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The functional renormalization group is employed to study the nonlinear regime of late-time cosmic
structure formation. This framework naturally allows for nonperturbative approximation schemes, usually
guided by underlying symmetries or a truncation of the theory space. An extended symmetry that is related
to Galilean invariance is studied and corresponding Ward identities are derived. These are used to obtain
(formally) closed renormalization group flow equations for two-point correlation functions in the limit of
large wave numbers (small scales). The flow equations are analytically solved in an approximation that is
connected to the “sweeping effect” previously described in the context of fluid turbulence.
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I. INTRODUCTION

One of the primary goals of contemporary cosmology is
to describe how dark matter evolves under the influence of
gravity in order to understand the observed large-scale
structure of the Universe. As observations probe increas-
ingly smaller scales, there is a genuine need for methods
that allow to describe gravitational dynamics at smaller
scales.
Cosmic large-scale structure formation can be described

in terms of kinetic theory, where dark matter is modeled by
self-gravitating classical point particles on an expanding
space-time. On large scales (of the order of megaparsecs),
deviations from a homogeneous and isotropic background
are relatively small and fluctuations are well described by
linear theory. In order to take nonlinearities into account,
the dynamics of fluctuations can be solved perturbatively
around their linear solutions. Formally, this is sensible as
long as the variance of the dark matter mass density
fluctuation field is small. Since deviations from the
homogeneous and isotropic background get large at cos-
mically late times and small scales, perturbation theory is
no longer applicable.
Cosmological perturbation theory is usually studied

from the Lagrangian or Eulerian point of view [1] and
in what follows, the latter is adopted. In order to inves-
tigate non-linear structure formation beyond standard
Eulerian perturbation theory, different methods have been
proposed. These include various resummation schemes
[2–9], two-particle irreducible methods [10–12], direct
interaction approximations [13–15], the renormalization

group [16–19], effective theories [20–22], higher-order
perturbation theory and extensions thereof [23–25] and
kinetic field theory [26–28], to name only a few. In the
following, the functional renormalization group is studied,
which has proven to be very useful for various non-
perturbative phenomena in quantum field theories and
statistical mechanics [29,30].
The functional renormalization group employed here

describes conceptually how a theory without initial state
fluctuations changes when the latter are gradually included.
This provides a framework in which correlation functions
can be computed in a generically nonperturbative way.
A caveat is that in most cases the functional renormaliza-
tion group equations cannot be solved exactly, since an
infinite hierarchy of coupled functional differential equa-
tions is involved. In order to obtain a solvable system, one
therefore often resorts to approximation schemes such as a
derivative or vertex expansion, effectively truncating the
theory space. Another route is to use the underlying
symmetries of the field theory to restrict the space of
possible solutions. The symmetries relate to generalized
Ward identities that can sometimes be used to solve the
renormalization group in certain limits or sectors of the
theory.
The paper is organized as follows. In Sec. II the kinetic

theory description of dark matter is reviewed and the
statistical field theory due to stochastic initial states is
motivated. In Sec. III an action-based functional formalism
and the functional renormalization group are introduced.
In Sec. IV the symmetries of the theory, in particular mass
conservation and extended Galilean invariance, are used to
derive related Ward identities and restrict the form of the
effective action. In Sec. V the Ward identities related to
extended Galilean invariance are used in the limit of large
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wave numbers to (formally) close the two-point correlation
function flow equations. These are analytically solved in
the infrared regime of the flow equations and the relation to
the sweeping effect is investigated. Finally, some conclu-
sions are drawn in Sec. VI.

II. KINETIC THEORY DESCRIPTION
OF DARK MATTER

In the Newtonian limit of a kinetic theory description,
dark matter is often modeled by an ensemble of self-
gravitating, collisionless point particles of mass m that
evolve on an expanding (flat) Friedmann–Lemaître–
Robertson–Walker space-time. The state of the theory is
described by a one-particle phase-space distribution func-
tion fðτ; x; pÞ whose dynamics is governed by the Vlasov–
Poisson equations [31],

∂τf þ pi

am
∂if − am∂iϕ

∂f
∂pi

¼ 0;

∂i∂iϕ ¼ 3

2
H2Ωm

�Z
R3

d3p
ð2πÞ3 f − 1

�
: ð1Þ

Here, τ is conformal time, x are comoving coordinates and
p ¼ am dx=dτ are the corresponding conjugate momenta.1

The former two are related to cosmic time and proper phy-
sical coordinates by dt ¼ aðτÞdτ and r ¼ ax, respectively.
Here a is the scale factor parametrizing the expansion of
space, H ¼ _a=a is the conformal Hubble function and Ωm
is the (time-dependent) dark matter density parameter.
Finally, the distribution function is normalized to

Z
R3

d3p
ð2πÞ3 hfðτ; x; pÞi ¼ 1; ð2Þ

and ϕðτ; xÞ is the (peculiar) Newtonian gravitational
potential.2

Since the system of equations (1) is nonlocal and
nonlinear, it is quite difficult to solve for the full distribu-
tion function. However, one is often rather interested in
moments or cumulants with respect to the momentum

argument, the complete set of which fully characterize the
distribution function. Although being two sides of the
same coin, it is often preferential to work in terms of
cumulants since they are the connected part of the
moments. The first few cumulants are the (logarithmic)
density contrast lnð1þ δðτ; xÞÞ, quantifying the local mass
density deviation relative to the mean, the velocity uiðτ; xÞ
and the velocity dispersion tensor σijðτ; xÞ.
The Vlasov–Poisson equations can be cast into an

infinite tower of coupled evolution equations for the
cumulants [32]. Qualitatively, the evolution equation of
the nth-order cumulant is given by [33]

∂τcðnÞ þ nHcðnÞ þ ∂xcðnþ1Þ þ
Xn
l¼0

�
n

l

�
cðlþ1Þ∂xcðn−lÞ

þ δn1∂xϕ ¼ 0; ð3Þ

where the tensorial structure of the cumulants is sup-
pressed and δij denotes the Kronecker delta. Together with
Poisson’s equation,

∂i∂iϕ ¼ 3

2
H2Ωmδ; ð4Þ

they form a closed system of equations.
From a practical point of view it is rather useless to keep

the full cumulant expansion since one has to deal with an
infinite amount of equations, being equivalent to solving
the full Vlasov–Poisson equations (1). In order to obtain a
solvable system of equations, one therefore often turns to
approximations, in particular to truncations of the cumulant
expansion.
The simplest nontrivial approximation is obtained by

truncating the cumulant expansion at second order. The
momentum dependence of the distribution function in the
so-called single-stream approximation is degenerate,

f ¼ ð1þ δÞð2πÞ3δðp − amuÞ; ð5Þ

such that momentum pi is directly related to the velocity
field ui at each instant in time and point in space. Here
and in the following, δðp − am uÞ denotes the (three-
dimensional) Dirac delta function. The single-stream
approximation models dark matter as a perfect pressureless
fluid described in terms of the density and velocity field
only. The relevant evolution equations are the continuity
and Euler’s equations, which are obtained at zeroth and first
order from Eq. (3), respectively.
While the single-stream approximation successfully

describes early-time and very large-scale structure forma-
tion, it fails to accurately capture gravitational dynamics at
later times and smaller scales where physical processes
related to higher-order cumulants become important. More
specifically, during gravitational collapse the trajectories of
dark matter particles cross in position space, a phenomenon

1Spatial vector components are referred to by indices from the
middle of the Latin alphabet, while boldface symbols denote the
corresponding vector. Partial derivatives with respect to con-
formal time are often abbreviated as an overdot while those with
respect to comoving coordinate components are referred to by ∂i.
Einstein’s summation convention is employed, where repeated
indices in a single term are summed over, although vectors and
covectors are not distinguished, as is common in flat space.
Finally, function arguments are often suppressed for the sake of
brevity.

