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As massive gravity and its extensions offer physically well-defined gravitational theories with a nonzero
graviton mass, we present a new extension of the de Rham–Gabadadze-Tolley massive gravity, which is a
tachyonic massive gravity theory. We first introduce the new extension of the de Rham–Gabadadze-Tolley
massive gravity, constructed by adding a tachyonic term. We then find the cosmological background
equations, and present the analysis of self-accelerating solutions. We examine the tensor perturbations to
calculate the dispersion relation of gravitational waves (GWs). In a special case, we consider a constant
tachyon potential for the tachyon field σ, VðσÞ ¼ 2ω=M2

Pl, and calculate the equations of motion and the
self-accelerating solutions. Finally, we investigate the background perturbations, which include tensor,
vector, and scalar perturbations in this case. We calculate the dispersion relation of GWs in the Friedmann-
Lemaître-Robertson-Walker cosmology in a tachyonic massive gravity theory. These analyses provide
potential inputs to future applications in cosmology and GW propagations.
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I. INTRODUCTION

One of the most important puzzles in cosmology is the
origin of late-time acceleration of the Universe [1,2].
Furthermore, there are enough motivations to modify
general relativity in order to explain the late-time accel-
eration of the Universe without a dark energy component
[3,4]. In fact, for finding alternative theories to general
relativity by maintaining Lorentz invariance, one possible
way is considering gravity as a representation of a higher
spin [5]. It is believed that the massive gravity theory is a
valuable modification of general relativity by considering
the graviton with a nonzero mass [6]. While general
relativity can be considered as a unique theory of a massless
spin-2 particle, in the massive gravity theory a spin-2
massive graviton responds to the propagation of gravity.
Also, the speed of gravitational wave (GW) propagation
should be determined by the mass of graviton, and this
issue can give us an opportunity to constrain the modified
gravity theories from recent GW observations [7].
Considering a mass to the graviton could be a better

scenario for explaining the late-time acceleration of the
Universe in comparison with the cosmological constant
[6,8]. Fierz and Pauli introduced a massive spin-2 field
theory which includes a specific combination of the mass
terms to have five physical degrees of freedom [9].

However, there is a discontinuity such that the theory in
the massless limit does not reduce to the massless theory,
i.e., the van Dam–Veltman-Zakharov discontinuity [10,11].
Later, this discontinuity was solved by considering the
nonlinear completions of the Fierz-Pauli mass term [12].
According to studies by Boulware and Daser [13], a sixth
ghost degree of freedom appears at the nonlinear level,
which is called the Boulware-Daser ghost. Therefore, the
nonlinear massive gravity was considered as an unstable
theory. Hamed-Arkani et al. and Creminelli et al. obtained
the same conclusion [14,15]. However, in 2010, de Rham,
Gabadadze, and Tolley (dRGT) revisited the analysis and
proposed a ghost-freemassive gravity theory, which is called
the dRGT theory [8,16]. Nevertheless, while this theory
admits only an openFriedmann-Lemaître-Robertson-Walker
(FLRW) solution, the scalar and vector perturbations around
the background would vanish. In other words, this problem
has something to do with a strong coupling problem and a
nonlinear ghost instability [17,18].
Thus, new extensions of the nonlinear massive gravity

theory are imperative in finding a stable cosmological
solution which is another motivation of our study. One way
is to introduce new fields to the dRGT theory, for instance,
adding the quasidilaton term, mass-varying massive grav-
ity, and bigravity [19–22]. In this paper, we add a tachyonic
term to the dRGT massive gravity theory as a new
extension of the nonlinear massive gravity theory. We
try to show the theory which can explain the accelerated
expansion of the Universe in FLRW cosmology and would
be free of strong coupling problem and a nonlinear ghost
instability in perturbations.
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Note that a tachyonic scalar field can explain the
expansion in the very early Universe and the late-time
acceleration of the Universe, and its equation of state
parameter for dark energy is between −1 and 0 [23–26].
Moreover, we know that a tachyon field arises in the
context of string theory, i.e., tachyon in the Dirac-Born-
Infeld action [27–29]. The tachyon has widely been
investigated throughout the last few years in cosmological
applications and inflaton at high energy [30–34].
Meanwhile, there have been recent studies that are related
to the tachyonic field and tachyon inflation [35–39].
It is worth mentioning that there has been a trend towards

