with the N-body solver until N ≈ 16.5
without further refinement. As the selected halos start to
collapse, we add three additional refinement levels tracing
the halos’ central positions. The first is an additional N-body
level, followed by a level with a cubic grid of comoving side
length 1.5lu onwhich the CWF is constructed with ξ ¼ 6Δx,
where Δx denotes the level’s cell width. The initial CWF is
interpolated onto the finest level and then evolved with the
Schrödinger-Poisson equations, via a fourth-order Runge-
Kutta algorithm [23]. The evolution of the N-body particles
is tracked inside the Schrödinger-Poisson domain but the
source of gravity is the density ρ ¼ jψ j2 of the wave
function.
Once the halo has formed up to three additional finite-

difference levels are added (the level setup is illustrated in
Fig. 1) to ensure that the de Broglie wavelength is resolved
throughout our simulations. This yields a total of eight
refinement levels with a refinement factor of two at each
step, six of which dynamically trace the position of the
selected halo.

III. SIMULATION RESULTS

Our zoom-in simulations are related to five halos cover-
ing a mass range between 8.5 g and 225 g at N ¼ 17.3.
Analogously to FDM halos, a solitonic core forms in the
center of each collapsing inflaton halo surrounded by
incoherent granular density fluctuations, as shown in Fig. 1.
The solitonic core is identified by its radial density

profile [28]

ρ�ðrÞ ≃ ρ�;0

�
1þ 0.091

�
r
r�

�
2
�

−8
; ð11Þ

where r� is the (physical) core radius at which the density
has dropped to half of its central value

ρ�;0¼ 3.3×1013
�
1.546×1022 eV

m

�
2
�
10−3lu
r�

�
4mu

l3u
: ð12Þ

In Fig. 2 we show radial density profiles centered around the
point of maximal density of the five simulated halos at
differentN . They are well fitted by Eq. (11) in the innermost
region, transitioning to outer profiles indistinguishable from
the results of the corresponding pure N-body simulations.
This confirms the hypothesized existence of inflaton stars
in the postinflationary universe [17] and demonstrates
the validity of the Schrödinger-Vlasov correspondence in
the outer parts of the halos.
The velocity distributions of the lowest-, highest-, and a

medium-mass halo from our sample are shown in Fig. 3 for
both the wave function ψ within a cube defined by the halo’s
virial radius rvir and for the corresponding pure N-body
simulation. The former is given by [29]

fðvÞ ¼ 1

N

����
Z

d3x exp ð−imv · x=ℏÞψðxÞ
����
2

; ð13Þ

FIG. 2. Radial density profiles of five simulated halos at different number of e-folds N after the end of inflation. The
orange curves represent the profiles from solving the Schrödinger-Poisson equations with the finite-difference method while
the blue curves are given by the theoretical soliton density profiles from Eq. (11). For comparison, the halo profiles from a pure
N-body simulation are shown in green.
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whereN is a normalization factor. Here, rvir defines a sphere
around the halo’s center with mean density Δvirρ̄ and Δvir ¼
18π2 for a matter-dominated universe. The halo’s virial mass
is then given by Mvir ¼ 4π=3Δvirρ̄r3vir defining its virial
velocity as vvir ¼ ðGMvir=rvirÞ1=2.
These velocity distributions are almost indistinguishable,

again confirming the Schrödinger-Vlasov correspondence,
and are well fitted by a Maxwellian distribution

fMðvÞdv ¼ 3

�
6

π

�
1=2 v2

v30
exp

�
−
3

2

v2

v20

�
dv; ð14Þ

with free parameter v0. They peak at vvir ¼ ð2=3Þ1=2v0.
It was previously found that the core radii r� are

correlated with the peaks of the velocity distributions of
their host halos,

r� ¼
2π

7.5
ℏ

mvvir
; ð15Þ

once the cores are in virial equilibrium (2Ekin þ Epot ¼ 0)
with their surroundings [30,41]. In practice, this means that
the soliton velocity satisfies v� ¼ vvir [24]. We use Eq. (15)
to compute v� from r�; these are displayed as vertical
dashed lines in Fig. 3. While the soliton velocities inside the
lower-mass halos agree well with vvir at their respectiveN ,
v� of the heaviest halo at an earlier time is only half the
peak velocity, implying that this core needs to double its
mass before reaching virial equilibrium (cf. Eq. (17)).
We define the mass of a solitonic core as the mass

enclosed by r� [44],

M� ¼ 3.9251
ℏ2

Gr�m2
: ð16Þ

For the density profiles shown in Fig. 2 we find core masses
ranging from 0.95 g to 1.90 g. Inserting r� from Eq. (16)
into Eq. (15), one obtains a relation between the core mass
and the virial velocity of the halo:

M� ¼ 4.69
ℏ
m
vvir
G

: ð17Þ

Since Eq. (17) is only accurate when the soliton radii
approach Eq. (15) the core masses from the two lighter
halos in Fig. 3 are 15% and 35% smaller than expected
from Eq. (17), while the most massive core has only half of
its expected mass.
Figure 4 shows the mass increase of the respective

solitonic core inside a low-mass (blue), a medium-mass
(orange), and a high-mass halo (green). The soliton masses
are normalized by their initial masses M�;0 when the radial
density profile starts to be well described by the soliton
profile defined in Eq. (11). The growth rate depends on the
condensation timescale [34]

τ ¼ 0.7
ffiffiffi
2

p

12π3

�
m
ℏ

�
3 v6vir
G2ρ2Λ

; ð18Þ

where Λ ¼ logðmvvirrvir=ℏÞ is the Coulomb logarithm and
ρ ¼ Δvirρ̄ is the mean density of the host halo. Computing τ
at soliton formation time, we recover the expected growth
rate [34,35,45]

M� ¼ M�;0

�
c

�
t
τ

�
1=2

þ 1

�
; ð19Þ

FIG. 3. Velocity spectra of three halos inside their respective
virial radii for the wave function (solid) and for N-body particles
(dotted) in the same region. Fits of Maxwellian distribution
functions [cf. Eq. (14)] are displayed in gray. The vertical
dashed lines show the soliton velocities v�. The crosses mark
vvir of the respective halos. They closely align with the peaks of
the Maxwellian distribution.

FIG. 4. Mass increase of three solitonic cores relative to their
mass M�;0 at formation. Due to the strong oscillations of the
solitons the simulation data was smoothed with a Gaussian kernel
with a standard deviation of σ ¼ 2 × 10−5tu. The mean and its 1σ
deviation band are displayed by the solid lines and the shaded
regions, respectively. As shown by the dashed lines, the mass
growth obeys Eq. (19) with timescale τ given by Eq. (18).
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where c ≃ 3 was determined from fitting Eq. (19) to the
growth curves. As is noticeable from Fig. 4 and expected
from Eqs. (18) and (19), larger halo masses lead to larger
values of τ and thus to a relatively slower mass growth of the
solitonic core. It was conjectured in Ref. [35] and confirmed
in Ref. [45] that the mass growth proportional to ∼t1=2
comes to an end once the soliton is in virial equilibrium with
its halo and that it afterwards proceeds with the reduced
growth rate ∼t1=8. However, our simulations are limited by
spatial resolution and it is too computationally expensive to
verify this in our setup.
From Fig. 4 we see that strong soliton oscillations cause

M� to vary over time by up to 20%. In agreement with
previous studies (cf. Refs. [29,35,41]) the frequency spectra
of the oscillations peak at the quasinormal mode of the
excited solitons [42]

f� ¼ 5.2 × 104
�

ρ̄�;0
1021mu=l3u

�
1=2

t−1u ; ð20Þ

where ρ̄�;0 is the time-averaged value of ρ�;0. A represen-
tative frequency analysis is shown in Fig. 5.

IV. INFLATON STAR MASS FUNCTION

The mass distribution of inflaton stars can be predicted
using the mass distribution of inflaton halos and their radii
at different times found in the N-body simulations in
Ref. [18]. We compute the expected mass of an inflaton
star in each halo with Eq. (17). The resulting inflaton
star mass function (ISMF) dn=d logM�, defined as the

comoving number density of inflaton stars per logarithmic
mass interval,2 is shown in the left panel of Fig. 6 from
N ¼ 18.3 to N ¼ 20.0. Inserting the obtained masses M�
into Eqs. (12) and (16) we relate them to their central
densities and determine their overdensities relative to the
mean density ρ̄. As is evident from the upper axis in the
left panel of Fig. 6, the distribution of overdensities
associated with inflaton stars when N ¼ 20.0 peaks at
around 1010 and can reach values as high as 1015 before
dropping superexponentially.
The IHMF matches predictions [18] from the Press-