2Expectation values h…i are taken either as ensembles
averages over cosmic histories with stochastic initial conditions
or as sample averages over large spatial volumes in a single
cosmic history. This is discussed in more detail at the end of this
section.
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known as shell crossing. After shell crossing the velocity
field is multivalued so that the multiple roots of the
distribution function (5) generate a nontrivial velocity
dispersion tensor. In turn all higher-order cumulants are
sourced, which indicates the breakdown of the perfect
pressureless fluid model [34].
A simple extension beyond the single-stream approxi-

mation is the inclusion of the velocity dispersion tensor and
a truncation of the cumulant expansion thereafter [35].
Correspondingly, momentum is normally distributed and
the velocity dispersion tensor is the covariance matrix,

f ¼ ð1þ δÞð2πÞ32
a3m3 detðσÞ12 exp

�
−
1

2

�
pi

am
− ui

�
ðσ−1Þij

×

�
pj

am
− uj

��
: ð6Þ

The velocity dispersion tensor regularizes the momentum
delta function of the single-stream approximation (5),
which is recovered in the limit σij → 0.3 In addition to
the continuity and Cauchy momentum equations one has to
include an evolution equation for the velocity dispersion
tensor, which is obtained from Eq. (3) at second order.
Although the distribution function (6) cannot capture shell
crossing microscopically, it supports the average motion of
a multistream flow.
While the single-stream approximation is mathemati-

cally self-consistent, at least in the absence of shell cross-
ing, higher-order cumulants are naturally generated by

nonlinear terms for nonvanishing velocity dispersion [34].
This makes a rigorous justification for a truncation of the
cumulant expansion rather difficult. From a physical point
of view one could argue that the distribution function (6)
naturally supports a Maxwell–Boltzmann distribution of
momenta such as expected for nonrelativistic particles that
decouple thermally in the primordial Universe [36] or
virialized clumps of dark matter, at least in simple halo
models [37]. On the other hand, it seems obvious that the
distribution function (6) has a natural range of scales where
it is applicable but ultimately breaks down at sufficiently
small scales, as is likely for any description including only
a finite amount of cumulants.
More generally, one can include cumulants up to some

desired order n and truncate the expansion thereafter. In the
case of n > 2 the distribution function can no longer be
explicitly reconstructed and the generation of higher-order
cumulants is similar to the case n ¼ 2 so that a self-
consistent truncation is not possible.
In the following, it is convenient to introduce the

compact notation

ψa ¼ ð δ; ui; σij; … Þ; ð7Þ
where the desired field content is included into the multiplet
ψaðτ; xÞ. The index a carries any additional substructure of
the fields, like representations of the rotation group, such as
for the velocity or velocity dispersion field, and is summed
over for repeated indices. The equations of motion (3) can
be cast into the form

∂τψaðτ; xÞ þ
Z
x0
Ωabðτ; x − x0Þψbðτ; x0Þ þ

Z
x0;x00

γabcðx − x0; x − x00Þψbðτ; x0Þψcðτ; x00Þ ¼ 0; ð8Þ

where

Ωðτ; x − x0Þ ¼

δ uj σkl

δ

ui
σij

0
BBBBB@

0 ∂jδðx − x0Þ 0 � � �
Oiðτ; x − x0Þ Hδij δik∂lδðx − x0Þ � � �

0 0 2Hδikδjl � � �
..
. ..

. ..
. . .

.

1
CCCCCA

; ð9Þ

and the fields above and to the left of the matrix are displayed as an orientation. The matrix Ωab is local and of upper
triangular form except for the velocity-density component that is determined by the solution of Poisson’s equation (4) and
given by the operator

3Since the velocity dispersion tensor is positive definite by construction, the distribution function (6) exists, except for trivial
degenerate cases.
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Oiðτ; x − x0Þ ¼ 3

2
H2Ωm

1

4π

xi − x0i
jx − x0j3 : ð10Þ

The diagonal entries of Ωab are the Hubble drag terms
of the corresponding cumulants, while the entries above
the diagonal are derivative couplings to the next higher
cumulant. The vertices follow from the nonlinear terms
in equation (3), act as gradients and are defined such
that they exhibit the symmetry γabcðx − x0; x − x00Þ ¼
γacbðx − x00; x − x0Þ.4
In cosmology one is often less interested in the exact

solution of the Vlasov–Poisson equations (1) but rather in
the statistical properties of the system for random initial
conditions. Most inflation models predict the initial state of
the theory to be very near to a Gaussian random field
subject to the cosmological principle, i.e., the primordial
cosmic fields are statistically homogeneous and isotropic in
space. The employed statistical field theory can be under-
stood as describing an ensemble of cosmic histories with
stochastic initial conditions or, equivalently for this pur-
pose, a sample of large spatial volumes of a single cosmic
history.5

In a statistic field theory description of dark matter one is
typically interested in expectation values of cosmic field
products, formally similar to moments and cumulants of
the phase-space distribution function. Assuming that the
symmetries of the cosmological principle are realized
statistically, one is concerned with expectation values such
as the mean field

hψaðτ; xÞi ¼ ΨaðτÞ; ð11Þ

the covariance function

hψaðτ; xÞψbðτ0; x0Þic ¼ Cabðτ; τ0; x − x0Þ ð12Þ

and other higher-order correlation functions.6 While the
single-stream approximation features no mean fields, an
example where it becomes relevant is for the truncation (6)
where the trace of the velocity dispersion tensor mean field
couples nontrivially with fluctuations [39,40].

In the following, it is convenient to study correlations
also in Fourier space.7 One of the central objects studied in
cosmology is the power spectral density of the covariance
function,

Cabðτ; τ0; x − x0Þ ¼
Z
q
eiq·ðx−x0ÞPabðτ; τ0; qÞ; ð13Þ

which is invariant under parity transformations, Pabðτ;
τ0;−qÞ ¼ Pabðτ; τ0; qÞ, due to the statistical isotropy sym-
metry. Since the initial distribution of cosmic fields is
Gaussian, it is fully characterized in terms of the mean
fields and power spectra. The subsequent nonlinear evo-
lution in time naturally drives the distribution away from its
Gaussian shape so that higher-order correlations are gen-
erated. These can also be studied in terms of the bi- and
trispectrum, which quantify the skewness and kurtosis of
the distribution.

III. COSMOLOGICAL FUNCTIONAL
RENORMALIZATION GROUP

In this section the Martin–Siggia–Rose/Janssen–de
Dominicis formalism [41–44] as well as the functional
renormalization group for stochastic dynamics is reviewed.
Although already established in cosmology [17,19], some
aspects are recapitulated in order to introduce notation and
the inclusion of nonvanishing mean fields is treated, such
as needed for a description beyond the single-stream
approximation.
The initial Gaussian state of the fields (7) is completely

characterized by the mean fields Ψin
a and the covariance

functions Cin
abðx − x0Þ, and the subsequent evolution of

correlations is determined by the equations of motion (8).
Following the Martin–Siggia–Rose formalism, one intro-
duces a conjugate set of so-called response fields ψ̂aðτ; xÞ
which are utilized in the Janssen–de Dominicis formalism
to construct a functional integral representation with the
generating functional

Z½J; Ĵ;Ψin; Cin� ¼
Z

Dψ

Z
Dψ̂e−SþJAψA : ð14Þ

4Since the last term of the sum in Eq. (3) is cðnþ1Þ∂x lnð1þ δÞ,
which is nonpolynomial in the fields, Eq. (8) cannot capture the
exact cumulant dynamics. In the following, these terms are
approximated as cðnþ1Þ∂xδ, which can be understood as a vertex
expansion around the (vanishing) density contrast mean field.