extending the dRGT massive gravity theory, which is free
of the Boulware-Deser ghost. These actions admit self-
accelerating solutions in which the Universe is of de Sitter
typewithout the cosmological constant [40–43]. In addition,
it is important to note that the Hubble scale of these self-
accelerating solutions is of order of the mass of graviton.
According to this fact, having a light graviton is technically
natural [44,45]. These solutions are very interesting to be
considered for the late-time acceleration of the Universe.
Besides, it is insightful to ask how the perturbations
around any nontrivial solution behave, and we are
interested in finding the new effects in the propagation
of the associated degrees of freedom. Perturbation theory for
the self-accelerating solutions has been investigated in
Refs. [17,46–51].
In this paper, we introduce a new extension of the dRGT

massive gravity theory, which is obtained by adding a
tachyonic field.We analyze the cosmology and perturbations
of this new extension of massive gravity theory. The paper is
organized as follows. In Sec. II, we present the tachyonic
massive gravity theory, andwe obtain background equations.
In the following step, we derive the self-accelerating sol-
utions and present the tensor perturbation analysis for
determining the dispersion relation of GWs. In Sec. III,
we examine the background equations for a particular case
and demonstrate the self-accelerating solutions. Also, we
analyze the cosmological perturbations to show the tensor,
vector, and scalar perturbations elaborately. Finally, in
Sec. IV, some discussion and conclusion are given.

II. TACHYONIC MASSIVE GRAVITY THEORY

In this section, we introduce a tachyonic massive gravity
and its analysis. First, we review the tachyonic massive
gravity theory, and we show the evolution of a cosmologi-
cal background. Then, we derive the self-accelerating
solutions. Subsequently, tensor perturbations in this theory
are demonstrated.
We use gμν to represent the background FLRW metric,

which is defined as

gμνdxμdxν ¼ −N2dt2 þ a2δijdxidxj; ð1Þ

where the scale factor is represented by a, and _a is the
derivative with respect to time; N is the lapse function of
the dynamical metric, and it is similar to a gauge function.
The lapse function relates the coordinate time dt and the
proper time dτ via dτ ¼ Ndt [52,53].
We write the action for the tachyonic massive gravity

theory in the following form

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λþ 2m2

gLg

− VðσÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gμν∂μσ∂νσ

q �
; ð2Þ

whereMPl is the Planck mass, R is the Ricci scalar, Λ is the
cosmological constant, and VðσÞ is tachyonic potential
with the tachyonic field σðtÞ. It is clear that the potential Lg

is the part of Lagrangian that provides the mass to the
graviton and can be written as

Lg ¼ L2 þ α3L3 þ α4L4; ð3Þ

where α3 and α4 are dimensionless free parameters of the
theory. In the equation, Li (i ¼ 2, 3, 4) are given by

L2 ¼
1

2
ð½K�2 − ½K2�Þ;

L3 ¼
1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

L4 ¼
1

24
ð½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�Þ:

ð4Þ

The square brackets donate a trace of Kμ
ν . The above terms

are similar to that in the dRGT theory [8]. We have defined
the building block tensor Kμ

ν as

Kμ
ν ¼ δμν − eσ=MPl

� ffiffiffiffiffiffiffiffiffi
g−1ḡ

q �
μ

ν

: ð5Þ

We use ḡμν as a nondynamical fiducial metric and we use
Minkowski metric as the fiducial metric,

ḡμν ¼ − _fðtÞ2dt2 þ δijdxidxj; ð6Þ

where fðtÞ is the Stueckelberg scalar.
After considering the equations above, the total

Lagrangian of the tachyonic massive gravity in a FLRW
universe is
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L ¼ M2
Pl

�
−3

a _a2

N
− Λa3N

�
þm2

gM2
PlfNa3ðX − 1Þ

× ½3ðX − 2Þ − ðX − 4ÞðX − 1Þα3 − ðX − 1Þ2α4�
þ _fðtÞa4XðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�g

−
1

2
a3M2

PlVðσÞN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_σ2

N2

s
; ð7Þ

where X ≡ eσ=MPl

a .

A. Background equations

Note that we obtain a constraint equation by varying the
Lagrangian with respect to f,

m2
gM2

Pl
d
dt
fa4XðX−1Þ½3þ3ð1−XÞα3þð1−XÞ2α4�g¼ 0:

ð8Þ

In order to calculate the Friedman equation, we take the
variation of the Lagrangian with respect to N and obtain

3H2 − Λ −
1

2

VðσÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − _σ2

N2

q þm2
gðX − 1Þ½3ðX − 2Þ

− α3ðX − 4ÞðX − 1Þ − α4ðX − 1Þ2� ¼ 0; ð9Þ

where H ≡ _a
Na and _σ

N ¼ MPlðH þ _X
NXÞ.

