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We consider an action for gravity that, in addition to the Einstein-Hilbert term, contains a function of the
Ricci scalar and the Gauss-Bonnet invariant. The specific form of the function considered is motivated by
holographic cosmology. At background level the field equations imply modified Friedmann equations of
the same form as those in the holographic cosmology. We calculate the cosmological perturbations and
derive the corresponding power spectra assuming a general k-inflation. We find that the resulting power
spectra differ substantially from those obtained in both holographic and standard cosmology. The estimated
spectral index and tensor-to-scalar ratio are confronted with the Planck results.
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I. INTRODUCTION

Amodified Gauss-Bonnet (MGB) gravity [1–5] is a class
of modified gravity models in which the gravitational
action is a general function of two variables: the Ricci
scalar R and the Gauss-Bonnet invariant

G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð1Þ

The functional dependence on R and G can be further
constrained by physical requirements. In a cosmological
context it is natural to require that the second Friedmann
equation is linear in _H. Then, in addition to the Einstein-
Hilbert term the gravitational Lagrangian can contain a
function of R and G of the form fðJÞ depending only on one
invariant [6]

J ¼ 1ffiffiffiffiffi
12

p
�
−Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 6G

p �
1=2 ð2Þ

normalized so that J2 ¼ H2 for a spatially flat cosmology at
background level. The Friedmann equations in this case
becomevery simple: the left-hand side of the first Friedmann
equation, in addition to the usualH2 term, contains a general
function of H.
In this paper we study in particular a MGB gravity with

fðJÞ ∝ J4. In the following wewill refer to this theory as the
MGB model. In this model one obtains the cosmology
equivalent to that on the holographic braneworld [7–10] at

background level. This equivalence between the two models
poses a natural question if the equivalence goes beyond
background cosmology. In particular, it would be of con-
siderable interest to check if the two models produce similar
spectra of the primordial cosmological perturbations.
At this point it is worth mentioning a few related works in

the context of inflation. In Ref. [11] inflationary models
were studied with arbitrary functions ofH added to the left-
hand side of the first Friedmann equation. Chackraborty
et al. [12] have studied inflation in a model with the Gauss-
Bonnet term coupled to a scalar field. Basilacos et al. [13]
have shown that a modification of the Friedmann equation
with a quartic term ∝H4 is obtained in a string theory
inspiredmodelwith aKalb-Ramond term in the Lagrangian.
In spite of some similarities, these examples are not
equivalent to the model considered here.
Inflation in the modified gravity models in which the

gravitational Lagrangian is a function FðR;GÞ have been
studied in Refs. [14,15]. De Laurentis et al. [14] have
studied inflation in a kind of Starobinski extended model of
the type FðR;GÞ ¼ −Rþ aR2 þ bG where a and b are
constants. Odintsov et al. [15] have studied inflation in
models of the type FðR;GÞ ¼ −Rþ aGα where α ≠ 1. In
both Refs. [14,15] the action does not contain matter fields
and inflation is driven solely by the geometry. In our
approach, in contrast, inflation is driven by a scalar field
coupled to the modified gravity with Lagrangian of the type
FðR;GÞ ¼ −Rþ ðl2=2ÞJ4 where the invariant J is given
by (2) and l is a constant of dimension of length.
In a recent paper [10] we presented the calculations of

the cosmological perturbations for a k-essence field theory
in the holographic braneworld in the context of inflation.
We demonstrated that the perturbations produce the power
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spectra as in the standard k-inflation in general relativity.
Here we calculate the perturbations in the MGBmodel with
background equations identical to the holographic cosmol-
ogy and find a substantial departure from the general-
relativistic results.
As a side issue, it is important to address the ghost

instability problem in MGB models which is somewhat
controversial. It was argued that the modified gravity
models in which the gravitational action is a general
function FðR;GÞ are ghost free [16,17]. However, in a
recent paper [18] it was demonstrated that, with a few
exceptions, there is an instability in the scalar sector of
FðR;GÞmodels. We present a brief review of these issues in
Appendix D, where we also point out why the analysis of
Ref. [18] does not apply to the model considered here.
The remainder of the paper is organized as follows. In

Sec. II we introduce the MGB model and using the scalar-
tensor representation formalism we derive the background
field equations from which we derive the corresponding
Friedmann equations. In Sec. III we derive the spectra of
the cosmological perturbations for the MGB model with k-
essence. In Sec. IV we calculate the power spectra and
spectral indices. Concluding remarks are given in Sec. V. In
Appendix A we justify some approximations made in
Sec. III. In Appendices B and C we present details of
the calculations of the scalar and tensor perturbations,
respectively. Appendix D is devoted to ghost issues in
general FðR;GÞ theories and to the particular case consid-
ered here.

II. FIELD EQUATIONS IN THE MGB MODEL

A. The action

Consider the MGB action of the form

SMGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN
ð−Rþ fðJÞÞ þ L

�
; ð3Þ

where GN is the Newtonian constant and f is a smooth
function of the invariant J defined by (2). We will assume
that the value ofGN is provided by the measurements in the
Solar System since the modifications of gravity should be
relevant only for short distances. Matter is represented by a
Lagrangian L as a general function of the scalar field θ and
kinetic term

X ≡ gμνθ;μθ;ν: ð4Þ

This type of scalar field theories, dubbed k-essence [19,20],
is very general and includes the canonical scalar field
theory as a particular case. A k-essence is dynamically
equivalent to a generally nonisentropic and nonbarotropic
potential fluid flow, whereas a purely kinetic k-essence is
equivalent to a barotropic potential flow [21,22].

For a general Friedmann-Lemaître-Robertson-Walker
(FLRW) metric with line element

ds2¼gð0Þμν dxμdxν

¼dt2−a2ðtÞ
�
dχ2þsin2ð ffiffiffi

κ
p

χÞ
κ

ðdϑ2þsin2ϑdφ2Þ
�
; ð5Þ

one finds

J2 ¼ H2 þ κ

a2
; ð6Þ

where κ ¼ 1, −1, or 0 for closed, open hyperbolic, or open
flat space, respectively. Then applying the Euler-Lagrange
formalism (for some efficient methods see Refs. [6,23]), we
find a modified first Friedmann equation in the form

J2 þ 1

6

�
fðJÞ −H

∂f
∂H

�
¼ 8πGN

3
ρ: ð7Þ

Hence, the left-hand side is a function of a and H only and
the second Friedmann equation will be linear in _H. The
above equation extends the κ ¼ 0 result of Ref. [6] to
arbitrary κ values (see also Ref. [23]). In the next section,
the Friedmann equations are derived directly from the field
equations with a specific function fðJÞ.
An interesting particular case is obtained for

fðJÞ ¼ 1

2
l2J4; ð8Þ

where l is a coupling constant of dimension of length. In
this case the Friedman equation (7) takes the form obtained
in the spatially flat holographic cosmology [7,8,10] if we
identify the constant l with the AdS5 curvature radius. In
the following, we will study the action (3) with (8), i.e.,

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
FðR;GÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
L; ð9Þ

where

FðR;GÞ ¼ −Rþ l2

288

�
−Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 6G

p �
2
: ð10Þ

B. Scalar-tensor representation

It is well known that fðRÞ gravity can be described by a
dual scalar-tensor action with a single scalar (for a review
see, e.g., [24]). More general extended gravity theories, as
is the action (9), may need additional scalars [25,26]. Here
we follow the approach of [26] to find the dual action. For a
general gravitational action with an arbitrary dependence
on some metric invariants Xa (e.g., R and G)
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S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
FðXaÞ; ð11Þ

we can form a dual action by making use of a Legendre
transformation

S2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðψaXa − VðψaÞÞ; ð12Þ

where ψa are scalar fields that satisfy the following
relations:

ψa ¼
∂F
∂Xa ; Xa ¼ ∂V

∂ψa
: ð13Þ

For the action (9) with (10) the dual version is

SD ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ðψ1Rþ ψ2G − Vðψ1;ψ2ÞÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð14Þ

where

ψ1 ¼
∂FðR;GÞ

∂R ¼ −1 −
l2ð−Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 6G

p
Þ2

144
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 6G

p ; ð15Þ

ψ2 ¼
∂FðR;GÞ

∂G ¼ l2

48

�
−1þ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − 6G
p �

: ð16Þ

Then, the second set of equations in (13) reads

R ¼ ∂V
∂ψ1

; G ¼ ∂V
∂ψ2

; ð17Þ

and by integrating these we obtain

Vðψ1;ψ2Þ ¼ −
3ðψ1 þ 1Þ2ðψ2 þ l2=48Þ

2ψ2
2

: ð18Þ

The variation of SD with respect to the metric leads to
modified Einstein’s equations

− ψ1Gμν −
1

2
gμνVðψ1;ψ2Þ − gμν□ψ1 þ∇μ∇νψ1

þ 4ð□ψ2ÞGμν þ 2ð∇μ∇νψ2ÞR − 4ð∇ρ∇μψ2ÞRρ
ν

− 4ð∇ρ∇νψ2ÞRρ
μ þ 4gμνð∇ρ∇σψ2ÞRσρ

− 4ð∇ρ∇σψ2ÞRμρνσ ¼ 8πGNTμν; ð19Þ

where the energy-momentum tensor Tμν is associated with
the matter Lagrangian L. Note that the variation of G in the
above expression is in agreement with Ref. [27]. One can

easily check that the variation with respect to ψ1 and ψ2

yields a pair of equations equivalent to (15) and (16).