Schechter formalism [36] with a sharp-k filter [17,46,47].
Assuming that each halo contains an inflaton star with a
mass given by Eq. (17), the ISMF retains in general the
shape of the Press-Schechter-IHMF but is shifted to
correspondingly smaller masses. As evident from the left
panel in Fig. 6, the corresponding ISMFs agree with each
other at different N . This allows to extrapolate the ISMF
and their distribution of overdensities to even later times in
the postinflationary universe, as shown in the right panel of
Fig. 6. Assuming that thermalization occurs at a temper-
ature of 1 TeV, the early matter-dominated epoch lasts for
N ¼ 36.5 e-folds (see Eq. (7) in Ref. [18]) allowing typical
overdensities at the center of inflaton stars to be as large as
1032 at the end of the matter dominated phase.
An inflaton star, like any boson star, has a maximum

possible mass, beyond which its radius approaches the
Schwarzschild radius rS ¼ 2GM=c2. Applying the uncer-
tainty principle to an inflaton star with maximummomentum
p ¼ mc and size rS, one obtains an estimate for the upper
mass limit [48–50]

M�;max ¼
1

2

ℏ
m

c
G
; ð21Þ

above which an inflaton star becomes gravitationally unsta-
ble, potentially dispersing or collapsing into a black hole
depending on the details of its prior evolution [49,51]. As is
shown in the right panel of Fig. 6, this condition is met for
N ≥ 29 e-folds after the end of inflation.
Integrating the ISMF yields an estimate for the mass

M�;tot per unit volume that is attributed to the sum of the
masses of all inflaton stars,

M�;tot ¼
Z

M�;max

0

dn
d logM�

dM�: ð22Þ

While the fraction of mass that is bound in inflaton halos
rapidly converges to 70% already at N ¼ 25, we find that
the mass fraction of inflaton stars decreases linearly with
scale factor from 10−5 at N ¼ 20.0 to 10−12 at N ¼ 36.5.

FIG. 5. Top: central soliton density as a function of time.
Bottom: its corresponding power spectrum. Boundaries of the
shaded region are determined by the quasi-normal frequencies
[see Eq. (20)] using the maximum and minimum ρ�;0. The
spectrum peaks at the frequency f� ¼ 2.9 × 104tu corresponding
to ρ̄�;0.

2Note that a similar procedure is also applicable to determine
the mass distributions of solitonic cores in FDM halos and axion
stars in axion miniclusters, respectively.
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This is reasonable since overall dn=d logM� ∼ a−1 while
the cutoff at the high-mass end of the ISMF (see right panel
of Fig. 6), which effectively acts as the upper limit in
Eq. (22) when M�;max is not yet reached, increases only
weakly with a.
Setting the lower limit in the integral to M�;max and

integrating to M⋆ → ∞ yields the integrated mass of
inflaton stars with M ≥ M�;max. The maximal fraction
of 3 × 10−11 is reached atN ¼ 30, afterwards it decreases.
Importantly, this quantity is not the mass fraction of black
holes since (i) not every unstable inflaton star collapses
into a black hole and (ii) this approach does not capture
black hole evolution via accretion, mergers or evapora-
tion. With maximal possible masses of only 1 kg assuming
thermalization at T ¼ 1 TeV, any such black holes would
evaporate in less than 10−18 s [52].

V. CONCLUSIONS

Using a hybrid method combining an N-body scheme
at large scales with a finite-difference solver for the
Schrödinger-Poisson equations at small scales we have
performed highly refined simulations of the effective
matter-dominated era in the postinflationary universe.
This allows us to extend the N-body simulations in
Ref. [18] to much smaller length scales by zooming into
selected halos to properly resolve their interior structure.
Taking a sample of five halos with masses ranging from
8.5 g to 225 g at N ¼ 17.3 e-folds after the end of
inflation, we confirm the existence of solitonic cores
(inflaton stars) in the very early universe.

