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24 Quai Ansermet, CH-1211 Genève 4, Switzerland
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We introduce and validate a delensing framework for the Simons Observatory (SO), which will be used
to improve constraints on inflationary gravitational waves by reducing the lensing noise in measurements
of the B modes in CMB polarization. SO will initially observe CMB by using three small aperture
telescopes and one large-aperture telescope. While polarization maps from small-aperture telescopes will
be used to constrain inflationary gravitational waves, the internal CMB lensing maps used to delens will be
reconstructed from data from the large-aperture telescope. Since lensing maps obtained from the SO data
will be noise dominated on subdegree scales, the SO lensing framework constructs a template for lensing-
induced B modes by combining internal CMB lensing maps with maps of the cosmic infrared background
from Planck as well as galaxy density maps from the LSST survey. We construct a likelihood for
constraining the tensor-to-scalar ratio r that contains auto and cross spectra between observed Bmodes and
the lensing B-mode template. We test our delensing analysis pipeline on map-based simulations containing
survey nonidealities, but that, for this initial exploration, does not include contamination from Galactic and
extragalactic foregrounds. We find that the SO survey masking and inhomogeneous and atmospheric noise
have very little impact on the delensing performance, and the r constraint becomes σðrÞ ≈ 0.0015 which is
close to that obtained from the idealized forecasts in the absence of the Galactic foreground and is nearly a
factor of 2 tighter than without delensing. We also find that uncertainties in the external large-scale structure
tracers used in our multitracer delensing pipeline lead to bias much smaller than the 1σ statistical
uncertainties.

DOI: 10.1103/PhysRevD.105.023511

I. INTRODUCTION

Measuring the polarization of the cosmic microwave
background (CMB) anisotropies will be at the forefront of
observational cosmology in the next decade. In particular,
measurements of the curl component (B modes) in the
CMB polarization will be of great importance, as these
provide us with a unique window to probe inflationary
gravitational waves (IGWs) and gain new insights into the
early Universe [1–3]. CMB observations have not yet
confirmed the presence of these IGWs but have placed
upper bounds on the IGW amplitude. The best current
constraints on the IGW background, parametrized by the
tensor-to-scalar ratio r (at a pivot scale of 0.05 Mpc−1), are
from the combination of BICEP/Keck array measurements
and Planck and WMAP: r < 0.036 (2σ) [4,5]. Several
ongoing and upcoming CMB experiments, including the
BICEP array [6], Simons array [7], Simons Observatory
(SO) [8], LiteBIRD [9], and CMB-S4 [10], are targeting a
detection of IGW B modes over the next decade.
A high-precision measurement of the large-scale B

modes can tightly constrain r [11]. The precision of the
IGW B-mode measurement is, however, limited by other
sources of B modes. In addition to Galactic foregrounds
[12], gravitational lensing leads to B modes from con-
version of part of the E-mode polarization [13]; these
lensing B modes behave as an additional noise component
when constraining r. Indeed, the current best constraint on

r is limited by the lensing B modes more than by Galactic
foregrounds at the low dust region [4]. Reducing statistical
uncertainties by subtracting off the lensing-induced B
modes (or equivalent methods)—a process usually referred
to as delensing—will hence be of critical importance for
improving the constraints on r [14,15]. To estimate the
lensing-induced B modes in the survey region, known as a
B-mode template, the simplest method is to combine the
measured E modes with a reconstructed lensing map
derived from CMB data, and multiple works have studied
this technique (e.g., Refs. [16–22]).
In addition to the lensing map measured internally with

CMB data [22–24], we can also use external mass tracers
that correlate with the CMB lensing signal efficiently, such
as the cosmic infrared background (CIB) [25,26], radio and
optical galaxies [27,28], galaxy weak lensing [29], and
intensity mapping signals [30,31]. In the last few years,
several analyses, beginning with Ref. [32], have demon-
strated delensing using real small-scale CMB temperature
and polarization data [20,21,33,34]. Recently, Ref. [35]
(hereafter, BKSPT) demonstrated for the first time B-mode
delensing on the large scales relevant for constraining
IGWs using the CIB as a mass tracer.
SO, which we focus on throughout this paper, is

targeting a measurement of r with the 1σ uncertainty,
σðrÞ ¼ 0.002. SO will measure the large-scale B modes
with three small-aperture telescope (SAT) and delens the
large-scale B modes by combining the lensing map
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measured from the large-aperture telescope (LAT) and
external large-scale structure (LSS) tracers. Achieving
σðrÞ ¼ 0.002 will require removing approximately 70%
of the lensing B-mode power spectrum, based on idealized
forecasts building on Ref. [36]. However, it is an open
question whether a practical delensing method can match
this somewhat idealized forecast performance.
In real analyses, the delensing efficiency may be

degraded by, e.g., the presence of survey boundaries,
inhomogeneous instrumental noise and atmospheric noise.
For example, the efficiency of the SPTpol B-mode dele-
nsing at high multipoles is 19.7% while the idealized
analytic estimate is 27% [33].
Estimating the actual delensing performance including

realistic survey effects in SO is important given the
significant improvement in σðrÞ we can hope to achieve
with delensing. For SO, the noise properties of the LAT
used for measuring the lensing map will be significantly
different from those of the SAT, the B modes from which
will be delensed and used to constrain r. This difference
further complicates the situation. Other significant practical
concerns include the astrophysical uncertainties inherent in
our use of the external mass tracers. The SO baseline
delensing strategy utilizes external mass tracers, i.e., LSS
tracers, such as galaxies and CIB to enhance the delensing
performance; it is therefore important to evaluate the impact
of the astrophysical uncertainties (e.g., redshift or bias
uncertainties) associated with mass tracers on σðrÞ and
mitigate the relevant uncertainties if necessary [25,35].
In this paper, we present a delensing framework for SO

(which relies on multitracer delensing), test it on simu-
lations, and address the practical concerns listed above.
Although accurate removal of Galactic foreground emis-
sion is of critical concern for IGW B-mode searches, we
shall not consider this issue here. Our aim is to validate the
delensing framework in the presence of realistic survey
effects, the impacts of which would be difficult to isolate if
(residual) foregrounds were also included. The impact of
Galactic foreground on the SO large-scale B-mode analysis
has been explored in the SO overview paper [36].
The integration of Galactic-foreground cleaning and del-
ensing has already been demonstrated by BKSPT, and in
future work we will explore this issue within the context
of SO.
This paper is organized as follows. In Sec. II, after briefly

reviewing the lensing effect on the CMB, we present the
baseline multitracer strategy for SO delensing. In Sec. III,
we test our method with SO simulations including realistic
survey effects and show the expected constraints on r. In
Sec. IV, we discuss how to incorporate astrophysical
uncertainties in mass tracers for delensing. We conclude
in Sec. V. Appendix contains technical details of the
covariances of the auto- and cross-power spectra of the
B-mode template and the observed B modes, which are
used in the likelihood to constrain r.

II. LARGE-SCALE B-MODE DELENSING

In this section, we first briefly review CMB B-mode
delensing and introduce our notation. Then, we describe
our method for delensing SO data. Figure 1 shows our
flowchart of the delensing pipeline.

A. CMB lensing and lensing B modes

The distortion effect of lensing on the primary CMB
temperature and polarization anisotropies is expressed by a
remapping. Denoting the primary temperature and polari-
zation anisotropies from the last-scattering surface asΘ and
Q� iU, respectively, the lensed temperature and polariza-
tion anisotropies in the sky direction n̂, are given by (see,
e.g., Ref. [37])

Θ̃ðn̂Þ ¼ Θðn̂þ dðn̂ÞÞ; ð1Þ

½Q̃� iŨ�ðn̂Þ ¼ ½Q� iU�ðn̂þ dðn̂ÞÞ; ð2Þ

where tildes indicate lensed quantities and where d is the
deflection angle.1 In the Born approximation, d is given by
the gradient of the lensing potential ∇ϕ and is related to the
lensing convergence as ∇ · d ¼ −2κ. (Here we ignore all
curl modes.) It is generally more convenient to work with
the scalar-valued E and B modes rather than the spin-2
Stokes parameters, Q and U. In harmonic space, these are
related by

FIG. 1. Flowchart of the SO delensing pipeline.