In the following, the acceleration equation can be
obtained by varying with respect to the scale factor a,

3H2 − Λþ 2 _H
N

−
VðσÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_σ2

N2

s
þm2

gf6 − 3ð2þ rÞX

þ ð1þ 2rÞX2 − ðX − 1Þ½α3ð4 − ð2þ 3rÞX þ rX2Þ
þ α4ðX − 1ÞðrX − 1Þ�g ¼ 0: ð10Þ

In the following, we consider N ¼ 1 and, we define r ¼ a _f
N .

Finally, varying the Lagrangian with respect to σðtÞ gives

σ̈ þ
�
3H _σ þ V 0ðσÞ

VðσÞ
�
ð1 − _σ2Þ − 6m2

gð1 − _σ2Þ3=2
MPlVðσÞ

× X

�
½2X − 3þ rð2X − 1Þ� þ ðX − 1Þ

�
α3ðrð1 − 3XÞ

þ 3 − XÞ − 1

3
α4ðX − 1Þð3þ rð1 − 4XÞÞ

��
¼ 0: ð11Þ

It should be pointed out that the Stuckelberg field f
introduces time reparametrization invariance. As a result,
there is a Bianchi identity which relates the four equations
of motion,

δS
δσ

_σ þ δS
δf

_f − N
d
dt

δS
δN

þ _a
δS
δa

¼ 0: ð12Þ

Therefore, one equation is redundant and can be eliminated.
We should take this into consideration, and if we

consider VðσÞ ¼ 0 in the particular conditions, the theory,
all above background equations, and the total Lagrangian
reduce to those in Ref. [17].

B. Self-accelerating regime

In this subsection, the self-accelerating solutions are
discussed. It should be mentioned that using the asymptotic
background equations of motion in the self-accelerating
regime, which was considered in Ref. [16], we will simplify
the expression of M2

GW in the next section.
By varying the actionwith respect to f and considering the

Eq. (8), we find the constraint equation J ¼ 1
a4 × constant,

where

J ¼ XðX − 1Þð3þ 3ð1 − XÞα3 þ ð1 − XÞ2α4Þ: ð13Þ

In an expandingUniverse, the right-hand side of this equation
decay as a−4, hence after a sufficiently long time,X saturates
to a constant value XSA, corresponding to J ¼ 0. These
constant solutions of X lead to the effective energy density
and act like a cosmological constant. As discussed in
Ref. [19], there are four such solutions for which X is
constant. We should pay attention that X0

SA ¼ 0 implies
σ → ∞, and as in Ref. [19], we disregard this solution in
order to avoid strong coupling. Three other solutions can be
obtained for the state of the accelerated Universe. One of
these solutions is X1

SA ¼ 1, and the other two are

X�
SA ¼ ðα3 þ 2α4Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α23 − 12α4

p
2α4

: ð14Þ

As one can see, if we choose X1
SA ¼ 1 and substitute it in

Eq. (9), the mass term mg becomes zero. So we are not
interested in this solution. In other words, in this case, the
constant term of the effective cosmology becomes zero, and
the background will be de Sitter mode. However, in the
presence of matter fields and without a bare cosmological
constant, this solution asymptotically approaches a
Minkowski background and is unstable [19]. So we will
consider X�

SA solutions. Substituting these solutions in
Eq. (9), we obtain the generalized Friedman equation,

3H2 −
VðσÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðMPlHÞ2

p ¼ Λþ Λ�
SA; ð15Þ

where
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Λ�
SA ≡ 1

2α34

h
α43 � α33

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α23 − 12α4

q
� 4α4



� α23α4

×
	
�3þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α23 − 12α4

q 

þ 24α3α

2
4 − 18α24

i
: ð16Þ

In Eq. (15), if we consider the potential as a constant
function such as VðσÞ ¼ ω

M2
Pl
, then we have

3H2 ¼ Λ�
eff ; ð17Þ

where

Λ�
eff ¼

1

6M2
Pl

�
6þ 4ðΛþ Λ�

SAÞ þ Ξ�2

þ 4ð−3þ Λþ Λ�
SAÞ2

Ξ�

�
; ð18Þ

with

Ξ� ¼
�
−8ð−3þ Λþ Λ�

SAÞ3 − 81ω2

þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ð−3þ Λþ Λ�

SAÞ3ω2 þ 81ω4

q �
1=3

: ð19Þ

From Eq. (11), r�SA is obtained as

r�SA ¼ 1þ MPl½3H2VðσÞMPl þ V0ðσÞ�
6m2

gX�
SA

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2M2

Pl

p
½α3X�

SA − α3 − 2� : ð20Þ

The above equation can interpret the self-accelerating
universe according to new parameters of the theory with
considering that there is not any strong coupling. Here, we
demonstrate that this theory possesses self-accelerating
solutions with an effective cosmological constant is given
by Λ�

eff.