In agreement with their late-time analogs in FDM halos
[27–29] and axion miniclusters [35], we find that inflaton
stars are subject to strong quasinormal oscillations and that
their masses after formation increase as t1=2. The radial
density profiles in the outer regions of the simulated halos
and the velocity distribution inside them are consistent with
their counterparts in pure N-body simulations, confirming
the validity of the Schrödinger-Vlasov correspondence on
scales larger than the de Broglie wavelength.
Making use of the IHMF from our previous N-body

simulations [18] and the Press-Schechter formalism we
predict the mass distribution of inflaton stars in the post-
inflationary universe until thermalization. At N ¼ 20 the
mass contained in inflaton stars constitutes∼10−5 of the total
mass while 70% of the mass is bound in inflaton halos. Since
halo masses increase over time, the inflaton star masses rise
according to Eq. (17). Eventually, they reach the upper mass
limit M�;max, suggesting that they can collapse into a PBH
[53–56]. However, the mass fraction of collapsed inflaton
stars is less than 10−10.
Given their masses, all these black holes evaporate prior to

big bang nucleosynthesis. Any particle coupled to gravity
whose mass is lower than the current Hawking temperature
will be radiated by a decaying black hole [57]. This includes
any stable particles within the overall spectrum of ultrahigh
energy physics, whether or not they couple directly to the
inflaton. As a consequence, a decaying PBH population
creates an alternative mechanism to generate dark matter
[58–63]. Conversely, massless states could contribute to dark
radiation [52,62]. This primordial black hole formation
mechanism was discussed in a recent paper by Padilla et al.

FIG. 6. Inflaton star mass function at different number of e-foldsN after the end of inflation for an inflaton mass ofm ¼ 6.35 × 10−6MPl.
Left: solid lines represent the ISMFderived from the numerically obtained IHMF inRef. [18]while dashed lines display the correspondingmass
functions from thePress-Schechter formalism.Theupper axis shows the inflaton star overdensitywhich canbe calculated from theirmass.Right:
ISMF from Press-Schechter theory until thermalization at T ¼ 1 TeV (N ¼ 36.5) with overdensities relative to the mean density ρ̄therm at
thermalization. The gray shaded area highlights masses larger than M�;max [see Eq. (21)].
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[50] and a full analysis (and its consistency with other
formation mechanisms posited for the postinflationary uni-
verse [64–68]) is an obvious avenue for future work.
Likewise, detailed studies of the onset and ultimate conse-
quences of solitons exceeding the bound of Eq. (21) is an
important topic, which will require fully relativistic simu-
lations [51].
Whether or not black holes form after the inflaton stars

become unstable, the formation and interaction of inflaton
halos and inflaton stars will source gravitational waves
[69]. The resulting gravitational radiation would contribute
to a (high frequency) stochastic gravitational wave back-
ground that may be detectable with future experiments [70]
and this is likewise a fruitful topic for further analysis.
Observational constraints suggest that the inflationary

potential is subquadratic for large field values, and non-
quadratic contributions can lead to a phase of parametric
resonance immediately after the end of inflation. Resonance
reprocesses the initial spectrum and this could significantly
accelerate the formation of gravitationally bound structures.
Thus, one can expect a rich phenomenology of inflaton halos
and inflaton stars prior to thermalization in a broad class of
inflationary scenarios, provided the reheating temperature is
sufficiently low. Moreover, if the inflaton has (weak) self-
couplings during this phase, the Schrödinger-Poisson equa-
tions will need to be generalized to the Gross–Pitaevskii
equations to capture them. Separately, there are likely

analogues of the resonant decay of axion stars into photons
[71,72] for inflaton stars coupled to external fields.
In this paper, we have taken steps toward building a full

understanding of the rich nonlinear dynamics that can
occur in the postinflationary universe. These arise in the
simplest inflationary models, but there is still much left to
understand. This includes the possibility of black hole
formation and the consequences of both the inflaton self-
coupling, its interactions with other fields, and the proc-
esses responsible for thermalizing the universe.

ACKNOWLEDGMENTS

We thank Mateja Gosenca, Peter Hayman, Shaun
Hotchkiss, and Emily Kendall for useful discussions.
Computations described in this work were performed with
resources provided by the North-German Supercomputing
Alliance (HLRN). We acknowledge the yt toolkit [73] that
was used for the analysis of numerical data. R. E. acknowl-
edges support from the Marsden Fund of the Royal Society
of New Zealand. J. C. N. acknowledges a Julius von Haast
Fellowship Award provided by the New Zealand Ministry of
Business, Innovation and Employment and administered by
the Royal Society of New Zealand. B. S. acknowledges
support by the Deutsche Forschungsgemeinschaft and by
Grant No. PGC2018-095328-B-I00(FEDER/Agencia estatal
de investigación).