1See Ref. [38] for the detailed form that these lensing
displacements take on the spherical sky.
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Elm � iBlm ¼ −
Z

d2n̂�2Y
�
lmðn̂Þ½Q� iU�ðn̂Þ; ð3Þ

where we denote the spin-2 spherical harmonics as

�2Ylmðn̂Þ. Similarly with the spin-0 (scalar) spherical
harmonics, Ylmðn̂Þ, the temperature and lensing potential
maps are transformed into harmonic space as

Θlm ¼
Z

d2n̂Y�
lmðn̂ÞΘðn̂Þ; ð4Þ

κLM ¼
Z

d2n̂Y�
LMðn̂Þκðn̂Þ: ð5Þ

Expanding the right-hand side of Eq. (2) up to first order in
the lensing potential, and then transforming the Stokes
Q=U parameters to E=B modes with Eq. (3), the B modes
of the lensed polarization field at linear order in ϕ are given
by [23]

Blens
lm ¼ i

X
l0m0

X
LM

�
l l0 L

m m0 M

�
p−Fð2Þ

lLl0E
�
l0m0κ�LM; ð6Þ

where we ignore the primary B modes. The quantity in
round brackets is the Wigner-3j symbol, pþ (p−) is unity if
lþ Lþ l0 is an even (odd) integer and zero otherwise, and

Fð2Þ
lLl0 represents the mode coupling induced by the lensing

[23,39]:

FðsÞ
lLl0 ¼

2

LðLþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

16π

r

× ½−lðlþ 1Þ þ l0ðl0 þ 1Þ þLðLþ 1Þ�
�

l l0 L

−s s 0

�
:

ð7Þ

Equation (6) is known to be a good analytic approximation
to the lensing B modes on large scales [40,41]. From
Eq. (6), the lensing B modes are simply expressed in terms
of a convolution between the unlensedEmodes and lensing
potential. Once we obtain an estimate for the lensing map,
we simply approximate the lensing B modes as a con-
volution of the Wiener-filtered E and lensing maps as
described below.

B. Internal CMB lensing map

From the lensed temperature and polarization maps,
we reconstruct the lensing potential ϕ using the quadratic-
estimator approach of Ref. [39].2 Lensing induces

off-diagonal elements of the covariance (l ≠ l0 or
m ≠ m0) between two lensed CMB anisotropy fields
(X; Y ¼ Θ; E; B) as

hX̃lmỸl0m0 iCMB ¼
X
LM

�
l l0 L

m m0 M

�
fXYlLl0κ

�
LM; ð8Þ

where the operation h…iCMB denotes the ensemble average
over the primary unlensed CMB anisotropies. The response
functions fXYlLl0 in Eq. (8) are defined as [39]3

fΘΘlLl0 ¼ Fð0Þ
lLl0C

ΘΘ
l0 þ Fð0Þ

l0LlC
ΘΘ
l ; ð9Þ

fΘElLl0 ¼ pþFð0Þ
lLl0C

ΘE
l0 þ pþFð2Þ

l0LlC
ΘE
l ; ð10Þ

fEElLl0 ¼ pþFð2Þ
lLl0C

EE
l0 þ pþFð2Þ

l0LlC
EE
l ; ð11Þ

fEBlLl0 ¼ ip−Fð2Þ
l0LlC

EE
l : ð12Þ

Here, FðsÞ is defined in Eq. (7), and CXY
l is the angular

power spectrum of the unlensed CMB anisotropies. In our
analysis, we replace the unlensed CMB spectra with their
lensed counterparts, C̃XY

l , giving a good approximation to
the nonperturbative response functions [43] and mitigating
higher-order biases in the power spectrum of the lens
reconstruction [44]. Equation (8) motivates the following
form for a quadratic lensing estimator [39]:

ðκ̂XYLMÞ� ¼AXY
L

X
ll0mm0

�
l l0 L

m m0 M

�ðfXYlLl0 Þ�
ΔXY X̄lmȲl0m0 ; ð13Þ

where we introduce ΔXY which is 2 if X ¼ Y and 1
otherwise. Here, X̄ and Ȳ are observed anisotropies filtered
by their inverse variance. In the idealistic case, the inverse-
variance filtering is diagonal:

X̄lm ¼ ðĈXX
l Þ−1X̂lm; ð14Þ

where X̂lm are the observed CMB anisotropies and ĈXX
l is

their angular power spectra. We ignore the correlation
between Θ and E in the above filtering, making the inverse-
variance filtering diagonal in CMB anisotropies as well.
The normalization AXY

L is then given by

AXY
L ¼

�
1

2Lþ 1

X
ll0

jfXYll0Lj2
ΔXYĈXX

l ĈYY
l0

�−1
: ð15Þ

2For the expected noise levels from SO, the improvements in
precision of lensing reconstruction and delensing efficiency from
applying more optimal, maximum-likelihood methods are neg-
ligible [42].

3We ignore quadratic combinations with XY ¼ ΘB and BB
since the signal to noise of the associated estimators is much
lower than that of the other quadratic estimators for SO noise
levels.
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For a realistic (anisotropic) survey, the diagonal
filtering approximation (in l) of Eq. (14) generally makes
the reconstruction suboptimal. However, it also makes
the computational cost very low. As we show later, the
reconstruction and delensing performances for the SO
surveys are not degraded significantly compared to an
isotropic case (i.e., for the same total integration time, but
distributed evenly over the survey region), even if we use
the diagonal approximation. Therefore, we choose the
diagonal filtering for our baseline analysis due to its low
computational cost.
In practice, it is necessary to subtract a mean-field

correction from the reconstruction since hκ̂XYLMi becomes
nonzero due to, e.g., the survey boundary and inhomo-
geneous noise [45,46]. In this paper, we estimate the mean-
field biases, hκ̂XYLMi, by averaging over simulation realiza-
tions and subtract these estimates from the κ̂XYLM.
It is possible to combine the quadratic estimators

together to improve the precision of the reconstruction.
In this paper, we construct a minimum variance (MV)
estimator following Ref. [39], i.e., the linear combination of
the individual estimators, κ̂MV

LM ¼ P
XY α

XY
L κ̂XYLM, where αL is

determined so that the reconstruction noise of κ̂MV
LM is

minimized. Note that Ref. [47] showed that the use of
more optimal weights originally derived by Ref. [48] can
improve the signal-to-noise by around 10% at L≲ 100
compared to the use of the MV estimator developed by
Ref. [39]. However, for delensing, the improvement is not
significant; delensing requires a lensing mass map at
intermediate scales, L ∼ 200–800 [25,26], where the
increase in signal-to-noise from the more optimal weights
is only a few percent [47]. The impact of the suboptimal
weights on the delensing performance is reduced further
since we combine with other LSS tracers, which are
significant contributors on these delensing scales.
Therefore, in this paper, we use the linear combination
of the estimators of Ref. [39] to construct the CMB
lensing map.

C. External mass-tracer map

In addition to being reconstructed internally from
the CMB fields themselves, the lensing convergence
field can be estimated from observations of the LSS tracers
such as the spatial distribution of galaxies or the CIB
[23,25–27,31].
As proposed in Refs. [25,49], different tracers can also

be linearly combined using weights designed to maximize
the cross-correlation between the co-added tracer and the
true convergence. Reference [25] determined that the
weights that achieve this are

ciL ¼
X
j

ðρ−1ÞijLρjκL
ffiffiffiffiffiffiffiffiffi
Cκκ
L

Cκ̂i κ̂i
L

s
; ð16Þ

where the linearly combined tracer is κ̂comb
LM ¼ P

i c
i
Lκ̂

i
LM.

Here, ρiκL is the cross-correlation coefficient, at multipole L,
between tracer κ̂i and the true convergence; ρijL is the cross-
correlation between tracers κ̂i and κ̂j; and Cκ̂iκ̂i

L is the
angular power spectrum of tracer κ̂i. Qualitatively, on a
given angular scale, this scheme brings to the fore the
tracers that best correlate with the underlying truth. In
practice, this means that internal reconstructions, which
accurately reconstruct lensing on the largest angular scales,
can be supplemented with external tracers on the small
scales where they are dominated by reconstruction noise.
Figure 2 illustrates this for an experiment with the char-
acteristics of the Simons Observatory. Notice that infor-
mation gleaned from Planck CIB data (extracted using the
GNILC algorithm [50,51]), and from a galaxy survey
with the characteristics expected of the Vera Rubin
Observatory Legacy Survey of Space and Time (LSST)
“gold” sample (approximately 40 galaxies per arcmin2)
[52] enables the co-added tracer to maintain a high degree
of correlation with the true lensing convergence on scales
of 250 < L < 1000. This is of particular importance for
delensing, since it is those intermediate and small-scale
lenses located primarily at high redshifts (see Fig. 3 of
Ref. [37]) that are most relevant [53]. The recent Planck

FIG. 2. Correlation coefficients of the true CMB lensing field
with several LSS tracers, and with a co-added tracer. On large
angular scales, correlation between the CIB map extracted from
Planck data using the GNILC algorithm drops due to the presence
of residual CIB in the dust maps (which, in turn, gets filtered out
of the CIB maps). Fortunately, on those scales internal techniques
can very accurately reconstruct lensing, as shown here for a
projected minimum-variance quadratic estimator reconstruction
with SO (goal) noise levels [36] and standard internal-linear-
combination (ILC) foreground cleaning. On the other hand, the
relevance of shot noise on small scales means that the correlation
with the CIB decreases for large L. The forecasted curves
involving LSST galaxies correspond to the case where tomo-
graphic observations of galaxies in the gold sample are divided
into six redshift bins. The auto and cross spectra of mass tracers
for this plot are taken from Ref. [49].
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lensing analysis demonstrates delensing by combining the
CMB lensing map with the GNILC CIB map [54].

