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The speed of sound of the matter within neutron stars may contain nonsmooth structure related to first- or
higher-order phase transitions. Here we investigate what are the observable consequences of structure in the
speed of sound, such as bumps, spikes, step functions, plateaus, and kinks. One of the main consequences is
the possibility of ultraheavy neutron stars (with masses larger than 2.5 solar masses), mass twins in heavy
(with masses larger than 2 solar masses) and ultraheavy neutron stars. These stars pass all observational and
theoretical constraints, including those imposed by recent LIGO/Virgo gravitational-wave observations and
NICER x-ray observations. We thoroughly investigate other consequences of this structure in the speed of
sound to develop an understanding of how nonsmooth features affect astrophysical observables, such as
stellar radii, tidal deformability, moment of inertia, and Love number. Our results have important
implications for future gravitational wave and x-ray observations of neutron stars and their impact in
nuclear astrophysics.
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I. INTRODUCTION

Exotic degrees of freedom, such as baryons made of
strange quarks (hyperons), have been the topic of intense
discussion since they were first studied in neutron stars in
the beginning of the 1980s [1]. The new degrees of
freedom, in spite of being energetically favored at inter-
mediate densities, create new channels to redistribute the
Fermi energy and, as a consequence, inevitably remove a
source of pressure, making the matter equation of state
(EoS) softer. When the EoS model builders try to com-
pensate for this by changing some of their nuclear physics
interaction parameters, and, thus, producing an EoS that is
stiffer in the presence of hyperons, they very often generate
stars with larger radii. This apparent conflict, when
comparing predictions with observations, has been referred
to as the “hyperon puzzle” [2–4].
The possibility of hybrid neutron stars, containing an

inner core with deconfined quark matter, an outer core with
bulk hadronic matter, and a crust with nuclei, has drawn a
considerable amount of attention (see e.g., Ref. [5]). Hybrid
stars were first proposed in 1965 [6] and their stability
carefully investigated in the 1970s [7] and 1980s [8]. These
stars have recently resurfaced in light of new astrophysical
data from gravitational wave observations of possibly the
most massive neutron stars ever detected [9–19]. The
GW190814 event [9] has been interpreted as being pro-
duced by the coalescence of a compact binary, composed of
a heavy black hole and a mysterious compact object of
mass M ¼ 2.5–2.67 M⊙, for which an electromagnetic

counterpart was not detected. An argument has been made
that the mysterious compact object was a very low-mass
black hole [20–23]. However, this argument is not based on
a smoking gun observable derived from the GW190814
data itself, like measuring that the tidal deformability was
zero to sufficient accuracy to exclude neutron stars, which
have nonzero deformabilities. Rather, this black hole
argument is based on other more “indirect” reasons. One
such reason is that the two past LIGO events consistent
with neutron stars (GW170814 and GW190425), and the
distribution of pulsars in our galaxy suggest a neutron star
mass distribution that disallows ultraheavy neutron stars
(with masses above 2.5 M⊙). This conclusion, however,
hinges on small number statistics from the two LIGO
observations, and the assumption that all neutron stars in
the Universe look like those observed through radio
observations in our galaxy. Another reason for the argu-
ment presented above is based on the electromagnetic
emission coincident with the GW170817 event, which
suggests a maximum mass of ∼2.3 M⊙ [12,24,25]. This
conclusion, however, hinges on details of numerical rela-
tivity simulations that currently do not contain all of the
physics that may be relevant in binary neutron star mergers
(like viscosity, neutrino transport, and precise knowledge of
the EoS) [26–28].
Given these caveats, we are inspired here to investigate

what nuclear physics conclusions we would be led to if we
assumed the light companion of GW190814 was actually a
slowly-rotating neutron star. What EoSs can produce
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(slowly-rotating) neutron stars in the mass range of
M ¼ 2.5–2.67 M⊙, or heavier? Does the GW190814 event
exclude the possibility of a first-order phase transition
inside neutron stars, and thus the existence of mass twins
[13], i.e., neutron stars with very different radii but the
same mass? If one were to require that EoSs allow for
(slowly-rotating) ultraheavy neutron stars, with masses
M > 2.5 M⊙, what would the implications be for the
stellar radii and tidal deformability? How does the infor-
mation we have learned about neutron stars from this event
translate to information about the EoS and the speed of
sound of dense matter? Can we understand in detail what
the generic features of neutron stars that contain first-order
phase transitions in quark cores are?
The above questions are of great interest to the broader

nuclear physics community as they would influence our

understanding of the transition from hadronic (neutrons,
protons, hyperons, etc) to deconfined quark matter. The
nature of how heavy hadrons transition into light quarks
varies with temperature and baryon density, as well as with
other properties of the system, such as excess of strangeness
and chemical equilibration (or lack thereof). To start our
discussion, we review the main possible types of phase
transitions. These phase transitions are shown in a schematic
diagram of first-order, second-order, and third-order phase
transitions in Fig. 1 demonstrating their consequences on the
pressure, first-order baryonic susceptibility or baryon density
χ1 ¼ nB, second-order baryonic susceptibility χ2, and speed
of sound (squared) c2s . An nth-order phase transition is
where the nth-susceptibility (i.e., the nth derivative of the
pressure with respect to the baryon chemical potential,
χn ≡ ∂nP=∂μnB) becomes nondifferentiable. For a first-order

FIG. 1. Schematic diagram of the relationship between the order of the phase transition and effect on various thermodynamic
quantities: pressure, baryonic first-order susceptibility (or baryon density), baryonic second-order susceptibility, and speed of sound.
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phase transition, χ1 has a jump at a given chemical potential,
while for a phase transition of order n > 1, then χn>1 has a
divergence at some chemical potential. This behavior has
important implications for the speed of sound,which through
thermodynamic identities can be written as c2s ≡ dP=dϵ ¼
χ1=ðχ2μBÞ at zero temperature, where ϵ is the energy density.
In particular, during a first-order phase transition, the speed
of sound drops to zero in some finite range of baryon
densities, while during a second-order phase transition, the
speed of sound spikes to zero at a single value of the baryon
density (e.g., see [29–31]). In contrast, a crossover transition
is one in which all susceptibilities remain differentiable, and
the speed of sound therefore does not go to zero at all.
Because phase transitions of order three or higher are very
hard to measure, the nuclear community has sometimes
referred to higher-order phase transitions as crossovers. First-
order phase transitions that present mixtures of phases
(including pasta phases [32]) do not present c2s ¼ 0.
A related concept that is important for our analysis is that

of a critical point. This quantity is defined as the boundary
between a first-order and a higher-order phase transition,
and therefore a critical point occurs at a second-order phase
transition. A crossover phase transition is well established
to exist at finite temperatures (above 1012 K) and in a finite
range of baryon chemical potentials that includes zero [33]
but does not include the chemical potentials relevant to
neutron stars [34]. Therefore, if a first-order phase tran-
sition exists at low temperatures (specifically, inside neu-
tron stars and/or in neutron star mergers), then a critical
point must also exist at finite temperatures and somewhat
lower baryon chemical potential to separate the higher-
order from the first-order phase transition [35–37]. Such a
critical point has been dubbed the QCD critical point, and
current efforts are underway using heavy-ion collisions to
search for it, where the STAR experiment has measured the
most promising signals so far (kurtosis of net-proton
fluctuations) at 3.1σ significance [38]. For further discus-
sions see recent reviews [39–42].
An important consequence of a first-order phase tran-

sition is the possibility of mass twin stars. Twin stars were
first proposed in [43] for the general case of first-order
phase transitions, and in [44] for the specific case of
deconfinement to quark matter. Recently, twins have been
thoroughly studied in the case of a constant speed of sound
for quark matter [13,14,45], polytropes [46] or using two
different EoSs, one of which is easily adjustable [47]. The
second stable-branch family can potentially appear when
(i) the central stellar density reaches the threshold for a
strong first-order phase transition, creating an unstable
region in the mass-radius diagram, and when (ii) there is a
large enough portion of the star made up of matter that
reaches densities beyond the transition threshold and
described by a stiff enough EoS. Such first-order phase
transitions, in fact, are motivated from the studies of
deconfinement of quark matter. Reference [7] argued that

a phase transition to noninteracting 4-flavor quark matter
was unlikely inside stable stellar systems. Reference [8]
showed that a phase transition to a 3-flavor interacting
quark phase could generate stable stars. Finally, Ref. [48]
showed in detail how to achieve stability for the case of two
conserved charges, baryon number, and electric charge. In
this paper, although we do not focus on the nature of first-
order phase transitions themselves, we do investigate
density regimes of several times nuclear density, in which
deconfined quark matter is expected to appear [49].
Given this, in this paper we attempt to address the

questions listed above by building a large number of EoSs
based on the functional form of the speed of sound,
following the prescription of [10]. These configurations
allow for one or more “bumps” in the speed of sound,
with different low density (below nuclear saturation)
crusts, shapes, widths, heights, wells, and intervals in
which the speed of sound falls to zero (associated with
the strength of a first-order phase transition), which are
consistent with features found in realistic nuclear physics
EoSs [19,47,50–75]. We investigate in detail which
conditions generate ultraheavy stars (hereon defined as
M ⪆ 2.5 M⊙) and which conditions lead to a second family
of stable stars with or without twin configurations.