C. Tensor perturbations

The study of cosmological perturbations is a very
important pillar for modern cosmology. By examining
perturbations, we can find the relationship between early
cosmic models and the present ones. In this subsection, we
consider tensor perturbations in the tachyonic massive
gravity.
We introduce tensor perturbations in the metric gμν as

δgij ¼ a2hij, where the perturbations hij are defined to be
transverse and traceless, i.e., ∂ihij ¼ 0 and gijhij ¼ 0

[54,55]. Here, we lower and raise spatial indices on hij
with δij and δij. While we should always raise and lower
indices with the metric, using the Kronecker delta does not
affect the second-order action. So the transverse and
traceless conditions can be rewritten as δik∂khij ¼ 0 and
δijhij ¼ 0. Also, it is interesting to note that the perturbed
metric δgμν is always defined to be first order. However, the
inverse metric gμν can be of higher order.

Applying tensor perturbations to the gravitational part of
the action,

Sgravity ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð21Þ

we have

Sð2Þgravity ¼
M2

Pl

8

Z
d3kdta3N

� _hij _hij
N2

−
�
k2

a2
þ 4

_H
N

þ 6H2 − 2Λ
�
hijhij

�
: ð22Þ

We have used the Fourier transform convention

hijðx⃗; tÞ ¼
R

d3k
ð2πÞ3=2 hijðk⃗; tÞe−ik⃗·x⃗. For the tachyonic part

of the action,

Stachyon ¼ −
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
VðσÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gμν∂μσ∂νσ

q
; ð23Þ

we obtain

Sð2Þtachyon ¼
M2

Pl

8

Z
d3kdta3N

�
VðσÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_σ2

N2

s �
hijhij: ð24Þ

For the massive gravity part, we find

Sð2Þmassive ¼
M2

Pl

8

Z
d3kdta3Nm2

gfðα3 þ α4ÞrX3

− ð1þ 2α3 þ α4Þð1þ 3rÞX2 þ ð3þ 3α3 þ α4Þ
× ð3þ 2rÞX − 2ð6þ 4α3 þ α4Þghijhij; ð25Þ

where r ¼ a _f
N . Then the second-order action for tensor

perturbations is obtained as

Sð2Þ ¼ M2
Pl

8

Z
d3kdta3N

� _hij _hij
N2

−
�
k2

a2
þM2

GW

�
hijhij

�
:

ð26Þ

Here we consider N ¼ 1, therefore, the dispersion relation
of GWs is given by

M2
GW ¼ 4 _H þ 6H2 − 2Λ − VðσÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _σ2

p
−m2

g½ðα3 þ α4ÞrX3 − ð1þ 2α3 þ α4Þð1þ 3rÞX2

þ ð3þ 3α3 þ α4Þð3þ 2rÞX − 2ð6þ 4α3 þ α4Þ�:
ð27Þ

Note that if we consider VðσÞ ¼ 0 in the particular
conditions, we find the same results for the dispersion
relation of GWs as in Refs. [17,55–57].
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III. A SPECIAL CASE

It is worth pointing out that the tachyon can have a role
as a part of the source of dark energy according to the form
of the tachyon potential. There are several tachyon poten-
tials that are considered for the open string theory, the non-
Bogomol’nyi–Prasad–Sommerfield saturated solutions
(BPS) D-brane in the superstring, the bosonic string theory,
and another type of tachyon potential [24,58–65]. Here, we
consider a special case in detail where the tachyon potential
is a constant, VðσÞ ¼ 2ω

M2
Pl
.

In the following stages, we examine the evolution of a
cosmological background for the special case and present
the self-accelerating solutions as well. Meanwhile, we
show cosmological perturbation analyses that consist of
tensor, vector, and scalar perturbations.