C. Background equations

Now we specify the background metric to the FLRW
form (5) and we assume

Tμ
ν ¼ diagðρ;−p;−p;−pÞ: ð20Þ

Then, using the modified Einstein equations (19) we obtain
the following modified Friedmann equations:

3

�
H2þ κ

a2

�
−
l2

4

�
H2þ κ

a2

��
3H2−

κ

a2

�
¼8πGNρ; ð21Þ

_H

�
1 −

l2

6

�
κ

a2
þ 3H2

��
−

κ

a2

�
1 −

l2

6

�
H2 −

κ

a2

��
¼ −4πGNðpþ ρÞ: ð22Þ

Of course, Eq. (21) agrees with Eq. (7) for fðJÞ given by
(8). It is easy to show that Eqs. (21) and (22) imply

_ρþ 3Hðpþ ρÞ ¼ 0; ð23Þ

which also follows from energy-momentum conservation

Tμν
;ν ¼ 0: ð24Þ

In the following we adopt the usual assumption that the
early Universe is spatially flat. Then, Eqs. (21) and (22)
with κ ¼ 0 reduce to

H2 −
l2

4
H4 ¼ 8πGN

3
ρ; ð25Þ

_Hð1 − l2H2=2Þ ¼ −4πGNðpþ ρÞ; ð26Þ

precisely as in the spatially flat holographic cosmology
[7,8,10].
The pressure p and energy density ρ are derived from L

using the usual prescription

p ¼ L; ρ ¼ 2XL;X − L; ð27Þ

where the kinetic term X is defined in (4) and the subscript
;X denotes a partial derivative with respect to X. The
energy-momentum tensor is then given by

Tμν ¼ ðpþ ρÞuμuν − pgμν; ð28Þ

where
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uμ ¼
θ;μffiffiffiffi
X

p : ð29Þ

The MGB cosmology has interesting properties. Solving
the first Friedmann equation (25) as a quadratic equation
for H2 we find

H2 ¼ 2

l

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πGNl2

3
ρ

r �
: ð30Þ

Now, by demanding that Eq. (30) reduces to the standard
Friedmann equation in the low density limit, i.e., in the
limit whenGNl2ρ ≪ 1, we are led to keep only the (−) sign
solution in (30) and discard the (þ) sign solution as
unphysical. Then, it follows that the physical range of
the Hubble expansion rate is between zero and the maximal
value Hmax ¼

ffiffiffi
2

p
=l corresponding to the maximal energy

density ρmax ¼ 3=ð8πGNl2Þ [7,11]. Assuming no violation
of the weak energy condition pþ ρ ≥ 0, the expansion rate
will, according to (26), be a monotonously decreasing
function of time.
Our ambition here is by no means an attempt to explain

the very beginning of the Universe. Nevertheless, it is worth
noting that if the evolution starts from t ¼ 0 with an initial
Hi ≤ Hmax the initial energy density and cosmological
expansion scale will be both finite. Hence, as already noted
by Gao [6], in the modified cosmology described by the
Friedmann equations (25) and (26), the big bang singularity
is avoided.
The expansion of the early Universe is conveniently

described using the so-called slow-roll parameters. We
use the following recursive definition of the slow-roll
parameters [28,29]:

εiþ1 ¼
_εi
Hεi

; ð31Þ

starting with

ε1 ¼ −
_H
H2

: ð32Þ

The beginning of inflation is characterized by the slow-roll
regime with slow-roll parameters satisfying εi ≪ 1.

D. Speed of sound

The adiabatic speed of sound is given by

c2s ≡ ∂p
∂ρ

				
θ

¼ p;X

ρ;X
¼ p;X

p;X þ 2Xp;XX
¼ pþ ρ

2Xρ;X
: ð33Þ

In the slow-roll regime, the sound speed deviates slightly
from unity and may be expressed in terms of the slow-roll
parameters εi. First, by making use of the definition (32)

and modified Friedman equations (25), (26) with (27),
we can express the variable X in the slow-roll regime as

X ¼ −
2pð2 − h2Þ
3p;Xð4 − h2Þ ε1 þOðε2i Þ; ð34Þ

where we have abbreviated

h≡ lH: ð35Þ

Then from (33) we find

c2s ¼ 1þ 4ð2 − h2Þ
3ð4 − h2Þ

pp;XX

p2
;X

ε1 þOðε2i Þ: ð36Þ

For example, in the tachyon model with Lagrangian
L ¼ −V

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p
one finds [9]

c2s ¼ 1 −
4ð2 − h2Þ
3ð4 − h2Þ ε1 þOðε2i Þ: ð37Þ

III. PERTURBATIONS IN MGB GRAVITY

Here we derive the spectra of the cosmological pertur-
bations for the MGB cosmology with matter represented by
a general k-essence. We shall closely follow Garriga and
Mukhanov [30] and adjust their formalism to account for
the modification of the Einstein equations.

A. Scalar perturbations

Assuming a spatially flat background with line element
(5) with κ ¼ 0, we introduce the perturbed line element in
the Newtonian gauge

ds2 ¼ ð1þ 2ΨÞdt2 − ð1 − 2ΦÞa2ðtÞðdr2 þ r2dΩ2Þ: ð38Þ

Inserting the above metric components in the field equa-
tions (19) we obtain a set of equations for Φ and Ψ derived
in Appendix B. The relevant equations are (B21), (B22),
and the off-diagonal part of (B23). Owing to δTi

j ¼ δijδp
the off-diagonal part of Eq. (B23) in momentum space can
be written as

�
1−

h2

3

�
H2

2 _H
−

_H
H2

þ Ḧ

H _H
−
Ḧ2

_H3
þ H

…

2 _H2

��
Φ

−
�
1−

h2

6

�
HḦ
_H2

−
H2

_H
− 2

��
Ψþ h2

9H2

k2

a2
Φþ h2

18 _H

k2

a2
Ψ

−
h2

3

�
H
_H
−

1

H

�
_Φ−

h2H

6 _H
_Ψ ¼ 0; ð39Þ

where h ¼ lH. Hence, the slip parameter defined in
momentum space as
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η≡Φ
Ψ

ð40Þ

is in general a function of k and t and can be calculated
numerically for a specific inflation model. However, mak-
ing use of the slow-roll parameters will prove helpful to
develop a model independent estimate on η at horizon
crossing (i.e., k ¼ aH). First, with the help of (31) and (32),
Eq. (39) with k ¼ aH becomes

�
1þ 3þ ε1ð2 − 3ε2Þ − 3ε22 þ 3ε2ε3

18ε1
h2
�
Φ

−
�
1 −

2 − 3ε2
18ε1

h2
�
Ψþ 1þ ε1

3ε1H
h2 _Φ

þ 1

6ε1H
h2 _Ψ ¼ 0: ð41Þ

In the slow-roll regime, it is reasonable to assume

_f ≃Oðε1ÞHf; ð42Þ

where f stands for an arbitrary smooth and slow varying
function of time. For example, _H ¼ −ε1H2, _ε1 ¼ ε2Hε1,
etc. In view of the above relation, we introduce arbitrary
parameters εΦ and εΨ of order Oðε1Þ and write