5The fair sample hypothesis is most often assumed in cos-
mology and closely related to the concept of ergodicity
where ensemble averages are equal to sample averages over
an infinite volume [38]. Rigorously, ergodicity holds for sta-
tistically homogeneous Gaussian random fields with continuous
power spectral density but is rather difficult to proof for more
general cases.

6Here, h…ic denotes the connected part of the expectation
value.

7The Fourier transform convention

fðqÞ ¼
Z
x
e−iq·xfðxÞ; fðxÞ ¼

Z
q
eiq·xfðqÞ;

is employed, where q · x ¼ qixi denotes the standard Euclidean
inner product and the modulus is q ¼ jqj. Integrals over the entire
domain are abbreviated as

Z
x
¼

Z
R3

d3x;
Z
q
¼

Z
R3

d3q
ð2πÞ3 ;

and wave vector delta functions are denoted as�δðqÞ ¼ ð2πÞ3δðqÞ.
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Here, S is the bare action

S½ψ ; ψ̂ ;Ψin; Cin� ¼ −i
Z
τ;x;x0

ψ̂aðτ; xÞ½∂τδabδðx − x0Þ þ Ωabðτ; x − x0Þ�ψbðτ; x0Þ

− i
Z
τ;x;x0;x00

ψ̂aðτ; xÞγabcðx − x0; x − x00Þψbðτ; x0Þψcðτ; x00Þ

þ
Z
x;x0

ψ̂aðτin; xÞ
�
iδðx − x0ÞΨin

a þ 1

2
Cin
abðx − x0Þψ̂bðτin; x0Þ

�
; ð15Þ

and the integral measuresDψ andDψ̂ are understood as the
continuum limit of integrals over field values on a lattice in
time and space.8

Capital letters from the beginning of the Latin alphabet
denote DeWitt indices, e.g., A ¼ ða; τ; xÞ, which are
summed and integrated over for discrete and conti-
nuous variables, respectively, while boldface indices addi-
tionally comprise the physical-response field structure,
e.g., ψA ¼ ðψA; ψ̂AÞ.
Correlation functions are obtained from the generating

functional (14) by applying functional derivatives with
respect to the source currents JA,

ZðnÞ
A1…An

Z
¼ 1

Z
δnZ

δJA1
…δJAn

¼ hψA1
…ψAn

i; ð16Þ

where physical correlations are obtained at vanishing
source currents and are said to be “on the equations of
motion.”9

Since the action (15) describes an interacting theory, it is
naturally difficult to compute correlation functions in a
nonperturbative manner. In standard cosmological pertur-
bation theory one computes correlation functions around
the noninteracting theory in orders of the linear power
spectrum. Unfortunately, the regime where perturbation
theory is applicable is restricted to rather early times or
large scales since the variance of the linear power spectrum
grows large in the opposite of either of these two regimes.

Going deeper into the ultraviolet at late times therefore
requires nonperturbative methods, such as the functional
renormalization group.
In order to use the functional renormalization group to

compute correlation functions one regularizes the generat-
ing functional (14) by adding a term that is bilinear in the
fields to the bare action,

Sk ¼ Sþ 1

2
ψARk;ABψB: ð17Þ

The regulator Rk depends on the renormalization group
scale k and suppresses fluctuations within the functional
integral, either in the infrared or ultraviolet (or both), such
that one obtains a regulated generating functional Zk.
For the purpose of this work it is particularly convenient

to use Rk to modify the initial power spectrum only and
different values of k correspond to physical situations with
different initial power spectra. One can organize this such
that one limit (k → 0 for the ultraviolet regulator (30)
employed here) corresponds to a vanishing initial power
spectrum, implying that the theory is free of fluctuations.
One can then study how correlations change when the
renormalization group scale k is altered so that more
fluctuations are taken into account.
To this end the generating functional of connected

correlation functions Wk ¼ lnðZkÞ is introduced. Mean
fields are obtained from first order functional derivatives,
which on the equations of motion read

Wð1Þ
k;A ¼

�Ψk;aðτÞ
0

�
; ð18Þ

where the expectation value of response fields by con-
struction evaluates to zero.10

Connected two-point correlation functions are obtained
from second-order functional derivatives and are given on
the equations of motion by

Wð2Þ
k;AB ¼

� Ck;abðτ; τ0;ΔxÞ iGR
k;abðτ; τ0;ΔxÞ

iGA
k;abðτ; τ0;ΔxÞ 0

�
; ð19Þ

8The construction assumes a unique solution of the equations
of motion (8) in some time interval τin to τfi and depends on the
method of discretization for stochastic differential equations. To
this end, the prescription equivalent to Itô calculus is employed,
which is particularly convenient since it does not need the
introduction of additional ghost fields [45]. Integrals over the
whole time interval are abbreviated as

Z
τ
¼

Z
τfi

τin

dτ:

9When specifying whether the derivative is taken with respect
to the physical or response field, the notation Zðm;nÞ

A1…Bn
is used.

Here, the first superscript corresponds to physical field deriva-
tives, while the second superscript denotes response field
derivatives.

10More generally, all expectation values Wð0;nÞ
B1…Bn

evaluate to
zero at vanishing source currents due to general properties of the
Janssen–de Dominicis formalism [46,47].
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where Δx ¼ x − x0 is the difference in position of the
two fields. Here, Ck;abðτ; τ0;ΔxÞ is the covariance function
of two physical fields and GR

k;abðτ; τ0;ΔxÞ is the (retarded)
mean linear response function, which in cosmology is most
often called the propagator. The retarded propagator
GR

k;abðτ; τ0;ΔxÞ is causal and vanishes for τ ≤ τ0.11 Finally,
the advanced and retarded propagators are related by

GA
k;abðτ; τ0; x − x0Þ ¼ GR

k;baðτ0; τ; x0 − xÞ: ð20Þ

Higher-order connected correlation functions can be
obtained in a similar fashion from higher-order functional
derivatives of Wk.
In the following, it is useful to introduce yet another

generating functional, namely that of one-particle irreduc-
ible (1PI) correlation functions. The scale-dependent 1PI
effective action is defined as the modified Legendre trans-
form of Wk with respect to the source currents JA,

Γk½Ψ;R� ¼ sup
J
½JAΨA −Wk� −

1

2
ΨARk;ABΨB: ð21Þ

The term bilinear in the fields has been added for later
convenience but vanishes in the absence of a regulator, in
which case Γk½Ψ;R� ¼ Γ½Ψ� corresponds to the full 1PI
effective action. It can be viewed as an analog of the bare
action (15) that already fully encodes all statistical
information.12

By assuming that the right-hand side of equation (21) is
maximized by some (field-dependent) source currents
Jk;A½Ψ�, one obtains the effective equations of motion

Γð1Þ
k;A þ Rk;ABΨB ¼ Jk;A; ð22Þ

which determine the dynamics of the mean field. As
remarked before, on the equations of motion only the
physical mean field has nontrivial dynamics while the
response mean field is vanishing.