A. Executive summary

The purpose of this paper is to test the possible func-
tional forms of the neutron star EoS using known gravi-
tational wave and x-ray constraints in order to understand
qualitative features of the speed of sound. There is a
specific focus on bumps in the speed of sound that can
arise due to new hadronic degrees of freedom [73],
deconfinement crossover phase transitions [76,77], quar-
kyonic matter [52,63,66,72,78], breaking of chiral sym-
metry into a gapped Fermi surface [70], certain vector
interactions [71], and first-order phase transitions that
produce either a continuous mass-radius sequence or mass
twins. These features are of interest because they can signal
deconfined quark degrees of freedom within the core of
neutron stars, which are of broad interest to a number of
fields, including high-energy physics. Below, we provide
an executive summary of our main conclusions:
Result 1: The maximum mass of neutron stars and

observational constraints from LIGO/Virgo and NICER
observations. When considering the maximum possible
mass of a neutron star, the radius measurement from the
GW170817 event [79] (deduced from its tidal deform-
ability) place the tightest constraints. The radius measure-
ment of PSR J0740þ 6620 from NICER observations
[80,81] currently does not have sufficiently small enough
uncertainties to add further constraints. This is because, in
general, EoS models that lead to large maximum masses
possess very stiff EoSs, resulting in larger stellar radii. The
impact of LIGO/Virgo mass-radius constraints on the
maximum mass, however, depend on the analysis method
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employed (spectral EoS versus universal relations). The
two methods lead to different radius posteriors (differing by
about 0.5 km) because they employ different priors. Even
such a small discrepancy in radius posteriors can affect the
limits by about 10% on the maximum possible mass of
causal neutron stars. Combining these discrepancies with
uncertainties in the crust of neutron stars, we estimate that
the absolutely maximum mass of a neutron star could be in
the range of M ¼ 2.5–3.6 M⊙ and R ¼ 11–16 km without
violating any observational constraints.
Result 2: Functional form of c2s to reach M > 2.5 M⊙

from the GW190814 event. Even though there are a number
of constraints on the neutron star EoS, there is still a wide
parameter space available when constructing EoSs that can
reach masses as high as the light component of GW190814
i.e., reproduce M ≥ 2.5 M⊙. The only generic feature that
all of these EoSs share is a steep rise in c2s at low densities
nB ≲ 3nsat. Nevertheless, with the existing data, one cannot
conclude that a bump in the c2s is present, because similar
results are also consistent with a plateau. We find that
certain features in c2s can either shift the maximum mass up
or down without affecting the radius (e.g., the width of a
peak in c2s or the end point in c2s) or can shift both the mass
and radius, i.e., the location of the peak (peaks at large nB
are inversely correlated with the mass and radius). Finally,
much more complicated c2s structures are entirely possible
within a neutron star, such as double bumps, so a priori
assumptions of relatively smooth EoSs would eliminate a
number of reasonable and realistic EoSs. This then allows
us determine the maximum possible central baryon density
reached within our generated EoSs. If one assumes that the
light component of GW190814 was a neutron star, then we
are not able to generate an EoS with a central baryon
density greater than ∼6nsat. Without this assumption, we
find that the maximum central baryon density that we were
able to generate in our EoS model was less than ∼8nsat.
Result 3: Neutron star EoSs that are consistent with the

binary companion to V723 Mon. Recently, a dark object of
a massM ≥ 2.91� 0.08 M⊙ was measured [82]. Although
this companion is likely a black hole, we consider what the
implications on the EoS would be if it were a neutron star.
We construct a number of EoSs that are able to reach
up to such large masses with radii in the range of
R ∼ 12.5–15.5 km. If such a massive neutron star exists,
then its tidal deformability would be as low as Λ ∼ 2.5.
This value is very small, and in fact quite close to that of a
black hole. This implies that (a) one does not require an
exotic compact object to reach these small tidal deform-
abilities, and (b) it may be quite difficult to measure such
small tidal deformabilities accurately enough to exclude the
black hole limit with gravitational wave observations.
Result 4: Influence of the crust on the stellar maximum

mass and radius. While the EoS at low densities is better
constrained due to a better understanding of nuclear
physics in that regime combined with symmetry energy

constraints, uncertainties on the order of 10% still remain
[83–85]. To take that into account, we vary the description
of our EoSs in this “low” density regime (below 1–3
nuclear saturation density) using three different crust
models (QHC19, SKa, and SLy). We find that the low
density part of the EoS plays a significant role for neutron
stars of mass M ∼ 1.4 M⊙, and also, the crust affects the
maximum possible causal EoS that one can produce.
Interestingly enough, the crust affects the radius of neutron
stars as massive asM ∼ 2 M⊙. Therefore, future constraints
on the radius coming from the NICER observation of PSR
J0740þ 6620 [86,87] with smaller uncertainties would
also be important for learning about the neutron star EoS at
low densities.
Result 5: First-order phase transitions in heavy neutron

starsM ≥ 2 M⊙. We are able to generate a number of EoSs
that lead to disconnected twins that reach a maximum mass
larger thanM ≥ 2 M⊙, in contrast to [46], due to nontrivial
structure in c2s . The large maximum mass can occur in
either the first or second stable branch. Even more massive
stars, potentially as massive as the low-mass component of
GW190814, do not preclude the possibility of a first-order
phase transition within a neutron star. Applying first all
known LIGO/Virgo/NICER and saturation density con-
straints, we are able to construct mass-radius diagrams that
have kinks or connected twins but not disconnected
branches. The only way we can produce mass-radius
diagrams with disconnected twin branches is if we ignore
the radius constraint from GW170817. Of course, as shown
in [14], one can produce disconnected twin branches at
very low mass, but this requires a first-order phase
transition at potentially too low baryon density (below
or close to nsat).
Result 6: First-order phase transitions and bumps in the

c2s . We construct an assortment of mass twins that also
contain a range of structure in the c2s , such as bumps,
spikes, kinks, and slants, and we determine qualitative
observational features that are of interest. For instance, if a
narrow bump is placed before a first-order phase transition
well, then the mass-radius curve presents disconnected
mass twins; but if the bump is widened, then the mass-
radius curve only has a single stable branch. A more
extended phase transition (in density) switches from having
a connected branch, to a kink, to disconnected or connected
twins, and finally, to only one stable branch. In the case of
twins, the more extended the phase transition, the larger the
radius in which they are distributed. Additionally, after the
phase transition, one does not need a step function to a
constant c2s to produce disconnected mass twins; a slanted
c2s that goes to a plateau suffices. A softer slope leads to a
flatter second stable branch, whereas a stiffer slope turns
the second stable branch more vertical. A similar effect is
seen if one increases the height of the plateau in c2s after the
phase transition (a larger value turns the second branch
more vertical), although values that are too small prevent a
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second stable branch entirely. Varying the width of the
phase transition, one can switch between a disconnected
mass twin, or a single stable branch, but this also depends
on other features of the EoS, like the position and width of
the bump.
Result 7: Approximately universal relations for EoSs

with structure. We have calculated the I-Love-Q relations
(inter-relations between the moment of inertia, the Love
number and the quadrupole moment of rotating stars) for a
large set of EoSs with various kinds of structure in the
speed of sound (such as kinks, spikes, bumps, plateaus,
first-order phase transitions, etc.). We find that no matter
what we do to the speed of sound, the I-Love-Q relations
continue to be roughly the same. The insensitivity to the
wide variations in the speed of sound that we considered is
such that the relative fractional variability is below 1.5%.
This implies that inferences drawn on any two quantities in
the I-Love-Q trio from the measurement of the third are
robust to structure in the speed of sound.
The remainder of this paper presents the details of the

conclusions described above. Section II discusses con-
straints from gravitational wave observations, astrophysics,
causality, and nuclear physics. Section II C 2 outlines our
formalism to create structure in the speed of sound and how
that connects to EoSs. Section IV provides explicit exam-
ples of EoSs that lead to mass-radius sequences that have
maximum masses of M ≥ 2.5 M⊙, tests causality con-
straints, and verifies the influence of the crust. Section V
incorporates first-order phase transitions into nontrivial
speed of sound models and studies the possibility of
creating heavy mass twins. Section V B 3 compares the
properties of stars with first-order phase transitions and
higher-order transition structure in the speed of sound,
including the I-Love-Q relations. Section VII concludes
and points to future work.

II. CONSTRAINTS ON THE EoS

In this section, we discuss the observational and theo-
retical constraints one can place on the EoS. We begin by
describing how to compute observables given an EoS. We
then proceed with a description of observational con-
straints, and conclude with theoretical constraints.