_Φ ¼ εΦHΦ; _Ψ ¼ εΨHΨ: ð43Þ

Then we find

η¼ 18ε1−ð2−3ε2þ3εΨÞh2
18ε1− ½ð−2þ3ε2−6εΦÞε1þ3ð−1þε22−ε2ε3−2εΦÞ�h2

:

ð44Þ

The above expression is exact on the proviso that Φ and Ψ
satisfy (43). Note that η → 1 as h → 0, as expected. Now
we make an approximation by taking all epsilons to be
nearly equal, i.e., ε1 ≃ ε2 ≃ ε3 ≃ εΦ ≃ εΨ ≃ ε. Then we
obtain

η ≃
18ε − 2h2

18εþ ð3þ 8εþ 3ε2Þh2 : ð45Þ

The above function η ¼ ηðε; hÞ has a single minimum and a
single maximum which yields the lower and upper bounds
on η as

−
2

3
< η < 1: ð46Þ

The maximum is found for h → 0, while the minimum for
ε → 0. If we require η > 0, Eq. (45) implies

ε >
h2

9
: ð47Þ

For sufficiently small ε we have

η ≃ −
2

3
þ 2

9
ð45þ 8h2Þ ε

h2
þOðε2Þ: ð48Þ

In the intermediate slow-roll regime (εi ∼ h2) one can
calculate η numerically for a specific model of k-essence.
However, it is possible to obtain a rough model indepen-
dent estimate in the intermediate slow-roll regime assuming
as above ε1 ≃ ε2 ≃ ε3 ≃ εΦ ≃ εΨ ≃ ε. Let εh denote the
value of ε close to h2. Then

ηjε∼h2 ≃
16

21þ 8εh þ 3ε2h
; ð49Þ

and hence, we have ηjε∼h2 > 0. Moreover, assuming that
inflation ends when ε ∼ 1, then ηjε∼h2 > 1=2.
The above estimates rely on the assumption that all of the

epsilons are nearly equal. Nonetheless, it provides a simple
and illustrative analytical description. In the following we
will consider yet another approximation: we will adopt the
simplification that during inflation η can be taken to be a
constant between 0 and 1.

B. Scalar power spectrum

Using the definition (40) we can express the remaining
perturbation equations in terms of Φ and η. The perturba-
tions of the stress tensor components δTμ

ν are induced by
the perturbations of the scalar field θðt; xÞ ¼ θðtÞ þ δθðt; xÞ
and the perturbation of the metric. Using the energy
conservation (23) and the definition (4) of X one finds

δT0
0 ¼

pþ ρ

c2s

��
δθ
_θ

�
:
−Ψ

�
− 3Hðpþ ρÞ δθ

_θ
; ð50Þ

δT0
i ¼ ðpþ ρÞ

�
δθ
_θ

�
;i
; ð51Þ

where the adiabatic sound speed cs is defined by (33).
Using (51), Eq. (B22) becomes

ð2 − h2Þð _ΦþHΨÞ − h2

9

�
H
_H
þ Ḧ

_H2
−

4

H

�∇2Φ
a2

þ h2

9 _H

∇2ð _ΦþHΨÞ
a2

¼ 8πGNðpþ ρÞ δθ
_θ
: ð52Þ

Multiplying this by 3H and adding to (B21) with (50) we
obtain
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2

�
1 −

h2

6

�∇2Φ
a2

−
Hh2

3 _H

∇2ð _ΦþHΨÞ
a2

−
h2

3

�
H
_H
þ Ḧ

_H2
−

4

H

�∇2Φ
a2

−
h2

9 _H

k2∇2Φ
a4

¼ 8πGN
pþ ρ

c2s

��
δθ
_θ

�
:
−Ψ

�
: ð53Þ

Here, in the last term on the left-hand side we have made a
replacement ∇2 → −k2. Next, employing the slow-roll
condition (42) we neglect _Φ in the second term, use the
horizon crossing relation k ¼ aH, replace Ψ by Φ=η and
approximate η by a constant, as discussed at the end of
Sec. III A. Then, by making use of the definitions (31) and
(32), from (53) we obtain

γ
∇2Φ
a2

¼ 4πGN
pþ ρ

c2s

��
δθ
_θ

�
:
−
Φ
η

�
; ð54Þ

where

γ ¼ 1þ h2

6

�
1þ ε2

ε1

�
þ
�
2

9
þ 1

6η

�
h2

ε1
: ð55Þ

This is our first basic equation. The second equation is
obtained from (B22) in which we replace ∇2 → −a2H2.
Then we find

ðα _Φþ βHΦÞ;i ¼ 4πGNδT0
i ; ð56Þ

where

α ¼ 1 −
h2

6
þ h2

18

1

ε1
; ð57Þ

β ¼ 1

η
− h2

�
1

9
þ 1

2η

�
−
h2

18

�
1 −

1

η

�
1

ε1
−
h2

18

ε2
ε1
: ð58Þ

Next, by noting that β=α ¼ Oð1Þ and employing the slow-
roll condition (42) we can neglect the first term in brackets
on the left-hand side of (56). Furthermore we use

ðaΦÞ: ¼ aHΦþ a _Φ ≃ aHΦ ð59Þ

and finally obtain

βðaΦÞ: ≃ 4πGNaðpþ ρÞ δθ
_θ
: ð60Þ

Now, we can proceed in a way similar to Ref. [30] (for
more details see also [10] and the Appendix of [9]).
Introducing

c̃2 ¼ γ

β
c2s ; ð61Þ

Eqs. (54) and (60) can be put in the form

�
δθ
_θ

�
:
¼ Φ

η
þ c̃2

4πGNa2ðpþ ρÞ β∇
2Φ; ð62Þ

ðaΦÞ: ¼ 4πGNaðpþ ρÞ 1
β

δθ
_θ
: ð63Þ

As shown in Appendix A, we can neglect the first term on
the right-hand side of Eq. (62). With this, we find two
equations

aðHξÞ: ¼ z2c̃2χ; ð64Þ

a_χ ¼ z−2H∇2ξ; ð65Þ

where

ξ ¼ aΦ
4πGNH

; χ ¼ δθ
_θ

ð66Þ

and

z ¼ a
c̃

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ ρ

β

r
¼ aH

cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − h2=2Þε1

4πGNγ

s
: ð67Þ

In conformal time τ ¼ R
dt=a Eqs. (64) and (65) yield a

second order differential equation

v00 − c̃2∇2v −
z00

z
v ¼ 0; ð68Þ

where

v ¼ zχ: ð69Þ

The function v is related to the gauge invariant quantity

ζ ¼ ΦþH
δθ
_θ
; ð70Þ

introduced in Ref. [30]. Indeed, using (66), (69), and (70)
we have

v ¼ z

�
ζ

H
−
4πGN

a
ξ

�
≃
zζ
H

; ð71Þ

where we have neglected the second term in brackets being
of higher order in εi as shown in Appendix A. The quantity
ζ measures the spatial curvature of comoving (or constant-
θ) hypersurfaces.
As usual, Eq. (68) is solved in momentum space where it

reads
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v00k þ
�
c̃2k2 −

z00

z

�
vk ¼ 0: ð72Þ

The quantity z00=z can be easily calculated up to the second
order in εi. However, as we have systematically neglected
the terms of order Oðε2i Þ it is consistent to keep only the
dominant contribution to z00=z. In the slow-roll regime one
can use the relation [31]

τ ¼ −
1þ ε1
aH

þOðε21Þ; ð73Þ

which follows from the definition (32) expressed in terms
of the conformal time. Keeping the terms up to the first
order one finds

z00

z
¼ 1

τ2
ðν2 − 1=4Þ þOðε2i Þ; ð74Þ

where

ν2 ¼ 9

4
þ 3

�
1þ h2

2 − h2

�
ε1 þ 3ε2: ð75Þ

We look for a solution to (72) which satisfies the positive
frequency asymptotic limit

lim
τ→−∞

vk ¼
e−ic̃kτffiffiffiffiffiffiffiffi
2c̃k

p : ð76Þ

Then the properly normalized solution to (68) which up to a
phase agrees with (76) is

vk ¼
ffiffiffi
π

p
2

ð−τÞ1=2Hð1Þ
ν ð−c̃kτÞ; ð77Þ

whereHð1Þ
ν is the Hankel function of the first kind of rank ν.

