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Stochastic gravitational wave backgrounds receive increasing attention and provide a new possibility to
directly probe the early Universe. In the preheating process at the end of inflation, parametric resonance can
generate large energy density perturbations and efficiently produce gravitational waves (GWs) which carry
unique information about inflation. Since the peak frequency of such GWs is approximately proportional to
the inflationary energy scale,Λinf , GWs from preheating are expected to be observed by interferometer GW
detectors in low-scale inflationary models. We investigate a class of preheating models where the effective
potential has a quadratic minimum, and the dependence of the amplitude of such GWs on Λinf , then find
that the present energy spectrum of these GWs does not depend on Λinf except in the case where Λinf is
above a critical value Λc—a parameter depending on the resonance strength. We numerically obtain Λc in
terms of the model parameters in a linear approximation and then conduct lattice simulations to verify this
result. For Λinf ≲ Λc, the amplitude of GWs quickly decreases with Λinf and becomes challenging to
observe. In turn, observing such GWs in interferometer detectors also helps to determine Λinf and the
resonance strength during the preheating.
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I. INTRODUCTION

Inflation is a successful model of the very early Universe
which naturally solves the horizon problem, the flatness
problem, and the magnetic monopole problem, simulta-
neously [1,2]. Primordial curvature perturbations from
quantum fluctuations during inflation also successfully
explain the cosmic microwave background (CMB),
temperature fluctuations, and seed the initial value of the
large-scale structure [3]. The existence of primordial
gravitational waves (GWs) generated from quantum fluc-
tuations of tensor modes is an important prediction of
inflation, and is expected to be detected from B-mode
polarization of CMB anisotropies [4]. Since the amplitude
of primordial tensor perturbations depends on Λinf (the
energy scale of inflation), the upper limits of tensor

perturbations help to distinguish the inflationary models
[5,6]. The current constraint from CMB data on the tensor-
to-scalar ratio is r < 0.09 at 95% level, excluding the
models with quartic and cubic potentials [7].
Apart from primordial GWs, another prediction of GWs

comes from the preheating process at the end of inflation
[8]. To set the initial conditions of the hot big bang
Universe, the vacuum energy transfers into radiation and
reheats the Universe after inflation, which is referred to as
reheating [9,10]. Many inflationary models predict the
existence of the preheating process at the beginning of
reheating, where the perturbations of the inflaton are
amplified exponentially by parametric resonance, generat-
ing large energy density perturbations inside the Hubble
horizon [10–12]. During the preheating, the equation of
state of the Universe, ω, could deviate from 1=3 (in a
radiation-dominated universe) or 0 (in a matter-dominated
universe), depending on the form of the effective potential.
Therefore, the dynamics during the preheating affect the
model prediction of the e-folding numbers of inflation, the
amplitude of the power spectrum of scalar perturbations,
and the scalar spectral index [13]. In general, preheating is
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expected to happen at an energy scale much higher
than that which could reach [2,14,15]. GWs generated
during the preheating then provide us a new opportunity to
explore the end of inflation and the history of the early
Universe.
The detailed dynamics of preheating is investigated

by analytical and numerical methods in various models
[16–26]. The case where the inflaton ϕ is coupled to a
scalar field χ by the term 1

2
g2ϕ2χ2 is studied thoroughly in

Ref. [11]. Reference [27] considers GWs from tachyonic
preheating after hybrid inflation. References [28–30] con-
sider the case where the inflaton is coupled to gauge fields
through axionlike coupling. References [31,32] consider
the amplification of perturbations and the formation oscil-
lons in cuspy models. The parametric resonance induced by
nonminimal coupling is investigated in Refs. [33–35].
Since the comoving Hubble horizon is very small at the
end of inflation, the peak frequency of such GWs is in
general much higher than the sensitive frequency of the
current laser interferometers [36]. For example, if Λinf is
close to the grand unified theory scale, 1016 GeV, the peak
frequency is above 108 Hz. For the recent progress of
detecting high-frequency GWs, see Refs. [37,38]. In
particular, in hybrid inflation [39] and curvaton models
[40], the inflationary potential is free from the CMB
constraints so thatΛinf could be much smaller. In particular,
taking into account the trans-Planckian censorship con-
jecture [41], Λinf should be smaller than 109 GeV, and then
the peak frequency lies in the sensitivity bands of inter-
ferometer detectors such as aLIGO [42], DECIGO [43],
LISA [44], Taiji [45], and so on.
In Ref. [36], the authors simulate GWs from preheating