[1] A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[3] A. Linde, Phys. Lett. 108B, 389 (1982).
[4] A. Linde, Phys. Lett. 129B, 177 (1983).
[5] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42,

2491 (1990).
[6] Y. Shtanov, J. H. Traschen, and R. H. Brandenberger, Phys.

Rev. D 51, 5438 (1995).
[7] L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. D

56, 3258 (1997).
[8] K. D. Lozanov and M. A. Amin, Phys. Rev. Lett. 119,

061301 (2017).
[9] M. Gleiser, Phys. Rev. D 49, 2978 (1994).

[10] E. J. Copeland, M. Gleiser, and H.-R. Müller, Phys. Rev. D
52, 1920 (1995).

[11] M. A. Amin, R. Easther, and H. Finkel, J. Cosmol. Astropart.
Phys. 12 (2010) 001.

[12] M. A. Amin, R. Easther, H. Finkel, R. Flauger, and M. P.
Hertzberg, Phys. Rev. Lett. 108, 241302 (2012).

[13] K. D. Lozanov and M. A. Amin, Phys. Rev. D 97, 023533
(2018).

[14] R. Easther, R. Flauger, and J. B. Gilmore, J. Cosmol.
Astropart. Phys. 04 (2011) 027.

[15] K. Jedamzik, M. Lemoine, and J. Martin, J. Cosmol.
Astropart. Phys. 09 (2010) 034.

[16] N. Musoke, S. Hotchkiss, and R. Easther, Phys. Rev. Lett.
124, 061301 (2020).

[17] J. C. Niemeyer and R. Easther, J. Cosmol. Astropart. Phys.
07 (2020) 030.

[18] B. Eggemeier, J. C. Niemeyer, and R. Easther, Phys. Rev. D
103, 063525 (2021).

[19] A. R. Liddle and S. M. Leach, Phys. Rev. D 68, 103503
(2003).

[20] P. Adshead and R. Easther, J. Cosmol. Astropart. Phys. 10
(2008) 047.

[21] P. Adshead, R. Easther, J. Pritchard, and A. Loeb,
J. Cosmol. Astropart. Phys. 02 (2011) 021.

[22] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,
1158 (2000).

[23] B. Schwabe, J. C. Niemeyer, and J. F. Engels, Phys. Rev. D
94, 043513 (2016).

[24] J. C. Niemeyer, Prog. Part. Nucl. Phys. 113, 103787 (2020).
[25] L. M. Widrow and N. Kaiser, Astrophys. J. Lett. 416, L71

(1993).
[26] C. Uhlemann, M. Kopp, and T. Haugg, Phys. Rev. D 90,

023517 (2014).

GRAVITATIONAL COLLAPSE IN THE POSTINFLATIONARY … PHYS. REV. D 105, 023516 (2022)

023516-9

https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.51.5438
https://doi.org/10.1103/PhysRevD.51.5438
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevLett.119.061301
https://doi.org/10.1103/PhysRevLett.119.061301
https://doi.org/10.1103/PhysRevD.49.2978
https://doi.org/10.1103/PhysRevD.52.1920
https://doi.org/10.1103/PhysRevD.52.1920
https://doi.org/10.1088/1475-7516/2010/12/001
https://doi.org/10.1088/1475-7516/2010/12/001
https://doi.org/10.1103/PhysRevLett.108.241302
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1103/PhysRevD.97.023533
https://doi.org/10.1088/1475-7516/2011/04/027
https://doi.org/10.1088/1475-7516/2011/04/027
https://doi.org/10.1088/1475-7516/2010/09/034
https://doi.org/10.1088/1475-7516/2010/09/034
https://doi.org/10.1103/PhysRevLett.124.061301
https://doi.org/10.1103/PhysRevLett.124.061301
https://doi.org/10.1088/1475-7516/2020/07/030
https://doi.org/10.1088/1475-7516/2020/07/030
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1088/1475-7516/2008/10/047
https://doi.org/10.1088/1475-7516/2008/10/047
https://doi.org/10.1088/1475-7516/2011/02/021
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevD.94.043513
https://doi.org/10.1103/PhysRevD.94.043513
https://doi.org/10.1016/j.ppnp.2020.103787
https://doi.org/10.1086/187073
https://doi.org/10.1086/187073
https://doi.org/10.1103/PhysRevD.90.023517
https://doi.org/10.1103/PhysRevD.90.023517


[27] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nat. Phys. 10,
496 (2014).