A. Observable quantities

Let us begin by discussing how we connect EoSs to
astrophysical observables in a general sense. We provide
here only a short summary and refer the interested reader to
Ref. [88] for further details.
Consider an isolated neutron star that rotates uniformly

with low enough angular velocity Ω that the Einstein
equations can be expanded in powers of Ω. Angular
velocity is a dimensionful quantity, so by “slow-rotation”
here we mean slow relative to the mass-shedding limit. This
approximation is valid for most stars, even millisecond

pulsars, with the exception perhaps of proto-neutron stars
shortly after their birth from a supernova explosion [89].
At OðΩ0Þ, the ðt; tÞ and ðr; rÞ components of the

Einstein equation, together with the conservation of the
stress-energy tensor, yield the well-known Tolman-
Oppenheimer-Volkoff (TOV) equation and the continuity
equation. Given an EoS and a central energy density ϵc, the
solution to these equations yields the spacetime metric for a
star of a certain mass and radius. By varying the central
density, one can then produce a mass-radius curve, until the
sequence becomes unstable, i.e., dM=dεc < 0. When con-
sidering twin stars, there may be more than one stable
branch, so it is important to continue to solve the TOV
equations passed the first stable branch. Note that the
second branch is only stable if the mass-radius curve rotates
clockwise with increasing central pressure at the extremum
that gives raise to it [90]. Alternatively, a slow conversion
from hadronic to quark phase inside stars could turn
dM=dεc < 0 stars dynamic stable due to how the phase
interface moves under stellar pulsation (see Ref. [91] and
references therein) but, so far, there is no strong evidence
that this is the case [92].
With the OðΩ0Þ solution under control, one can then

proceed to obtain the OðΩÞ andOðΩ2Þ corrections. At first
order in Ω, one finds a correction to the gravito-magnetic
sector of the spacetime metric, whose exterior asymptotic
behavior is controlled by the moment of inertia I. This
quantity can be obtained once the interior and exterior
solutions at linear order in Ω are matched at the stellar
surface. At second order in Ω, the diagonal sector of the
metric is modified, leading to a coupled set of differential
equations. The solutions to these equations in the interior
and exterior of the star are then matched at the stellar
surface through the appropriate choice of integration
constants, and this determines the quadrupole moment of
the star. The latter controls how the mass-energy redistrib-
utes into an oblate spheroid due to the rotation of the star.
As in the case of the mass-radius relation, the moment of
inertia and the quadrupole moment can be computed once
an EoS and central density are selected. Repeating the
calculation over a set of central densities then leads to the
I–C and Q–C curves, where C ¼ M=R is the stellar
compactness, or equivalently the I–M and Q–M curves.
With the mass-radius, moment of inertia and quadrupole

moment of an isolated star computed, one can then shift
gears to a star that is no longer rotating but is also no longer
in isolation. When in the presence of a companion, a
neutron star will tidally deform. The redistribution of the
mass energy inside the star into an oblate spheroid due to
the external perturbation can be captured through a multi-
polar decomposition. At leading order in perturbation
theory, the quadrupole moment dominates the deformation.
How much of a quadrupolar deformation is excited, given
an external quadrupolar tidal field, is controlled by the
(electric-type, l ¼ 2) Love number, or its dimensionless
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counterpart, the (electric-type, l ¼ 2) tidal deformability
Λ.1 The calculation of the tidal deformability requires the
solution to the linearized Einstein equations, which in turn
requires the solution of a differential equation in the interior
and exterior of the star that must be made continuous and
differentiable at the stellar surface through the appropriate
choice of integration constants. With this done, the tidal
deformability can be computed from this solution and its
derivative evaluated at the stellar surface. As in the case of
the moment of inertia or the quadrupole moment, one
choice of central density yields one value of the tidal
deformability for a given star. Repeating the calculation
over various central densities, one can then obtain the Λ-C
(sometimes called Love-C), or Λ-M (sometimes called
Love-M) relations.

B. Observational constraints

1. Gravitational wave observations

The LIGO/Virgo Collaboration (LVC) used LIGO and
Virgo data of the GW170817 [79] event to place the first
gravitational wave constraints on the EoS [93], which we
now review. The GW170817 event consisted of gravita-
tional waves emitted in the inspiral, late inspiral and merger
of a compact binary composed of compact objects with
masses ðm1; m2Þ ∼ ð1.5; 1.3Þ M⊙ [79]. The gravitational
waves encode the tidal deformabilty of the compact object
in the waveform phase, and a nonzero posterior on these
quantities (together with an assumption of small spins)
ensured the compact objects were neutron stars and not
black holes. The question then is how to go from informa-
tion about the tidal deformabilities to the EoS of matter.
The LVC followed two approaches.2 In the first

approach, which we shall call the “universal relations
approach,” they used approximately EoS-insensitive rela-
tions to perform EoS inferences. These are universal
relations between the two tidal deformabilities of compact
objects in a binary (the so-called binary Love relations)
[97,98], as well as between the tidal deformability of any
one of the compact objects and its compactness (the so-
called Love-C relations) [98]. The LVC first used the binary
Love relations to express the waveform phase entirely in
terms of one of the two tidal deformabilities (thus analyti-
cally breaking parameter degeneracies in the waveform

phase). They then used the binary Love relations again to
infer the second tidal deformability from their measurement
of the first one. Finally, they used the Love-C relations to
infer the compactnesses of the two stars. This last inference,
together with their measurements of the component masses,
yielded an inference on the stellar radii of the two stars.
The second LVC approach used a specific model of the

EoS to carry out parameter estimation, which we shall call
the “spectral EoS approach.” The phenomenological spec-
tral EoS is constructed from c2s≔dp=dϵ¼ΓðpÞp=ðϵþpÞ,
where p and ϵ are pressure and energy density respectively,
while Γ is the adiabatic index for a polytrope, which is
expanded via Γ ¼ exp½Pk γk logðp=p0Þk�, where γk are
parameters to be fitted and p0 is the smallest pressure at
which the spectral EoS is used (below that pressure, the
LVC used a SLy EoS). The LVC then sampled in the γk
(including up to k ¼ 4) and in the central densities directly,
when comparing the waveform model to the data.
Importantly, the priors the LVC used for γk do not allow
for the possibility of first-order phase transitions or any
other sharp feature in the speed of sound. In this way, they
were able to construct posterior probability distributions for
the γk and directly for the EoS. With this information, one
can also infer a posterior distribution on the M-R plane, as
well as on other inferred quantities, like in the I-M place
and the Love-M plane.
Each of the two approaches have advantages and

disadvantages. The obvious advantage of the universal
relations method is that one never has to specify a func-
tional form for the EoS, but since the universal relations are
not exact, one has to marginalize over the residual EoS
sensitivity. Conversely, the advantage of the spectral
EoS approach is that one can infer a posterior on the
EoS directly, so all EoS-dependent quantities can be easily
computed. Specifying a functional form for the EoS,
however, has its own problems, since it can bias inferences
related to nuclear physics for the cases in which Nature’s
EoS cannot be well-represented by the spectral EoS model.
The posterior distributions in the mass-radius plane one
obtains in these two approaches, however, are consistent
with each other, with the spectral EoS posteriors being
tighter than the universal relations.
Let us also mention, in passing, that most of the informa-

tion about the tidal deformabilities come from the very, very
late inspiral part of the coalescence. Indeed, the analysis of
the GW170817 that led to posteriors on the tidal deform-
abilities is somewhat sensitive to (i) the accuracy of gravi-
tational wave models near but right before merger, and
(ii) any calibration of the detector at those high frequencies.
TheLVCdidcarryout a careful analysis, extracting the signal
and analyzing it with various waveform models and noise
representations. These various analysis suggest that the
posteriors on the tidal deformability (and thus on the
mass-radius plane) are robust to these systematics, yet the fact
that these systematics exist should be kept in mind.

1Technically, there are two types of tidal deformabilities—an
electric-type and a magnetic-type—that are characterized by how
they transform under a parity transformation. The electric-type
tidal deformability dominates, affecting the diagonal sector of
the spacetime metric. The magnetic-type enters at higher order
in post-Newtonian theory, affecting first the gravito-magnetic
sector.

2Recently, there have been new studies of LVC data that use an
EoS model-agnostic approach, in terms of Gaussian processes
[94–96], which leads to somewhat different confidence regions,
though given the degree of information contained in the data, all
of these are technically statistically consistent with each other.
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The LVC has recently observed another interesting
event, GW190814, which consisted of the gravitational
waves emitted in the inspiral and merger of a compact
binary with component masses m1 ≈ 25.6 M⊙ and
m2 ≈ 2.59 M⊙. For this event, however, the signal-to-noise
ratio was not large enough to measure the tidal deform-
ability to be zero with enough accuracy to exclude neutron
stars, which have nonzero deformabilities. Lacking this,
and any electromagnetic counterpart, it is not possible to
determine whether the lighter object was an ultralight black
hole or an ultraheavy neutron star from that data alone. In
this paper, we will investigate whether it is possible or not
to form such ultraheavy neutron stars.