By construction the connected and 1PI two-point corre-
lation functions are inverse,

½Γð2Þ
k;AB þ Rk;AB�Wð2Þ

k;BC ¼ δAC; ð23Þ

so that on the equations of motion one defines

Γð2Þ
k;ABþRk;AB ¼

�
0 −iDA

k;abðτ;τ0;ΔxÞ
−iDR

k;abðτ;τ0;ΔxÞ Hk;abðτ;τ0;ΔxÞ

�
:

ð24Þ

The inverse retarded propagator DR
k;abðτ; τ0;ΔxÞ is defined

by the relation

Z
τ0;x0

DR
k;abðτ; τ0; x − x0ÞGR

k;bcðτ0; τ00; x0 − x00Þ

¼ δacδðτ − τ00Þδðx − x00Þ; ð25Þ

and the 1PI statistical two-point correlation function
Hk;abðτ; τ0;ΔxÞ is defined by

Z
τ0;x0

DR
k;aāðτ; τ0; x − x0ÞCk;ābðτ0; τ00; x0 − x00Þ

¼
Z
τ0;x0

Hk;ab̄ðτ; τ0; x − x0ÞGA
k;b̄b

ðτ0; τ00; x0 − x00Þ: ð26Þ

The scale-dependent effective action is subject to the flow
equation [17,19]

∂kΓk ¼
1

2
Tr½½Γð2Þ

k þ Rk�−1 · ∂kRk�; ð27Þ

where the trace, dot and inverse operator are understood
to run over time, space and the (response) field content.
The flow equation (27) is an exact functional differen-
tial equation and in the present context the analog of
Wetterich’s equation [48]. Although the flow equation (27)
can usually not be solved exactly, it is a very useful starting
point for various (nonperturbative) investigations.
By applying functional derivatives to the flow equa-

tion (27) one obtains the flow of the one-point function

∂kΓ
ð1Þ
k;A ¼ −

1

2
Tr½Wð2Þ

k · Γð3Þ
k;A ·Wð2Þ

k · ∂kRk�; ð28Þ

and two-point function,

∂kΓ
ð2Þ
k;AB ¼ 1

2
Tr½Wð2Þ

k · Γð3Þ
k;A ·Wð2Þ

k · Γð3Þ
k;B ·Wð2Þ

k · ∂kRk�
þ ½A ↔ B�

−
1

2
Tr½Wð2Þ

k · Γð4Þ
k;AB ·Wð2Þ

k · ∂kRk�: ð29Þ

11More rigorously, GR
k;abðτ; τ0;ΔxÞ → δabθð0Þ for τ0 → τ−,

which vanishes in the Itô prescription since it assigns θð0Þ ¼
0 to the Heaviside unit step function.

12From a probabilistic point of view Zk and Wk are moment-
and cumulant-generating functionals of the “probability density
functional”

Pk½ψ � ¼
Z

Dψ̂e−Sk½ψ ;ψ̂ �þĴAψ̂A ;

at least for a purely imaginary response field source current
(corresponding to a real-valued source in the equations of motion
of the physical fields). In the limit of a vanishing regulator the full
1PI effective action Γ is related to a rate function which quantifies
fluctuations away from the expected (mean field) behavior,
decaying asymptotically with expð−ΓÞ for an infinite sample,
at least in the standard ergodic paradigm.
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Here, relation (23) was used to replace the inverse of the

effective action’s second field derivatives with Wð2Þ
k and

should be understood as depending on the mean fields via
the Legendre transformation (21).
The choice of a sensible regulator heavily depends on the

problem at hand and the behavior of the system in the
infrared and ultraviolet. In the context of cosmology, where
corrections to the bare action arise due to initial state
fluctuations, the question of a sensible regulator is related
to the scaling of the initial power spectrum. For a power law
dark matter density contrast power spectrum, Pin

δδðqÞ ∝ qn,
corrections are finite in the infrared for n > −1 and in the
ultraviolet for n < −3 to all orders in standard perturbation
theory [49–52].13 Realistic power spectra of the ΛCDM
concordance model avoid divergences in both limits with a
scaling ∝ qns in the infrared and ∝ qns−4 lnðqÞ2 in the
ultraviolet with a pivot scale q� ≈ 0.05 Mpc−1 and a
(scalar) spectral index ns ≈ 0.96 [53].
Since the theory is perturbative in the infrared, it is

convenient to only regulate the ultraviolet part of the theory.
To this end a regulator that only regulates the initial power
spectrum is employed. In the following

Rk;abðτ; τ0; qÞ ¼ δðτ − τinÞδðτ0 − τinÞ

× ½Pin
k;abðqÞ − Pin

abðqÞ�
�
0 0

0 1

�
ð30Þ

is used, and the scale-dependent initial power spectrum is
chosen to be cut off sharply for wave vectors above the
renormalization group scale, Pin

k;abðqÞ ¼ θðk − qÞPin
abðqÞ.14

In the limit k → 0 the initial power spectrum Pin
k;abðqÞ

vanishes so that no initial state fluctuations are included.

In this limit the scale-dependent effective action equals the
bare action (15), i.e.,

lim
k→0

Γk ¼ S: ð31Þ

In the opposite limit, k → ∞, all fluctuations are included
and as such the scale-dependent effective action equals the
full effective action,

lim
k→∞

Γk ¼ Γ: ð32Þ

Using the limit (31) as an initial condition, the flow
equation (27) can be used to find Γk at any scale k and
in particular also in the limit of equation (32). This provides
a nonperturbative possibility to study the influence of initial
state fluctuations for nonlinear cosmological structure
formation.
Having specified the regulator, the flow equations (28)

and (29) can be given more explicitly. Diagrammatically,
the flow of the effective equations of motion reads

ð33Þ

while the inverse propagator flow is given by

ð34Þ

and the statistical two-point function flow reads

ð35Þ

Here the black dot denotes the regulated initial power
spectrum, an edge with a single arrowhead is a propagator,
while an edge with two (opposite) arrowheads corresponds
to a power spectrum. The arrowheads indicate the direction
of increasing time.

IV. SYMMETRIES AND RELATED WARD
IDENTITIES

In this section symmetries of the bare action (15) are
investigated in order to understand the general structure of

13Even for finite corrections at all orders the perturbative series
is only asymptotic and therefore does not need to converge [23].

14It has been criticized that for the regulator (30) the flow
equation (27) simply describes initial power spectrum variations
rather than truly capturing the effects of coarse gaining [54].
While it is true that modes which are initially absent can (and
will) be dynamically generated, the flow equation (27) is not
restricted to these types of regulators. In principle, the dynamical
part of the bare action (15) can also be regulated such that the
propagation of modes on scales q > k is essentially absent.
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the effective action Γk and derive related generalized Ward
identities [55]. The studied symmetries correspond to
(infinitesimal) affine field transformations

δϵψA ¼ Lϵ;ABψA þ Tϵ;A; ð36Þ
where Lϵ is a linear operator and Tϵ a translation in field
space. In this context, a transformation that leaves the
action invariant is called a true symmetry, while an
extended symmetry changes the action by terms that are
at most linear in the fields [56,57]. Since a change of
integration variables must leave the generating functional
(14) unaltered, one obtains the Ward identity

Γð1Þ
k · δϵΨ ¼ δϵS½Ψ� þ Tr½Lϵ ·W

ð2Þ
k · Rk�: ð37Þ

The first term on the right-hand side only contributes for
extended symmetries, while the second term vanishes if
the regulator respects the symmetry transformation.15 Since
the employed regulator (30) only alters the initial power
spectrum, the regulated action (17) respects the same
symmetries as the bare action (15) so that the second term
on the right-hand side of the Ward identity (37) vanishes.