and find the peak value of the GW energy spectrum does
not depend on Λinf . In this work, we revisit this issue in
detail and find that this conjecture is valid only in the case
where the parametric resonance is strong enough. We
consider a broad class of models where the effective
potentials have a quadratic minimum so that the resonance
strength decreases with time. Since the initial value of
perturbations decreases as Λ2

inf , perturbations of inflaton
might remain much smaller than the background
value throughout preheating in low-scale inflationary
models. In this case, the energy density of perturbations
is too small to generate considerable GWs. We study how
the amplitude of GWs from the preheating depends on
Λinf using both analytical and numerical methods in
this work.
The paper is organized as follows. In Sec. II, we

introduce the inflationary model investigated in this work.
In Sec. III, we analyze the dynamics of preheating in the
linear approximation. In Sec. IV, we show the results of the
present energy spectrum of GWs from lattice simulation
and compare them with the results in linear analysis. In
Sec. V, we summarize the results. We set c ¼ 8πG ¼ 1
throughout the paper.

II. MODELS

In this section, we briefly introduce the model inves-
tigated in this work.
Consider the model realized by the following action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Rþ 1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð1Þ

where R is the Ricci scalar. We investigate a class of models
where the effective potential has a quadratic minimum. In
this paper we take the α-attractor E-model [46–48] as an
example, where the effective potential reads

VðϕÞ ¼ V0

�
1 − exp

�
−
ϕ

M

��
2

; ð2Þ

where the profile of potential (2) is shown in Fig. 1 for
differentM. For single field inflaton, V0 andM are not free
parameters but determined by the CMB observations. In
this work, we consider two cases:
1. Hybrid inflation models. In this case, the inflaton

generates primordial perturbations and ϕ is the waterfall
field relevant to preheating.
2. Curvaton models. In this case, ϕ is the inflaton, and

the curvaton is another scalar field that generates primordial
perturbations.
In the two cases, another scalar field is responsible to

generate primordial perturbations and the potential of ϕ is
free from CMB constraints. Thus, V0 and M are free
parameters. Note that the condition VðϕÞ ∼ ϕ2 at ϕ → 0 is a
common feature naturally realized in many models except
potential (2), such as α-attractor T-models and monodromy
models, also a coupling between ϕ and another scalar is
allowed. Assuming the energy density during inflation is

approximately a constant, then Λinf ¼ V
1
4

0. In the limit
ϕ → 0, potential (2) tends to be quadratic, VðϕÞ ≃ 1

2
m2ϕ2,

where the effective mass m ¼ ffiffiffiffiffiffi
V0

p
=M.

In a Friedmann-Lemaitre-Robertson-Walker universe,
the Friedman equation and the equation of motion (EOM)
of ϕ are

FIG. 1. The effective potential of α-attractor E-models.
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H2 ¼ 1

3

�
1

2
_ϕ2 þ 1

2a2
ð∇ϕÞ2 þ VðϕÞ

�
;

ϕ̈ −
1

a2
∇2ϕþ 3H _ϕþ dV

dϕ
¼ 0; ð3Þ

where H is the Hubble parameter, h…i denotes a
spatial average over the volume, overdots denote
derivatives with respect to the cosmic time t, and ∇ is
the spatial gradient. The quantity inside the angle bracket
presents the energy density of ϕ. The EOM of tensor
perturbations, hij, is derived from the linearized Einstein
equation