A. Background equations

We start by finding the equations of motion. Varying the
action, the energy density and pressure are obtained as

ρ ¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _σ2

p ; P ¼ −ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _σ2

p
: ð28Þ

Then, the sound speed is

c2S ¼ _σ2 − 1: ð29Þ

In addition, we fix the cosmological time using N ¼ 1. So,
the equation of motion with respect to N is

3H2 ¼ Λþ ρ

M2
Pl

þm2
gL; ð30Þ

where

L≡ −ð6þ 4α3 þ α4Þ þ 3ð3þ 3α3 þ α4ÞX
− 3ð1þ 2α3 þ α4ÞX2 þ ðα3 þ α4ÞX3: ð31Þ

By varying with respect to a, we obtain

2 _H ¼ m2
gQðr − 1ÞX −

ρþ P
M2

Pl

; ð32Þ

where

Q≡ 3þ 3α3 þ α4 − 2ð1þ 2α3 þ α4ÞX
þ ðα3 þ α4ÞX2: ð33Þ

Also, by varying the Lagrangian with respect to σðtÞ, we
obtain

σ̈ þ 3H _σð1 − _σ2Þ

þMPl

ω
m2

gð1 − _σ2Þ3=2X½3Qþ rK� ¼ 0; ð34Þ

where

K ≡ 3þ 3α3 þ α4 − 6ð1þ 2α3 þ α4ÞX
þ 9ðα3 þ α4ÞX2 − 4α4X3: ð35Þ

B. Self-accelerating regime

Here, we should point out that the result of this special
case is similar to the previous case in Sec. II B. For an
accelerated expansion of the Universe, we have J ¼ 0.
which leads to

X�
SA ¼ 1

2α4

	
3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q 

: ð36Þ

In this case, we have

L�
SA ¼ 3

2α34

�
9α43 − 18α23α4 þ 6α24

� ð3α23 − 4α3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q �
: ð37Þ

According to Eq. (30), L�
SA is similar to an effective

cosmological constant. In other words, it can be considered
as an effective energy density, m2

gM2
PlL

�
SA, which arises

from the mass term.
Furthermore, in the accelerated expanding regime, we

have

Q�
SA ¼ 3þ 3α3 þ α4 ∓ 1

α4
ð1þ 2α3 þ α4Þ

×

�
�ð3α3 þ 2α4Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q �

þ ðα3 þ α4Þ
4α24

	
3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q 

2
: ð38Þ

According to Eq. (32), it can be concluded that
m2

gM2
PlQ

�
SAð1 − r�SAÞX�

SA is related to the sum of the
effective density and pressure. Therefore, we have

K�
SA ¼ 3þ 3α3 þ α4 − 6ð1þ 2α3 þ α4ÞX�

SA

þ 9ðα3 þ α4ÞX�
SA

2 − 4α4X�
SA

3: ð39Þ

For simplicity, we use Q̃ ¼ m2
gQX and Q̃�

SA ¼ m2
gQ�

SAX
�
SA

throughout this paper. Thus, we have

r�SA¼
1

M2
Plð2K�

SAm
2
gð1−H2M2

PlÞ3=2X�
SAþωQ̃�

SAÞ
×f−2ΛωM2

Pl−2ωL�
SAm

2
gM2

Plþ2ωMPlρSAðH2M2
Pl−1Þ

þωðPSAþρSAÞþ2H2ωL�
SAm

2
gM4

PlþωM2
PlQ̃

�
SA

−6M2
Plð1−H2M2

PlÞ3=2Q̃�
SAþ2H2ΛωM4

Plg: ð40Þ
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As we mentioned at the end of Sec. II B, Eq. (40) could
explain the self-accelerating universe in a special case that
is free of strong coupling too.

C. Cosmological perturbations

In this stage, we focus on quadratic perturbations. To
find the quadratic perturbations, the physical metric gμν
should be expanded in terms of small fluctuations δgμν
around a background solution gð0Þμν ,

gμν ¼ gð0Þμν þ δgμν: ð41Þ

Also, we should keep terms up to the quadratic order.
The metric perturbations can be divided into three parts,
namely scalar, vector, and tensor perturbations. They are
expressed as

δg00 ¼ −2N2Φ;

δg0i ¼ NaðBi þ ∂iBÞ;

δgij ¼ a2
�
hij þ

1

2
ð∂iEj þ ∂jEiÞ þ 2δijΨ

þ
�
∂i∂j −

1

3
δij∂l∂l

�
E

�
: ð42Þ

Here, notice that the tensor perturbations are transverse,
∂ihij ¼ 0, and traceless, hii ¼ 0. Meanwhile, the vector
perturbations have conditions such that ∂iBi ¼ 0 and
∂iEi ¼ 0 [54,55]. In addition, the perturbation of the scalar
field is