In the limit of the de Sitter background all εi vanish so
ν ¼ 3=2 in which case the solution to (72) is given by

vk ¼
e−ic̃kτffiffiffiffiffiffiffiffi
2c̃k

p
�
1 −

i
c̃kτ

�
: ð78Þ

Applying the standard canonical quantization [32] the
field vk is promoted to an operator and the power spectrum
of the field ζk ¼ vk=z is obtained from the two-point
correlation function

hζ̂kζ̂k0 i ¼ hv̂kv̂k0 i=z2 ¼ ð2πÞ3δðkþ k0Þjζkj2: ð79Þ

The dimensionless spectral density

PSðkÞ ¼
k3

2π2
jζkj2 ¼

k3H2

2π2z2
jvkj2; ð80Þ

with z given by (67), characterizes the primordial scalar
fluctuations. Next, we evaluate the scalar spectral density at

the horizon crossing, i.e., for a wave number satisfying
k ¼ aH. Following Refs. [29,33] we make use of the
expansion of the Hankel function in the limit c̃kτ → 0

Hð1Þ
ν ð−c̃kτÞ ≃ −

i
π
ΓðνÞ

�
−c̃kτ
2

�
−ν
; ð81Þ

where the conformal time τ < 0 and k is the comoving
wave number. Using this we find at the lowest order in ε1
and ε2

PS ≃
GNH2

πcsε1

ðβ=γÞ3=2γ
1 − h2=2

�
1 −

�
2þ 2K − ln

β

γ

�
ε1

−
�
2K − ln

β

γ

��
ε2 þ

h2

2 − h2
ε1

��
; ð82Þ

where K ¼ γE − 2þ ln 2 ≃ −0.730 and γE is the Euler
constant.
It is worth comparing this expression with the standard

k-inflation result [30]

PS ≃
GNH2

πcsε1
½1 − 2ð1þ KÞε1 − Kε2�: ð83Þ

In the regime where h2 ≪ εi, β → 1, and γ → 1, we recover
the standard result apart from a difference by a factor of 2 in
the ε2 correction in square brackets. The reason for this
discrepancy is due to the linear dependence of z on ε1 as
opposed to

ffiffiffiffiffi
ε1

p
dependence in the standard case. Although

the field equations of MGB gravity become identical to the
field equations of general relativity (GR) in the limit h → 0,
MGB gravity is appreciably different from GR for small ε1
(when ρ is expected to be large). Hence, GR need not have
been recovered if one first expands in ϵ1 and then takes the
limit h → 0, as in the mentioned regime h2 ≪ εi.
In the ultra-slow-roll regime where εi ≪ h2 we find a

substantial enhancement with respect to the standard result
by the factor γ ≃ ð4ηþ 3Þh2=ð18ηε1Þ.

C. Tensor perturbations

The tensor perturbations are related to the production of
gravitational waves during inflation. The metric perturba-
tions are defined as

ds2 ¼ dt2 − a2ðtÞðδij þ hijÞdxidxj; ð84Þ

where hij is traceless and transverse. Inserting the metric
components in the field equations (19) yields an equation
for the perturbation hij which we derive in Appendix C.
Assuming as usual no contribution frommatter wewrite the
equation for hij, Eq. (C21), in the form

Aḧij þ B3H _hij þDH2hij − C
∇2hij
a2

¼ 0; ð85Þ
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where A, B, C, and D are functions of H and its derivatives
which we can be expressed in terms of εi. Using (31) and
(32) we find

A ¼ 1þ h2

6ε1
ð1þ ε2Þ; ð86Þ

B¼ 1þ h2

6ε1

�
1−

2

3
ε1þ

2

3
ε2þ

8

3
ε21− ε22−

2

3
ε1ε2þ

1

3
ε2ε3

�
;

ð87Þ

C ¼ 1þ h2

6ε1
ð1 − ε22 − ε1ε2 þ ε2ε3Þ; ð88Þ

D ¼ h2

3ε1
ε2: ð89Þ

We now proceed as in Sec. III B and divide (85) by A

ḧij þ
B
A
3H _hij þ

D
A
H2hij −

C
A

∇2hij
a2

¼ 0: ð90Þ

At the beginning and at the end of inflation the coefficient
D=A tends to zero and B=A and C=A both tend to unity. At
quadratic order in εi we find

B
A
¼ 1 −

2

3
ε1 −

1

3
ε2 þ

�
8

3
þ 4ðh2 − 9Þ

h4

�
ε21

−
2

3
ε22 þ

2

h2
ε1ε2 þ

1

3
ε2ε3; ð91Þ

C
A
¼ 1 − ε2 −

36

h4
ε21 þ

�
−1þ 6

h2

�
ε1ε2 þ ε2ε3; ð92Þ

D
A
¼ 2ε2 − 2ε22 −

12

h2
ε1ε2: ð93Þ

Now we proceed by solving Eq. (90) in the usual way.
Keeping the linear order in εi, Eq. (90) becomes

ḧij þHð3− 2ε1 − ε2Þ _hij þ 2H2ε2hij − ð1− ε2Þ
∇2hij
a2

¼ 0:

ð94Þ

To solve this one uses the standard Fourier decomposition
in conformal time τ

hijðτ; xÞ ¼
1

ð2πÞ3
Z

d3keikx
X
s

hskðτÞesijðkÞ; ð95Þ

where the polarization tensor esij satisfies kiesij ¼ 0, and

esije
s0
ij ¼ 2δss0 with comoving wave number k and two

polarizations s ¼ þ;×. The amplitude hskðτÞ then satisfies

h00k þ 2aHh0k − ð2ε1 þ ε2ÞaHh0k þ 2a2H2ε2hk

þ ð1 − ε2Þk2hk ¼ 0; ð96Þ

where we have suppressed the dependence on s for
simplicity bearing in mind that we have to sum over two
polarizations in the final expression. Note that the third
term may be neglected as it is suppressed by a factor Oðε2i Þ
with respect to the last term. This may be seen by
estimating the ratio aHh0k=ðk2hkÞ. Employing the trick
(42) we estimate _hk ≃Oðε1ÞHhk and find

aHh0k
k2hk

≃
a2H2

k2
Oðε1Þ ≃Oðε1Þ: ð97Þ

In the second equality we have used the value

k ≃ aH ð98Þ

near the horizon crossing. Thus, neglecting the suppressed
term and introducing a canonically normalized amplitude

vk ¼
a

16πGN
hk ð99Þ

we obtain the equation

v00k þ
�
k2 −

a00

a
þ a2H2ε2

�
vk ¼ 0: ð100Þ

This equation is of the same form as (72) with cs ¼ 1 and
z00=z replaced by a00=a − a2H2ε2. As before, using the
relations (73) and (98) we find a properly normalized
solution

vk ¼
ffiffiffi
π

p
2

ð−τÞ1=2Hð1Þ
ν ð−kτÞ; ð101Þ

with

ν2 ¼ 9=4þ 3ε1 − ε2: ð102Þ

The spectral density of the primordial tensor fluctuations is
then given by

PTðkÞ ¼
k3

π2
jhkj2 ¼

k3

π2

				 16πGN

a
vk

				2; ð103Þ

with vk given by (101). Then, at the horizon crossing, using
the approximation (81) we find

PT ≃
16GH2

π

�
1 − 2ð1þ KÞε1 þ

2

3
Kε2

�
: ð104Þ
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IV. SCALAR SPECTRAL INDEX AND
TENSOR-TO-SCALAR RATIO

The scalar spectral index nS and tensor to scalar ratio r
are given by

nS − 1 ¼ d lnPS

d ln k
≃

1

Hð1 − ε1Þ
d lnPS

dt
; ð105Þ

r ¼ PT

PS
; ð106Þ

where PS and PT are evaluated at the horizon crossing. The
second equality in (105) is obtained with the help of (73)
and the horizon crossing relation k ¼ aH.
To be consistent with our approximation, in the calcu-

lation of nS and r we keep only the lowest order corrections
to the leading term. From (82) and (104) we find at linear
order

nS ¼ 1 − 2

�
1þ 2

2 − h2

�
ε1 − 2ε2 þOðε2i Þ ð107Þ

and

r ¼ 144ð2 − h2Þ
h2

ηð4ηþ 3Þ1=2
ð1 − ηÞ3=2 ε21½1þ aε1 þ bε2 þOðε2i Þ�;