ḧij þ 3H _hij −
1

a2
∇2hij ¼

2

a2
TTT
ij ; ð4Þ

where TTT
ij is the transverse-traceless (TT) component of

the energy-momentum tensor Tij, which takes the form

Tij ¼ ∂iϕ∂jϕ −
1

3
δij∂kϕ∂kϕ: ð5Þ

In general, the resonance wavelength is more than two
orders of magnitude smaller than the Hubble horizon scale,
so scalar metric perturbations are negligible both in the
EOMs of ϕ and hij.
The energy density of GWs is given by

ρGW ¼ 1

4
h _hij _hiji; ð6Þ

and the dimensionless energy spectrum of GWs is
defined by

ΩGW ≡ 1

ρc

dρGW
d ln k

; ð7Þ

where ρc is the critical density of the Universe.

III. LINEAR APPROXIMATION

In this section, we investigate the dynamics of perturba-
tions in the linear approximation and then give the results of
Λc in terms of M from the linear analysis.
After inflation, ϕ begins to oscillate around the

minimum of its potential. At the beginning of preheating,
ϕ is almost homogeneous with some small perturbations
on it caused by quantum fluctuations. Thus, we
split ϕðxÞ as small fluctuations around a homogeneous
field, ϕðt;xÞ ¼ ϕ̄ðtÞ þ δϕðt;xÞ. The EOMs of ϕ̄ and
δϕ are

̈ϕ̄þ 3H _̄ϕþ dV
dϕ̄

¼ 0; ð8Þ

δϕ̈k þ
k2

a2
δϕk þ 3Hδ _ϕk þ

d2V

dϕ̄2
δϕk ¼ 0; ð9Þ

where δϕk is the Fourier form of δϕðxÞ.
Since the energy density of δϕ is negligible at the

beginning of preheating, the Hubble parameter is calculated
from the energy density of ϕ̄. Thus, the EOM of ϕ̄ can be
solved independently assuming field fluctuations have little
effect on it. In the linear analysis, each Fourier mode of
fluctuations evolves independently so that Eq. (9) can be
numerically solved as an ordinary differential equation.
As an illustration, in linear analysis we choose ϕ̄i ¼ 2M

and _̄ϕi ¼ 0 as the initial conditions for the homogeneous
field. The subscript i denotes the initial value of the
variables at the beginning of preheating throughout this
paper. The initial value of perturbations is obtained as the
Bunch-Davies type

δϕk;i ¼
1

a
ffiffiffiffiffi
2k

p eikη; ð10Þ

where η is the conformal time.
If we firstly neglect the expansion of the Universe, the

oscillation amplitude of ϕ̄ is a constant so that Eq. (9) is
periodic in Minkowski space. Then, according to the
Floquet theory, the periodic Eq. (9) has a general solution

δϕk ¼ PkþðtÞ expðμktÞ þ Pk−ðtÞ expð−μktÞ; ð11Þ

where μk is the Floquet exponent and Pk� are periodic
functions determined by initial conditions.
In that case where the real part of μk is nonzero, i.e.,

ReðμkÞ ≠ 0, the perturbations are unstable and δϕk grows
exponentially.
We use the rescaled wave number κ ≡ k=

ffiffiffiffiffiffi
V0

p
and

rescaled time τ≡ t
ffiffiffiffiffiffi
V0

p
so that the resonant modes satisfy

κ ∼Oð1Þ −Oð103Þ and the preheating process sustains for
about τ ∼Oð102Þ. With the rescaled parameters we absorb
V0 in Eq. (9) and the EOM reads

d2

dτ2
δϕk þ 3

da=dτ
a

d
dτ

δϕk þ
�
d2ðV=V0Þ

dϕ̄2
þ κ2

a2

�
δϕk ¼ 0;