2. Astrophysical observations

The NICER collaboration used x-ray data on PSR
J0030þ 0451 to place the first NICER constraints on
the EoS [80,81], which we now review. PSR J0030þ
0451 is an old (roughly 7.8 Gyr old), isolated millisecond
pulsar with a period of about 4.87 ms. x-rays emitted by
the hot spots on the surface of the star (hotter relative to the
average surface temperature) are then recorded by the
NICER instrument as a function of time, allowing for
the resolving of the x-ray pulse profile. This profile encodes
information about a variety of properties of the system,
such as the hot spot shape, but in particular also information
about the compactness of the star and its mass. The
question here is how to model these pulses and how to
analyze this data set in practice.
The collaboration followed two approaches, which we

shall refer to as the “Amsterdam analysis” (AM) and the
“Illinois-Maryland analysis” (IL/MD). The two approaches
differ in the way the hot spots are modeled, and in the way
the parameter space is explored (e.g., Amsterdam used
nested sampling, while Illinois-Maryland used Markov-
Chain Monte Carlo sampling) and their choice of priors.
These differences led to different confidence regions in the
mass-radius plane, although the differences are statistically
consistent with each other [80,81]. A recent comparison
paper [86] suggests that the use of MultiNest may have led
to nonconvergent results with live-point number, sug-
gesting an explanation for the discrepancy in the IL/MD
and the AM posteriors in the mass-radius plane.
TheNICERcollaboration has also recently presented their

analysis of themillisecond pulsar, PSR J0740þ 6620, with a
period of about 2.9 ms, in a binary systemwith a white dwarf
[86,87]. Because of the companion, the mass of the pulsar
was known from pulsar radio observations to be about
2.14 M⊙. For this pulsar, the NICER team was able to
use x-ray measurements from XMMNewton to estimate the
background. As before, two analysis were carried out on this
data set, leading to two posteriors in the mass-radius plane
that are statistically consistent with each other [86,87].
Another set of observations that we will refer to in this

paper are those of the dark companion to the bright nearby

red giant V723 Mon. Due to the geometrical orientation of
the binary system’s orbit, the components eclipse each
other. From the light curve of this eclipsing binary,
researchers were able to infer that the companion to
V723 Mon has a mass of M ≥ 2.91� 0.08 M⊙ [82].
This object is, therefore, either a black hole in the so-
called mass gap, or an ultraheavy neutron star (i.e., a
neutron star with mass larger than 2.5 M⊙).

3. Comparison between LIGO/Virgo
and NICER observations

Figure 2 shows the various observational constraints we
have discussed so far in the mass-radius plane (see caption
for details). The radius constraints for GW170817 differ
between the two LVC analysis by roughly 0.5 km, and it
stems from the fact that the spectral EoS approach included
the prior that only EoSs that support a 2 M⊙ star or heavier
are allowed (a prior that was not imposed in the universal
relations analysis). For J0030þ 0451, The IL/MD analysis
extends more, in the direction of wider radii, which implies
that it is the least constraining between IL/MD and AM (the
maximum mass and the lowest radius of the AM posterior
do not strongly affect our results because more massive
neutron stars tend to be produced by EoSs that reproduce
intermediate mass stars that are wider).

Am IL/MD

J0740+6620

Companion V723 Mon

GW190814

GW170817 J0030+0451

uni rel specEOS IL/MD

AM
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FIG. 2. Observational constraints on the neutron star mass-
radius plane from LIGO/Virgo and NICER data. The yellow and
pink (looks orange when overlapped) regions correspond to
90% confidence regions, obtained from the GW170817 event
using the universal relations and spectral EoS approaches,
respectively. The brown and green regions correspond to
90% confidence regions obtained from NICER data on PSR
J0030þ 0451 and J0740þ 6620, using the Illinois-Maryland
and the Amsterdam analysis, respectively. Finally, the horizontal
regions are 90% confidence regions for the mass of the lighter
object in GW109814 and the Companion V723 Mon object.
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The real impact of different constraints on nuclear
physics is strongly dependent on which range and which
quantity the observations constrain. For example, many
standard EoSs (assuming they do not describe strange
quark stars, dark matter, or mirror matter) predict that a
radius in R ∼ 11–17 km for a star with mass M ∼ 1.4 M⊙
[2,3]. Thus, the low end of the radius constraints from
LIGO/Virgo and NICER data does not affect the vast
majority of EoSs. On the other hand, the high-end of the
radius constraints from GW170817 does provide a signifi-
cant constraint on many EoSs, especially when one con-
siders the possibility of very massive neutron stars. Since
we assume that the overlap region between the J0030þ
0451 NICER and GW170817 LIGO/Virgo constraints is
the most likely for stars of about 1.4 M⊙, then this implies
the maximum radius is constrained from the GW170817
data. Henceforth, for the most part, we will choose to show
our results in comparison to constraints obtained from the
universal relations analysis, together with the Illinois-
Maryland analysis. However, as discussed above, some
gravitational wave constraints are susceptible to the func-
tional form of the EoS used, so in Sec. IV B 2 we explore
the approximately 0.5 km difference in the constraints
obtained from the use of an spectral EoS and the use of
universal relations.

C. Theoretical constraints

1. Causal limit and pQCD

A theoretical bound that all neutron star EoSs must not
violate is causality. This means that the speed of sound of a
neutron star cannot be greater than the speed of light, i.e.,
0 ≤ c2s ≤ 1 (in natural units). A way to probe the absolute
limits of the largest possible neutron stars is to generate an
EoS that transitions from a crust (at low densities) to the
causal limit, i.e., c2s → 1. Typically, this is done with almost
a step function. In this paper, however, when we explore the
causal limit, we always incorporate a slant to avoid a
divergence in the derivative of c2s . We discuss the effects of
varying the slant inclination in section V. This kind of study
can place bounds on the absolute maximum neutron-star
mass for a specific crust EoS and specific stellar radius
constraints.
A somehow opposite constraint comes from perturbative

QCD techniques, which have found that c2s → 1=3 from
below at large baryon densities [99–101]. Currently, the
lowest estimate for the applicability of this argument is at
nB ≳ 40 nsat, which is well beyond the maximum central
density of all stars shown in this paper. However, it is still
interesting to study the consequences of the final value that
c2s reaches at its maximum central density in neutron stars,
which we also explore in this paper. Furthermore, if quark
matter is indeed reached with the neutron star densities, the

only explanation for a further significant decrease in speed
of sound is the appearance of new degrees of freedom,
further phase transitions to other quark phases with differ-
ent symmetries [53,56], or drastic changes in the inter-
actions [71].

2. Nuclear physics constraints

Assuming that the constituents of the neutron star in
some region are baryons, the hadronic matter in this region
must present properties that are compatible with the
corresponding reliable theoretical predictions and labora-
tory experimental data. The former comprehends ab initio
approaches to model the attractive and repulsive compo-
nents of the strong interaction between hadrons. In par-
ticular, chiral effective field theory produces reliable
calculations for pure neutron matter for densities that
extend a little beyond saturation density (see, for example,
Fig. 2 in Ref. [101]), which we define next.
Hadrons are bound together inside nuclei by the residual

strong force, which is short-ranged. This gives rise to the
phenomenon of saturation, imposing a limit for the size of
nuclei and producing an average nuclear baryon density of
ρsat ∼ 2.3 × 1014 g=cm3, or equivalently an average nuclear
number density of nsat ∼ 0.16 fm−3; we will refer to the
latter as the nuclear saturation density [102]. This value can
be calculated as the density that corresponds to the
minimum in the binding energy per hadron. Several
properties have been measured for nuclei at this density,
including binding energy, incompressibility, and effective
mass of nucleons. Hadronic models are constructed in such
a way that they reproduce saturation properties at saturation
density for isospin symmetric matter (i.e., containing the
same amount of neutrons and protons).
Since neutron-star matter is not isospin symmetric due to

the neutronization process that takes place in supernova
explosions (combined with forbidden decays due to Pauli
blocking), hadronic models that are used in astrophysics
must in addition reproduce asymmetric properties. This is
done by modeling the energetic cost of producing asym-
metric matter (much more incompressible than symmetric
matter) to be in agreement with experimental data of
symmetry energy at saturation density and its slope
[103]. The latter is a very important quantity, as it guides
models beyond saturation. A lower slope of the symmetry
energy implies a less incompressible (more soft) EoS at
intermediate densities. Such a slope leads to neutron stars in
better agreement with NICER data and LIGO/Virgo
data [104].
At larger densities (beyond 2 nsat) heavier hadrons are

expected to appear. The uncertainties in their properties only
increases the uncertainties in themodeling of the neutron star
core, independently of those being hyperons [105], Delta
resonances [106], or negative parity states [107].
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III. MODELING NEUTRON STAR EoS WITH
FIRST-ORDER AND HIGHER-ORDER

