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We compare the optical appearance of a thin accretion disk in the Simpson-Visser spacetime to the
Schwarzschild black hole case in this paper. We calculate and illustrate the redshift and observed flux
distributions as viewed by distant observers at various inclination angles. Simpson-Visser family of metrics
creates Novikov-Thorne (NT) accretion disks images that nearly look like a Schwarzschild black hole’s NT
accretion disk. We have studied also the embedding diagram, the electromagnetic properties of the
accretion disk such as the temperature and the radiation flux of the energy by the accretion disk and the
accretion efficiency. Compared to the Schwarzschild black hole, we find that the temperature, radiation flux
of the energy, and the luminosity of the accretion disk increase by increasing the regularization parameter l.
We conclude that, based on astrophysical observational signatures in the properties of the electromagnetic
spectrum, we can distinguish the wormhole geometries from the regular black holes (black-bounce) and the
Schwarzschild black hole.
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I. INTRODUCTION

Black holes are arguably the most fascinating predictions
of Einstein’s general theory of relativity. It is now evident
that both astronomical observations and the theoretical
formulation of general relativity suggest their real existence
in nature. The most striking evidence for their existence is
the detection of the gravitational waves [1] and the shadow
image of the supermassive M87* [2,3]. Black holes are
extremely important in explaining many other problems in
astrophysics that have to do with the high-energy phenom-
ena in the form of x-ray emission and jets, accretion of
matter, quasi-periodic oscillations, and the motions of
nearby objects in orbit around the hidden mass [4].
Despite all these successes, there are still some conceptual

problems related to black holes in general relativity. More
specifically, the main problem associated with black holes is
the existence of singularities at the coordinate center. As of
today, this problem has not been solved. Many physicists
have speculated that a quantum theory of gravity can solve
this problem. However, the phenomenology of black holes
remains a hot topic after the EHT findings. The black hole
mimickers such as regular black holes, wormholes, naked

singularities, grava-stars, etc., are also growing significantly
in the literature [5–13].
The concept of a regular black hole was first introduced

by Bardeen in 1968 [14] (see also the more recent refer-
ences [15–26]), and it has been intuitively interestingdue to its
nonsingular structure. One motivation for exploring such
compact objects is that they could be black hole alternatives.
Furthermore, as is widely known, many of the possible
observational signatures of the black holes such as precession
of timelike bound orbits, gravitational lensing, and shadow
properties canbemimickedbyblackholemimickers [27–36].
From a historical perspective, it’s worth noting that

Einstein and Rosen proposed the existence of “bridges”
through spacetime [37] using the theory of general rela-
tivity. These bridges connect two places in spacetime,
allowing for the creation of Einstein-Rosen bridges, also
known as wormholes. Such wormholes have been proved
to be nontraversable. The notion of having traversable
wormholes was later investigated in the pioneering work of
Morris and Throne [38].
The exotic matter that satisfies the flare-out criterion and

violates the weak energy condition is required to sustain the
structure of a wormhole (see [38,39]). However, quantum
matter fields have recently been proved to provide enough
negative energy to allow some wormholes to be traversed.
As a result, an exotic matter with negative energy density
and large negative pressure, with a greater value than the
energy density, is required to form such a traversable
wormhole [40,41].
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We can therefore try to test black holes and wormholes
using astrophysical data. In Ref. [42], authors studied the
possibility to test wormhole geometries in our galaxy using
infalling and radiating gas accretionmodel and themotion of
the S2 star. The possibility of testing wormholes by observ-
ing the Galactic Center using the infalling gas model was
studied in Refs. [43,44]. Other interesting works concerning
the formation and the stability of wormholes can be found in
Refs. [45–47]. Based on astrophysical observations, today
we know that in the Galactic Center of many galaxies, a disk
is formed.Namely, such a disk ismade of rapidly rotating gas
that slowly spirals onto a compact body, which is assumed to
be a black hole. During such accretion, the gravitational
energy through the friction of the heat converts into radiation,
which partially escapes, and cools down the accretion disk.
The only information that we have about accretion disk
physics comes from this radiation, when it reaches radio,
optical, and x-ray telescopes, allowing astronomers to
analyze its electromagnetic spectrum and its time variability.
The radiation properties of thin accretion disks were further
analyzed in the recent papers [48–54], where the effects of
photon capture by the black hole on the spin evolution were
presented as well.
Simpson and Visser proposed a very simple theoretically