ð12Þ

which implies that the resonance bands are independent of
V0. The left panel of Fig. 2 shows the dependence of
jReðμkÞj on κ and ϕi, one can find that jReðμkÞj is close to
zero for ϕi ≪ M. This is because the potential is propor-
tional to ϕ2 at its bottom, then Eq. (9) implies δϕ could be
treated as a free massive particle and the amplification of
perturbations does not occur. As a result, the resonance
strength decreases with the oscillation amplitude of ϕ̄ in the
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expanding Universe. For smaller M, the resonance is
stronger because the effective mass m becomes larger
and ϕ̄ oscillates more times in unit time. One can find
the resonance band is wider and jReðμkÞj is larger for
smaller M in the left panel of Fig. 2.
When the oscillation amplitude of ϕ̄ becomes much

smaller thanM, Eqs. (8) and (9) suggest that both ϕ̄ and δϕ
behave as massive particles with effective massm, and their
amplitude decreases as a−3=2. Then, we use φ̄≡ a3=2ϕ̄ and
δφ≡ a3=2δϕ instead to include the effect of the expansion
of the Universe.
In Fig. 3 we show the evolution of hδφ2

ki, which implies
hδφ2

ki increases for about 1018 and finally tends to be a
constant. The right panel of Fig. 2 shows hδφ2

ki=hδφ2
k;ii in

terms of M and κ at the end of resonance.
To quantify the amplitude of perturbations, we apply the

variance of δφ, hδφ2i, which is defined as

hδφ2i≡ 1

V

Z
d3xjδφðxÞj2 ≈

Z
kmax

kmin

d3k
ð2πÞ3 jδφkj2; ð13Þ

where V is the volume of the integration region, and the
range from kmin to kmax covers the main resonance bands.1

The initial value of the variance of δφ, hδφ2
i i, can be

obtained from Eqs. (10) and (13)

hδφ2
i i ≈ V0

Z
κmax

κmin

κdκ
ð2πÞ2 ; ð14Þ

where we have set a ¼ 1 initially. Since the resonance band
of κ does not depend on V0 as shown in Eq. (12), we safely
apply the same κmin and κmax for different Λinf , and so that
the integration

R
κmax
κmin

κdκ
ð2πÞ2 is a constant. Then, Eq. (14)

implies that hδφ2
i i is proportional to V0, i.e., the initial value

of inflaton perturbations becomes smaller for lower infla-
tionary scales, and the resonance need to be more violent to
amplify perturbations to the background value.
Since the resonance is only efficient in a limited time, the

amplification of hδφ2i during preheating has an upper
bound. In other words, if we put aside the nonlinear effects
and solve Eq. (9) under the linear approximation, there is a
maximum value hδφ2iwhich could finally be reached at the
end of resonance, denoted as hδφ2im. But the linear
approximation is violated when δϕ is comparable to φ̄.
At that time, the oscillation amplitude of ϕ̄ quickly
decreases, Eq. (9) is violated, and we need to conduct
lattice simulations to capture the nonlinear dynamics of
preheating. Depending on the value of δϕi, the system will
become nonlinear at different times or remain in the linear

FIG. 2. Left: The resonance strength jReðμkÞj in terms of ϕi and κ in case ofM ¼ 0.02. Right: hδφ2
ki=hδφ2

k;ii in terms ofM and κ at the
end of resonance.

FIG. 3. The amplification of hδφ2
ki, where we choose κ ¼ 20

and M ¼ 0.02.

1Here we focus on the effect of parameter resonance during
preheating, where the divergent high-frequency vacuum fluctua-
tions do not contribute.
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stage if δϕi is too small. We assume the system becomes
nonlinear when hδϕ2i exceeds ϕ̄2. The case is then referred
to as sufficient/insufficient preheating when the evolution
of the system becomes nonlinear/remains linear at the end
of resonance. The left panel of Fig. 4 shows that
hδφ2im=Λ4

inf increases inversely withM, which agrees with
the results shown in Fig. 2 where jReðμkÞj is larger for
smaller M. Then, the threshold Λc can be obtained by
considering the case δϕ just reaches the nonlinear condition
hδφ2im ¼ φ2