ð108Þ

where

a ¼ 2h2

2 − h2
K þ 2

2 − h2
ln
4ηþ 3

1 − η
−

9ðη2 þ 11ηþ 9Þ
h2ð4ηþ 3Þð1 − ηÞ

þ 3ð7η2 þ 43ηþ 27Þ
2ð4ηþ 3Þð1 − ηÞ þ 2ð2 − h2Þ

3ð4 − h2Þ
pp;XX

p2
;X

; ð109Þ

b ¼ 8

3
K þ ln

4ηþ 3

1 − η
þ 3ηð3ηþ 4Þ
2ð4ηþ 3Þð1 − ηÞ : ð110Þ

For comparison, it is worth quoting the results we have
obtained in holographic cosmology (HC) [10]

rjHC ¼ 16ε1

�
1þ Kε2 þ

2ð2 − h2Þ
3ð4 − h2Þ

pp;XX

p2
;X

ε1

�
ð111Þ

and

nSjHC ¼ 1 − 2ε1 − ε2 −
�
2þ 8h2

3ð4 − h2Þ2
pp;XX

p2
;X

�
ε21

−
�
3þ 2K þ 2ð2 − h2Þ

3ð4 − h2Þ
pp;XX

p2
;X

�
ε1ε2

− Kε2ε3; ð112Þ

which, in the limit h2 → 0, coincide with the results
obtained in the standard k-inflation [33] in general rela-
tivistic cosmology. Clearly, there is a significant deviation
from the standard cosmology: the leading term in (108) is
suppressed by a factor

9ð2 − h2Þ
h2

ηð4ηþ 3Þ1=2
ð1 − ηÞ3=2 ε1

compared with (111) and the first order corrections to nS in
(107) are enhanced roughly by a factor of 2 compared with
(112). It is interesting to note that a similar suppression of
the leading term in r is obtained in a recent model [34]
based on fðRÞ gravity.
Our analysis and the results obtained so far have been

basically model independent. To make a comparison with
observation, e.g., to plot r versus nS, we need to specify a
model. A model which can be easily treated is the tachyon
condensate [35] which has been extensively studied in the
context of inflation [29,36–45]. Tachyon models are of
particular interest as in these models inflation is driven by
the tachyon field originating in M or string theory. The
basics of the tachyon condensation are contained in an
effective field theory [35] with Lagrangian of the Dirac-
Born-Infeld (DBI) form

LDBI ¼ −l−4Vðθ=lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gμνθ;μθ;ν

q
: ð113Þ

The dimensionless potential V is a positive function of θ
with a unique local maximum at θ ¼ 0 and a global
minimum at θ ¼ ∞ at which V vanishes. A simple
potential which satisfies the above requirements is the
exponential potential

V ¼ e−ωθ; ð114Þ

whereω is a parameter of dimension of mass. This potential
has been studied in Ref. [9] in the context of holographic
braneworld inflation.
For the tachyon model with exponential potential we

have

pp;XX

p2
;X

¼ −1 ð115Þ

and

ε2 ≃ 2ε1

�
1 −

2h2

ð2 − h2Þð4 − h2Þ
�
; ð116Þ

where h≡ lH is a monotonously decreasing function of
time according to the second Friedmann equation (26).
Owing to (30), the initial value of h at t ¼ 0must satisfy the
restriction
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hi ≤
ffiffiffi
2

p
: ð117Þ

The choice of ω and hi affects the e-fold number defined as

N ¼
Z

t0

0

Hdt; ð118Þ

where t0 is the duration of the slow-roll regime fixed by the
requirement ε1ðt0Þ ¼ 1. Hence, N is an implicit function of
ω and hi only. Our basic results (107) and (108) also
depend on the slip parameter η which, according to (39), is
generally a function of k and t. Our estimate at the horizon
crossing allows us to assume that η, being a smooth
function of t, is roughly constant during the slow-roll
regime. For simplicity, in the following, we will treat η as a
free parameter with values in the interval 0 < η < 1.
The numerical calculations proceed as follows. For

chosen ω, hi, and η we evolve our background with t
(0 < t < t0) to get hðtÞ and ε1ðtÞ and produce h ¼ hðε1Þ as
a parametric function. For each η and initial hi the value of
t0 is fixed by ε1ðt0Þ ¼ 1. This gives N as a function of ω for
each fixed η and hi. This function can be numerically
inverted to obtain ω ¼ ωðNÞ. In this way, for fixed hi and η
we can produce a set of curves r ¼ rðnSÞ each labeled by a
value of N. Similarly, for fixed N and hi we can produce
another set of curves r ¼ rðnSÞ each labeled by a value of η.
In Fig. 1 the theoretical plot for fixed initial value hi ¼ 1

and η ¼ 0.5 is superimposed on the observational con-
straints taken from the Planck Collaboration 2018 [46]. The
parameter ω is allowed to vary so that the e-fold number N
varies in the range 50 ≤ N ≤ 90. The central point where
the lines N ¼ 50 and N ¼ 90 cross corresponds to nS ¼
0.965 and r ¼ 0.0205, in excellent agreement with
observations. Similarly, the theoretical plot for varying

slip parameter η in the range 0.2 ≤ η ≤ 0.7 is presented in
Fig. 2. In this plot, the e-fold number N ¼ 75 and initial
hi ¼ 1 are kept fixed. Both figures demonstrate that there
exist a reasonable set of parameters for which the theo-
retical prediction is in good agreement with observations.

V. SUMMARY AND CONCLUSIONS

We have studied the early Universe cosmology by means
of a modified gravity model in which the gravity action
consists of a function of the Ricci scalar and the Gauss-
Bonnet invariant in addition to the Einstein-Hilbert term.
The field equations are obtained by making use of the
scalar-tensor representation of the action. We have speci-
fied the functional form of the action so that the modified
Friedmann equations have the same form as those obtained
in the holographic cosmology scenario. Furthermore, we
have developed the formalism for calculating cosmological
perturbations for scalar and tensor modes with matter
represented by a general k-essence field theory. Using this,
we have derived the scalar and tensor power spectra and
calculated the scalar-to-tensor ratio r and spectral index nS.
To confront our model with observations we have

calculated nS and r for a particular tachyon type k-essence
with exponential potential. Our numerical results (see Fig. 1)
show that the predictions of the MGB model are consistent
with the Planck observational constraints. In this compari-
sonwe have fixed the initial expansion rate to hi ¼ 1 and the
slip parameter to η ¼ 0.5, and the only remaining free
parameter, the parameterω in the potential, has been allowed
to vary in such a way that the e-fold number N varies in the
physically acceptable range 50 ≤ N ≤ 90.
One of our aims has been to compare the MGB model

with the holographic cosmology. We have recently studied
inflation within the latter model [10], where a modest

FIG. 1. r versus ns diagram with observational constraints from
Ref. [46]. The yellow shaded strips represent theoretical pre-
dictions for fixed hi ¼ 1 and η ¼ 0.5 and N ranging from 50 (top
boundary of the strips) to 90 (bottom boundary of the strips).

FIG. 2. r versus ns diagram with observational constraints from
Ref. [46]. The yellow shaded strips represent theoretical pre-
dictions for fixed hi ¼ 1 and N ¼ 75 and η ranging from 0.2
(bottom boundary of the strips) to 0.7 (top boundary of the strips).
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departure from standard GRwith k-essence has been found:
for an inflationary scenario with k-essence, the differences
in the power spectrum are only found at the second order in
the slow-roll parameters (due to a change in the speed of
sound). The expression (108) shows that the tensor-to-
scalar ratio r departs from zero only at second order in the
slow parameters in contrast to the holographic cosmology
or the standard GR cosmology with k-essence where the
departure from zero is at first order.
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APPENDIX A: JUSTIFICATION FOR THE
APPROXIMATIONS MADE

Here we justify the approximations of neglecting the
term Φ=η in Eq. (62) and the term 4πGNξ=a in Eq. (71).
First, we estimate the magnitude of the second term on the
right-hand side of (62) in momentum space. Using the
second Friedmann equation, the definition of ε1, and
the approximate value in the ultra-slow-roll regime γ ≃
ð4ηþ 3Þh2=ð18ηε1Þ we find

c2s γk2Φ
4πGNa2ðpþ ρÞ ¼

ð4ηþ 3Þh2c2sk2Φ
18ηa2H2ε21ð1 − h2=2Þ : ðA1Þ

To make an order of magnitude estimate we can use the
value k ≃ aH=cs near the acoustic horizon crossing. With
this we find

c2s γk2Φ
4πGNa2ðpþ ρÞ ≃

ð4ηþ 3Þh2Φ
9ηð2 − h2Þε21

≫ Φ; ðA2Þ

which justifies the approximation of neglecting the term
Φ=η in Eq. (62).
Next, we estimate the order of magnitude of 4πGNξ=a in

comparison with χ ≃ ζ=H in Eq. (71). Applying (42) to
Eq. (64) we find

Oðε1ÞH2ξ ≃
1

a
z2c̃2χ ¼ aH29ηð2 − h2Þε21

4πGNð1 − ηÞh2 χ ðA3Þ

and hence

4πGN

a
ξ ≃

9ηð2 − h2Þ
ð1 − ηÞh2

ε21
Oðε1Þ

χ ≪ χ: ðA4Þ

This justifies the approximation made to obtain the second
equality in Eq. (71).