appealing spherically symmetric and static spacetime
family [55], derived from Schwarzschild geometry, that
allows for a unique description of regular black hole and
wormholes by smooth interpolation between these two
possibilities using a length-scale parameter l that drives the
regularization of the central singularity. Its rotational form
was recently shown as well [56]. In the present work, we
are interested to use the Simpson and Visser metric and
explore the NT accretion disk properties and images. It will
be interesting to see whether or not we can distinguish the
regular and nonregular black hole from the wormhole case.
This metric is of particular interest since it can describe a
regular or nonregular black hole or traversable wormhole
depending on the value of the regularization parameter l.
Note that many physical properties of this metric, including
the effect of charge, gravitational lensing, quasi-normal
modes, and other effects were studied by many authors
[57–64]. In the present work, we are interested to study the
optical appearance and the electromagnetic properties of
the NT accretion disk around the Simpson-Visser metric.
This paper is organized as follows. In Sec. II, we present

the Simpson-Visser metric. In Sec. III, we study the embed-
ding diagram. In Sec. IV, we study the NTaccretion disk and
the images. In Sec. V, we explore the electromagnetic
properties of the accretion disk. Finally, in Sec. VI, we
comment on our results. Throughout this paper, we consider
gravitational constant (G) and speed of light (c) as unity.

II. SIMPSON-VISSER SPACETIME

The proposed spherically symmetric and static Simpson-
Visser metric specifies a class of black hole mimickers with

a minimal surface in place of the central singularity. The
geometry of spacetime is given by [55]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ ðr2 þ l2Þðdθ2 þ sin2 θdϕ2Þ;

ð2:1Þ

where,

fðrÞ ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
�
: ð2:2Þ

In the above spacetime, M ≥ 0 represents the ADM mass,
and l > 0 is a parameter responsible for the regularization of
the central singularity and possibly reflecting the quantum
gravity effects. The above spacetime (2.1) neatly interpolates
between the standard Schwarzschild black hole and the
Morris-Thorne traversable wormhole: passing through a
black-bounce (into a future incarnation of the universe),
an extremal null-bounce (into a future incarnation of the
universe), and a traversable wormhole are all intermediary
stages. Therefore, this spacetime consists of a family of
solutions as the black hole mimickers, which can be
described as
(1) The ordinary Schwarzschild spacetime (l ¼ 0),
(2) A “black-bounce” (regular black hole) with a one-

way spacelike throat (l < 2M),
(3) A one-way wormhole with a null throat (l ¼ 2M),
(4) A traversable wormhole in the Morris–Thorne

sense (l > 2M).
The Simpson andVisser metric is everywhere regular as long
as the parameter l is nonzero, resulting in an unusual kind of
“regular black hole,” where the “origin” at r ¼ 0 can be
spacelike, null, or timelike. Moreover, the CarterPenrose
diagrams and curvature tensors are defined in [55] and shown
that the Einstein tensor has nonzero (mixed) components. In
the present work, we are interested to understand the effect of
l on the physical properties of the electromagnetic waves
emitted by the accretion disk.

III. EMBEDDING DIAGRAM

Let us study the geometry of the Simpson-Visser metric
by embedding it into a higher-dimensional Euclidean
space. To simplify the problem, let us consider the
equatorial plane θ ¼ π=2 at a fixed moment t ¼
Constant, in that case, we have

ds2 ¼ dr2

1 − bðrÞ
r

þR2dϕ2; ð3:1Þ

where

bðrÞ ¼ rð1 − fðrÞÞ; R2 ¼ r2 þ l2: ð3:2Þ
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Let us embed this black hole metric into three-dimensional
Euclidean space in the cylindrical coordinates,

ds2 ¼ dz2 þ dR2 þR2dϕ2; ð3:3Þ

which can be written as follows:

ds2 ¼
��

dR
dr

�
2

þ
�
dz
dr

�
2
�
dr2 þR2dϕ2: ð3:4Þ

From these equations, we find that

dz
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
r − bðrÞ −

�
dR
dr

�
2

s
: ð3:5Þ

As a particular case, we will consider the traversable
wormhole with l > 2. Note that the integration of the last
expression cannot be accomplished analytically. Invoking
numerical techniques allows us to illustrate the embedding

diagrams for the Simpson-Visser traversable wormhole
given in Fig. (1).