σ ¼ σð0Þ þMPlδσ: ð43Þ

Aswementioned before, the spatial indices on perturbations
can be raised and lowered by δij and δij. The expanded action
can be written in the Fourier domain with plane waves via

∇⃗2 → −k2,d3x → d3k. It should be clarified thatwe perform
all analysis in the unitary gauge [22,56]. Therefore, there are
not any problems with the form of gauge-invariant combi-
nations. As before, we consider N ¼ 1 in the following
calculations.

1. Tensor perturbation

The tensor quadratic action is obtained as

Sð2Þ ¼ M2
Pl

8

Z
d3kdta3

�
_hij _hij −

�
k2

a2
þM2

GW

�
hijhij

�
;

ð44Þ

where the dispersion relation of GWs is given by

M2
GW ¼ 6H2 − 2Λþ 2ω

M2
Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2M2

Pl

p
þm2

gf6þ 2ðr − 5ÞðX�
SAÞ2 − 3ðr − 2ÞðX�

SAÞ3
þ α3½2þ ðr − 5þ 4X�

SA − 2rX�
SAÞðX�

SAÞ2�g: ð45Þ

In order to obtain the above equation, we have substituted
some of the parameters as has been explained below. The
above equation is merely Eq. (27). In other words, in the
first stage, we have written it using substitution VðσÞ ¼ 2ω

M2
Pl
.

To achieve that equation, we have used the background
acceleration in Eq. (32) to eliminate terms with ä.
Moreover, the Friedman equation (9) is evaluated on the
self-accelerating limit, i.e., _X ¼ 0 and _σ ¼ MPlH. Finally,
to eliminate α4, we have used

X�
SA ¼ 1

2α4

�
3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q �
: ð46Þ

Note that if M2
GW > 0, the stability of long-wavelength

GWs is guaranteed. However, if M2
GW < 0, it will be

unstable. In that case, as the mass is of order of the
Hubble scale, the instability should take the age of the
Universe to develop.
Equations (27) and (45) are the modified dispersion

relations of gravitational waves and can be considered as
the main result of these parts. They represent the propa-
gation of gravitational perturbations in the FLRW cosmol-
ogy in the tachyonic massive gravity. These results can be
tested by gravitational-wave observations. They will intro-
duce extra contribution to the phase evolution of gravita-
tional waveform [66,67], and to be detected with the
accurate matched-filtering techniques in the data analysis.
The tests of graviton mass have been done, after the first
discovery of gravitational waves in a merging binary black
hole [68–71]. According to the latest constraint on the
graviton mass which is achieved by the combination of
gravitational wave events from the first and second gravi-
tational-wave transient catalogs, we know that mass of
graviton is around mg ≤ 1.76 × 10−23 eV=c2 at 90% cred-
ibility [70]. As the Compton wavelength is still much
smaller than the Hubble scale, therefore the relevance to
modified cosmology is restricted at present. We hope that
testing the mass of graviton with gravitational observations
at different wavelengths, notably with future space based
gravitational-wave detectors which are more sensitive to
the graviton mass [66], can help to find the exact value of
the mass of graviton.

2. Vector perturbations

Now we consider the vector perturbations,

Bi ¼
að1þ rÞk2

2½k2ðrþ 1Þ þ 2a2Q̃�
_Ei: ð47Þ
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In the above equation, Bi is a nondynamical field and it is
calculated using the equation of motion. By inserting it
back into the action, one finds a single propagating vector

Sð2Þvector ¼
M2

Pl

8

Z
d3kdta3

�
τj _Eij2 −

k2

2
M2

GWjEij2
�
; ð48Þ

where

τ ¼
�
2

k2
þ 1þ r

a2Q̃

�
−1
: ð49Þ

To avoid ghost and instability in subhorizon scales we
should have

τjk≫aH ¼ a2Q̃
1þ r

> 0: ð50Þ

The sound speed for the vector modes is

c2V ¼ a2M2
GW

2τ

����
k≫aH

¼ ð1þ rÞM2
GW

2Q̃
: ð51Þ

It is understood that, to avoid gradient instability, we need
to have c2V > 0. Therefore the stability for vector modes is
ensured if c2V > 0. This condition imposesM2

GW > 0. So, it
constrains the other parameters of the theory.