APPENDIX B: SCALAR PERTURBATIONS

In this Appendix we explicitly derive the equations for
linear order scalar mode perturbations in the Newtonian
gauge for the MGB model (9), (10). We apply the usual
metric formalism and assume that Christoffel symbols are
related to the metric through the Levi-Civita connection.
Using the perturbed components of Christoffel symbols in
the expressions for Ricci and Riemann tensor one can
obtain all the perturbed quantities of Eq. (19). For the sake
of completeness, in Sec. B 1 we provide the expressions
for all these geometric quantities together with the per-
turbed Ricci scalar and the Gauss-Bonnet invariant.
In Sec. B 2 we derive the expressions for the auxiliary
fields ψ1 and ψ2, and the final equations for the scalar
perturbations.

1. Perturbed geometric quantities

For the line element (38), the metric components are

g00 ¼ 1þ 2Ψ; ðB1Þ

gij ¼ −a2ðtÞð1 − 2ΦÞδij: ðB2Þ

Plugging the above metric components into the Cristoffel
symbols we find

Γ0
00¼ _Ψ; Γi

00¼
δij

a2
∂jΨ; Γ0

ij¼a2½H−2HðΦþΨÞ− _Φ�δij;
Γi
0j¼ðH− _ΦÞδij; Γi

jk¼δik∂kΨþδij∂kΨ−δilδjk∂lΨ: ðB3Þ

The components of the Riemann and Ricci tensor are

R0i0j ¼ a2ðH2 þ _HÞδij − ∂i∂jΨ

− a2δij½2ðH2 þ _HÞΦþHð2 _Φþ _ΨÞ þ Φ̈�; ðB4Þ

Rijkl¼−a4H2ðδikδlj−δilδkjÞ
þa2ðδliδnkδmj −δjlδ

n
kδ

m
i −δkiδ

m
l δ

n
j þδkjδ

m
l δ

i
nÞ∂m∂nΦ

þðδikδjl−δilδjkÞ½2a4H2ðΨþ2ΦÞþ2a4H _Ψ�; ðB5Þ

R00¼−3ðH2þ _HÞþ 1

a2
∇2Ψþ3Hð2 _Φþ _ΨÞþ3Φ̈; ðB6Þ

R0i ¼ 2∂ið _ΦþHΨÞ; ðB7Þ

Rij ¼ a2ð3H2 þ _HÞδij þ ∂i∂jðΦ −ΨÞ þ δij∇2Φ

− a2δij½2ð3H2 þ _HÞðΦþΨÞ þHð6 _Φþ _ΨÞ þHΦ̈�:
ðB8Þ
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With the help of the above quantities the perturbed Ricci scalar and Gauss-Bonnet invariant can be calculated yielding

R ¼ −6ð2H2 þ _HÞ þ 2

a2
∇2Ψ −

4

a2
∇2Φþ 6½2ð2H2 þ _HÞΨþHð4 _Φþ _ΨÞ þ Φ̈� ðB9Þ

and

G ¼ 24H2ðH2 þ _HÞ þ 16

a2
ðH2 þ _HÞ∇2Φ −

8

a2
H2∇2Ψ − 96H2ðH2 þ _HÞΨ − 48Hð2H2 þ _HÞ _Φ

− 24H3 _Ψ − 24H2Φ̈: ðB10Þ

2. Perturbed field equations

Scalar modes induce fluctuations in all quantities in (19). Inserting the scalar perturbations of the metric in the Newtonian
gauge and the field perturbations ψa → ψaðtÞ þ δψa, the components of the linear part of Eq. (19) become

1

a2
½∇2δψ1 − 4H2∇2δψ2 − 2ðψ1 − 4H _ψ2Þ∇2Φ� þ 3ðH2 þ _HÞðδψ1 − 4H2δψ2Þ
þ 6Hð _ψ1 þHðψ1 − 8H _ψ2ÞÞΨ − 3H _δψ1 þ 12H3 _δψ2 þ 3ð _ψ1 þ 2Hðψ1 − 6H _ψ2ÞÞ _Φ ¼ 8πGδT0

0; ðB11Þ

∂i½−2ðψ1 − 4H _ψ2Þ _Φþ ð12H2 _ψ2 − 2Hψ1 − _ψ1ÞΨ −Hδψ1 þ 4H3δψ2 þ _δψ1 − 4H2 _δψ2� ¼ 8πGδT0
i ; ðB12Þ

1

a2
½∇2δψ1 − 4ðH2 þ _HÞ∇2δψ2 − ðψ1 − 4ψ̈2Þ∇2Φþ ðψ1 − 4H _ψ2Þ∇2Ψ�δij
þ ½ð3H2 þ _HÞδψ1 − 12H2ðH2 þ _HÞδψ2 þ 2ð2ψ1

_H − 16H2 _ψ2 þ 2Hð _ψ1 − _H _ψ2Þ þ ψ̈2 þH2ð3ψ1 − 8ψ̈2ÞÞΨ
− 2H _δψ1 þ 8HðH2 þ _HÞ _δψ2 þ 2ð _ψ1 − 12H2 _ψ2 − 4 _H _ψ2 þHð3ψ1 − 4ψ̈2ÞÞ _Φ
þ ð _ψ1 þ 2Hðψ1 − 6H _ψ2ÞÞ _Ψþ 2ðψ1 − 4H _ψ2Þϕ̈ − δ̈ψ1 − 4H2δ̈ψ2�δij
−

1

a2
∂i∂jδψ1 þ

4

a2
ðH2 þ _HÞ∂i∂jδψ2 þ

1

a2
ðψ1 − 4ψ̈2Þ∂i∂jΦ −

1

a2
ðψ1 − 4H _ψ2Þ∂i∂jΨ ¼ 8πGδTi

j: ðB13Þ

The perturbed auxiliary fields are functions of the invariants Xa and hence

ψbðXa þ δXaÞ ≈ ψbðXaÞ þ ∂ψb

∂Xc δX
c: ðB14Þ

Then, from (13) it follows

δψb ¼
∂2F

∂Xc∂Xb δX
c: ðB15Þ

Using (10) together with the spatially flat background metric the linear parts of the auxiliary fields become

δψ1 ¼
l2H4ð2H2 þ 3 _HÞ

36 _H2
δRþ l2H2ðH2 þ _HÞ

72 _H2
δG; ðB16Þ

δψ2 ¼
l2H2ðH2 þ _HÞ

72 _H2
δRþ l2ð2H2 þ _HÞ

144 _H3
δG; ðB17Þ

where we have used the background expressions

ψ1 ¼ −1þ l2H4

6 _H
; ψ2 ¼

l2H2

24 _H
: ðB18Þ

Then, in terms of the Ψ and Φ fields we find
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ψ1ðtÞ þ δψ1 ¼ −1þ l2H4