IV. NOVIKON-THORNE THIN ACCRETION DISKS

Massive particles move in stable circular timelike geo-
desics in the geometrically thin accretion disk. The
Novikov-Thorne model of a thin accretion disk is consid-
ered here. There are two constants of motion along the
timelike geodesics because we are dealing with spherically
symmetric and static spacetimes. The particles’ energy ðẼÞ
and angular momentum ðL̃Þ per unit rest mass are repre-
sented as

Ẽ ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
�
_t; L̃ ¼ ðr2 þ l2Þ _ϕ; ð4:1Þ

where the over dot represents the derivative with respect to
proper time (τ). Using the above conserved quantities and
timelike geodesic condition ðds2 ¼ −m2Þ, we can write the
general form of spherically symmetric and static spacetime
(2.1) as

Ẽ2 ¼ _r2 þ VeffðrÞ: ð4:2Þ

This above equation represents the total energy of the
particle, where VeffðrÞ is the effective potential of
the Simpson-Visser spacetime for timelike geodesics. The
effective potential of the Simpson-Visser spacetime is
defined as

VeffðrÞ ¼ L̃2

�
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þl2
p

�
ðr2 þ l2Þ þ

�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
�
m2; ð4:3Þ

where, for photons,m ¼ 0 and for test particles,m > 0 (see
Fig. 2). The sign of the circular geodesic orbits determines
their stability. The condition V 00

effðrcÞ ¼ 0 determines the
marginally innermost stable circular orbit (ISCO). It indi-
cates the ISCO position at the radius,

FIG. 1. The geometry of Simpson-Visser wormhole embedded
in a three-dimensional Euclidean space. We have used l ¼ 2.1
and M ¼ 1.

l=0

l=1.0

l=2.5

l=3.0

− 10 − 5 0 5 10

0.75

0.80

0.85

0.90

r[M]

Veff

0 1 2 3 4 5 6
0

1

2

3

4

5

6

l[M]

rms[M]

FIG. 2. Left panel: The effective potential for different values of l andM ¼ 1. Right panel: The radius of the marginally stable circular
orbit or the ISCO for different values of l and M ¼ 1.
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rISCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6MÞ2 − l2

q
: ð4:4Þ

The horizon position of a regular black hole ðl < 2MÞ is
defined as

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MÞ2 − l2

q
: ð4:5Þ

For the shadow size, one can calculate the radius of the
circular orbit of a photon ðl < 3M;ds2 ¼ 0Þ as

rph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3MÞ2 − l2

q
; ð4:6Þ

and the critical impact parameter b ¼ E=L of the photon
circular orbits is given by the expression,

b2ph ¼ 27M2; ð4:7Þ

having the same size as a photon circular orbit around a
Schwarzschild black hole, and does not depend on l [63].
Note that for l > 3M, there is nophoton sphere, butwe have a
contribution from the wormhole throat. Now, the stable
circular timelike geodesic can be obtained by satisfying the
conditions,

VeffðrÞ ¼ Ẽ2; V 0
effðrÞ ¼ 0; V 00

effðrÞ < 0; ð4:8Þ

where the first two conditions are useful to get Ẽ and L̃ as a
function of radius of the circular orbit as

Ẽ ¼
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þl2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Mffiffiffiffiffiffiffiffiffi
r2þl2

p − ðr2 þ l2ÞΩ2
q ; ð4:9Þ

L̃ ¼
ðr2 þ l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

ðr2þl2Þ3=2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þl2
p − ðr2 þ l2ÞΩ2

q ; ð4:10Þ

where Ω gives the angular momentum of the particles in
terms of the equation [48],

Ω ¼ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffi
f0ðrÞ
2r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

ðr2 þ l2Þ3=2
s

; ð4:11Þ

with prime representing a derivativewith respect to the radial
coordinate r. For more details about the properties of the
circular geodesic motion, see [65].
In this part, we use the Novikov-Thorne model of a thin

accretion disk composed of anisotropic fluid moving in the
equatorial plane to examine the steady-state thin accretion
disk. Certain structure equations govern the physical
properties of the accretion disk, which arises from the

necessity of the fluid’s rest mass, energy, and angular
momentum conservation. In this setup, the accreting matter
in the disk can be described by the stress-energy tensor
given by [49]