D. Optimal combination of mass tracers

The optimal estimate of the CMB lensing potential is
obtained as a linear combination of the quadratic estimators
and external mass tracers. In practice, the analytic weights
in Eq. (16) could be no longer optimal due to, e.g., an
analysis mask and inhomogeneous noise and residual
foregrounds. Instead of using the analytic optimal weights,
our pipeline empirically evaluates the weights, ciL, from
smoothed auto and cross spectra determined from simu-
lations to mimic the actual procedure that would likely be
applied with new SO and LSST data. We compute ciL from
the covariance of mass tracers and the input κ. The Wiener-
filtered mass map, κ̂comb, is then obtained as defined
in the previous subsection. Here, the indices of the mass
tracers, i, include the ΘΘ, ΘE, EE, and EB quadratic
estimators for CMB lensing reconstruction, the galaxy over
density at six tomographic redshift bins with edges at
z ¼ ½0; 0.5; 1; 2; 3; 4; 7�, and the CIB. When combining
mass tracers, we restrict the full-sky mass-tracer maps
(galaxies at each photo-z bin and the CIB) to the region
surveyed by the LAT (see Fig. 3). We do not take into
account correlations between different L.

E. Lensing B-mode template construction

On large scales, we estimate the lensing B modes as

Btemp
lm ¼ i

X
l0m0

X
LM

�
l l0 L

m m0 M

�
p−Fð2Þ

lLl0 ðÊWF
l0m0 Þ�ðκ̂comb

LM Þ�;

ð17Þ

where ÊWF
lm are the Wiener-filtered, observed Emodes. This

first-order lensing template built from lensed E modes is

indistinguishable for our purposes from an optimal “remap-
ping”method, and will continue to be so until the fidelity of
κ̂ and ÊWF allow for residuals to be as low as Oð1%Þ of the
original lensing B-mode power [41].
To construct the optimal lensing B-mode template, we

compute the Wiener-filtered E modes, ÊWF
lm , which are

obtained by solving the following equation [55]:�
1þ

X
t;ν

C1=2bt;νY†N−1
t;νYbt;νC1=2

�
ðC−1=2xwÞ

¼
X
t;ν

C1=2bt;νY†N−1
t;νdt;ν: ð18Þ

Here, t and ν are indices for the input maps specifying
telescope type (LAT or SAT) and frequency (93, 145, or
225 GHz), respectively. The vector xw has as its compo-
nents the harmonic coefficients of the Wiener-filtered E and
B modes, C is the diagonal signal covariance of the lensed
E and B modes in spherical-harmonic space, and bt;ν is the
beam function, The matrix C1=2 is defined so that its square
is equal to C. The real-space vector dt;ν contains the Stokes
Q and U maps observed by telescope t at frequency ν, and
Nt;ν is the covariance matrix of the instrumental noise in
these maps. The matrix Y is defined so that it transforms the
multipoles of the E and B modes into real-space maps of
the Stokes parameters Q and U. Solving Eq. (18) for xw is
computationally demanding and we adopt the conjugate
gradient inversion algorithm [56]. At unobserved pixels, we
assign infinite noise in the noise covariance. In this paper,
we do not include any extragalactic foregrounds, but in
practice, we should include masks for extragalactic con-
taminants as unobserved pixels. Note that constructing ÊWF

lm
in this way naturally combines the SAT and LAT polari-
zation measurements optimally. It also combines the maps
across frequencies optimally under the assumption that
foreground emission is negligible. In practice, it may be

FIG. 3. Normalized SO hit-count maps multiplied by the nominal Galactic binary masks for the LAT (left) and SAT (right) regions.
The LAT and SAT Galactic masks coincide with those currently used in the preparations for the LAT lensing and SAT B-mode analyses
by the SO Collaboration, respectively. The hit count maps are obtained from the map-based SO simulation package (https://github.com/
simonsobs/map_based_simulations.) which are one of the possible scan strategies for SO, although work is ongoing to optimize the
strategy further for a range of SO science goals.
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necessary to work with foreground-cleaned maps from the
SATand LAT rather than individual frequency maps. In this
case, the instrument noise entering in Eq. (18) should
be generalized to describe the noise in the foreground-
cleaned maps.
When constructing ÊWF

lm , we assume that the noise
covariance matrix in real space, Nt;ν, is diagonal, although
the actual simulations have noise correlations between
different pixels due to atmospheric noise. The diagonal
elements of the noise covariance are taken to be of the form
σ2t;ν=Htðn̂Þ, where Htðn̂Þ is the normalized hit count and
σt;ν is the white-noise level of each map t, ν. The hit count is
assumed to be the same for all frequency maps of a given
telescope. The above filtering naturally takes into account
the large difference between SAT and LAT hit-count maps
as shown in Fig. 3. We show below that this assumption of
diagonal noise covariance is sufficient to achieve good
delensing performance.

F. Likelihood for constraining IGWs

Here we describe the approach we take to implement
delensing and constrain the tensor-to-scalar ratio using the
lensing B-mode template. The choice of delensing
approach depends on how the observed B-mode maps
across frequencies are to be combined to clean foregrounds.
Several schemes for such cleaning are being pursued within
SO (see, e.g., Ref. [36]), but here we focus on the cross-
spectral approach. This compresses the frequency maps
into their auto and cross spectra and models these as the
sum of CMB signal, instrumental noise, and parametrized
foreground spectra. An approximate likelihood for these
spectra is constructed, which is combined with priors on the
foreground parameters to obtain parameter constraints. The
cross-spectral approach has been demonstrated on B-mode
data from BICEP/Keck Array (e.g., Ref. [57]) and on
simulated SO data in Ref. [58]. Delensing is simply
incorporated in this framework by viewing the template
as an additional “frequency channel.” The auto spectrum of
the template, and its cross spectra with the frequency maps,
are included in the likelihood along with the cross-
frequency spectra. This spectral approach for combined
foreground cleaning and delensing has recently been
demonstrated on data in BKSPT.
Since we do not consider foreground cleaning in this

work, we work with a single B-mode map from the SAT
and the lensing B-mode template. For the former, we adopt
noise levels appropriate to a co-addition of the 93, 145, and
225 GHz frequency channels assuming that the remaining
frequency channels are used to clean foregrounds (with the
noise level in the cleaned map being similar to the co-
addition we consider). We construct the auto and cross
spectra between the observed B-mode map and the lensing
template over the region common to the SAT and
LAT surveys. To minimize the additional variance from
leakage of E modes due to the survey boundary, we use the

pure-B-mode formalism [59] as implemented in the
NaMaster code.4 We use an apodization length of 8°, but
do not otherwise weight the data to account for noise
inhomogeneities. In practice, the noise varies significantly
(see Fig. 3) as the SAT scan strategy concentrates integra-
tion time on around 10% of the sky in a region of low
Galactic foreground emission. Given this, adopting a more
optimal weighting in the construction of the pure-B modes
might improve performance somewhat and also lessen the
demands on foreground cleaning in analysis of the real
data. For example, combining with Planck data to get the
larger-scale E modes [60], or adopting the optimal Wiener
filtering of Eq. (18), would provide a more optimal
measurement of the SAT B modes. Binned estimates of
the auto and cross spectra are used in an approximate
likelihood following Ref. [61], which accounts for the non-
Gaussian form of the likelihood on large scales where there
are few modes. The likelihood requires model auto and
cross spectra, and the covariance of the measured spectra
in a fiducial model. We now describe how these are
calculated.

1. Model spectra

For the likelihood analysis, we need to model the auto
spectrum of the B-mode lensing template and its cross
spectrum with the observed B modes. For an isotropic
survey, these can be calculated simply (see Sec. IV).
However, in a realistic setup they are not straightforward
to model because of, e.g., the inhomogeneous Wiener-
filtering applied to E modes. In the likelihood analysis,
therefore, we model these spectra with the means of
simulation realizations. This approach is also convenient
if the analysis includes more complicated realistic effects in
the mass tracers. We similarly use the mean of simulations
of noisy, lensing B modes to model the observed B-mode
auto spectrum, to capture properly complications due to
noise inhomogeneity. Note that we can also avoid the noise
complications in the observed B-mode auto spectrum by
using the cross-correlations between split data, and our
choice of modeling the observed B-mode spectrum does
not undermine any of our results. We add to this spectrum a
theory tensor spectrum, parameterized by the tensor-to-
scalar ratio r. These mean spectra (with r ¼ 0) are used for
the fiducial spectra that are also needed in the likelihood.