[28] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T. Chiueh,
T. Broadhurst, and W.-Y. P. Hwang, Phys. Rev. Lett. 113,
261302 (2014).

[29] J. Veltmaat, J. C. Niemeyer, and B. Schwabe, Phys. Rev. D
98, 043509 (2018).

[30] P. Mocz, M. Vogelsberger, V. H. Robles, J. Zavala, M.
Boylan-Kolchin, A. Fialkov, and L. Hernquist, Mon. Not. R.
Astron. Soc. 471, 4559 (2017).

[31] P. Mocz, L. Lancaster, A. Fialkov, F. Becerra, and P.-H.
Chavanis, Phys. Rev. D 97, 083519 (2018).

[32] I. I. Tkachev, Sov. Astron. Lett. 12, 305 (1986).
[33] I. Tkachev, Phys. Lett. B 261, 289 (1991).
[34] D. G. Levkov, A. G. Panin, and I. I. Tkachev, Phys. Rev.

Lett. 121, 151301 (2018).
[35] B. Eggemeier and J. C. Niemeyer, Phys. Rev. D 100,

063528 (2019).
[36] W. H. Press and P. Schechter, Astrophys. J. 187, 425

(1974).
[37] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.

641, A10 (2020).
[38] A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek,

Phys. Rev. Lett. 48, 1437 (1982).
[39] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767

(1969).
[40] Y. Nambu and M. Sasaki, Phys. Rev. D 42, 3918 (1990).
[41] B. Schwabe, M. Gosenca, C. Behrens, J. C. Niemeyer, and

R. Easther, Phys. Rev. D 102, 083518 (2020).
[42] F. S. Guzman and L. A. Urena-Lopez, Phys. Rev. D 69,

124033 (2004).
[43] O. Hahn and T. Abel, Mon. Not. R. Astron. Soc. 415, 2101

(2011).
[44] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.

D 95, 043541 (2017).
[45] J. Chen, X. Du, E.W. Lentz, D. J. E. Marsh, and J. C.

Niemeyer, Phys. Rev. D 104, 083022 (2021).
[46] A. Schneider, R. E. Smith, and D. Reed, Mon. Not. R.

Astron. Soc. 433, 1573 (2013).
[47] A. Schneider, Mon. Not. R. Astron. Soc. 451, 3117 (2015).
[48] S. L. Liebling and C. Palenzuela, Living Rev. Relativity 15,

6 (2012).
[49] E. Seidel and W.-M. Suen, Phys. Rev. D 42, 384 (1990).
[50] L. E. Padilla, J. C. Hidalgo, and K. A. Malik,

arXiv:2110.14584.

[51] T. Helfer, D. J. E. Marsh, K. Clough, M. Fairbairn, E. A.
Lim, and R. Becerril, J. Cosmol. Astropart. Phys. 03 (2017)
055.

[52] D. Hooper, G. Krnjaic, and S. D. McDermott, J. High
Energy Phys. 08 (2019) 001.

[53] B. J. Carr and S.W. Hawking, Mon. Not. R. Astron. Soc.
168, 399 (1974).

[54] B. J. Carr, Astrophys. J. 201, 1 (1975).
[55] A. M. Green, A. R. Liddle, and A. Riotto, Phys. Rev. D 56,

7559 (1997).
[56] A. M. Green and K. A. Malik, Phys. Rev. D 64, 021301

(2001).
[57] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,

206(E) (1976).
[58] T. Fujita, K. Harigaya, M. Kawasaki, and R. Matsuda, Phys.

Rev. D 89, 103501 (2014).
[59] O. Lennon, J. March-Russell, R. Petrossian-Byrne, and H.

Tillim, J. Cosmol. Astropart. Phys. 04 (2018) 009.
[60] R. Allahverdi, J. Dent, and J. Osinski, Phys. Rev. D 97,

055013 (2018).
[61] L. Morrison, S. Profumo, and Y. Yu, J. Cosmol. Astropart.