Tμν ¼ ρ0uμuν þ 2uðμqνÞ þ tμν; ð4:12Þ

where

uμqμ ¼ 0; ð4:13Þ

uμtμν ¼ 0: ð4:14Þ

In the above equations, we have the introduced the
following quantities: ρ0, qμ, and tμν, which are known as
the rest mass density of the accreting matter, the energy
flow vector, and the stress tensor, respectively. These
quantities are specified in the averaged rest-frame of the
particle described by the four-velocity uμ. If the rest mass is
conserved, the equation can be used as

∇μðρ0uμÞ ¼ 0: ð4:15Þ

As a result, the disk radius has no effect on the time-
averaged rate of rest mass accretion,

_M0 ¼ −2π
ffiffiffiffiffiffi
−g

p
Σur ¼ const:; ð4:16Þ

where ΣðrÞ denotes the time-averaged surface density in
cylindrical coordinates, and

ΣðrÞ ¼
Z

H

−H
< ρ0 > dz: ð4:17Þ

The law of energy conservation and the law of angular
momentum conservation both state that

∇μTtμ ¼ 0; ð4:18Þ

∇μTϕμ ¼ 0: ð4:19Þ

These relationships can be used to obtain the thin disk’s
time-averaged radial structure equations,

½ _M0Ẽ − 2π
ffiffiffiffiffiffi
−g

p
ΩWr

ϕ�;r ¼ 4πrFðrÞẼ; ð4:20Þ

and

½ _M0L̃ − 2π
ffiffiffiffiffiffi
−g

p
Wr

ϕ�;r ¼ 4πrFðrÞL̃; ð4:21Þ

where Wr
ϕ is the averaged torque and is given by

Wr
ϕ ¼

Z
H

−H
< trϕ > dz: ð4:22Þ
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At this point, it’s important to emphasize that the ϕ − r
component of the stress tensor averaged over a character-
istic time scale Δt and the azimuthal angle Δϕ ¼ 2π is the
quantity < trϕ > : The flux FðrÞ of the radiant energy over
the disk can be represented in terms of the specific energy,
angular momentum, and angular velocity of the orbiting
particle in the thin accretion by using the energy-angular
momentum relation, Ẽ;r ¼ ωL̃;r. The flux of electromag-
netic radiation emitted from a radial position r of a disk is
given by the standard formula, which may be deduced from
the equations (4.9), (4.10), and (4.11) [48],

FðrÞ ¼ −
_M

4π
ffiffiffiffiffiffi−gp Ω0

ðẼ − ΩL̃Þ2
Z

r

rin

ðẼ −ΩL̃ÞL̃0dr: ð4:23Þ

Note that rin represents the inner edge of the disk, and _M is
the mass accretion rate. In Figs. 3 and 4, we show the
optical appearance of the Simpson-Visser spacetime sur-
rounded by NT accretion disk. We use the ray-tracing
formalism described in [65] to numerically integrate the

geodesic equation using RK45 method with adaptive step
size. In Fig. 5, we show the horizontal cross-sectional
intensity for different values of l and highlight the peak
intensity for the same. One can see that the images are

FIG. 3. Images of the Novikov-Thorne thin-accretion disk around Schwarzschild black hole and Simpson-Visser regular black hole
with l ¼ 1 and wormhole with l ¼ 2.5 for inclination 90°.

FIG. 4. Images of the Novikov-Thorne thin-accretion disk around Schwarzschild Black hole and Simpson-Visser regular black hole
with l ¼ 1 and wormhole with l ¼ 2.5 for inclination 45°.

FIG. 5. The plot shows the horizontal cross-sectional intensity
of the Novikov-Thorne accretion disks for l ¼ 0 and l ¼ 1.25,
respectively.
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almost similar compared to the Schwarzschild geometry,
which makes it difficult to distinguish these two spacetime
geometries. However, in what follows, we shall study in
more details this problem; in particular, we shall study in
the electromagnetic properties of the Simpson-Visser
spacetime and compare to the Schwarzschild geometry.