3. Scalar perturbations

In the scalar perturbations, there are five degrees of
freedom, which we denote as Φ, B, Ψ, E, and δσ. Also, it
should be noted that the time derivatives of perturbations of
lapse Φ and shift B do not appear in action. Using the
equation of motion, which is related to B, one finds

B ¼ ð1þ rÞ
3MPla _σ Q̃

f3δσðρþ PÞ þMPl _σ½k2 _Eþ 6ð _Ψ −HΦÞ�g:

ð52Þ

To calculate the above equation, all perturbations have been
expanded with respect to scalar harmonics. Here, using the
lapse perturbation equation, we can find the auxiliary field
Φ as

Φ ¼ M2
Plc

2
sa2Q̃

2M2
Plc

2
sH2½2k2ðrþ 1Þ þ 3a2Q̃� − a2Q̃ðρþ PÞ

�
2k2Hðrþ 1Þ

3a2Q̃

�
3ðρþ PÞ
MPl _σ

δσ þ k2 _Eþ 3

�
2þ 3a2Q̃

ðrþ 1Þk2
�
_Ψ
�

þ k4

3a2
Eþ 2k2 þ 3a2Q̃

a2
Ψ −

ðρþ PÞ
MPlc2s _σ

δ _σ

�
: ð53Þ

Now with these solutions and by defining Y ≡ ðΨ; E; δσÞ,
the action can be written as

Sð2Þscalar ¼
M2

Pl

2

Z
d3kdta3

×

�
_Y†Σ _Y þ 1

2
_Y†ΓY þ 1

2
Y†ΓT _Y − Y†MY

�
; ð54Þ

where Σ, Γ, and M represent the kinetic energy matrix, the
mixing perturbation matrix, and the mass matrix, respec-
tively. As there is no Boulware-Deser ghost, i.e., detΣ ¼ 0,
we can eliminate one of the nondynamical degrees of
freedom. In fact, it is possible to define a quantity by a
combination of Ψ, E, and δσ, as

ς ¼ Ψþ k4ðrþ 1Þ
9a2Q̃þ 6ðrþ 1Þk2 E −

�
H
_σ

�
δσ: ð55Þ

As the kinetic energy of the combination of perturbation
fields is zero, we can neglect δσ in comparison with ς.
Thus, one can see that the kinetic energy part of the action
can be presented diagonally. In addition, if we consider Ψ,

which is an auxiliary component, as a Boulware-Deser
ghost, we can eliminate it too. Therefore, the action can be
obtained using two dynamical fields, encoded in
R ¼ ðς; EÞ, as

Sð2Þscalar ¼
M2

Pl

2

Z
d3kdt

×

�
_R†Π _Rþ1

2
_R†ΩRþ1

2
R†ΩT _R−R†M̃R

�
; ð56Þ

where Ω represents the mixing and Hermitian matrix; Π
and M̃ are the kinetic energy matrix and the mass matrix,
respectively.
To evaluate Eq. (56), we introduce the below discussion.

In order to find the ghost-free conditions, we should study
the eigenvalue of the kinematic energy matrix Π which
means that the positivity of this value should be evaluated.
This study in the subhorizon limit (i.e., k → ∞) is very
crucial. Therefore, we should focus on the components of
Π, in the scalar part, we reach the eigenvalues λ1 and λ2,
which is given as
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λ−11 ¼ M4
Plc

2
sH2

2ðρþ PþM2
PlΛÞ

−
�
8k2ðrþ 1Þ þ 12m2

ga2LX

M2
Plm

2
ga2LX

þ C1

�
−1
; ð57Þ

where

C1 ≡ −4r2ðrþ 1Þð2k2rþ 3a2LXm2
gÞ2½a2ðXm2

gð2k2Lr4 þ a2ðGHðrþ 1Þ _Lþ Lð3Lðr − 1ÞrXm2
g −HC2ÞÞÞ

− 2a2GH2ðrþ 1ÞM2
GWÞM2

Pl�−1; ð58Þ

C2 ≡ −
3rðrþ 1Þ

H2

�
4H2

r
−

2k2r
3a2ðrþ 1Þ −

ρþ P
M2

Pl

− Λ
�
; ð59Þ

and λ2 is

λ−12 ¼ 3M2
Pl

k4
þ 2M2

Plðrþ 1Þ
k2m2

ga2LX
þ 4M2

Plr
2

3m2
ga2

�
LXa2

�
−4H2 þ

�
ρþ P
M2

Pl

þ Λþm2
gLX

��

þ 2a2H

�
2H

M2
GW

m2
g

− _LX

��
−1
: ð60Þ

It can be possible to obtain the λ1 and λ2 in the order of k−2 in the limit of k → ∞. So, we have