i at the end of resonance, as shown in the right
panel of Fig. 4.
As for the amplitude of GWs, it is natural to expect that

in the sufficient preheating case the energy density pertur-
bations are amplified to the maximum value by nonlinear
evolution, so that the amplitude of GWs remains the same.
In the insufficient preheating case, most of the energy
remains stored in the homogeneous part of the scalar field
at the end of resonance. Since GWs are generated by the TT
part of the energy density, without sufficient amplification
of perturbations, the GW production is expected to be
suppressed.
Then, we focus on the analysis of ΩGW. In the rescaled

coordinate τ≡ t
ffiffiffiffiffiffi
V0

p
and xI ≡ xi

ffiffiffiffiffiffi
V0

p
, The EOMs of ϕ and

hij read

∂2
τϕ −

1

a2
∂I∂Iϕþ 3

da=dτ
a

∂τϕþ dðV=V0Þ
dϕ

¼ 0; ð15Þ

∂2
τhijþ3

da=dτ
a

∂τhij−
1

a2
∂I∂Ihij¼

2

a2
ð∂Iϕ∂JϕÞTT; ð16Þ

In the form of Eqs. (15) and (16), one can find that all the
EOMs do not depends on V0. The dependence of ΩGW on
Λinf is only caused by the initial value of quantum
fluctuations, hδϕ2

i i ∝ V0, as shown in Eq. (14).
Equation (16) implies that hij is proportional to the source
term, 2

a2 ð∂Iϕ∂JϕÞTT, which quadratically depends on δϕ.
We further assume the source term is simply proportional to
hδϕ2i. Then, the energy fraction of GWs produced during
preheating, ΩGW ≡ ρGW=ρc, is obtained by

ΩGW ¼ 1

4

h∂τhij∂τhiji
ρc

∝ hδϕ2
mi2; ð17Þ

where ρc has been estimated as V0 at the end of inflation. In
sufficient preheating case,

ffiffiffiffiffiffiffiffiffiffiffiffi
hδϕ2

mi
p

could reach the same
order of ϕ̄, so that ΩGW is a constant and independent of
Λinf . In the insufficient preheating case, since the ampli-
fication rate of hδϕ2i is a constant, i.e., hδϕ2im ∝ hδϕ2

i i,
ΩGW is further proportional to hδϕ2

i i2. Using the relation
hδϕ2

i i ∝ Λ4
inf , we can obtain the dependence of ΩGW on

Λinf as

ΩGW ¼
	Ωmax; for Λinf ≥ Λc;

ΩinsðΛinf=ΛcÞ8; Λinf ≪ Λc;
ð18Þ

where Ωmax and Ωins are the maximum values that ΩGW
could reach in the sufficient preheating case and the
insufficient preheating case, respectively. Note that the
derivation of Eq. (17) does not contain any features of
the α-attractor E-model. The resulting Eq. (17) is applicable
to the models where the resonance gradually quenches as
the oscillation amplitude of ϕ̄ decreases with time so that the
total amplification rate of hδφ2i is a finite value. Intuitively
speaking, GWs should be stronger in the sufficient preheat-
ing case, i.e., Ωmax ≥ Ωins. For Λinf > Λc, ΩGW is indepen-
dent of Λinf . For Λinf < Λc, ΩGW quickly decreases and
becomesmore difficult to observe. This analytical result will
be compared with the lattice simulation result in the next
section. Note that in Eq. (18) there is a huge difference
between Ωmax and Ωins, which implies ΩGW has a sudden
change near Λinf ¼ Λc, which is also stressed in the next
section.