PHASE TRANSITIONS

In the previous section we discussed constraints that have
been imposed on the EoS of neutron stars from observations
and theoretical considerations. Now we discuss how to
build EoSs that satisfy these constraints. One key feature of
our model-building, however, is that we will only consider
EoSs that contain one of two types of structure: first-order
phase transitions or higher-order phase transitions. An EoS
with a first-order phase transition corresponds to one in
which there exists a region in energy density ϵ inside which
the speed of sound c2s ≔ dp=dϵ vanishes (forming a well),
or equivalently, in which pressure p is a constant across a
range of ϵ. By higher-order phase transition structure, we
mean regions in p–ϵ in which the speed of sound behaves
nonmonotonically, for example presenting kinks, bumps,
jumps, spikes, or plateaus. A higher-order phase transition
could be triggered by a new state of matter or by new
degrees of freedom (or simply by different interactions, as
discussed above). First-order phase transitions, on the other
hand, are usually related to the appearance of a new state of
matter, such as deconfined quarks. In either case, simple
relations among central speed of sound and stellar masses
[108] do not apply.
Why do we focus on such EoSs? EoSs containing only

nucleonic degrees of freedom within the core of a neutron
star generally have speeds of sound c2s that monotonically
increase with increasing baryon density nB. However, at
large enough nB, nucleonic EoSs often become acausal
(c2s > 1), as demonstrated in Fig. 3 with the SLy EoS,
where nsat ≔ 0.16 fm−3 stands for nuclear saturation den-
sity. The inclusion of more exotic degrees of freedom at
large densities, such as hyperons or quarks naturally
creates a nonmonotonic structure in the speed of sound,
with kinks, bumps, jumps, spikes, wells, or plateaus
[5,19,47,51,52,62,63,69–75,109,110]. This is also demon-
strated in Fig. 3 with the QHC19, QMC-A, triplets, and
various versions of the chiral mean field (CMF) model.
QHC19 is an EoS constructed with a percolation to quark
matter described by a (2þ 1)-Nambu-Jona-Lasinio (NJL)
model [77], which leads to a bump followed by a dip in c2s .
The QMC-A is an EoS that includes valence quarks inside
nucleons and hyperons interacting self-consistently
[73,111]. The kinks associated with the appearance of
hyperons combine into a larger bump that brings the speed
of sound below c2s ¼ 1=3. The triplet EoS is a combination
of a density-dependent relativistic mean field model with
nucleons and hyperons, a two-flavor color-superconducting
(2SC) phase, and a color flavor-locked (CFL) phase [53].
The two distinct phase transitions reproduce two EoS wells.
CMF is an EoS constructed from a chirally-symmetric
Lagrangian that describes hadrons and quarks within the
same formalism. Figure 3 shows five realizations of the

CMF EoS—the original description with hyperons [112]
and a first-order phase transition to quark matter connected
through a mixture of phases [113], a new parametrization
with extra vector interactions and a first-order phase
transition to quark matter (but now without a mixture of
phases) [11], and, finally, two EoS that include an excluded
volume for the hadrons, resulting in a higher-order phase
transition to the quark phase (shown for two different
parametrization of the strange vector quark couplings) [50].
The appearance of hyperons and higher-order phase tran-
sition to quarks appear as kinks or bumps of different sizes.
The first-order phase transition reproduces a small well
with c2s ¼ 0 and the mixture of phases presents very small
c2s for an extended range of densities. The excluded volume
of hadrons generates a large raise in c2s , which can generate
stable twin stars (for the CMFexc with ξ < 0). This figure
clearly shows that realistic neutron star EoSs contain
nonmonotonic structures in the speed of sound that would
be impossible to model accurately with a spectral EoS
(unless a very large number of γk constants are included).
The approach we will follow in this paper is to create

functional forms of the EoS using the speed of sound, c2s ,
directly. At low densities we use well-established crust
EoSs (SLy is our default, but we study the consequence of
the QHC19 [77] and SKa [114] crusts as well), and at a
transition baryon density n1 ∈ ð1.5–3Þnsat, we switch to a
new set of functional forms for the EoS, as sketched in
Fig. 4. The functional forms have a transition piece that is
either a linear function, a quadratic function, or a

SLy (npe only)

QHC19 (npeq)

CMF (npeH)

CMF (npeH+mix+q)

CMFvec (npeHq)

QMC–A
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Triplets
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FIG. 3. Comparison of the speed of sound squared, calculated
from the SLy EoS (nþ pþ e), the QHC19 EoS (nþ pþ
eþ quarks), the CMF EoSs (nþ pþ eþ μþ hyperonsþ
quarks), the QMC-A EoS (nþ pþ eþ μþ hyperons), and the
triplets (nþ pþ eþ μþ hyperonsþ quarks) EoS as a function
of baryon number density in nuclear saturation units. EoSs
constructed from state-of-the-art models generically lead to
nontrivial, nonmonotonic structure in the speed of sound.
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hyperbolic tangent (smooth transition) function of the
energy density. This transition piece connects the crust
to a structure piece once a baryon density n2 is reached.
The structure piece can model a smooth bump, a spike, a
flat plateau, oscillations, or a plateau at c2s ¼ 0, which
defines a first-order phase transition. We restrict the, in
principle infinite, space of structure functions as follows:
(a) Causality: 0 ≤ c2s ≤ 1,
(b) Switching density: n1 ≥ 1.5nsat,
(c) Mass-radius relationship must fit within known con-

straints by LIGO/VIRGO/NICER [80,81,93,115].
Regarding the last point, we here use the Illinois-Maryland
analysis of the NICER data for J0030þ 0451 and the
universal-relations analysis of the LIGO/Virgo data for the
GW170817 event. Additional constraints arising from
the analysis of PSR J0740þ 6620, from the analysis of
GW170817 with a spectral EoS, from GW190814, or from
the companion of V723Mon are also shown in a few figures
for comparison. At very large densities, i.e., nB ∼ 40nsat, one
can also require that c2s → 1=3 from below [99–101], which
is sometimes referred to as the conformal limit. However,
since all of our EoSs have maximum central densities below
nmax
B ≤ 10nsat, this requirement has no effect on our func-

tional forms. We have created aMathematica notebook that
can reproduce these EoSs, and is available at GitHub [116].

A. Low density (crust) EoS

As a default, we use the SLy EoS [117–120] for our low
density regime, nB ≲ 2nsat, although two other prescriptions
are also used for comparison. The SLy EoS employs a
nuclear interaction of the Skyrme type and generates a
unified EoS from crust to a liquid core of neutrons, protons,
electrons, andmuons. The crust has an effective Hamiltonian
with the Argonne two-nucleon interaction AV18 and it
includes the Urbana model of three-nucleon interactions.
The second prescription we use is that of the QHC19

EoS. It contains purely hadronic degrees of freedom in the
crust, whose free energy is calculated using a variational

method [121]. We employ this framework up to a baryon
number density of 2nsat, where a transition to a quark
matter phase takes place (described by a 2þ 1 NJL model)
via percolation, which is comparable to a crossover.
A third prescription we explore is that used in the SKa

EoS [122–124]. The physics at the microscopic level is
very similar to that of the SLy EoS, in which a Skyrme type
interaction is adopted to generate a unified EoS. However,
this single nucleon approach is extended to incorporate the
effects of nontrivial clustering via a nuclear statistical
equilibrium method. Additionally, the outer crust employs
a variational method, making use of available experimental
mass tables of nuclei.

B. Transition function

We often need to connect different pieces of the EoS to
describe different regions of the star. This could be the crust
and the core or just two difference structures like a bump
and a phase transition. Let us say that the low density
function that we need to connect is f1ðnBÞ and the high
density function is f2ðnBÞ. Typically, we start our con-
nection from f1ðnBÞ to the transition piece at n1 and we end
our connection at n2. In this work, we have defined three
different transition functions.
The first function we use is a linear transition function,

flinðnÞ≡mxþ b n1 < nB < n2; ð3:1Þ

where

m ¼ f1ðn1Þ − f2ðn2Þ
n2 − n1

; b ¼ f1ðn1Þ −m · n1: ð3:2Þ

This gives a kink in c2s when connected to f1ðnBÞ
and f2ðnBÞ.
The next function provides a smooth transition between

two functions by using a hyperbolic tangent,

ftanhðnBÞ≡ SðnBÞf2ðnBÞ þ ½1 − SðnBÞ�f1ðnBÞ; ð3:3Þ

where SðnBÞ is a smoothing function defined as

SðnBÞ ≔ 0.5þ 0.5 tanh ½ðnB=nsat − aÞ=b�; ð3:4Þ

where b determines the width of the smoothing region and
a is an offset parameter. Here, n1 and n2 have some
arbitrariness as the two functions smoothly connect to
each other.
Lastly, we use a quadratic function to transition. The

primary reason for this is to change a function from
concave to convex (or visa versa). In particular, we employ

fquadðnÞ≡ ðnB − x0Þ2 þ y0 n1 < nB < n2; ð3:5Þ

where we have defined

FIG. 4. Flow chart of the piecewise functional forms of the
speed of sound used to create EoSs. More complicated structures
in the speed of sound can be created with multiple transition and
structure functions.
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x0 ¼
f2ðn2Þ − f1ðn1Þ þ ðn21 − n22Þ

2ðn1 − n2Þ
; ð3:6Þ

y0 ¼ f2ðn2Þ − ðn2 − x0Þ2: ð3:7Þ

This is used when we want to create a kink in the c2s , for
instance. With these there different transition functions, we
are able to connect the crust to the core (or multiple layers
of structure) quite easily.