2. Covariances

As noted earlier, the approximate likelihood that we use
requires a set of fiducial angular power spectra and their
covariances [61]. These can be obtained either from
simulations or analytically. In our analysis, we use the
covariance derived from simulations. Simulated covarian-
ces, which fully capture the effects of masking and

4https://namaster.readthedocs.io/en/latest/index.html.
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inhomogeouneous noise, are expensive to compute given
that we require the Monte Carlo error to be small in order to
resolve the small correlations between band powers
[22,62,63]. Hence, as a cross-check, we also compare
our results based on simulated covariances with those
based on the analytic covariances presented in Appendix.

G. Summary of delensing procedure and likelihood

For convenience, we summarize the steps we take to
produce a B-mode lensing template and how this is used to
implement delensing within the likelihood framework.

(i) We first prepare the lensing mass map. We combine
the CMB lensing map reconstructed from the fore-
ground-cleaned and Wiener-filtered LAT temper-
ature and polarization maps, with the external
mass tracer data from galaxy counts and the CIB.

(ii) We also prepare the Wiener-filtered E modes by
combining LAT and SAT polarization maps as
in Eq. (18).

(iii) The above two maps are combined to form the
lensing B-mode template as in Eq. (17). The multi-
poles Btemp

lm are projected to a real-space polariza-
tion map.

(iv) The polarization observed with the SAT, and the
lensing template map, are projected onto pure B
modes over the region common to the LAT and SAT
surveys. Their auto and cross spectra are used in an
approximate, cross-spectral likelihood. Note that
this approach is the same as the BKSPT analysis.

(v) Generally, we would include SAT B modes at
all observing frequencies in the cross-spectral
likelihood, and constrain simultaneously the tensor-
to-scalar ratio, r, Galactic foreground-related para-
meters, and (potentially) parameters describing
uncertainties in the expected B-mode lensing power
and the auto and cross power of the lensing template
(to incorporate the uncertainty of the mass tracer). In
this paper, however, we ignore Galactic foregrounds
and only constrain r since our purpose is to see the
impact of the practical effects in the lensing template
construction on the r constraint. The impact of
uncertainties in the mass tracer are discussed
in Sec. IV.

III. SIMULATED DELENSING PERFORMANCE:
CONSTRAINTS ON INFLATIONARY

GRAVITATIONAL WAVES

A. Simulations

For CMB maps, we use the precomputed data obtained
from the map-based SO simulation package.5 The signal
maps are convolved with a symmetric Gaussian beam at
each frequency whose FWHM is given by Ref. [36]. The

noise maps are generated using the map-based simulation
package at each frequency for the LAT and SAT using a
model of the instrumental and atmospheric noise spectra
and hit-count maps. This allows efficient production of a
large number of simulations, which would otherwise be
computationally expensive if relying on simulated time-
ordered data. The knee frequency for the 1=f polarization
noise for the SAT, due primarily to atmospheric leakage and
electronic noise, is chosen to be the “pessimistic case” of
Ref. [36]. This choice means that the results of the r
constraint we obtain below are actually conservative. The
model implements a damping of the large-scale power at
l < lroll to account for the filtering process applied in an
actual analysis to reduce the atmospheric noise contami-
nation of the large-scale modes. We set lroll ¼ 50 for both
SAT and LAT, which equals to the knee multipole of the
1=f noise in the pessimistic case and do not use CMB
multipoles at l < lroll in the following analysis. We do not
include Galactic and extragalactic foregrounds in the
simulations. Thus, we also do not include the point-source
masks. We generate 100 realizations of the lensed CMB
and noise at 93, 145, and 225 GHz for this work. The
effective white noise levels in temperature at each fre-
quency are 8.0 (93), 10 (145), and 22 μK-arcmin
(225 GHz) for the LAT, and 2.6 (93), 3.3 (145), and
6.3 μK-arcmin (225 GHz) for the SAT [36]. Note that for
the LAT, which does not employ a rotating half-wave plate,
the dominant source of the noise is the 1=f component at
l≲ 1000. We do not use other frequencies since these have
much larger instrumental noise and do not help improve the
delensing efficiency.
We show in Fig. 3 the hit-count maps used for our

simulation, which are one of the possible scan strategies
being investigated for SO. Although the scan strategy is
still to be finalized, we adopt the hit-count maps shown in
the figure for this work. The disparity between the LATand
SAT hit-count maps is intentional: most of the science to be
donewith LATmaps is sample-variance limited at SO noise
levels, even if the largest observable sky area is surveyed,
and so calls for a wide survey with roughly uniform
coverage; for the SAT, B-mode observations will likely
be foreground, lensing, and noise limited, which leads one
to concentrate integration time in a smaller region of low
Galactic foreground emission. As we show below, we
achieve performance of delensing and constraints on r
similar to that obtained in idealized forecasts, i.e., the
dissimilarity of the LAT and SAT hit-count maps does not
significantly impact delensing and constraints on r.
Figure 4 shows the noise angular power spectra for ΘΘ,

EE, and BB measured from simulations for the baseline
and goal noise levels introduced in Ref. [36]. Pixels are
weighted by the square root of the number of hits when
computing these spectra. Note that, with such weighting,
the spectra for inhomogeneous white noise is the same as if
the hits were distributed uniformly, i.e., an isotropic survey.5https://github.com/simonsobs/map_based_simulations.
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The harmonic-space maps at each frequency are co-added
with weighting given by the inverse variance computed
from the noise spectra at each frequency. Note that we do
not compute the temperature power spectrum for the SAT
since we only use the SAT polarization in this work. In
temperature, the atmospheric noise becomes significant
below l ≃ 1000. The LAT B-mode power spectrum is
dominated by noise on all scales, but the SAT spectrum
is signal dominated (by lensing) on large scales.
For external tracers, we generate Gaussian realizations of

matter tracers that are appropriately correlated with a
reference realization of the CMB lensing convergence
map. To do this, we use the method and code presented
in Appendix F of Ref. [64]. Note that we do not include
non-Gaussianity from the nonlinear growth of density
fluctuations in our simulations. It is known that non-
Gaussianity of the CMB lensing convergence has a
negligible impact on the power spectrum of the lensing
B-mode template and covariance of the delensed B modes
[65]. As shown in Ref. [65], the same would be true when
combining with matter tracers, despite potential complica-
tions from these typically being at lower redshift and from
nonlinear biasing. This is because the delensing utilizes
mass tracers at high redshifts where the tracers are well
correlated with the CMB lensing mass map and the
nonlinear growth is much less important. Additionally,
the lensing B modes on large angular scales (l ≤ 100) are
most efficiently produced by intermediate scales of lensing
mass (300≲ L≲ 400) [25,26] where the nonlinear growth
is not significant.

B. Lensing reconstruction

We first show the results of the internal lensing
reconstruction from the CMB. To avoid the delensing bias
on the scales of interest (see, e.g., Refs. [16,18,19,22]),

only the multipoles between l ¼ 301 and 4096 are taken
into account in the calculation of the lensing reconstruction.
For temperature, we further remove l ≤ 500 to suppress
contamination from atmospheric noise without significant
loss of signal-to-noise [17] and l ≥ 3000 to avoid expected
contribution from the extragalactic foregrounds [66].
Figure 5 shows the analytic estimates of the κ noise

power of the internal CMB lensing reconstructions for the
two noise cases computed from the CMB noise spectra.
The CMB instrumental noise power spectra are obtained

FIG. 4. Noise angular power spectra for temperature anisotropies (left), E-mode polarization (middle), and B-mode polarization (right)
computed from the SO map-based simulations after a pixel weighting with the square root of the hit count map and beam deconvolution.
The blue and orange lines show the spectra obtained from the LATand SAT maps, respectively. The solid lines are for the baseline noise
case and the dashed for the goal (see Ref. [36]). We show the optimally co-added noise spectra from 93, 145 and 225 GHz. The black
solid lines are the model, lensed CMB spectra (with r ¼ 0). Note that we only use polarization from the SAT.