Phys. 05 (2019) 005.
[62] I. Masina, Eur. Phys. J. Plus 135, 552 (2020).
[63] A. Cheek, L. Heurtier, Y. F. Perez-Gonzalez, and J. Turner,

arXiv:2107.00013 [Phys. Rev. D (to be published)].
[64] M. Y. Khlopov, B. A. Malomed, and Y. B. Zeldovich, Mon.

Not. R. Astron. Soc. 215, 575 (1985).
[65] T. Harada, C.-m. Yoo, K. Kohri, K.-i. Nakao, and S.

Jhingan, Astrophys. J. 833, 61 (2016).
[66] J. C. Hidalgo, J. De Santiago, G. German, N. Barbosa-

Cendejas, and W. Ruiz-Luna, Phys. Rev. D 96, 063504
(2017).

[67] B. Carr, K. Dimopoulos, C. Owen, and T. Tenkanen, Phys.
Rev. D 97, 123535 (2018).

[68] J. Martin, T. Papanikolaou, and V. Vennin, J. Cosmol.
Astropart. Phys. 01 (2020) 024.

[69] K. Jedamzik, M. Lemoine, and J. Martin, J. Cosmol.
Astropart. Phys. 04 (2010) 021.

[70] N. Aggarwal et al., Living Rev. Relativity 24, 4 (2021).
[71] M. P. Hertzberg and E. D. Schiappacasse, J. Cosmol.

Astropart. Phys. 11 (2018) 004.
[72] D. G. Levkov, A. G. Panin, and I. I. Tkachev, Phys. Rev. D

102, 023501 (2020).
[73] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skill-

man, T. Abel, and M. L. Norman, Astrophys. J. Suppl. Ser.
192, 9 (2011).

EGGEMEIER, SCHWABE, NIEMEYER, and EASTHER PHYS. REV. D 105, 023516 (2022)

023516-10

https://doi.org/10.1038/nphys2996
https://doi.org/10.1038/nphys2996
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevD.98.043509
https://doi.org/10.1103/PhysRevD.98.043509
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1103/PhysRevD.97.083519
https://doi.org/10.1016/0370-2693(91)90330-S
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1086/152650
https://doi.org/10.1086/152650
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1103/PhysRevLett.48.1437
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRevD.42.3918
https://doi.org/10.1103/PhysRevD.102.083518
https://doi.org/10.1103/PhysRevD.69.124033
https://doi.org/10.1103/PhysRevD.69.124033
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.104.083022
https://doi.org/10.1093/mnras/stt829
https://doi.org/10.1093/mnras/stt829
https://doi.org/10.1093/mnras/stv1169
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.1103/PhysRevD.42.384
https://arXiv.org/abs/2110.14584
https://doi.org/10.1088/1475-7516/2017/03/055
https://doi.org/10.1088/1475-7516/2017/03/055
https://doi.org/10.1007/JHEP08(2019)001
https://doi.org/10.1007/JHEP08(2019)001
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.56.7559
https://doi.org/10.1103/PhysRevD.56.7559
https://doi.org/10.1103/PhysRevD.64.021301
https://doi.org/10.1103/PhysRevD.64.021301
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.89.103501
https://doi.org/10.1103/PhysRevD.89.103501
https://doi.org/10.1088/1475-7516/2018/04/009
https://doi.org/10.1103/PhysRevD.97.055013
https://doi.org/10.1103/PhysRevD.97.055013
https://doi.org/10.1088/1475-7516/2019/05/005
https://doi.org/10.1088/1475-7516/2019/05/005
https://doi.org/10.1140/epjp/s13360-020-00564-9
https://arXiv.org/abs/2107.00013
https://doi.org/10.1093/mnras/215.4.575
https://doi.org/10.1093/mnras/215.4.575
https://doi.org/10.3847/1538-4357/833/1/61
https://doi.org/10.1103/PhysRevD.96.063504
https://doi.org/10.1103/PhysRevD.96.063504
https://doi.org/10.1103/PhysRevD.97.123535
https://doi.org/10.1103/PhysRevD.97.123535
https://doi.org/10.1088/1475-7516/2020/01/024
https://doi.org/10.1088/1475-7516/2020/01/024
https://doi.org/10.1088/1475-7516/2010/04/021
https://doi.org/10.1088/1475-7516/2010/04/021
https://doi.org/10.1007/s41114-021-00032-5
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1103/PhysRevD.102.023501
https://doi.org/10.1103/PhysRevD.102.023501
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.1088/0067-0049/192/1/9