A. Conservation of mass

Conservation of mass is ensured at the level of the bare
action (15) by the continuity equation. This extends to the
effective action and is related to a time-gauged density
contrast response field shift, δϵδ̂ðτ; xÞ ¼ ϵðτÞ, which
changes the bare action by a term linear in the fields,

δϵS ¼ −i
Z
τ;x

ϵðτÞ∂τδðτ; xÞ

þ
Z
x;x0

ϵðτinÞCin
δaðx − x0ÞΨ̂aðτin; x0Þ; ð38Þ

where the second term on the right-hand side vanishes for
the type of initial power spectra considered here since it is
proportional to Pin

abð0Þ.16 Since ϵðτÞ is an (infinitesimal)
arbitrary function of time, one obtains the Ward identityZ

x
Γð0;1Þ
k;δ ðτ; xÞ ¼ −i

Z
x
∂τδðτ; xÞ; ð39Þ

which entails that the effective equations of motion of the
density contrast field are of conservative form. The Ward
identity may equivalently be written in Fourier space as

Γð0;1Þ
k;δ ðτ; 0Þ ¼ −i∂τδðτ; 0Þ: ð40Þ

Here and in the following, specific mean fields are denoted
by the same symbols as their fluctuation counterpart for a
clearer notation.

B. Extended Galilean invariance

A symmetry of the late-time Universe is Galilean invari-
ance and naturally also holds for the Vlasov–Poisson
equations [51,58–60]. In an expanding space-time aGalilean
transformation corresponds to the (time-dependent) comov-
ing coordinate and conjugate momentum change

x ↦ xþ vT; p ↦ pþ amv _T; ð41Þ
where v is a constant velocity and

TðτÞ ¼ 1

aðτÞ
Z

τ

τin

dτ0aðτ0Þ: ð42Þ

Under this coordinate change the cumulants of the distribu-
tion function transform as

cðnÞi1…in
ðτ; xÞ ↦ cðnÞi1…in

ðτ; x − vTÞ þ δn1vi1 _T; ð43Þ
so that only the velocity field is nontrivially shifted. The
equations of motion (3) are invariant under this trans-
formation up to a time-dependent shift in the velocity field
equation. While this shift is compensated for by the trans-
formation of the gravitational potential [51]

∂iϕðτ; xÞ ↦ ∂iϕðτ; x − vTÞ þ viT _H; ð44Þ
the symmetry is no longer apparent when the gravitational
potential is eliminated by solving Poisson’s equation. Indeed,
Galilean invariance is no longermanifest in the formulation (8)
since integrating Poisson’s equation in terms of the operator
(10) fixes a framewith respect towhich expectation values are
computed.17 In this sense the Galilean transformation (43) is
already an extended symmetry that changes the bare action
(15) by terms linear in the velocity response field.
The transformation (43) extends to a time-gauged

symmetry of the effective action for the infinitesimal field
transformations

δϵψaðτ; xÞ ¼ −ϵiðτÞ∂iψaðτ; xÞ þ δaui _ϵiðτÞ;
δϵψ̂aðτ; xÞ ¼ −ϵiðτÞ∂iψ̂aðτ; xÞ: ð45Þ

Under these transformations all terms in the bare action (15)
are invariant except for the term involving the time derivative
and the Hubble drag term of the velocity field, giving rise to

δϵS ¼ −i
Z
τ;x

ûiðτ; xÞ½̈ϵiðτÞ þH_ϵiðτÞ�: ð46Þ15Additionally, it is assumed that the functional integral
measure is invariant under the symmetry transformation, i.e.,
in the absence of an anomaly, which is the case for the two
symmetries studied in this section.

16Typically, suitable decay or periodic boundary conditions are
imposed in the functional integral so that the space integral over
the total derivative term in the continuity equation vanishes.

17Equivalently, one can keep the gravitational potential and
Poisson’s equation at the expense of introducing another res-
ponse field so that Galilean invariance is manifest as shown in
Appendix A.
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Since the right-hand side is linear in fields, this corresponds
to an extended symmetry [56,57]. The corresponding Ward
identity readsZ

x
½Ψaðτ; xÞ∂i − δaui∂τ�Γð1;0Þ

k;a ðτ; xÞ

þ
Z
x
Ψ̂aðτ; xÞ∂iΓ

ð0;1Þ
k;a ðτ; xÞ

¼ −i
Z
x
½∂2

τ −H∂τ − _H�ûiðτ; xÞ; ð47Þ

and entails that, apart from the velocity field’s time derivative
and Hubble drag term which are not renormalized, the
effective action is invariant under time-gauged Galilean
transformations.
Applying field derivatives to the Ward identity (47)

yields related identities such that formþ n > 1 one obtains
in Fourier space

�Xm
l¼1

θðτ − τlÞiql;i þ
Xn
l̄¼1

θðτ − τ0̄
l
Þiq0̄

l;i

�

× Γðm;nÞ
k;a1…bn

ðτ1; q1;…; τ0n; q0nÞ
¼ Γðmþ1;nÞ

k;uia1…bn
ðτ; 0; τ1; q1;…; τ0n; q0nÞ: ð48Þ

The Ward identities (48) impose linear relations between
1PI correlation functions of order ðmþ 1; nÞ at a vanishing
wave vector for a velocity field and 1PI correlation
functions of lower order ðm; nÞ.

V. LARGE EXTERNAL WAVE NUMBER LIMIT
AND THE SWEEPING EFFECT

In this section the large external wave number limit of
the 1PI two-point correlation function’s flow equations
is investigated. Using the Ward identities (48) related to
extended Galilean invariance, the flow equations can be
(formally) closed in this limit, at least in the absence of
higher-order velocity cumulants. The procedure pre-
sented here is closely related to the large external wave
number limit studied in the context of fluid turbulence
[61–63], although being in a nonstationary setting in
cosmology.

A. Large external wave number limit

In order to derive the large external wave number limit of
the flow equations (34) and (35), the first diagram of the
inverse propagator flow (34) is considered as an illustrative
example. It is given by

ð49Þ

where the circumflex denotes that an overall wave vector
conserving delta function has been extracted from the 1PI
three-point functions. Further, the abbreviation

PI
k;abðτ; τ0; qÞ ¼ GR

k;aāðτ; τin; qÞPin
k;ā b̄

ðqÞGA
k;b̄b

ðτin; τ0; qÞ
ð50Þ

is used, and the derivative

∂̂k ¼
Z
q
∂kPin

k;abðqÞ
δ

δPin
k;abðqÞ

ð51Þ

only acts on the regulated initial power spectrum.
The internal wave vector l running through the loop of

the diagram (49) is restricted to jlj ¼ k due to the regulator
(30). In the limit q → ∞ the internal wave vector l is
therefore small in magnitude compared to q and may be set

to zero within the 1PI three-point functions.18 In the case
where the vanishing wave vector is assigned to a velocity
mode the Ward identity (48) can be used to relate the 1PI
three-point function to a 1PI two-point function.
A priori it is not clear why the vanishing wave vector

should be assigned to velocity modes since the loop
naturally runs over all degrees of freedom included in
the field content (7). In the following, it is argued that in