C. Structure function

In this paper, we build in multiple different types of
structure functions that we detail below. We turn on our
structure function at the baryon density n2, and in some
cases, connect multiple structure functions together, e.g., to
another function f2ðnBÞ that could be connected to another
f3ðnBÞ at n3, where f3 may be either a transition function
or another structure function.
Most commonly, we build bumps or spikes into our EoS

through a structure function of the form

fbumpðnBÞ≡ f3ðn3Þ þ d exp

�
−
ðnB − npeakÞ2

w2

�

n2 ≤ nB ≤ n3; ð3:8Þ

where d defines the magnitude of the bump, w is the width
of the bump, and npeak is any offset that places the peak at a
specific location in nB. Often times we define n2 ¼ npeak if
we want to have a sharper rise to the peak (i.e., something
like a spike), rather than a simple Gaussian, which can be
accomplished through a transition function. We have
studied a number of different f3ðnÞ possibilities, such as
just a constant value (a plateau after the bump), oscillations,
a first-order phase transition, or secondary bumps.
Additionally, we sometimes build in valleys or spikes to
lower c2s, and this is accomplished by choosing d to be
negative.
We have also tested oscillations after a bump to test the

sensitive of EoS to complicated structures after a large
bump. The format is somewhat similar to Eq. (3.8). This
includes damped oscillations as well, such as

foscðnBÞ≡ f3ðn3Þ þ d exp

�
−w

nB
nsat

�
cos½f · nB=nsat�

nB ≤ n3; ð3:9Þ

where d describes the magnitude and w describes the width
[as with Eq. (3.8)] and f describes the frequency of the
oscillations. To study just oscillations (no dampening) then
on can set w ¼ 0.
A plateau can occur simply by using a constant value of

c2s , i.e.,

fplatðnBÞ≡ const n2 ≤ nB: ð3:10Þ

For the case of first-order phase transitions, we use a
plateau of a constant value that is nearly zero e.g., c2s ¼
0.001 across a width of nB. Typically we have transition
functions that are either linear or quadratic that connect the
first-order phase transition to the rest of the functional form.
Finally, we often end at another plateau of a different value
by the time we reach the stellar central baryon density.

D. Reconstructing the EoS from c2s
The low density EoS is taken directly from our crust

table. At the baryon number density n1 at which one
switches between the crust and a functional form of c2s , we
use the initial values from the crust for the pressure p1 and
the energy density ε1 to reconstruct the EoS iteratively.
Taking small step sizes in the baryon density ΔnB, it is
possible to integrate in order to reconstruct the baryon
density, energy density, and pressure from c2s ; see [125] for
further details. Here we assumed electric charge neutrality
and chemical equilibrium with leptons. When considering
twin EoSs, it is extremely important to take very small steps
sizes in the equation of state in order to avoid numerical
error. A good consistency check when determining the step
size that we have employed is to obtain the EoS from this
method, and then recalculate c2s to ensure that it is
compatible with the original functional form.

IV. NEUTRON STARS WITH HIGHER-ORDER
PHASE TRANSITIONS

In this section we build EoSs with higher-order phase
transitions, as described in the previous section, focusing
on EoSs that have kinks, bumps, jumps, spikes, and
plateaus in the speed of sound. Of these structures, a rapid
rise in the speed of sound at some baryon number density
could be indicative of a rapid change in the degrees of
freedom of the system (such as quark matter), and has been
dubbed by some an “unphase transition” [52]. We will
investigate the impact that such unphase transitions, as well
as other higher-order phase transition structures, have on
observable quantities, such as the mass-radius and tidal
deformability curves. In particular, we will see how these
structures can lead to extremely heavy neutron stars with
small deformabilities.

A. How to construct ultraheavy neutron stars

One of the main consequences of higher-order phase
transition structures in the speed of sound is the possibility
of creating extremely heavy neutron stars. In this paper, we
refer to nonspinning stars with a maximum TOV mass
larger than 2.5 M⊙ as “ultraheavy.” As mentioned in the
introduction, one can obtain even heavier systems by
allowing for rigid or differential rotation, which increases
the maximum TOV mass by aboutOð10%Þ for millisecond
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periods rotation rates [126], but we do not discuss such
systems here. As we shall see, the universal feature in the
speed of sound that allows for the construction of ultra-
heavy neutron stars is a steep rise in c2s at a relatively low
transition density.

1. Bump in c2s : Width and location

Let us begin by studying the consequences of a single
bump in the speed of sound of a fixed height but various
widths and transition densities in the speed of sound. The
motivation for this study is the fact that a steep rise in the
speed of sound at intermediate densities has been asso-
ciated with higher-order repulsive terms in the description
of the strong force among nucleons and hyperons [11,71].
Moreover, such a bump in the speed of sound has also
been shown to improve the agreement with the observation
of neutron stars above M ≥ 2 M⊙ [10,109,127,128].
The structure functions we use to model these cases are
either fbump or fosc with a variety of transition functions. In
all cases considered below, we ensure that the resulting
mass-radius and mass-tidal deformability curves satisfy the
constraints discussed in Sec. II.
The results of this analysis are presented in Fig. 5, which

shows the effect that a single bump in c2s has on the EoS and
the resulting mass-radius and mass-tidal deformability
relations. The top panels of this figure show the effect
of a bump of varying width (but fixed transition baryon
number density n1), so let us discuss these first. The wider

the bump in the c2s , the taller the raise in p vs ε in the EoS
and the larger the maximum stellar mass (while maintain-
ing a nearly constant low and intermediate mass-radius
relation), because a larger portion of the star is described by
a more stiff EoS. Furthermore, the wider the speed of sound
peak, the less compressed the maximum mass stars are, and
the lower the central densities they present (symbols in far
left panel). Finally, the tidal deformability of low and
intermediate mass stars are not affected by differences in
the peak, but for a given massive star, the wider peak EoSs
produce a larger tidal deformation.
We now focus on the influence of the location of the peak

in the speed of sound bump, while keeping the width and
height fixed, which is shown in the bottom panels of Fig. 5.
The lower the baryon number density n1 of the transition,
the larger the corresponding stellar masses and radii, as
intermediate mass stars are strongly affected by this shift.
Additionally, as n1 shifts to larger baryon densities, the
central stellar density also shifts to larger central densities.
More compressed matter translates into a much lower tidal
deformability and Love number for a given mass, as shown
also in the figure. Therefore, our results indicate that one
can easily create a family of EoSs that reach M ≥ 2.5 M⊙,
either by implementing a narrow peak at low transition
baryon densities n1 or a wide peak at higher n1.
Interestingly, the effects of increasing the width of the

bump is opposite to the effect of increasing the bump
location, i.e., widening the bump increases the maximum
mass, while increasing the bump location decreases it.

(a) (b) (c)

(a) (b) (c)

(d)

(d)

FIG. 5. Speed of sound (first or far left panel), EoS (second panel), mass-radius diagram (third panel), and tidal deformability (fourth
or far right panel) for a subfamily of equations of state with peaks in the speed of sound of different widths at the same location (top) and
peaks of the same width at different locations (bottom). Symbols show the central density for the most massive star of the sequence. The
wider the bump or the lower the density at which it occurs, the larger the maximum mass of neutron stars, but only the low-density bump
generates larger intermediate-mass stars with larger radius and tidal deformability.
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Could one then tune the widening of the mass and the
increase of the bump location so that these two effects
approximately cancel each other, leading to a roughly
constant maximum mass? The answer to this question is
yes. Indeed, one can widen the bump so much so that it
becomes a plateau, and as long as this occurs at the right
transition density n1 (below n1 ∼ 3nsat), the resulting mass-
radius curve will have the same maximum mass as that
resulting from an EoS with a single narrow bump at low n1.
While the maximum mass will be roughly the same,
however, the radii will be different, with larger n1 leading
to stars with smaller radii. We therefore conclude that a star
with a large radius at M ∼ 2.5 M⊙ implies a larger raise in
the c2s at low transition densities. Similarly, a star with a
smaller radius at M ∼ 2.5 M⊙ is much more likely arising
from a transition that occurs at n1 ∼ 3nsat or below, and that
has a wide peak or plateau.