6 _H
þ
�
H4

_H2
þ 2H2

_H

�
l2

9a2
∇2Φþ l2H4

18 _H2a2
∇2Ψþ l2H4

6 _H2
ðΦ̈þH _ΨÞ − l2H3

3 _H
ð2 _ΦþHΨÞ; ðB19Þ

ψ2ðtÞ þ δψ2 ¼
l2H2

24 _H
þ
�
H2

_H2
þ 1

_H

�
l2

36a2
∇2Φþ l2H2

72 _Ha2
∇2Ψþ l2H3

24 _H2
_Ψ −

l2H

12 _H
_Φþ l2H2

24 _H2
Φ̈: ðB20Þ

and with that the components of Eq. (19) are

−6H
�
1 −

h2

2

�
ðHΨþ _ΦÞ þ 2

�
1 −

h2

6

�∇2Φ
a2

−
2Hh2

3 _H

∇2ð _ΦþHΨÞ
a2

þ h2

9 _H

∇2∇2Φ
a4

¼ 8πGNδT0
0; ðB21Þ

∂i

�
2

�
1 −

h2

2

�
ð _ΦþHΨÞ − h2

9

�
H
_H
þ Ḧ

_H2
−

4

H

�∇2Φ
a2

þ h2

9 _H

∇2ð _ΦþHΨÞ
a2

�
¼ 8πGNδT0

i ; ðB22Þ



−2

�
3H2 þ 2 _H −

h2

2
ð3H2 þ 4 _HÞ

�
Ψ − 2H

�
1 −

h2

2

�
_Ψ − 6H

�
1 −

h2

6

�
2 _H
H2

þ 3

��
_Φ − 2

�
1 −

h2

2

�
Φ̈

þ
�
1 −

h2

9

�
H2

2 _H
þ

_H
H2

þ Ḧ

H _H
−
Ḧ2

_H3
þ H

…

2 _H2
þ 1

��∇2Φ
a2

−
�
1 −

h2

9

�
5HḦ

2 _H2
−
5H2

2 _H
− 6

��∇2Ψ
a2

−
h2

9H2

∇2∇2Φ
a4

−
h2

18 _H

∇2∇2Ψ
a4

þ h2

9

�
Ḧ
_H2

−
3H
_H

−
3

H

�∇2 _Φ
a2

−
5h2H

18 _H

∇2 _Ψ
a2

−
5h2

18 _H

∇2Φ̈
a2

�
δij

−
�
1 −

h2

3

�
H2

2 _H
−

_H
H2

þ Ḧ

H _H
−
Ḧ2

_H3
þ H

…

2 _H2

�� ∂i∂jΦ
a2

þ
�
1 −

h2

6

�
HḦ
_H2

−
H2

_H
− 2

�� ∂i∂jΨ
a2

þ h2

9H2

∂i∂j∇2Φ
a4

þ h2

18 _H

∂i∂j∇2Ψ
a4

þ h2

3

�
H
_H
−

1

H

� ∂i∂j
_Φ

a2
þ h2H

6 _H

∂i∂j
_Ψ

a2
¼ 8πGNδTi

j: ðB23Þ

In the Fourier space Eqs. (B21) and (B22) can be written respectively in the form

�
−6þ 3h2 þ 2h2k2

3a2 _H

�
Hð _ΦþHΨÞ þ

�
−2þ h2

3
þ h2k2

9a2 _H

�
k2

a2
Φ ¼ 8πGNδT0

0; ðB24Þ

��
2 − h2 −

h2k2

9a2 _H

�
ð _ΦþHΨÞ þ h2

9

�
H
_H
þ Ḧ

_H2
−

4

H

�
k2

a2

�
ðikiÞ ¼ 8πGNδT0

i : ðB25Þ

APPENDIX C: TENSOR PERTURBATIONS

This Appendix deals with tensor mode perturbations and
has a structure similar to the one in Appendix B. For tensor
modes, the perturbed line element is given by

ds2 ¼ dt2 − a2ðδij þ hijÞdxidxj; ðC1Þ

where hij is a traceless and transverse tensor. In the next
section we will provide the expressions for the geometric
quantities, and in Sec. C 2 we derive the perturbed field
equations.

1. Perturbed geometric quantities

The elements of the metric tensor and its inverse can be
straightforwardly obtained from (C1). Plugging them into

the metric connection one gets the following expressions
for the non-null components of Christoffel symbols:

Γ0
ij ¼ a2Hδij þ a2Hhij þ

a2

2
_hij; ðC2Þ

Γi
0j ¼ Hδij þ

δik

2
_hkj; ðC3Þ

Γi
jk ¼

δin

2
ð∂jhkn þ ∂khnj − ∂nhjkÞ: ðC4Þ

The linear parts of the covariant, contravariant, and mixed
components of interest of the Ricci tensor are

δRij¼a2ð3H2þ _HÞhijþ
3

2
a2H _hijþ

a2

2
ḧij−

1

2
∇2hij; ðC5Þ
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δRij¼δikδjl

a2

�
−ð3H2þ _HÞhklþ

3

2
H _hklþ

1

2
ḧkl−

1

2a2
∇2hkl

�
; ðC6Þ

δRi
j ¼

δik

2

�
1

a2
∇2hkj − 3H _hkj − ḧkj

�
; ðC7Þ

and the linear parts of the Riemann tensor are

δR0i0j ¼ a2
�
ðH2 þ _HÞhij þH _hij þ

1

2
ḧij

�
; ðC8Þ

δRi
0j0 ¼ −δik

�
H _hkj þ

1

2
ḧkj

�
; ðC9Þ

δRi
jkl ¼

δin

2
ð∂k∂jhln− ∂k∂nhjl− ∂l∂jhknþ ∂l∂nhjkÞþ

δin _hnk
2

a2HδljþHδik

�
a2Hhljþa2

_hlj
2

�

−
δin _hnl
2

a2Hδkj −Hδil

�
a2Hhkjþa2

_hkj
2

�
; ðC10Þ

δRmjkl ¼ −a4Hðhmkδlj − hmlδkjÞ − a2δimδRi
jkl; ðC11Þ

where we have used the background expressions for the geometric quantities as in Sec. B 1.

2. Perturbed field equations

From the equations derived in Sec. C 1 one can easily conclude that tensor modes do not induce fluctuations in the Ricci
scalar, Gauss-Bonnet invariant, and □ψb. Therefore, the space-space component of (19) are

− ψ1δRi
j þ δðgiσ∇σ∇jψ1Þ þ 4ð□ψ2ÞδRi

j þ 2δðgiσ∇σ∇jψ2ÞR − 4δðgiσ∇ρ∇σψ2ÞRρ
j

− 4ðgiσ∇ρ∇σψ2ÞδRρ
j − 4δð∇ρ∇jψ2ÞRρi − 4ð∇ρ∇jψ2ÞδRρi − 4δð∇ρ∇σψ2ÞRi

ρjσ

þ 4δij½δð∇ρ∇σψ2ÞRρσ þ ð∇ρ∇σψ2ÞδRρσ� − 4ð∇ρ∇σψ2ÞδRi
ρjσ ¼ 8πGδTi

j: ðC12Þ

For tensor modes δð∇α∇βψbÞ ¼ −δΓ0
αβ _ψb. Using this, the terms in the above equation can be expressed as

δðgiσ∇σ∇jψ1Þ ¼
_ψ1

2
δik _hkj; ðC13Þ

δðgiσ∇ρ∇σψ2ÞRρ
j ¼ −

_ψ2

2
ð3H2 þ _HÞδik _hkj; ðC14Þ

ðgiσ∇ρ∇σψ2ÞδRρ
j ¼ H _ψ2δRi

j; ðC15Þ

δð∇ρ∇jψ2ÞRρi ¼ − _ψ2ð3H2 þ _HÞδik
�
Hhkj þ

1

2
_hkj

�
; ðC16Þ

ð∇ρ∇jψ2ÞδRρi ¼ −a2H _ψ2δkjδRki; ðC17Þ

δð∇ρ∇σψ2ÞRi
ρjσ ¼ −H2 _ψ2δ

ik

�
Hhkj −

_hkj
2

�
; ðC18Þ

ð∇ρ∇σψ2ÞδRi
ρjσ ¼

H _ψ2

2a2
δik∇2hkj −H

�
ψ̈2 þ

H _ψ2

2

�
δik _hkj þ _ψ2H3δikhkj −

ψ̈2

2
δikḧkj: ðC19Þ
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Then, using these expressions in Eq. (C12) we obtain

�
1

2
ðψ1−4H _ψ2Þḧkjþ

1

2
ð3Hψ1þ _ψ1−4Hψ̈2−4ð3H2þ _HÞ _ψ2Þ _hkj−8H3 _ψ2hkj−

1

2
ðψ1−4ψ̈2Þ

∇2hkj
a2

�
δik¼ 8πGδTi

j: ðC20Þ

By substituting the background expressions (B18) for the auxiliary fields we obtain

�
−
1

2

�
1 −

h2

6

�
H2

_H
þHḦ

_H2
− 2

��
ḧkj −

3

2
H

�
1 −

h2

6

�
H2

_H
−

4 _H
3H2

þ 2HḦ

3 _H2
þ Ḧ

H _H
−
2Ḧ2

3 _H3
þ H

…

3 _H2
−
2

3

��
_hkj

−H2
h2

3

�
2 −

HḦ
_H2

�
hkj þ

1

2

�
1 −

h2

6

�
H2

_H
−
2 _H
H2

þ 2Ḧ

H _H
−
2Ḧ2

_H3
þ H

…

_H2

��∇2hkj
a2

�
δik ¼ 8πGδTi

j: ðC21Þ

In the limit h2 ≡ l2H2 → 0 this equation takes the usual general relativity form.