FIG. 5. Analytic estimate of the lensing reconstruction noise
using Eq. (15) for each individual quadratic estimator using the
baseline (solid) and goal (dashed) instrumental noise spectra from
simulations. Note that Eq. (15) is actually for the normalization
and usually used for noise spectrum in a forecast, but, in general,
differs from the actual noise spectrum. Given the neglect of TE in
the inverse-variance filtering, the “analytic noise” given here is
considered as a rough estimate of the noise power for the
quadratic estimator. For reference, we also show the analytic
noise curve for the MV estimator of Ref. [39]. The solid black
curve shows the lensing convergence power spectrum.
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from the simulations as shown in Fig. 4. Most of the signal-
to-noise of the reconstructed lensing map comes from the
ΘΘ,ΘE, and EE quadratic estimators for the baseline noise
case. For the goal noise level, the EB estimator becomes
also important to improve the signal to noise of the lensing.
Figure 6 shows the reconstructed lensing map cross-

correlated with the input lensing map. We divide the spectra
by W2 ≡

R
d2n̂W2ðn̂Þ to account for the misnormalization

by the survey window [45]. In the case of the ΘΘ quadratic
estimator, the power spectrum of the mean field becomes
larger than the signal at L ≤ 60. On the other hand, the
reconstructed lensing map with the EB estimator does not
have a significant mean-field bias on all scales because
hEBi ¼ 0 by parity symmetry [46]. The difference between
the input κ spectrum and the cross spectrum between input
and reconstruction is within 5% at L≳ 20 for all of the
quadratic estimators. This difference becomes larger than
10% on large scales, L≲ 10, which could be due to the
presence of mode mixing induced by the survey mask,
which is not corrected on large scales with our simple
prescription for accounting for the survey mask, and
higher-order lensing corrections [43,44]. The bias is usually
corrected by a Monte Carlo simulation. Delensing, how-
ever, does not require the large-scale modes and we only
use L ≥ 20.

C. Lensing template construction

Next, we show how significantly the SO inhomogeneous
noise and survey geometry impacts the construction of the
lensing B-mode template. In this section, the lensing
template is built using the reconstructed lensing map at
20 ≤ L ≤ 2048 and E modes at 50 ≤ l ≤ 2048.
Figure 7 shows the correlation coefficients between the

input E=B modes and Wiener-filtered “observed” E=B
modes, both of which are projected onto the region of
overlap between the SAT and LAT surveys. Several options
for the Wiener filtering are compared. We see that the full

Wiener-filtered LAT E modes have better correlation with
the input by around 5%–10% than if the simpler diagonal
filtering is used. Optimally combining E modes from the
SAT and LAT polarization maps further improves the
correlation with the input E-mode map, which is close
to unity for l≲ 1000. The improvement of the correlation at
l≲ 500 is important for the optimal lensing template
because a significant fraction of the large-scale lensing
B modes are produced by E modes at these scales. On the
other hand, the LAT B modes are dominated by noise and
optimal filtering does not significantly recover the corre-
lation with the input B modes.
Figure 8 shows two B-mode maps: the lensing B-mode

template map; and the input B-mode map. Both maps are
projected onto the region of overlap of the SAT and LAT
surveys. We only include the multipoles between
20 ≤ l ≤ 128. The lensing B modes in the template are
suppressed due to the Wiener filtering process. We quantify
this suppression by the cross-correlation of the template
and input lensing B modes divided by the input B-mode
auto power spectrum. The ratio becomes ∼0.7 using only
large scales (50 ≤ l ≤ 190). Thus, the input B-mode map is
further multiplied by 0.7 to correspond to the expected
lensing B-mode signal in the template. The correlation
between the two maps in the figure can be seen by eye.
Figure 9 shows the fraction of power left over after

delensing B modes in the region where the SAT and LAT
surveys overlap. We consider the following delensing
procedure:

Bdel
lm ≡ B̂lm − αlB

temp
lm ; ð19Þ

where αl is determined so that the variance of Bdel is
minimized:

FIG. 6. Reconstructed lensing map cross-correlated with the input lensing map using ΘΘ (left) and EB (right) quadratic estimators
(magenta points). We also show the normalization (green dashed), noise (green solid), input lensing spectrum (black solid), and mean-
field bias (blue). We use the baseline noise simulation. The mean-field bias in the EB estimator is very small and not shown in the plot.
The error bars denote representative of scatter in one simulation.
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αl ≡ CBB;cross
l

CBB;temp
l

: ð20Þ

Here, CBB;cross
l is the cross-power spectrum of the template

and the input lensing B modes, and CBB;temp
l and ĈBB

l are
the power spectra of the template and the observed B
modes, respectively. We ignore the dependence of α on m.
In an idealistic case, αl ¼ 1. The angular power spectrum of
Bdel
lm is then given by

CBB;del
l ¼ ĈBB

l

�
1 −

ðCBB;cross
l Þ2

ĈBB
l CBB;temp

l

�
: ð21Þ

The B-mode spectra, ĈBB
l , CBB;cross

l and CBB;temp
l , are

computed over the region of overlap as follows. First,

we construct the mask for the overlap region by simply
multiplying the binary masks of each survey. We then
multiply the Stokes parameters constructed from the
lensing template B-mode map and the input lensing B-
mode map by this (binary) survey mask with a 5°
apodization and compute spectra from these masked maps.
We do not apply any purification since we use the B-mode-
only maps. We do not include noise in B̂ and ĈBB is simply
the lensing B-mode spectrum. Figure 9 shows the following
three cases for either the baseline (magenta) or the goal
(blue) noise scenarios: (1) the realistic case using the SO
map-based simulations (solid lines); (2) a relatively ideal-
istic case in which all maps are full sky and the instrumental
noise is isotropic with power spectrum equivalent to that
obtained from the simulations (see Fig. 4), but the spectra
are still computed over the overlap region (dashed lines);

FIG. 7. Left: Square of the correlation coefficient, ρ2l , between theWiener-filtered Emodes and the input E-mode-only map, computed
over the region of overlap of the SATand LAT surveys, for the baseline noise case. Full (C−1) filtering using only the LAT data is shown
in blue; simple diagonal (in harmonic space) filtering of the LAT data in green; and full C−1 filtering of the LATand SAT data in orange.
Note that “LATþ SAT” is only computed up to l ¼ 2048 since it is used only for the Emodes in the lensing template construction. The
correlation coefficient is close to unity for l≲ 1000 by applying LATþ SAT C−1 filtering, meaning that it is close to optimal (i.e., signal
dominated) for l ≲ 1000. Right: Same as the left panel, but for B modes.

FIG. 8. Left: Lensing B-mode template (scalar) map projected onto the region of overlap of the SAT and LAT surveys. The multipoles
between 20 ≤ l ≤ 128 are included. A zoomed map is also plotted in the section. Right: Same as the left panel, but for the input B-mode
map multiplied by 0.7 which corresponds to the fraction of lensing B modes removed by delensing (see text). One can visually see the
correlation of these two maps.
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and (3) the case in which the template is constructed using
only LAT E modes (dot-dashed lines). In the realistic case
(solid), the fraction of the lensing B-mode power left over
after delensing is roughly 30%–35% depending on angular
scales. The results imply that our pipeline gives recon-
structed lensing B modes that are almost as correlated with
the actual lensing B modes as in the case of an isotropic
survey. In particular, the amount of delensing is close to that
given in Ref. [36] (30% residual power for the goal noise
levels). Comparing cases (1) (solid) and (2) (dashed), the
impact of the realistic inhomogeneous instrumental noise is
small. The figure also indicates that adding E modes from
the SAT further reduces the lensing contribution by more
than 5% and its benefit is not completely negligible.
Figure 10 shows the individual contributions to the

residual B-mode power after delensing with different
tracers. LSST galaxies contribute most to delensing, while
the reconstructed CMB lensing map and CIB have similar
contributions.

D. Constraining IGWs

Using the lensing B-mode template, we perform a
likelihood analysis to determine the expected constraint
on the tensor-to-scalar ratio, r, using the MBS simulations.
The results are shown in Fig. 11. As described in Sec. II F,
we compute the auto- and cross-power spectra of B modes
obtained from the SAT region and from the lensing
template using the pure-B-mode formalism [59], and use
these in an approximate likelihood. We use B-mode
multipoles between l ¼ 50 and 200. Since our purpose
is to see the impact of practical effects in the construction of
the lensing template on the constraint on r, we only

consider one parameter, r, for simplicity, and ignore the
Galactic foreground complexity.
We show two cases, with and without the lensing

template in the likelihood. The 1σ constraint on r with
delensing is σðrÞ ¼ 0.0015, which is close to the expect-
ation from the ideal (isotropic) case and is nearly a factor of
2 improvement from the no-delensing case. This indicates
that the nonidealities from nonwhite noise and masking do

FIG. 9. Fraction of lensing B-mode power left over after
delensing in the region of overlap between the SAT and the
LAT. The dashed lines show the ideal case where the CMB is
observed over the full sky with isotropic noise. The dot-dashed
lines show the case if we only use the LAT E modes in the
template construction. For the baseline (magenta) and goal (blue)
noise cases, approximately 65% and 70% of lensing B-mode
power is able to be removed, respectively.