λ1 ≃
2ðρþ PÞ
M4

Plc
2
sH2

þ 2Λ
M2

Plc
2
sH2

; ð61Þ

λ2 ≃
3m2

ga4H

2M2
Plr

2

�
rLX
2H

�
−4H2

r
þm2

gLX þ ρþ P
M2

Pl

þ Λ
�
þ 2H

M2
GW

m2
g

− _LX

�
: ð62Þ

The condition of λ1 > 0 is the same as the null-energy
condition. Thus, the part of λ1 is related to the matter and is
consistent with the ghost-free condition. The eigenvalue λ2
in the limit of k → ∞ is related to the scalar graviton. By
evaluating the condition of λ2 > 0, we can find out that in
the limit of dRGT (i.e., L; _L → 0), the λ2 does not lead to
zero, which means that the limits of k → ∞ and dRGT do
not commute simultaneously. In fact, the reason for this
behavior can be sought in the expression of λ2. Finally, it
can be shown that by disregarding the terms which would
be zero in the limits, we have

λ2 ≃
m2

g

M2
Pl

�
2ðrþ 1Þ
k2a2LX

þ r2m2
g

3a2H2M2
GW

�
−1
: ð63Þ

We can conclude that the first expression in the limit of
dRGT and the second expression in the limit of k → ∞ are
essential. Therefore, if the conditions are imposed, we have
the conditions k2L

a2H2 ≪ 1 in the limit of dRGT and k2L
a2H2 ≫ 1

in the limit of k → ∞.
In this subsection, we have obtained the quadratic action

for scalar perturbations. It should be mentioned that scalar
perturbations are induced by energy density inhomogene-
ities. These perturbations are most essential because they

show gravitational instability and may lead to the formation
of structure in the Universe [72]. However, this phenom-
enological study is beyond the scope of the current paper,
thus we leave it for future study.

IV. CONCLUSION

It is important to understand new extensions of massive
gravity theories, where gravitational degrees of freedom
propagate in a well-behaved manner. Also, it is worth
examining ghost-free perturbations around their cosmo-
logical backgrounds. In this paper, by introducing a
tachyonic field, we have introduced a new extension of
the nonlinear dRGT massive gravity theory.
Here, we have investigated the cosmology and pertur-

bation analysis of the tachyonic massive gravity theory. We
began by proposing a new action and its total Lagrangian.
We presented the background equations for a FLRW
background. Moreover, the self-accelerating background
solutions for tachyonic massive gravity theory were elabo-
rately discussed. In other words, we have shown a way to
explain the late-time acceleration of the Universe within the
tachyonic massive gravity.
Furthermore, we have presented the tensor perturbation

calculation for analyzing the dispersion relation of GWs for
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the tachyonic massive gravity theory. We have demon-
strated the propagation of gravitational perturbation in the
FLRW cosmology. Eventually, these analyses should be
compared with the emerging observations of GWs. In
particular, the first ever observation of a merging binary
neutron stars, namely the GW170817, has demonstrated the
usefulness of GWs in analyzing the dispersion relation of
GWs [7,73].
We considered the potential as a constant VðσÞ ¼ 2ω

M2
Pl
in a

special case, and we have obtained the full set of equations
of motion for a FLRW background. We have found self-
accelerating background solutions as well.
Finally, for the special case, we have derived the

cosmological perturbations, which contain tensor, vector,
and scalar modes. We have pointed out the analysis of the
dispersion relation of GWs, and have presented the details
of vector and scalar perturbations. In fact, we have
demonstrated the conditions in which the theory to be
stable and ghost free.
The cosmology and perturbation analysis in this paper

might serve as an interesting starting point for future
theoretical and empirical studies of cosmology and GW
data, for example, in the studies of modified propagation of
GWs in an expanding universe [66,67,69,71,74,75]. These
studies are increasingly important nowadays for the field of

GW cosmology as more and more relevant GW events are
continuously accumulating, and exploring the scientific
cases of them rewards the great efforts in making these
experiments feasible. From a theoretical viewpoint, it is
also worth mentioning that, following the steps in this
work, one could possibly study other extensions of the
nonlinear theory of massive gravity.
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