IV. LATTICE SIMULATIONS

In this section, we present the numerical methods used in
lattice simulation, and the numerical results of the present
energy spectrum of GWs, ΩGW;0, for different M and Λinf .
Then, we show the dependence of ΩGW;0 on Λinf from

FIG. 4. Left: hδϕ2im=Λ4
inf in terms of M. Right: Λc in terms of M from linear analysis.
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lattice simulation, and compare with the results in the linear
analysis.
When perturbations become comparable to the homo-

geneous part, nonlinear effects cannot be neglected and the
evolution of ϕ has to be solved in lattice simulations. To
improve computational accuracy of the simulations, we
apply the redefined variables as in LATTICEEASY [49]
and DEFROST [50], which are given by

ϕpr¼a3=2ϕ=ϕi; dtpr¼dt
ffiffiffiffiffiffi
V0

p
=M; kpr¼kM=

ffiffiffiffiffiffi
V0

p
:

ð19Þ

We apply the finite-difference method to solve the EOMs of
ϕ and hij in configuration space; both the spacial deriv-
atives and the time derivatives are realized using the fourth-
order method with double precision. Also, we use a
performance-portable parallel programming model,
OPENACC, to accelerate the code with GPUs.
To reduce the computational cost of the simulation, we

have defined a new quantity uij, and the EOM of uij reads

üij þ 3H _uij −
1

a2
∇2uij ¼

2

a2
Tij: ð20Þ

Then, hij can be obtained by conduct the TT projection on
uij

hijðt;kÞ ¼ Λij;lmðk̂Þulmðt;kÞ; ð21Þ

where ulmðt;kÞ is the Fourier form of uij and the projection
operator Λij;lmðk̂Þ reads

Λij;lmðk̂Þ≡ Pilðk̂ÞPjmðk̂Þ −
1

2
Pijðk̂ÞPlmðk̂Þ; ð22Þ

with Pij ≡ δij − k̂ik̂j. Thus, one needs to conduct the TT
projection on uij only at the times exporting the value of
ΩGW, and avoids the calculation of the TT projection at
each step.
Similar to the EOM of the ϕ, we thus can evolve Eq. (20)

in configuration space in the simulations. In terms of uij,
ΩGW then can be expressed as [51]

ΩGW ¼ k3

4L3ρc

Z
dΩΛij;lmðk̂Þ _uijðt;kÞ _u�lmðt;kÞ: ð23Þ

The expansion rate of the Universe is calculated self-
consistently from spatially averaged energy density. We
perform three-dimensional lattice simulations with 2563

points in a box with periodic boundary conditions. The size
of the box L and the number of grid points per edgeN are in
principle chosen according to the physical features of the
model. In our simulations, the box size is chosen to be close
to the resonance wavelength, which is smaller than the

Hubble horizon size, so that the interesting wavelengths
such as the physical peaks in ΩGW are located comfortably
in between the largest wavelength

ffiffiffi
3

p
L (diagonal line) and

the smallest wavelength L=N.
The initial values of ϕ̄ and δϕ are the same as in

Sec. III. The evolution of ΩGW from lattice simulations is
shown in Fig. 5, where ΩGW is exported every Δτ ¼ 100
and the simulation ends at τ ¼ 3000 when ΩGW stops
increasing. The evolution of ΩGW has experienced roughly
three stages, as also mentioned in Ref. [19]. First, the
increase of ΩGW appears only in the low-k region, corre-
sponding to the resonant amplification of perturbations in
the linear stage. Second, the nonlinear effects start to
dominate the evolution, and in the high-k region ΩGW
quickly increases. Third, the nonlinear evolution is fully
established and the compact objects, oscillons, form [52–
56] and ΩGW gradually stops increasing. The two peaks of
ΩGW appear in the high-k region as a consequence of
oscillons.
To estimate ΩGW;0 and the corresponding frequency f,

we assume the thermal equilibrium is established shortly
after the end of the simulation. Since the energy density of
radiation evolves as ρr ∝ g−1=3a−4, ΩGW;0 and the fre-
quency f read