FIG. 10. Same as Fig. 9 but with delensing using only the CMB
lensing map (blue), galaxies from LSST (green), or the CIB
(cyan), or their optimal combination (magenta), for the baseline
(solid), and goal (dashed) noise levels. The LSST galaxies make
the most significant contribution to delensing.

FIG. 11. Demonstration of constraining the tensor-to-scalar
ratio, r, with the cross-spectral (or “cross-correlation”) approach
in which all of the auto- and cross-power spectra between the
observed B modes and the lensing B-mode template are used in
the likelihood analysis (solid blue line; see Sec. II F). For
comparison, we also show (in dashed) the case without the
lensing B-mode template, i.e., no delensing. Note that we extend
the likelihood into the unphysical region r < 0 for illustration in
the figure. The constraints on r are σðrÞ ¼ 0.003 for the no-
delensing case and σðrÞ ¼ 0.0015 with the lensing B-mode
template, respectively.
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not significantly degrade the delensing performance which
is enough to reproduce the constraint on r expected from
the idealized forecast, up to possible Galactic foreground
nonidealities.

IV. UNCERTAINTIES IN EXTERNAL
TRACER SPECTRA

In this section, we study the impact of uncertainties in the
spectra of external mass tracers on our efforts to constrain
primordial Bmodes. For a more thorough study of possible
systematic effects arising when the CIB is used as the
matter proxy for delensing, we refer the reader to
Refs. [35,64].
Evaluating the model spectra of Sec. II F 1 requires

knowledge of the auto spectra and cross spectra with
CMB lensing of each of the tracers involved. In practical
applications, the tracer spectra will likely be determined by
fitting a smooth curve to measurements, and hence will be
uncertain to some degree. It is important, then, to quantify
accurately this uncertainty, as otherwise we run the risk of
mistaking nontrivially shaped lensing residuals for a
primordial signal, and thus biasing constraints on r [25].
In this section, we explore this possibility quantitatively.
Before proceeding further, we note that this issue will

also mean that, in principle, the weighting scheme sum-
marized in Eq. (16) will be suboptimal whenever the
fiducial spectra deviate from the truth. However, we ignore
this effect because the corrections are second order in the
error of the weight function and are therefore small [25].
For a quantitative analysis in this section, we first derive

basic equations for the relevant B-mode power spectra. We
do this in the flat-sky approximation as it has been shown
that, on the angular scales relevant for SO, the approxi-
mation is in very good agreement with the exact curved-sky
result (to within around 1%) [40]. First of all, we model the
cross-correlation of observed Bmodes with a leading-order
lensing B-mode template formed from Wiener-filtered E
modes and a co-added mass map that involves both
internally and externally estimated mass tracers. In the
flat-sky approximation, the E and B modes are given as the
spin-2 Fourier transform of the Stokes Q and U maps [67]:

El � iBl ¼
Z

d2n̂e−in̂·l½Q� iU�ðn̂Þe∓2iψ l ; ð22Þ

where ψ l is the angle that l makes with the axis defining
positive Stokes Q. Proceeding analogously to the full-sky
case, we expand the lensed E and Bmodes to first order in κ
to obtain [67]

Blens
l ¼

Z
d2l0

ð2πÞ2Wðl; l0ÞEl0κl−l0 ; ð23Þ

where κl are the Fourier modes of the lensing convergence
map and

Wðl; l0Þ≡ 2
l0 · ðl − l0Þ
jl − l0j2 sin 2ðψ l − ψ l0 Þ: ð24Þ

Equation (23) is the flat-sky analogue of Eq. (6). We
compute the lensing B-mode template by replacing the true
El and κl with the Wiener-filtered, measured E modes,
ÊWF
l , and the optimally combined matter tracer map, κ̂comb

l ,
in Eq. (23):

Btemp
l ¼

Z
d2l0

ð2πÞ2Wðl; l0ÞÊWF
l0 κ̂comb

l−l0 : ð25Þ

We assume that the unlensed E modes and lensing con-
vergence are Gaussian distributed and uncorrelated with
each other, and the Wiener-filtering is diagonal in l, i.e.,

WE
l ≡ C̃EE

l

C̃EE
l þ NEE;fid

l

; ð26Þ

where NEE;fid
l is a fiducial E-mode noise spectrum. Then, to

Oðκ2Þ, the cross spectrum is

CBB;cross
l ¼

Z
d2l0

ð2πÞ2W
2ðl; l0ÞWE

l0C
EE
l0 Cκκ̂comb

jl0−lj

¼
Z

d2l0

ð2πÞ2W
2ðl; l0ÞWE

l0C
EE
l0 Cκκ

jl0−ljρ
2
jl0−lj; ð27Þ

where we consider the terms up to Oðκ2Þ and use the
unlensed E-mode power spectrum to describe the cross-
power spectrum. The correlation coefficient is given by

ρL ≡ Cκκ̂comb

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cκκ
L C

κ̂comb κ̂comb

L

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cκκ̂comb

L

Cκκ
L

s
: ð28Þ

The second equality here follows from κ̂comb
LM involving the

Wiener-filtered combination of tracers (see Sec. II C). Note
that evaluating the cross-power spectrum with the lensed E-
mode power spectrum instead of the unlensed E-mode
power spectrum makes very little difference as the acoustic
peaks are smoothed out in the convolution integral. Note
also that the contributions at the fourth order of κ are
significantly suppressed in the template delensing method
due to a cancellation of terms, and the expressions here are
quite accurate (see Ref. [41] for details). On the other hand,
under the same set of assumptions, the auto spectrum of the
template can be modeled, to Oðκ2Þ, as
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CBB;temp
l ¼

Z
d2l0

ð2πÞ2W
2ðl; l0ÞCÊWFÊWF

l0 Cκ̂comb κ̂comb

jl0−lj

¼
Z

d2l0

ð2πÞ2W
2ðl; l0ÞWE

l0C
EE
l0 Cκκ

jl0−ljρ
2
jl0−lj; ð29Þ

which equals CBB;cross
l .

Next, consider the angular power spectrum of residual
lensing B modes after delensing (i.e., subtracting the
template from the observed B modes) with the co-added
tracer, κ̂comb

LM . We choose this as our case study because the
insights we gather from this simpler analysis should
ultimately be applicable to one that combines all the
individual auto and cross spectra of templates and obser-
vations, in the way of the BKSPT analysis followed earlier
in this paper.
To leading order in lensing, this is

CBB;res
l ¼

Z
d2l0

ð2πÞ2W
2ðl; l0Þ

�
CEE
l0 Cκκ

jl−l0j

− 2CEE
l0 WE

l0
X
i

cijl−l0jC
κκ̂i

jl−l0j

þ ðCEE
l0 þ NEE

l0 ÞðWE
l0 Þ2

×
X
i

X
j

cijl−l0jc
j
jl−l0jC

κ̂iκ̂j

jl−l0j

�
; ð30Þ

where the weights, cil, are calculated using fiducial spectra
and we have not simplified further to allow for the case
where the fiducial spectra differ from the truth.
In the case where the true spectra deviate from the

fiducial model, we parametrize the true spectra as follows:

Cκκ̂i
l ¼ Cκκ̂i;fid

l þ ΔCκκ̂i
l ; ð31Þ

Cκ̂i κ̂j
l ¼ Cκ̂i κ̂j;fid

l þ ΔCκ̂i κ̂j
l : ð32Þ

We allow for errors in the cross and auto spectra
of the external tracers, and in the cross spectra of
the external tracers with the true κ and with the internally
reconstructed κ, which we assume to be equal as the
fiducial cross spectra are calibrated on the same empirical
spectra. We thus have

ΔCκκ̂i
l ¼ ΔCκ̂κ̂i

l ðκ̂i ≠ κ̂Þ; ð33Þ

where κ̂ is the internal reconstruction. On the other hand,
we assume the fiducial model is correct for the auto
spectrum of the internal reconstruction and its cross
spectrum with the true κ, since these can be predicted to
high accuracy from first principles; hence,

ΔCκκ̂
l ¼ ΔCκ̂ κ̂

l ¼ 0: ð34Þ

For the case of n external tracers, we sample the
nðnþ 3Þ=2 distinct deviations, ΔCκ̂κ̂i

l and ΔCκ̂i κ̂j
l for κ̂i

and κ̂j not equal to κ̂, as zero mean, Gaussian variables
drawn from the appropriate covariance matrix. We model
this with the covariances of the relevant empirical band
powers. Using bins of width Δl and a fraction fsky of the
sky, the band power covariances are

hΔCκ̂iκ̂j
l ΔCκ̂m κ̂n

l i¼ 1

ð2lþ1ÞΔlfsky
ðCκ̂i κ̂m

l Cκ̂jκ̂n
l þCκ̂iκ̂n

l Cκ̂j κ̂m
l Þ:

ð35Þ

For spectra involving the CIB, we use measurements from
Planck; for those involving internal reconstructions, we
assume SO goal noise levels; and for the galaxies, we adopt
the noise levels forecasted for the LSST gold sample. When
calculating elements of the covariance matrix not involving
lensing, we set fsky ¼ 0.05; on the other hand, for elements
featuring the cross spectra of external tracers with lensing,
we assume a larger footprint with fsky ¼ 0.4. We also
choose Δl ¼ 1, and consider multipoles ranging approx-
imately between 60 < l < 1500.
We can use Eq. (30), with Cκκ̂i

l replaced by ΔCκκ̂i
l and

Cκ̂i κ̂j
l by ΔCκ̂i κ̂j

l , to study possible deviations of the true
lensing B-mode residual from a model constructed around
the fiducial tracer spectra (that is, the same one used to
calculate the weights). Several realizations of such devia-
tions, consistent with the estimated measurement errors, are
shown in Fig. 12. We see that the combination of external
tracers with internal reconstructions (for which the corre-
lation with lensing on large-scale scales is known very
accurately) leads to residuals that are rather flat, signifi-
cantly more so than in the case where external tracers alone
are used. This behavior arises since the contribution of
deviations in the tracer power spectra on small scales
combine with the small-scale E-mode power to produce
B-mode power that behaves as white noise on large scales.
This is not the case for spectral deviations on large scales,
but these are suppressed in the optimal combination with an
internal lensing reconstruction and so contribute little. This
suggests that uncertainties in tracer spectra can be inte-
grated into our constraints on r by means of a simple
marginalization procedure involving a single parameter
governing the amplitude of a white-noise residual.
Reference [25] studied this procedure in the case where
the CIB is the only tracer, finding that the uncertainty grows
only moderately. Given that the residuals we see arise when
co-adding multiple tracers are significantly flatter than
when the CIB is used by itself, we expect the degradation
in constraining power to be even smaller.
The residuals due to improper modeling shown in Fig. 12

can be propagated to errors in estimates of r using the
relation (e.g., Ref. [68])
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FIG. 12. Impact of uncertainties in the tracer spectra on the power spectrum of B-mode lensing residuals after delensing. We quantify
this by perturbing the true auto spectra of the external tracers and their cross spectra with lensing and with each of the other tracers about
the fiducial spectra, with errors drawn from a Gaussian distribution consistent with the covariance matrix described in the text. Left: the
case where delensing is performed using only CIB maps, with spectra as measured by Planck GNILC. Right: the Planck CIB maps are
co-added with LSST galaxies (gold sample) and SO internal reconstructions. It is readily apparent that co-adding external tracers with
internal reconstructions mitigates possible shapes in the residuals that might be confused with a primordial component. For comparison,
a primordial signal with r ¼ 0.001 is shown in black.

FIG. 13. Impact on the inferred tensor-to-scalar ratio r, as a function of input signal, of deviations from the fiducial model of the
spectra of the external tracers used for delensing. We show results for ten different, random fluctuations of the tracer spectra consistent
with measurement errors (see text) in the case of delensing with only the CIB (left) or the multitracer approach with CIB, an internal
reconstruction and galaxies (right). (Note the overlap of some of the lines). We constrain r using scales lmin ¼ 50 and lmax ¼ 200. In
general, the effect of modeling errors is small compared to the statistical uncertainty of SO. To show this, we plot as the shaded, gray
region the �1σ uncertainty for r ¼ 0 of an experiment covering 5% of the sky with the noise level of the SO SAT’s 93 GHz channel, no
foregrounds and delensing as allowed by each of the tracer combinations, in the case where r is constrained over the multipole range
described above. For comparison also, the dotted lines show the size of the bias on r if residual dust B modes in the SO SAT maps (as
forecasted by Ref. [36]) are not modeled in the BB power spectrum.
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Δr̂ ¼
�Xlmax

l¼lmin

½CBB;prim
l ðr ¼ 1Þ�2
VarðCBB;del

l Þ

�−1

×
Xlmax

l¼lmin

CBB;unmodeled
l CBB;prim

l ðr ¼ 1Þ
VarðCBB;del

l Þ : ð36Þ

Here, CBB;prim
l ðr ¼ 1Þ is the angular power spectrum of

primordial B modes with r ¼ 1, VarðCBB;del
l Þ is the

variance of the power spectrum of delensed B modes
(which we assume to be Gaussian, free of foregrounds, and
to feature a level of experimental noise appropriate for the
93 GHz channel of the SO SATs in the goal scenario) and
CBB;unmodeled
l is the part of the delensed B-mode spectrum

that we have not modeled—in this case, due to incorrect
modeling of the external tracer spectra. In Fig. 13, we
compare the estimated shifts for ten random realizations to
the standard deviation (assuming r ¼ 0) expected of an
experiment covering 5% of the sky, with the noise levels of
the SO SATs, and in the limit of no foreground BB power
and a removal of lensing as appropriate for delensing with
the CIB alone or in the multitracer approach described

above. We use lmin ¼ 50 and lmax ¼ 200. We see that the
shifts induced by uncertainty in the tracer spectra are
typically small compared to the statistical precision
afforded by SO. Figure 14 illustrates this further by
comparing the distribution of shifts in r to the SO statistical
uncertainty for the case of r ¼ 0. We find that the additional
uncertainties on estimating r are σðrÞ ≲ 2 × 10−4.

V. SUMMARY AND CONCLUSION

We have developed a delensing methodology and pipe-
line for SO and tested its performance in the presence of the
realistic survey effects. We showed that, even in the
presence of survey boundaries, inhomogeneous instrumen-
tal and atmospheric noise, the delensing method we
developed produces a statistical error on the tensor-to-
scalar ratio, σðrÞ, which is close to the ideal case of an
isotropic survey of the same duration. We also discussed
potential errors associated with uncertainties in the spectral
modeling of external mass tracers, by extending the study
of Ref. [25]. We showed that when combining an internal
lensing reconstruction with external tracers, the impact of
these tracer uncertainties is nearly flat residuals in the
modeled delensed B-mode power spectrum, and can be
captured with a single nuisance parameter. Marginalizing
over such a parameter, with a prior informed by plausible
errors in the modeling of the spectra of the external tracers,
leads to additional uncertainties on r as σðrÞ ≲ 2 × 10−4

and should have negligible effect on the r constraint
from SO.
We generated our simulation realizations from a map-

based approach and did not include any instrumental
systematic effects. Although Ref. [69] explored the
response of the residual B-mode power spectrum to
observational systematic effects in a simple experimental
setup, the impact of the instrumental systematics is not yet
quantified accurately in the case of SO as doing so would
require more realistic simulations at the level of the time-
ordered data. In our study, we did not consider the point-
source masks in CMB maps which could lead to a large
mean-field bias in the reconstructed lensing map and a large
reconstruction noise around the masks if we use the
isotropic filtering to CMB. These bias would be, however,
significantly mitigated by applying the optimal filtering
(see, e.g., Refs. [45,46,70]). We used idealized, full-sky
external mass-tracer simulations, which we projected onto
the LAT region. In practice, reality may be more compli-
cated. For example, residual foregrounds in maps of the
CIB will vary across the sky and could lead to a bias in
delensing [64], as may the depth of galaxy surveys. A more
quantitative study requires realistic simulations of each
mass tracer, which will be addressed in future work.
This paper focuses on application of multitracer dele-

nsing for SO. This approach is, however, expected also to
be important for LiteBIRD [9] and CMB-S4 [11] to
enhance the sensitivity to IGWs. Therefore, the delensing

FIG. 14. Distribution of the deviations in the inferred tensor-to-
scalar ratio, r̂, from 5000 realizations (with input r ¼ 0), arising
from uncertainties in the spectra of the external tracers used to
delens B modes, in the case where Planck CIB maps alone are
used (green histogram), or when these CIB maps are co-added
with SO internal reconstructions and LSST galaxies (purple
histogram). The bias is small compared to the precision of a
typical likelihood curve when the inference is carried out in the
presence of residual lensing and experimental noise (blue curve,
which is the same as in Fig. 11), and even smaller compared to the
standard deviation on r expected after foreground-cleaning and
delensing SO observations (gray interval). The histograms and
likelihood curve are all scaled to have similar heights to facilitate
comparison.
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methodology we presented in this paper may be also useful
for delensing in these future CMB experiments.
Some of the results in this paper have been derived

using public software: healpy [71]; HEALPix [72]; and
CAMB [73].
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APPENDIX: ANALYTIC POWER SPECTRUM
COVARIANCES

In this section, we provide analytic models for the
covariances of the different combinations of spectra
involved in the inference of Sec. II F. These serve as a
complement and cross-check of simulated covariances.