18Strictly speaking, this is only possible if the correlation
functions are analytic in wave vectors. The nongradient depend-
ence due to the operator (10) implies nonanalyticity of the
(inverse) propagator in the velocity-density component. The
corresponding infrared divergence is associated with homo-
geneous mass density shifts and is usually treated by regularizing
gravitational interactions at large scales and related to the Jeans
swindle [10,64]. In the following, the tacit assumption is made
that no other nonanalyticities develop in the presence of a
regulator.
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the absence of velocity dispersion and higher-order velo-
city cumulants it is expected that in the limit q → ∞ the
leading contribution is due to the velocity-velocity sector

of the regulator. More specifically, it is shown that in the
large external wave number limit the diagram (49) is
given by

ð52Þ

at least perturbatively to all orders. The line of argument
presented here is very similar to the classification of
diagrams in renormalized perturbation theory [2,3].
Consider the diagram (49) and amputate the regulator

∂̂kPI
k;cd. At lowest order in standard perturbation theory the

leading contribution in the limit q → ∞ is given by

ð53Þ

where the edge now denotes a linear propagator and the
vertices are bare. The limit makes use of the fact that the
wave vector l is bounded in magnitude due to the regulator
and is thus negligible compared to q. The leading con-
tribution is then due to the scaling of the linear propagator

gRabðτ; τ0; qÞ ∼
�

1 qj

qi=q2 δij

�
× ðq-ind:Þ ð54Þ

and the structure of the bare vertices.
At the next higher order in perturbation theory two types

of diagrams need to be distinguished. In the language of
renormalized perturbation theory one can realize that every
perturbative diagram has a principle path that connects the
ingoing and outgoing mode with a chain of linear retarded
propagators. Diagrams can be organized according to how
many interactions (via bare vertices) are along this path.
Since for each bare vertex that is passed along the principal
path a factor q is picked up in the large external wave
number limit, the leading contribution is due to diagrams
where all interactions are on that path.
As an example consider the contributions where one

vertex of the diagram (53) is evaluated at one-loop. These
consist of diagrams of the type

ð55Þ

and

ð56Þ

Similarly, evaluating the retarded propagator in diagram
(53) at one-loop one obtains

ð57Þ

The leading contribution of the diagrams is obtained by
counting the vertices along the principal path such that one
obtains

D1 ∼ q3gRabðτ; τ0; qÞδdui × ðq-ind:Þ;
D2;3 ∼ q4gRabðτ; τ0; qÞδcuiδduj × ðq-ind:Þ: ð58Þ

This argument extends to any perturbative order and can be
applied to all diagrams entering the flow equations (34) and
(35). In turn only the velocity-velocity part of the regulator
∂̂kPI

k;ujui
enters into the expression (52), at least to lead-

ing order.
Although the presented argument holds to all orders in

perturbation theory, there is no rigorous justification why it
should hold nonperturbatively. More specifically, in the
presence of nonperturbative scales the line of argument
presented here cannot be straightforwardly extended to full
propagators and vertices.
Further, the presented argument no longer holds in the

presence of higher-order velocity cumuants, e.g., velocity
dispersion. Indeed, considering again the lowest order
contribution (53) in the presence of velocity dispersion
and taking into account the allowed vertices due to the
nonlinear terms in Eq. (8), one finds the leading contribu-
tion to the first diagram of the velocity-velocity inverse
propagator flow to be

ð59Þ
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where tensorial structures are suppressed on the right-hand
side. This contribution dominates in the limit q → ∞ over
the one given in Eq. (53) due to the scaling

gRδσijðτ; τ0; qÞ ∼ qiqj × ðq-ind:Þ: ð60Þ

The justification that the vanishing wave vector is assigned
to a velocity mode therefore relies on the following two
assumptions:

(i) The emergence of nonperturbative scales does not
invalidate the classification of leading contributions
described before.

(ii) Higher-order velocity cumulants are absent or at
least subdominant.

Under these assumptions the limit (52) holds and the 1PI
three-point vertices can be replaced using the Ward identity
(48). This can be done for all diagrams entering the flow
equations (34) and (35). More precisely, the three-point
functions are replaced by

Γ̂ð2;1Þ
k;uiba

ðτ00; 0; τ0;−q; τ; qÞ ¼ −iqi½θðτ00 − τ0Þ − θðτ00 − τÞ�Γ̂ð1;1Þ
k;ba ðτ0;−q; τ; qÞ;

Γ̂ð1;2Þ
k;uiba

ðτ00; 0; τ0;−q; τ; qÞ ¼ −iqi½θðτ00 − τ0Þ − θðτ00 − τÞ�Γ̂ð0;2Þ
k;ba ðτ0;−q; τ; qÞ; ð61Þ

whereas the four-point functions are replaced using

Γ̂ð3;1Þ
k;uiujba

ðτ000; 0; τ00; 0; τ0;−q; τ; qÞ ¼ −qiqj½θðτ000 − τ0Þ − θðτ000 − τÞ�½θðτ00 − τ0Þ − θðτ00 − τÞ�Γ̂ð1;1Þ
k;ba ðτ0;−q; τ; qÞ;

Γ̂ð2;2Þ
k;uiujba

ðτ000; 0; τ00; 0; τ0;−q; τ; qÞ ¼ −qiqj½θðτ000 − τ0Þ − θðτ000 − τÞ�½θðτ00 − τ0Þ − θðτ00 − τÞ�Γ̂ð0;2Þ
k;ba ðτ0;−q; τ; qÞ: ð62Þ

Substituting the relations (61) and (62) into the inverse propagator flow (34) one obtains

∂kDR
k;abðτ; τ0; qÞ ¼ q2

Z
τ̄;τ̄0

DR
k;aeðτ; τ̄; qÞGR

k;efðτ̄; τ̄0; qÞDR
k;fbðτ̄0; τ0; qÞ∂̂kIkðτ; τ̄; τ̄0; τ0Þ

−
q2

2
DR

k;abðτ; τ0; qÞ∂̂kIkðτ; τ0; τ; τ0Þ; ð63Þ

and similarly for the statistical two-point function flow (35)

∂kHk;abðτ; τ0; qÞ ¼ q2
Z
τ̄;τ̄0

½DR
k;aeðτ; τ̄; qÞPk;efðτ̄; τ̄0; qÞDA

k;fbðτ̄0; τ0; qÞ

−DR
k;aeðτ; τ̄; qÞGR

k;efðτ̄; τ̄0; qÞHk;fbðτ̄0; τ0; qÞ
−Hk;aeðτ; τ̄; qÞGA

k;efðτ̄; τ̄0; qÞDA
k;fbðτ̄0; τ0; qÞ�∂̂kIkðτ; τ̄; τ0; τ̄0Þ

−
q2

2
Hk;abðτ; τ0; qÞ∂̂kIkðτ; τ0; τ; τ0Þ þ δðτ − τinÞδðτ0 − τinÞ∂̂kPin

k;abðqÞ; ð64Þ

where the function Ik is given by

Ikðτ; τ0; τ̄; τ̄0Þ ¼
1

3

Z
τ

τ0
dτ00

Z
τ̄

τ̄0
dτ̄00

Z
q
PI
k;uiui

ðτ00; τ̄00; qÞ: ð65Þ

As a concrete example the first diagram of the inverse
propagator flow (34) is computed in Appendix B and the
other diagrams follow similarly.
The flow equations (63) and (64) are (formally) closed

at the level of two-point functions, although involving
connected and 1PI correlation functions. The flow of the
propagator and power spectrum can be obtained from
relation (23) and read