V. THE RADIATING FLUX, TEMPERATURE
PROFILE, AND THE LUMINOSITY OF THIN

ACCRETION DISK

In this section, we turn our attention to explore in more
details the electromagnetic properties of the accretion disk,
such as the radiation flux FðrÞ, the temperature profile,
luminosity, and the accretion efficiency. Toward this purpose,
we will numerically analyze the behavior of the above
quantities with respect to the parameter l. Furthermore, we
assume a central compact object with massM ¼ 106 M⊙ (a
supermassive black hole), along two cases for the accretion
rate given as follows [49,54]:

_M0 ∼ 10−5 M⊙=yr and _M0 ∼ 10−12 M⊙=yr: ð5:1Þ

Recall that the radiation flux FðrÞ given by Eq. (4.23)
represents the emitted flux by the thin accretion disk in the
Simpson-Visser spacetime. Moreover, we expect that the
Stefan-Boltzmann law holds, and therefore, in terms of
the effective temperature associated to the accretion disk,
we have

TeffðrÞ ¼
�
FðrÞ
σ

�
1=4

; ð5:2Þ

where, for the Stefan-Boltzmann constant, we have
σ ¼ 5.67 × 10−5 erg s−1 cm−2K−4. Our analyses shows that
the temperature and the radiated energy flux of the disk
increases by increasing the parameter l, as can be seen from
Figs. 6 and 7. As a specific example, take the case
_M0 ∼ 8 × 10−12 M⊙=yr; we find that the maximal value
for the temperature at a particular l occurs at
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FIG. 6. Left panel: The temperature profile of the thin accretion disk for different values of l using the case M ¼ 106M0 and
_M0 ∼ 2.5 × 10−5 M⊙=yr. Right panel: The radiated energy flux over the thin accretion disk for different values of l andM ¼ 1. In both
plots, we have l ¼ 0 (black curve), l ¼ 1.8 (red curve), l ¼ 3.0 (blue curve), and l ¼ 4.0 (orange curve).
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FIG. 7. Left panel: The temperature profile of the thin accretion disk for different values of l using the case M ¼ 106M0 and
_M0 ∼ 8 × 10−12 M⊙=yr. Right panel: The radiated energy flux over the thin accretion disk for different values of l and M ¼ 1. In both
plots, we have l ¼ 0 (black curve), l ¼ 1.8 (red curve), l ¼ 3.0 (blue curve), and l ¼ 4.0 (orange curve) in both plots.
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l ¼ 0.0∶Tmax ≃ 867.01 K; r ¼ 8.70½M�;

l ¼ 1.8∶Tmax ≃ 871.79 K; r ¼ 8.42½M�;

l ¼ 3.0∶Tmax ≃ 881.04 K r ¼ 8.09½M�:

On the other hand, the maximal value for the radiating
flux at particular l occurs at

l¼0.0∶Fmax≃3.203×107 ergs−1cm−2; r¼8.70½M�;

l¼1.8∶Fmax≃3.275×107 ergs−1cm−2; r¼8.42½M�;

l¼3.0∶Fmax≃3.416×107 ergs−1cm−2; r¼8.09½M�:

The observed luminosity LðνÞ of the thin accretion disk
around the Simpson-Visser spacetime has a redshifted
black body spectrum, while we assume the radiation
emitted by the thin accretion disk surface to be perfect
black body radiation [49],

LðνÞ ¼ 4πd2IðνÞ; ð5:3Þ

or

LðνÞ ¼ 8πh cos i
c2

Z
rf

ri

Z
2π

0

ν3erdϕdr

expðhνekBT
Þ − 1

: ð5:4Þ

In this equation, i is the thin accretion disk’s inclination
angle around the black hole, while d is the distance between
the observer and the center of the thin accretion disk, along
with the Planck constant h, emission frequency νe, as well
as the Boltzmann constant kB. Furthermore, we need to find
the redshift factor, which can be found from

g ¼ ν

νe
¼ kμu

μ
o

kμu
μ
e
; ð5:5Þ

where ν is the radiation frequency in the faraway observer’s
local rest frame. We also have the observer’s four-velocity,

uμo ¼ ð1; 0; 0; 0Þ; ð5:6Þ

and the four-velocity of the emitter,

uμe ¼ ðute; 0; 0;ΩuteÞ: ð5:7Þ

We can take ri ¼ rms and rf to any arbitrary large distance
from the compact object. To illustrate the effect and see how
the parameter l affects the emission spectrum, we calculate
the radiation spectrum νLðνÞ numerically. We find that with
the increase of the parameter l for both accretion rates, the
observed luminosity increases as shown in Fig. 8. If we take
the accretion case dot M0 ∼ 8 × 10−5 M⊙=yr, we find that
the maximal value for the luminosity at particular l occurs at
the frequency ν ¼ 4.33 × 1013 Hz along with the following
values for the luminosity,

l ¼ 0.0∶νLmax ≃ 1.158 × 1033 erg s−1;

l ¼ 1.8∶νLmax ≃ 1.169 × 1033 erg s−1;

l ¼ 3.0∶νLmax ≃ 1.188 × 1033 erg s−1:

Finally, we can think about accretion efficiency, which is
calculated as the ratio of the rate of photons escaping from
the disk surface to infinity compared to the rate of mass-
energy transport to the black hole. There is a simple way to
estimate the efficiency ϵ of the accretion disk since it can be
found to be proportional to the specific energy of the
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FIG. 8. Left panel: The observed luminosity of the thin accretion disk for different values of l using the case M ¼ 106M0 and
_M0 ∼ 2.5 × 10−5 M⊙=yr. Right panel: The observed luminosity of the thin accretion disk for different values of l using the case
M ¼ 106M0 and _M0 ∼ 8 × 10−12 M⊙=yr. We have l ¼ 0 (black curve), l ¼ 1.8 (red curve), l ¼ 3.0 (blue curve), and l ¼ 4.0 (orange
curve) in both plots.
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moving particle in the disk, as measured at the marginally
stable orbit by

ϵ ¼ 1 − Ẽms: ð5:8Þ

Interestingly, for the efficiency of the accretion disk in
the Simpson-Visser spacetime, we find that this quantity is
not affected by the parameter l, and it is given by

ϵ ¼ 3 − 2
ffiffiffi
2

p

3
≃ 0.0571909588: ð5:9Þ

Although the radiating energy changes, we found that
based on the accretion efficiency ϵ, one cannot distinguish
the Simpson-Visser metric from the Schwarzschild geom-
etry. This quantity is important and provides information
about the efficient engine, in our case, the accretion disk,
for converting accreting matter’s energy into electromag-
netic radiation. It’s interesting to see that this quantity
remains constant and does not depend on the parameter l.
From the plot of luminosity as a function of the frequency
of the emitted electromagnetic waves from the accretion
disk, we saw that it depends on the spacetime geometry.
This, in turn, allows one to distinguish different spacetime
geometries. In addition, the observed luminosity depends
on the accretion mass rate. That means that in order to
constrain a given solution, we need a precise value for the
accretion mass rate for a given source and observational
data for the luminosity, which may be obtained by means of
other astrophysical observations (here, we have used two
examples of themass accretion rate).With this information in
hand, we can compare and test different geometries. Another
quantity of interest is the radiation energy flux, which also
encodes information about the spacetime geometry. In this
direction, we point out a similarmethod based on the thermal
radiation used by Bambi [66] to analyze the photon flux
number density as measured by a distant observer to test the
nature of the black hole andmodified gravity. In addition, the

so-called continuum-fitting method has been used, for
example, in Ref. [67] to constrain different geometries.

VI. CONCLUSIONS

The Simpson-Visser model has the additional benefit of
analytically smoothly shifting from black holes (singular or
regular) to wormholes (one-way or traversable). In some
ways, the regular black hole shown above in this paper is, in
fact, the conventional Schwarzschild solution for l ¼ 0.
This is a clear contrast to the scenario in which a collapsing
regular black hole bounces back into our own universe, and
it is a situation worth considering in its own right. It’ll be
interesting to see if we can tell the difference between a
regular and singular black hole and a wormhole. This
metric is particularly interesting because, depending on the
value of the regularization parameter l, it can either describe
a regular or singular black hole or a traversable or one-way
wormhole. Therefore, in this paper, we studied the optical
appearance of a thin accretion disk in the Simpson-Visser
spacetime. We calculated and illustrated the observed flux
distributions as viewed by a distant observer. The image
generated in the Simpson-Visser metric looks similar to that
of Schwarzschild. In addition, we studied the electromag-
netic properties of the accretion disk such as the temper-
ature and the radiation flux of the energy by the accretion
disk. It is shown that by increasing the regularized
parameter l, the temperature, as well as the radiating flux,
increases, compared to the Schwarzschild geometry. Thus,
for these solutions, we conclude that the specific signatures
that appear in the electromagnetic spectrum lead to the
possibility of distinguishing wormhole geometries from the
Schwarzschild solution by using astrophysical observations
of the emission spectra from accretion disks. As an
interesting result, we show that the accretion efficiency
remains constant and does not depend on l. In the near
future, we plan to use astrophysical data to constrain the
regularized parameter l.
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