1. Delensed B-mode power spectrum covariance

In order to calculate the power spectrum covariance of
delensed B modes, we employ the following covariance
[74], which is an extension of the lensing B-mode covari-
ance by [63]

CovðCBB;del
l ; CBB;del

l0 Þ ¼ 2

2lþ 1
δll0 ðCBB;del

l Þ2

þ CovNGðCBB;del
l ; CBB;del

l0 Þ; ðA1Þ

where

CovNGðCBB;del
l ; CBB;del

l0 Þ

¼
X
L

2

2Lþ 1

�∂CBB;del
l

∂CEE
L

ðCEE
L Þ2 ∂C

BB;del
l0

∂CEE
L

þ ∂CBB;del
l

∂Cκκ
L

ðCκκ
L Þ2

∂CBB;del
l0

∂Cκκ
L

�
; ðA2Þ

is the non-Gaussian part of the covariance. This expression
assumes (i) that the E modes are cosmic-variance limited,
(ii) that the noise in the matter tracer is uncorrelated
with the lensing convergence and the CMB, and
(iii) that CEE

l ; Cκκ
l and the noise spectrum all have

Gaussian covariance.
Now, under the assumption that the E modes are limited

by cosmic variance, the power spectrum of delensed B
modes is [25]

CBB;del
l ¼ 1

2lþ 1

X
l0l00

ðp−Fð2Þ
ll00l0 Þ

2CEE
l0 Cκκ

l00 ð1 − ρ2l00 Þ; ðA3Þ

where ρL is the cross-correlation coefficients of our co-
added tracer with the true CMB lensing. When taking the
derivatives of equation (A2), ρL can be regarded as a
constant, which means that
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∂CBB;del
l

∂Cκκ
L

¼ ð1 − ρ2LÞ
∂C̃BB

l

∂Cκκ
L
; ðA4Þ

and

∂CBB;del
l

∂CEE
L

¼ ∂C̃BB
l

∂CEE
L

				
Cκκ¼ð1−ρ2ÞCκκ

: ðA5Þ

In order to evaluate this last expression, we use an
expression in the style of Eq. (27) of Ref. [75].
With these insights in hand, the covariance of

equation (A1) can be evaluated by modifying existing
codes such as LensCov [76] which compute the power
spectrum covariance of lensed CMB fields.

2. Cross-spectral approach

In this section, we calculate the covariance of all auto and
cross spectra of the observed and template B modes. The

covariance is needed when writing down the cross-spectral
approach detailed in Sec. II F. Although our analysis uses
the analytic covariance, we also cross-check the results
using the analytic covariance described in this section.

a. Covariance of cross spectrum

In Sec. II F 1, we saw that, to leading order, the cross
spectrum between lensing and template B modes can be
modeled as

CBB;cross
l ¼ 1

2lþ 1

X
l0l00

ðp−Fð2Þ
ll00l0 Þ

2CEE
l0 Cκκ

l00 ρ
2
l00 : ðA6Þ

Proceeding analogously to how the lensing B-mode power
spectrum covariance is calculated, we approximate the non-
Gaussian part of the covariance as

CovNGðCBB;cross
l ; CBB;cross

l0 Þ ≈
X
L

1

2Lþ 1

�∂CBB;cross
l

∂CEE
L

2ðCEE
L Þ2 ∂C

BB;cross
l0

∂CEE
L

þ ∂C̃BB
l

∂Cκκ
L
VarðCκκWF

L Þ ∂C̃
BB
l0

∂Cκκ
L

�
; ðA7Þ

where κWF is the Wiener-filtered tracer map. As determined
in Ref. [25], for a single tracer, this takes the form
κWF
l ¼ ðCκI

l =C
II
l ÞIl, where I is the tracer itself, so,

CκWFκWF

l ¼
�
CκI
l

CII
l

�
2

CII
l ¼

�
CκI
l

CII
l

�
CκI
l ¼ CκκWF

l : ðA8Þ

We can now use the correlation between the tracer
and lensing, defined as ρl ¼ CκI

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cκκ
l C

II
l

p
, to rewrite

CκWFκWF

l ¼ CκκWF

l ¼ ρ2l C
κκ
l . Under the assumption of Gaus-

sianity of the lens power spectrum, the variance we are after
can be computed using the usual prescription for Gaussian
covariance:

CovGaGb;GcGd
ll0 ¼ δll0

2lþ1
½CGaGc

l CGbGd
l þCGaGd

l CGbGc
l �; ðA9Þ

yielding

VarðCκκWF

L Þ ¼ 1

2lþ 1
½Cκκ

L C
κWFκWF

L þ CκκWF

L CκκWF

L � ðA10Þ

¼ 1

2lþ 1
ðρ2L þ ρ4LÞðCκκ

L Þ2: ðA11Þ

Finally,

CovNGðCBB;cross
l ; CBB;cross

l0 Þ ≈
X
L

1

2Lþ 1

�∂C̃BB
l

∂CEE
L

				
Cκκ¼ρ2Cκκ

2ðCEE
L Þ2∂C̃

BB
l0

∂CEE
L

				
Cκκ¼ρ2Cκκ

þ ∂C̃BB
l

∂Cκκ
L
ðρ2L þ ρ4LÞðCκκ

L Þ2
∂C̃BB

l0

∂Cκκ
L

�
: ðA12Þ

In addition to this, the full covariance receives a purely Gaussian contribution. Including it, we obtain

CovðCBB;cross
l ; CBB;cross

l0 Þ ¼ 1

2lþ 1
δll0 ½C̃BB

l CBB;temp
l þ ðCBB;cross

l Þ2� þ CovNGðCBB;cross
l ; CBB;cross

l0 Þ: ðA13Þ

b. Covariance of template auto spectrum

To leading order, the auto and cross spectra are equal, CBB;temp
l ¼ CBB;cross

l . This time, the non-Gaussian part of the
covariance can be approximated as
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CovNGðCBB;temp
l ; CBB;temp

l0 Þ ≈
X
L

1

2Lþ 1

�∂CBB;temp
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∂CEE
L

2ðCEE
L Þ2 ∂C
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l0

∂CEE
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þ ∂C̃BB
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ðA14Þ
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L

2
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�∂CBB;temp
l

∂CEE
L

ðCEE
L Þ2 ∂C

BB;temp
l0

∂CEE
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þ ∂C̃BB
l

∂Cκκ
L
ðρ2LCκκ

L Þ2
∂C̃BB

l0

∂Cκκ
L

�
; ðA15Þ

and the full covariance is

CovðCBB;temp
l ; CBB;temp

l0 Þ ¼ 2

2lþ 1
ðCBB;temp

l Þ2

þ CovNGðCBB;temp
l ; CBB;temp

l0 Þ:
ðA16Þ

c. Cross covariance of lensing and template auto spectra

The non-Gaussian part of the covariance can be approxi-
mated as

CovNGðC̃BB
l ; CBB;temp

l0 Þ

≈
X
L

1

2Lþ 1

�∂C̃BB
l

∂CEE
L

2ðCEE
L Þ2∂C̃

BB
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∂CEE
L

				
Cκκ¼ρ2Cκκ
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L
CovðCκκ
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BB
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ðA17Þ
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2
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�∂C̃BB
l
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∂Cκκ
L
ðρ2LCκκ
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and the full covariance is

CovðC̃BB
l ; CBB;temp

l0 Þ ¼ 2

2lþ 1
δll0 ðCBB;cross

l Þ2

þ CovNGðC̃BB
l ; CBB;temp

l0 Þ: ðA19Þ

d. Cross covariance of lensing auto and
template cross spectra

The non-Gaussian part of the covariance can be approxi-
mated as

CovNGðC̃BB
l ; CBB;cross

l0 Þ ≈ CovNGðC̃BB
l ; CBB;temp

l0 Þ; ðA20Þ

and the full covariance is

CovðC̃BB
l ; CBB;temp

l0 Þ ¼ 2

2lþ 1
δll0C̃

BB
l CBB;cross

l

þ CovNGðC̃BB
l ; CBB;temp

l0 Þ: ðA21Þ

e. Cross covariance of template auto and cross spectra

The non-Gaussian part of the covariance can be approxi-
mated as

CovNGðCBB;temp
l ; CBB;cross

l0 Þ ≈ CovNGðCBB;temp
l ; CBB;temp

l0 Þ;
ðA22Þ

and the full covariance is

CovðCBB;temp
l ; CBB;cross

l0 Þ ¼ 2

2lþ 1
δll0C̃

BB;temp
l CBB;cross

l

þ CovNGðCBB;temp
l ; CBB;temp

l0 Þ
ðA23Þ
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l0 Þ: ðA24Þ
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