ΩGW;0 ¼ Ωr;0

�
g0
g�

�
1=3

ΩGW; ð24Þ

f ≃
k

aeΛinf

�
g0
g�

�
1=12

4 × 1010 Hz; ð25Þ

where Ωr;0 is the density fraction of radiation at present, ae
is the scale factor at the end of the simulation, and g0 and ge
are the effective numbers of ultrarelativistic degree of
freedoms at the present and at the end of the simulation,
respectively.
In Fig. 6 we show the dependence ofΩGW;0 on Λinf in the

case of M ¼ 0.02, M ¼ 0.03, M ¼ 0.04, respectively. The

FIG. 5. The evolution of ΩGW in case of M ¼ 0.02 and
Λinf ¼ 3.8 × 10−7. The data is exported for every Δτ ¼ 100
and the program ends at τ ¼ 3000 when ΩGW stops increasing.
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values of Λc are obtained from the linear analysis in
Sec. III. For M ¼ 0.02, Λc ¼ 3.8 × 10−7, for M ¼ 0.03,
Λc ¼ 3.3 × 10−5, for M ¼ 0.04, Λc ¼ 3.0 × 10−4, respec-
tively. The green thick line in each panel of Fig. 6 shows the
predicted ΩGW;0 for Λinf ¼ Λc. Figure 6 shows that the
peak values of ΩGW;0 are almost constant for Λinf > Λc,
corresponding to the sufficient preheating case, and quickly
decreases for Λinf < Λc, corresponding to the insufficient
preheating case. The peak frequency is roughly propor-
tional toΛinf , andΩGW;0 is proportional to f8 forΛinf < Λc.
Thus, the lattice results verify the result (18) in the linear
analysis.

As shown in Fig. 7, the accurate value of Λc is between
2.14 × 10−7 to 1.20 × 10−7 for M ¼ 0.02, where ΩGW;0

suddenly decreases when Λinf becomes slightly smaller
than Λc. The small difference between the accurate value of
Λc and the one obtained in the last section may come from
the approximation in Eq. (9), where we have neglected the
backreaction of δϕ to the EOM and the decrease of the
amplitude of coherent oscillation due to energy transfer.
Taking into account that the secondary effects yields more
accurate Λc but the treatment becomes more complex. The
profile of ΩGW;0 with Λinf ¼ 2.14 × 10−7 and Λinf ¼
1.20 × 10−7 are different, where the former peaks at

FIG. 6. The dependence of ΩGW;0 on Λinf for M ¼ 0.02, M ¼ 0.03, and M ¼ 0.04 case, where the thick green line in each panel
denotes the result for Λinf ¼ Λc predicted in the Sec. III.
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high-k region while the latter exhibits a plateau in the low-k
region. Let us recall the evolution of ΩGW in Fig. 5. The
profile of ΩGW for Λinf ¼ 2.14 × 10−7 and Λinf ¼ 1.20 ×
10−7 respectively correspond toΩGW in the linear stage and
fully nonlinear stage. This is shown more clearly by the
two-dimensional slices of energy density perturbations in
the lower panel of Fig. 7. The system remains in the linear
stage for Λinf ¼ 1.20 × 10−7, while the nonlinear evolution
is fully established for Λinf ¼ 2.14 × 10−7. By comparing
the evolution of energy density perturbations and ΩGW, we
conclude that GWs are many orders of magnitude enhanced
by nonlinear evolution. Figure 7 implies that once energy
perturbations reach a certain threshold, the system will
ultimately evolve into the fully nonlinear stage, even if the
resonance becomes very weak. From Fig. 7 one also finds
that the length scale of perturbations becomes smaller in
nonlinear evolution, corresponding to the increase of the
GW peak frequency in the nonlinear stage.