∂kGR
k;abðτ; τ0; qÞ ¼ −

Z
τ̄;τ̄0

GR
k;aāðτ; τ̄; qÞ

× ∂kDR
k;ā b̄

ðτ̄; τ̄0; qÞ
×GR

k;b̄b
ðτ̄0; τ0; qÞ; ð66Þ

and

∂kPk;abðτ; τ0; qÞ ¼
Z
τ̄;τ̄0

∂k½GR
k;aāðτ; τ̄; qÞ

×Hk;ā b̄ðτ̄; τ̄0; qÞ
×GA

k;b̄b
ðτ̄0; τ0; qÞ�: ð67Þ
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Using the flow equations (63) and (64) one finally arrives at
the rather simple equation for the retarded propagator

∂kGR
k;abðτ; τ0; qÞ ¼ −

1

2
q2∂̂kIkðτ; τ0; τ; τ0ÞGR

k;abðτ; τ0; qÞ;
ð68Þ

and the power spectrum

∂kPk;abðτ; τ0; qÞ ¼ −
1

2
q2∂̂kIkðτ; τ0; τ; τ0Þ

× Pk;abðτ; τ0; qÞ
þ ∂̂kPI

k;abðτ; τ0; qÞ: ð69Þ

Note that the function Ik defined in Eq. (65) vanishes at
equal times of either of the two time argument pairs due to
the Heaviside unit step functions appearing in the identities
(61) and (62) as well as being localized at the renormal-
ization group scale k due to the regulator. This implies in
particular that the first term on the right-hand side of
Eq. (69) vanishes for the equal-time power spectrum.
Although Eqs. (63) and (64) are formally closed, the

function Ik involves knowledge of the propagator at q ¼ k,
which is the opposite limit to what was assumed in the
derivation, at least in some regions of the renormalization
group flow trajectories.
While the function Ik is nonuniversal, the fact that the

propagator and power spectrum have a Gaussian suppres-
sion in wave number q in the limit q → ∞ is universal and a
direct results of the possibility to close the flow equations at
the level of two-point functions. As was remarked before,
this holds as long as dark matter is described by the single-
stream approximation in the absence of nonperturbative
scales and other effects, due to e.g., velocity dispersion, are
not present. In turn, any violation from this scaling has to be
due to the emergence of nonperturbative scales or due to
higher-order velocity cumulants and is regarded as an
interesting possible signature for such nonperturbative
effects.

B. Sweeping effect

A simple approximation that allows to solve the flow
equations (68) and (69) analytically is given by evaluating
the propagators in the expression ∂̂kPI

k;ab at linear level so

that ∂̂kPL
k;ab is the regulator entering the flow equations.

This is justified for a renormalization group flow deep in
the infrared, where gravitational dynamics is well described
by linear theory. There, one obtains

Ikðτ; τ0; τ; τ0Þ ¼
½DþðτÞ −Dþðτ0Þ�2

DþðτinÞ2
σ2v;k; ð70Þ

for growing mode initial conditions,

uLi ðτ; qÞ ¼
iqi
q2

_DþðτÞ
DþðτÞ

δLðτ; qÞ; ð71Þ

where Dþ is the standard linear growing mode of density
fluctuations in the single-stream approximation, here nor-
malized to unity at a ¼ 1, corresponding to today. Further,
σv;k is the initial root-mean-square velocity,

σ2v;k ¼
1

3
Cin
k;uiui

ð0Þ=
_DþðτinÞ2
DþðτinÞ2

¼ 1

6π2

Z
k

0

dqq2Pin
uiuiðqÞ=

_DþðτinÞ2
DþðτinÞ2

; ð72Þ

up to a factor of _DþðτinÞ2=DþðτinÞ2. The flow equation for
the propagator is then solved by

GR
k;abðτ; τ0; qÞ ¼ gRabðτ; τ0; qÞe−

1
2
q2σ2v;k½DþðτÞ−Dþðτ0Þ�2=DþðτinÞ2 ;

ð73Þ
and similar for the power spectrum,

Pk;abðτ; τ0; qÞ ¼ PL
k;abðτ; τ0; qÞe−

1
2
q2σ2v;k½DþðτÞ−Dþðτ0Þ�2=DþðτinÞ2 :

ð74Þ
In this setting the propagator and the unequal-time power
spectrum feature a Gaussian suppression factor due to the
linear root-mean-square velocity field.
In the following it is shown that a random background

flow, associated to a velocity mean field, has the same effect
on the linear response function and is related to the
sweeping effect previously discussed in the context of fluid
turbulence [65]. To this end consider the cumulant evolu-
tion equations (3) on a background flow viðτÞ. It is assumed
that the background flow evolves proportional to some
function _μðτÞ so that viðτÞ ¼ _μðτÞvi, where vi is a zero-
mean normal distributed multivariate random variable.19

The linear response function is the Green’s function of the
linear equations of motion (8) which are modified in the
presence of a background flow to

∂τψaðτ; xÞ þ
Z
x0
Ωabðτ; x − x0Þψbðτ; x0Þ

þ viðτÞ∂iψaðτ; xÞ ¼ 0: ð75Þ
The corresponding linear response function is then given in
Fourier space by

gRabðτ; τ0; qÞe−iq·v½μðτÞ−μðτ
0Þ�; ð76Þ

where gRabðτ; τ0; qÞ is the linear response in the absence of a
background flow. The mean linear response function is then

19For a velocity field decaying with the Hubble expansion one
simply has _μðτÞ ∝ aðτÞ−1.
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given by averaging over the distribution of vi such that one
obtains [65]

GR
abðτ; τ0; qÞ ¼ gRabðτ; τ0; qÞe−

1
2
q2v2rms½μðτÞ−μðτ0Þ�2 ; ð77Þ

where vrms is the root-mean-square background velocity.
This analysis shows that the Gaussian suppression factor

in the propagator (77) is not related to a true loss of memory
due to relaxation processes but rather to the random
advection of small-scale structures due to a large-scale
flow also know as sweeping effect [11,66–68].
One can now notice that the large wave number limit

propagator (73) is of a similar form as the response func-
tion on a random background flow. In the infrared of the
renormalization group flow the suppression is due to the
linear root-mean-square velocity, suggesting that it does not
truly capture the effect of memory loss associated with
relaxation towards equilibrium but rather describes the
sweeping of small-scale structure due to an effective
random large-scale advection. In contrast, the flow equa-
tions (68) and (69) are more general since the function Ik
includes nonlinear information beyond the sweeping effect.
The propagator (73) was first obtained in the frame-

work of renormalized perturbation theory [3]. Interestingly
enough, this form of the propagator is actually exact in the
Zeldovich approximation [66], whereas for more realistic
approximations, such as the adhesion model, the propaga-
tor is already much more complicated [67,68].