APPENDIX D: GHOST INSTABILITIES
IN FðR;GÞ THEORY

A general action

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
FðR;P;QÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatt; ðD1Þ

where

P ¼ RμνRμν; Q ¼ RμνρσRμνρσ ðD2Þ

can be expanded around a background up to second order
in the fluctuations. It has been shown [47,48] that such an
expansion will be identical to that obtained from

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
−2Λþ aRþ b

2
R2 −

c
6
C2

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatt; ðD3Þ

where

C2 ≡ CμνρσCμνρσ ¼ Q − 2Pþ 1

3
R2 ðD4Þ

is the Weyl tensor squared and the coefficients Λ, a, b, and
c depend on the background.
The gravity theory with the four-derivative terms R2 and

C2 was extensively studied [16,17,47–51] and it was found
that there appear new degrees of freedom in addition to the
spin-2 massless graviton: a massive spin-0 field [with mass
m2

0 ∝ 1=b corresponding to the R2 term and a massive spin-
2 field (with mass m2

2 ∝ 1=c) corresponding to the Weyl
squared term]. Moreover, the massive spin-2 field is known

to have a wrong sign of the kinetic term and thus has
negative energy: a ghost field.
Consider first the Minkowski background. If we linear-

ize gravity using gμν ¼ ημν þ hμν, the traceless part of the
metric perturbation h̄μν in momentum space will satisfy

�
k2 −

k4

m2
2

�
h̄μν ¼ 0; ðD5Þ

where

m2
2 ¼ −

FR

FP þ 4FQ
; ðD6Þ

with FR ¼ ∂F=∂R etc., and it is understood that these
derivatives are evaluated on the background. Note that the
propagator for h̄μν can be written as [51]

GðkÞ ∝ 1

k2 − k4=m2
2

¼ 1

k2
−

1

k2 −m2
2

: ðD7Þ

The first term on the right-hand side corresponds to the
massless graviton whereas the second term corresponds to
the massive spin-2 field with massm2. The second term has
the opposite sign, which indicates the presence of a ghost.
Hence, ghost terms may occur for a general FðR;P;QÞ
theory and is parametrized by the k4 mode. However, for a
theory of the form F¼FðR;4P−QÞ we have FPþ4FQ¼0

and Eq. (D5) simplifies to k2h̄μν ¼ 0. Clearly in this case
the mentioned spin-2 ghost is absent.
Next, assume that the background is a constant

curvature maximally symmetric spacetime. In this case
we have Rμνρσ ¼ ðR=12Þðgμρgνσ − gμσgνρÞ so P ¼ R2=4
and Q¼R2=6. The propagator of the graviton has
the same structure as in (D7) with the ghost mass
m2

2 ∝ −ðFP þ 4FQÞ−1, similar to (D6). As before, the
presence of the Weyl term implies the presence of a ghost
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field. Again, for the theory where F ¼ FðR; 4P −QÞ we
have c ¼ 0, and the C2 term in (D3) is absent. We are left
with an effective R2 theory in which there are no ghosts.
This applies also to a general FðR;GÞ theory including our
model

FðR;GÞ ¼ −Rþ fðJÞ; ðD8Þ

where J is defined in Eq. (2).
There is still some ambiguity concerning a possible

presence of instabilities in the scalar sector. De Felice and
Suyama [18] (hereafter DFS) argue that an instability can
arise in vacuum for the scalar modes of the cosmological
perturbations if the background is not de Sitter. The cause
of instability is a term proportional to k4, which, apart from
a few exceptions (examples are provided in their Table I),
appears in their master equation (see below). In contrast,
Navarro and Van Acoleyen [17] find no such k4 instability
in the scalar sector for a general FðR; 4P −QÞ. They derive
a propagator for the scalar field but their derivation in an
Appendix is restricted to de Sitter space although they
argue that in a generic FLRW background the results will
be qualitatively similar. This casts a certain doubt on the
validity of their result.
The analysis of DFS is based on the following equation:

1

a3Q
∂tða3Q _̂ΦÞ þ B1

k2

a2
Φ̂þ B2

k4

a4
Φ̂ ¼ 0; ðD9Þ

dubbed “master equation” (Eq. (59) in [18]). The quantities
Q, B1, and B2 are time dependent background functions
and Φ̂ is a gauge invariant scalar perturbation in the spatial
slices of constant time. The quantity Φ̂ is one of the three
gauge invariant perturbations introduced in Ref. [18] to
describe general scalar perturbations for generic FðR;GÞ
theories. In our notation

Φ̂ ¼ ΦþHðδψ1 − 4H2δψ2Þ
_ψ1 − 4H2 _ψ2

; ðD10Þ

where ψ1 and ψ2 are auxiliary fields defined in Sec. II B.
By manipulating Eqs. (B11)–(B13) it is possible to
eliminate two other scalars in favor of Φ̂, thus yielding
the master equations (D9). If a solution to (D9) exhibits an
instability (e.g., exponential growth of Φ̂), this implies that
the scalar perturbations of the FðR;GÞ model are plagued
by an instability.
The problematic term in Eq. (D9) is the one that contains

the k4 term. For models where this term vanishes, i.e., when
B2 ¼ 0, we have a standard wave equation. For a general
FðR;GÞ model, B2 ¼ 0 if the background is de Sitter.

Besides, coefficient B2 is identically zero for some par-
ticular cases of FðR;GÞ, e.g., for F ¼ fðRÞ þ const:G or
F ¼ fðRþ const:GÞ [18]. Note that the models of inflation
considered in Refs. [14,15] belong to the class of models in
which B2 does not vanish identically.
For short wavelengths, Eq. (D9) is solved using the

WKB approximation and the properties of the solution are
discussed in detail [18]. In a nutshell, if B2 is negative Φ̂
grows exponentially with time, implying that the perturba-
tions in a FLRWuniverse is unstable on small scales. These
instabilities grow to the point where linear perturbations are
not valid. If B2 is positive, the perturbations propagate with
group velocity

vgðkÞ ≈ 2
ffiffiffiffiffiffi
B2

p k
a
: ðD11Þ

The group velocity exceeds the speed of light for modes
above a critical kcr ≈ a=ð2 ffiffiffiffiffiffi

B2

p Þ so the short wavelength
propagation modes will be superluminal for k > kcr.
However, a superluminal behavior of the cosmological
perturbations is not necessarily unphysical [52]. Note that a
superluminal behavior is absent in a theory in which the
critical kcr exceeds the cutoff of the theory Λcutoff.
Finally, we investigate the coefficients B1 and B2 for

models of the type (D8). We have computed these factors
for a general FðR;GÞ model in Newtonian gauge and our
results agree with those obtained in Ref. [18] where the
precise expressions can be found. The point essential for
our analysis is that both B1 and B2 can be expressed as
fractions, the denominators of which contain a factor

D ¼ 2 _Hð2H2 _ψ1 þ _H _ψ1 − 48H _H3ψ1;G − 8H4 _ψ2Þ
þHḦð _ψ1 − 4H2 _ψ2Þ: ðD12Þ

It may be explicitly verified that this factor vanishes
identically for models of the type (D8). To see this, consider
the background quantities

ψ1 ¼
∂F
∂R¼ −1þ ∂f

∂J
∂J
∂R; ψ2 ¼

∂F
∂G ¼ ∂f

∂J
∂J
∂G : ðD13Þ

Inserting the time derivatives of ψ1 and ψ2 and the
derivative of ψ1 with respect to G into (D12) one finds
that the factor D is identically zero. This implies that the
coefficients B1 and B2 are ill defined and the master
equation (D9) cannot serve as a check for ghost instabilities
in a model of the type (D8). In other words, the DFS
analysis is inconclusive with regard to the presence of
instabilities in models of the type (D8).
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