2. Secondary structure in c2s at high densities

Let us now study the consequences of the behavior of c2s
at large baryon densities. We first consider a scenario in
which c2s increases and then plateaus at various cend, so we
can additionally test the consequences of the pQCD limit
c2s → 1=3 at very large densities. The structure function we
use in this case is just a constant controlled by cend, and
thus, it is this parameter that determines the asymptotic
value of the speed of sound at large densities. The effect of
changing cend then leads to either a stiffer high density
behavior (for a large value of cend) or a softer high density
behavior (for low values of cend).
Figure 6 shows the impact of this higher-order phase

transition structure in the EoS, as well as in astrophysical
observables. The variation of cend between 1=3 and 9=10
has an effect only on massive stars, which are the ones able
to have a sizable dense matter core, both in the mass-radius
diagram and the Λ–M relation. The central stellar density is
barely affected. Therefore, given current uncertainties, we
are not strongly sensitive to a return of c2s → 1=3, even
if it were to occur at densities reached by massive stars

(especially when one considers other uncertainties in the
functional form of c2s as detailed earlier). While not shown
here, we have also studied the inclusion of oscillations
(using multiple trigonometric functions) and a number of
other bumps and wiggles occurring after the large initial
peak. We find no significant effect on the maximum mass,
because the large initial peak appears to soak up any
detailed structure in the c2s at larger baryon densities.

3. Primary bump structure in c2s
Let us now consider the possibility that the first initial

bump has additional substructure in it, such as a double
peak. This is different from the previous case studied,
because in those cases the speed of sound had a single and
simple bump, which was then followed at larger densities
by wiggles or additional bumps. Here, we are concerned
with the structure of the first dominant bump itself. A
physical motivation for this is that expected new degrees of
freedom could open up at intermediate baryon densities
(e.g., hyperons) and this could produce multiple bumps or
kinks in the speed of sound at the dominant bump (see
Fig. 3). We test this possibility through an initial spike
followed by a large bump, which we model with two
structure functions of bumps followed by a plateau.
Figure 7 shows the resulting speeds of sound, their

impact on the EoS, and their corresponding mass-radius
and Λ–M curves. A spike followed by a bump can still
sustain ultraheavy neutron stars, provided the spikes occur
at nB ¼ 1.5nsat and nB ¼ 2nsat. One can, in principle,
obtain a similar maximum mass for the other curves if
one were to further adjust the width of their second
bump. In fact, results from the double bump peaks look
fairly similar to the ones from single bump peaks shown in
Fig. 5. For the heavier neutron stars, the double bumps
decrease the maximum mass only about a few percent,
while holding the radius nearly fixed, whereas for the
lighter neutron stars a double bump could decrease the
maximum mass and the radius at the maximum mass
slightly more.
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FIG. 6. Same as Fig. 5, but for a subfamily of EoSs with different asymptotic values for the speed of sound at large densities (i.e.,
different plateau heights). The plateau height has a moderate effect in the maximum mass and the large-mass portion of the mass-radius
diagram and mass-tidal deformability curves.
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B. How to construct the heaviest neutron stars

A major challenge for realistic but still standard neutron
star EoS models is producing a large maximum mass.
Reaching masses as high as that of the light component of
the GW190814 event is very difficult, specially when
including hyperonic degrees of freedom (without resorting
to fast rotation [11,12,16,23,129–132], or strong magnetic
fields [133]). Reaching masses as high as the companion of
V723 Mon would not be possible at all with most standard
EoS models. However, it is also entirely possible that new
and yet unexplored states of matter exist within the core of a
neutron stars that lead to structures in the speed of sound,
which can allow for such large masses. Indeed, the
preliminary study of [10] showed that bumps in the EoS
can lead to neutron stars as massive as that of the light
component of the GW190814 event. In this section, we will
investigate this structure systematically to find the heaviest
neutron stars allowed by higher-order phase transition
structure in the speed of sound. We will focus first on
the impact of the crust and the causal limit on the maximum
mass, and then discuss the impact of particular higher-order
phase transition structures.

1. Influence of crust on maximum mass

As we mentioned before, we here use the word “crust” in
a nonrigorous way to refer to the low density portion of the
EoS all the way until the fast rise in the speed of sound
takes place. Since this rise can happen anywhere from just
after saturation density until ∼4nsat, this comprises regions
described by both nuclei and bulk nucleonic matter. While
the low density regime of a neutron star is relatively well
constrained from a variety of techniques [125,134], still
some uncertainty remains [83,85,135,136]. Up until this
point, we have considered only the SLy EoS to model the
low density portion of our EoSs. In this subsection, we
relax that assumption to test how a different choice in crust
would affect our maximum mass and range of radii for an
ultraheavy neutron star of M ≥ 2.5 M⊙.
Unfortunately, it is not possible to systematically check

all known crusts because not all of them are available up to
the density we require for matching to our functional forms

of c2s . Thus, we choose two other EoSs
3 to study beyond the

SLy EoS: the QHC19 EoS [77] and the SKa EoS [114]. In
order to test the effect of these on the mass-radius relation,
we fit second-order polynomials to their speeds of sound
and connect them to the causal limit at a transition density
n1. We then vary n1 so that the resulting mass-radius
relation is in agreement with the LIGO/Virgo and NICER
constraints.
Figure 8 shows our results for this study where we find

that behavior of the mass-radius relation depends strongly
on the crust model, even if the EoSs behave the same after
switching at more dense regions. Because the QHC19 EoS
has the softest EoS in the low density region that we
consider here, it requires the lowest value of n1 in order to
support heavy neutron stars. Consequently, also because of
the low value of n1 and the soft low density EoS, this leads
to a larger maximummass and radius that fits within known
constraints (and a larger tidal deformability for a fixed
mass). Note that, this is the only part of our analysis where
we allow n1 to be smaller than 1.5nsat. We see the opposite
effect for the SLy and SKa that has the stiffest crusts, which
then can have a larger values of n1, which leads to the
smallest maximum mass that still fits the constraints.
Overall, varying the crust model can change the maximum
mass and radius up to 6%. See Ref. [139] for a discussion of
the relation between different symmetry energy slopes in
crusts models and the tidal deformability and Ref. [140] for
a discussion of the relation between different symmetry
energy slopes in crusts models and stellar radii.
By increasing n1, we are able to produce mass-radius

relations that allow for the minimum radius of stars with
masses as high as 2.5 M⊙ and pass all observational
constraints. The minimum and maximum values of n1 that
can support a neutron star of 2.5 M⊙ and still fit LIGO/
Virgo constraints are in the range n1;min ≈ ð1.25; 1.5Þnsat
and n1;max ¼ ð2.75; 3Þnsat, which of course depends on the
crust EoS. The stiffness or softness of the crust determines
the value of n1 that is required; a softer crust typically
requires lower values of n1.
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FIG. 7. Same as Fig. 5, but for a subfamily of EoSs with double peaks in the speed of sound at different locations. The double peak
structure allows for ultraheavy neutron stars, with larger radii and large Λ (for the same mass) for bumps at larger densities.

3In a recent work [137], the QMF EoS [138] and the DD2 EoS
[114] were also studied to find their respective maximum masses.
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Let us finally make a comment about the findings in
Ref. [14]. This reference argues that if the NICER mar-
ginalized posteriors on the radius using observations of
PSR J0740þ 6620were to exclude R≳ 11.5 at some given
confidence, then it must be that what NICER has observed
was a hybrid star with a quark core, whose EoS contains a
first-order phase transition. This hypothesis was arrived at
by investigating the mass-radius curve of a phenomeno-
logical EoS model composed of a hadronic crust coupled to
constant-speed-of-sound, quark matter. Our findings in
Fig. 8 do not support this hypothesis because there is still
an important influence of the crust in the mass-radius
relation, even up to neutron star masses M ∼ 2.1 M⊙.
Essentially, a soft crust can lead to a star with a small
radius that falls below the R≲ 11.5 km cutoff of Ref. [14].
One could even reach smaller radii without requiring a first-
order phase transition if one did not require the EoS to also
allow for neutron stars of 2.5 M⊙.
The above discussion highlights the importance of includ-

ing uncertainties in the crust when considering hypotheses
about high-density nuclear physics. Astrophysical data can
and should of course be used to constrain crust uncertainties,
as done recently in [134]. The knowledge gained from such
constraints can then be used as priors in future analysis, but
such priors will still contain some degree of uncertainty.
Ignoring uncertainties in the crust can lead to incorrect
inferences about nuclear physics at higher densities.