VI. CONCLUSIONS

The paper discussed an approach to cosmic large-scale
structure formation based on the nonperturbative functional
renormalization group. The basic idea is to modify the
initial power spectrum of dark matter mass density fluc-
tuations and to study how the 1PI effective action changes.
This is a conceptually interesting application of the func-
tional renormalization group formalism because for any
value of the renormalization group scale k, which para-
metrizes the modification of the initial power spectrum, one
has a viable physical theory. An immediate benefit of this
setup is that the regularization breaks no symmetries.
Further, one can choose the initial power spectrum such
that it corresponds to dark matter with different thermal
production temperatures, encompassing warm dark matter
models where the power spectrum is concentrated at small
wave numbers and very cold dark matter models where the
power spectrum extends far into the ultraviolet regime.
One of the main topics investigated here were sym-

metries and related Ward identities. Particularly interesting
and powerful is Galilean invariance and a time-gauged
extension thereof. In a formalism where the gravitational
potential is integrated out, such transformations should be
seen as an extended symmetry which change the action by
terms linear in the fields.

The Ward identities related to extended Galilean invari-
ance allow to express 1PI correlation functions of order
(nþ 1) with one velocity field having vanishing wave
vector in terms of 1PI correlation functions of order n. This
is an exceptional phenomenon for statistical field theories
and has been studied previously in the context of fluid
turbulence [56,61–63]. A particularly useful consequence
in the context of the functional renormalization group is
that flow equations can be closed in certain limits. To this
end, it has been argued that velocity fluctuations are in fact
the leading contribution to the flow of two-point functions
in the limit of large wave numbers, being the limit in which
flow equations can indeed be formally closed. One should
be cautious at this point since there might be nonperturba-
tive features, such as additional scales set by e.g., non-
vanishing velocity dispersion, which can invalidate the
argument and modify the large wave number behavior of
correlation functions. It would be highly interesting to
investigate from an observational point of view whether
this could be used as a possible signal for nontrivial features
in the statistical properties of dark matter.
From a physical point of view it was argued that the

suppression of unequal-time correlation functions at large
wave numbers is related to what has been called the
sweeping effect in the context of fluid turbulence [65].
Density fluctuations on small scales are transported by a
large-scale velocity field in a random way, leading to a
decorrelation with time. However, in contrast to a truly
dissipative suppression, correlation functions at equal times
are not affected.
The present paper focused on conceptual developments,

but it also lays the ground for further investigations.
Specifically, the functional renormalization group equa-
tions can be solved with numerical methods when truncat-
ing the space of 1PI effective actions. This allows for
nonperturbative computations of correlation functions,
such as the propagator and power spectrum, and one
expects useful insights in particular for time and length
scales where perturbative methods fail. It is regarded as
particularly interesting to develop a complete understand-
ing of nonlinear cosmological structure formation, also at
relatively small scales where velocity dispersion and other
effects like dark matter self-interactions could start to play a
role. The latter can be included by working with the
Boltzmann equation rather than with its collisionless limit
and approximating the collision term in an appropriate
manner, e.g., the Stoßzahlansatz.
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APPENDIX A: GALILEAN INVARIANCE AND
NONRENORMALIZATION OF THE

GRAVITATIONAL SECTOR

Instead of eliminating the gravitational potential by
solving Poisson’s equation (4), one can equivalently use

a gravitational response field ϕ̂ðτ; xÞ in order to enforce
Poisson’s equation. Constraint equations are introduced
into the generating functional (14) in the same manner
as field equations so that the bare action in this setting
reads

S½ψ ; ψ̂ ;ϕ; ϕ̂� ¼ −i
Z
τ;x;x0

ψ̂aðτ; xÞ½∂τδabδðx − x0Þ þ Ω0
abðτ; x − x0Þ�ψbðτ; x0Þ

− i
Z
τ;x;x0;x00

ψ̂aðτ; xÞγabcðx − x0; x − x00Þψbðτ; x0Þψcðτ; x00Þ

þ
Z
x;x0

ψ̂aðτin; xÞ
�
iδðx − x0ÞΨin

a þ 1

2
Cin
abðx − x0Þψ̂bðτin; x0Þ

�

− i
Z
τ;x

ûiðτ; xÞ∂iϕðτ; xÞ − i
Z
τ;x

ϕ̂ðτ; xÞ
�
∂i∂iϕðτ; xÞ −

3

2
H2Ωmδðτ; xÞ

�
: ðA1Þ

Here, Ω0
ab is the upper triangular part of the matrix Ωab

given in Eq. (9), that is, the velocity-density component due
to integrating out the gravitational potential is removed.
This has the advantage that no nonanalyticities are present
in the bare action since Ω0

ab only acts through spatial
gradients.
The gravitational sector of the theory is particularly

simple since there are two extended symmetries related to
the (infinitesimal) time- and space-gauged field shifts
δϵϕðτ; xÞ ¼ ϵðτ; xÞ and δϵϕ̂ðτ; xÞ ¼ ϵðτ; xÞ. These yield
the Ward identities

Γð1;0Þ
k;ϕ ðτ; xÞ ¼ i½∂iûiðτ; xÞ − ∂i∂iϕ̂ðτ; x0Þ� ðA2Þ

and

Γð0;1Þ
k;ϕ ðτ; xÞ ¼ −i

�
∂i∂iϕðτ; xÞ −

3

2
H2Ωmδðτ; xÞ

�
; ðA3Þ

which entail that the whole gravitational sector is not
renormalized and that the dependence on the gravitational
fields is the same for the bare and effective action.
In this setting Galilean invariance can be realized as a

true symmetry using the transformations (45) in addition to

δϵϕðτ; xÞ ¼ −ϵiðτÞ∂iϕaðτ; xÞ − xi½̈ϵiðτÞ þH_ϵiðτÞ�;
δϵϕ̂ðτ; xÞ ¼ −ϵiðτÞ∂iϕ̂aðτ; xÞ: ðA4Þ

In the case where the gravitational potential is integrated
out using Poisson’s equation (4),

∂iϕðτ; xÞ ¼
Z
x0
Oiðτ; x − x0Þδðτ; x0Þ þ Ciðτ; xÞ; ðA5Þ

where the operator Oi is defined in Eq. (10), one has a
residual gauge symmetry due to the arbitrary solenoidal
vector field Ci. By choosing Ci appropriately, any bulk
velocity terms appearing due to a Galilean transformation
(45) can be eliminated. Since Ci ¼ 0 is fixed in the
equations of motion (8), Galilean invariance is no longer
manifest. This should be understood as “gauge fixing” to
the frame in which the velocity mean field is vanishing.20

APPENDIX B: 1PI TWO-POINT FUNCTION
FLOW EQUATIONS IN THE LARGE EXTERNAL

WAVE NUMBER LIMIT

In the following, the first diagram of the flow equa-
tion (34) is explicitly computed in the large external wave
number limit. The other diagrams of the flow equations (34)
and (35) are evaluated in a similar fashion to arrive at the
flow equations (63) and (64). The first flow diagram of
Eq. (34) is given by

20Within the functional integral representation (14) a specific
velocity mean field can be forced by evaluating expectation
values at a nonvanishing response field source current or by
adding a “frame-fixing” term to the bare action [58]. Similar to
local gauge symmetries the choice of frame can be gauge fixed
using the Faddeev–Popov method so that one obtains a Becchi–
Rouet–Stora symmetry and a related Slavnov–Taylor identity
instead of an extended Galilean symmetry [69,70].
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ðB1Þ

where the second equality holds in the limit q → ∞ under the assumptions discussed in Sec. V. The third equality makes use
of the Ward identity (61) and statistical isotropy implies

qiqj

Z
l
PI
k;uiuj

ðτ; τ0; lÞ ¼ q2

3

Z
l
PI
k;uiui

ðτ; τ0; lÞ: ðB2Þ

Finally, the last equality uses definition (65) in order to rewrite the expression.
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