In model (2), the effective mass at the bottom of the
potential is proportional to M−1. As a result, ϕ̄ oscillates
more rapidly as M decreases and the energy stored in ϕ̄
tends to transfer into perturbations with smaller wave-
lengths. ΩGW;0 also decreases as M2 as shown in Ref. [20].
Thus, on the one hand, M needs to be small enough to
trigger nonlinear evolution in low-scale inflationary mod-
els. On the other hand, decreasing M makes Ωmax smaller
and difficult to detect. For example, the most sensitive
frequency of aLIGO is about 30 Hz. We need Λc < 10−11

to guarantee sufficient preheating takes place in the case the
peak frequency is below 30 Hz. Using the result in Fig. 4,
this condition gives an upper bound to the parameter
M ≲ 0.011, and thus Ωmax is also constrained. According
to the simulation results, Ωmax ≃ 3 × 10−9 for M ¼ 0.02,
and Ωmax ≃ 1.5 × 10−8 forM ¼ 0.04, which is inconsistent
with the analytical result Ωmax ∝ M2 in Ref. [20]. Using

FIG. 7. Top: The dependence of ΩGW;0 on Λinf for M ¼ 0.02. ΩGW;0 suddenly decreases by about 15 orders of magnitude when Λinf

decreases from 2.14 × 10−7 to 1.20 × 10−7. Bottom: The two-dimensional slices of energy density perturbations, where energy density
perturbations are larger in Λinf ¼ 2.14 × 10−7 case.
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this relation,Ωmax is estimated as 7 × 10−10 forM ≃ 0.01, it
is also the maximum of Ωmax aLIGO could detect in model
(2). In turn, detecting the peak frequency and the amplitude
of GWs can help us determine Λinf and M.

V. CONCLUSION AND DISCUSSION

In this paper, we investigate the stochastic gravitational
wave backgrounds generated during preheating and the
dependence of ΩGW on Λinf . We focus on a class of models
where the effective potential has a quadratic minimum find
ΩGW does not depend on Λinf only if Λinf is larger than a
critical value Λc. Since the initial value of δϕ decreases as
Λ2
inf , for Λinf < Λc the resonance is not strong enough to

amplify δϕ=ϕ̄ to unity before the resonance ends, and the
system stays in the linear stage. Inversely, for Λinf > Λc the
resonance is strong enough, nonlinear evolution is fully
established andΩGW does not depend onΛinf . We obtainΛc
in terms of M in linear analysis, and confirm it later by the
lattice simulations. Numerical results also show that, forΛinf
slightly smaller thanΛc,ΩGW suddenly decreasesmore than
ten orders of magnitude, and becomes challenging to be
observed. We can find that ΩGW is immensely enhanced in
nonlinear evolution by comparing the energy density dis-
tribution in both Λinf ≲ Λc and Λinf ≳ Λc cases. For
Λinf ≪ Λc,ΩGW is lower than 10−20 and proportional toΛ8

inf .
The peak frequency of GWs from the preheating also

provides useful information about Λinf . As the trans-
Planckian censorship conjecture suggests, Λinf should be
lower than 1010 GeV. In this case, the peak frequency is
lower than 104 Hz, and GWs from the preheating are
expected to be observed by interferometer observers such
as LIGO, LISA, Taiji, and DECIGO. Our work suggests
that observing such GWs also gives constraints to the
resonance strength and the model parameters.

In preheating models where the potential is not quartic at
the bottom, it is a common feature that the resonance
strength decreases with time, and the analysis in this work
is applicable to many preheating models. As shown in
Ref. [10,11,57], with the expansion of the Universe the
k-mode could stay in the resonance band only in the case
VðϕÞ ∝ ϕ4 at the bottom. In other cases, for example,
VðϕÞ ∝ ϕ2 or ϕ6 at the bottom, either the resonance bands
disappears for ϕ → 0 or the modes are quickly redshifted
out of the resonance bands. Hence, the resonance becomes
weaker as the oscillation amplitude of ϕ̄ decreases, similar
to the case considered in this work.
As mentioned in Sec. IV, ΩGW;0 decreases quadratically

withM, and the value of ΩGW;0 LIGO could observe is less
than about 7 × 10−10 because of the constraint M < 0.011.
For a smallerM, it is more difficult to observe GWs from the
preheating. In comparison, for the models considered in our
previous work,Ωmax does not depend on model parameters.
These models, inspired by string theory [58,59], have a
characteristic cusp in the bottom, and GWs from the
preheating in those models tends to be more strong.
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