2. Impact of uncertainty in gravitational
wave constraints

The two-dimensional marginalized 90% confidence
regions obtained by the LVC when analyzing the
GW170817 event vary depending on whether one uses
the universal relations method or the spectral EoS method
[93,115], see e.g., Fig. 2. Indeed, the maximum radius
allowed at 90% confidence for a ∼1.4 M⊙ star is larger
when one considers spectral EoSs than one considers
universal relations by about 0.5 km. Although this

difference is small, it is enough to impact our understanding
of the EoS (and consequently what we consider the
possible maximum mass of a neutron star). Let us then
investigate how this uncertainty in the LVC analyses
impacts our maximum mass conclusions.
Let us consider a set of EoSs designed to create the

largest allowed radii neutron stars with a mass of 2.5 M⊙.
To do this, we build a jump in c2s at as small of a nB as
possible. In this case, a transition at low n1 leads to a very
stiff EoS that has a large radius and a large maximum mass.
With this family in hand, we then find the minimum n1
possible to still fit within each of the GW170817 bounds
(using the Sly crust).
Figure 9 shows our results. The two different EoSs that

fit at the very edge of each radius bound from the
GW170817 event lead to stars with a radii of about
14.5–15.5 km. The spectral EoS bound allows for a slightly
larger maximum radius and mass (Mmax ∼ 3.5 M⊙) and,
therefore, requires a smaller n1 ¼ 1.4nsat. The most
extreme EoS that fits through the universal relations bound
on mass and radius leads to a slightly smaller maximum
mass and radius (Mmax ∼ 3.3 M⊙) and transitions at
n1 ¼ 1.5nsat. Moreover, these extreme EoSs lead to stars
with tidal deformabilities that are much larger at a fixed
mass than more standard EoSs. This is because these
extremely massive stars are not very compact (see the
small stellar central density in the far left panel), since their
radius is very large.
With our EoS family, we can also find the largest possible

value of n1 that still produces a star with amaximummass of
M ≥ 2.5 M⊙. At large n1, it is quite difficult to produce a
largeMmax and, therefore, only an extreme jump works. We
find that n1 ¼ 2.9nsat produces aMmax ¼ 2.5 M⊙ star with
radius R ∼ 11 km. Overall, we find that an approximately
10% extension of themass-radius posterior allows for a 10%
change in the neutron-star maximum mass and maximum
radius (comparing universal posterior to spectral posteriors).
Theminimum radius of the posterior region does not seem to
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FIG. 8. Same as Fig. 5, but for a subfamily of EoSs that incorporates three different crusts: QHC19, SLy, SKa coupled to a core that
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matter much. Thus, future gravitational wave detectors with
more precise measurements on the radius will allow for
better constraints on the EoS and will help to constrain the
maximum possible mass of a neutron star.

3. Influence of structure in c2s
We have so far in this subsection considered only EoSs

which transition to the causal limit with a very sharp slope
at a given transition density, but these are not the only EoSs
that allow for extremely heavy neutron stars. Indeed,
higher-order phase transition structure in the speed of
sound can easily produce extremely heavy stars, as we
discuss next. Figure 11 shows only a characteristic subset
of the structures we have considered (all with a SLy crust),
including plateaus, single bumps and double bumps. All
EoSs shown lead to stars that are massive enough to allow
the companion of V723 Mon [82] to be described as a
neutron star, while also satisfying all other observational
constraints. The radius of these stars ranges between 12.5
and 15 km, leading to various stellar compactnesses and
tidal deformabilities. As expected, the most massive neu-
tron stars have exceedingly small tidal deformabilities
(Λ ≲ 10, and in particular Λmin ∼ 2.5). A measurement
of such a small tidal deformability would probably require
third-generation gravitation wave detectors.

V. NEUTRON STARS WITH FIRST-ORDER
PHASE TRANSITION

Whenever new fermionic degrees of freedom appear
inside a neutron star, for example hyperons in a hadronic
phase or strange quarks in a quark phase, the energy levels

=3p

causal limit

max central nB /nsat

(a)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

nB/nsat

c s2
GW170817 Spec EoS

(b)

1014 1015

1033

1034

1035

1036

1037

[g cm–3]

p
[d

yn
cm

–
3
] GW190814

Min

Max universal

Max spectral

Companion V723 Mon

GW170817

J0740+6620

GW190814

Companion V723 Mon

(c)

10 11 12 13 14 15 16
0.5

1.0

1.5

2.0

2.5

3.0

3.5

R [km]

M
[M

]

GW170817

(d)

1.0 1.5 2.0 2.5 3.0 3.5

5

10

50

100

500

1000

M [M ]

(a) (b) (c)

(d)

FIG. 9. Same as Fig. 5, but for a subfamily of EoSs that lead to the most extreme mass-radius curves that remain causal and fit within
the two distinct GW170817 bounds. The right-most edge of the posterior in the mass-radius diagram, derived from the two analysis
(universal relations and spectral EoS) of the GW170817, can impact the largest maximum mass achievable.

(a) (b)

(c) (d)

High Disconnected Twin

R

M

Low Disconnected Twin

R

M

Connected Twin

R

M

Kinky

R

M

FIG. 10. Cartoon of different mass radius diagrams when first-
order phase transitions are present. The black lines indicate the
first stable branch (at nB below the phase transition), the blue
lines indicate the second stable branch (at nB above the phase
transition), and the red dashed lines indicate the unstable
branches. The right panels show phase transitions at low-
densities, while the left panels show phase transitions at high
densities. Only very specific conditions can generate a stable twin
branch, as shown in the top panels.

(a) (b) (c)

(d)

FIG. 11. Same as Fig. 5, but for a subfamily of EoSs that can produce neutron stars with masses above that of the companion of V723
Mon, yet still fit within all other observational bounds, and remain causal. There is a variety of ways in which such extremely heavy
neutron stars could be achieved, leading to drastically different Λ–M curves.

HUNG TAN et al. PHYS. REV. D 105, 023018 (2022)

023018-16



of each of the existing species decrease, softening the EoS.
The change of slope cannot be directly seen in the EoS, but
it can clearly be seen in its derivatives, such as the
compressibility, the adiabatic index and the speed of sound
[141–147]. A similar effect appears when light meson
condensation takes place, eliminating a source of pressure
[148]. Depending on the microscopic model description of
the new degrees of freedom, the EoS may present either a
first-order phase transition, where c2s abruptly drops to zero
in some density region, or higher-order phase transition
structures, where c2s presents bumps, spikes, kinks or
plateaus over some density region. In the previous section,
we discussed the impact of higher-order phase transition
structures on neutron stars, so here we will focus on the
impact of first-order phase transitions. As we will see, the
size of the first-order phase transition jump, its extension,
and the baryon density at which it occurs all have
interesting consequences for the structure and stability of
neutron stars.
Before we embark on a deep exploration of first-order

phase transitions, it is useful to first define a classification
and terminology. Depending on the strength, duration and
location of the first-order phase transition, different neutron
star sequences are possible, which we classify as follows:
(a) Disconnected Twins: Sequences where there can exist

stars with different radii but the same mass that lie on
two or more stable branches separated by an unstable
branch.

(b) Connected Twins: Sequences where there can exist
stars with different radii but approximately the same
mass that lie on two or more stable branches that are
connected to each other.

(c) Kinky: Sequences where stars of a given mass have a
unique radius, yet present two or more stable branches
that are connected nonsmoothly to each other at
a point.

Of course, the existence of a first-order phase transition
does not guarantee a twin or kinky mass-sequence, as it is
also possible that there will only be a single stable branch,
and any other branch will be unstable; we will not focus on
such cases here, since those mass-radius sequences are
degenerate with higher-order phase transition EoSs.
A cartoon of characteristic examples of the mass-radius
diagram for each of these classes is shown in Fig. 10.
Examples of all three classes have appeared previously

in the literature from both phenomenological EoS models
[14,14,15,46,149–154], as well as more realistic nuclear
physics models [16,47,50,53–61,64,65,68,110,155–157].
For example, a disconnected mass twin sequence arises
from a nuclear physics-based EoS driven by strangeness, as
shown in Fig. 3 for the CMFex ξ < 0 EoS (see the particle
population in Fig. 7 of Ref. [50]). This EoS contains an
enormous amount of structure in terms of bumps and kinks,
but what allows for twins (and also kinky) neutron star
sequences is the abrupt drop in the speed of sound to zero.

Whether one obtains a (connected or disconnected) mass
twin or a kinky sequence depends on the interplay of the
bump structure that appears before the first-order phase
transition, the properties of the phase transition itself, and
the dense matter EoS behavior, as we shall see in this
section.
A note of caution about terminology is due at this point.

For example, [158] (and many others) use the term
“hybrid” neutron stars to refer to those that contain a quark
core, whether that is reached from a first-order or higher-
order phase transition. However, because a first-order phase
transition is often implied in such models, the connection to
the mass-radius sequence becomes ambiguous. As we have
seen in the previous section and we will continue to see in
this section, the structure of neutron stars can be quite
different depending on whether there is a first-order or a
higher-order phase transition structure, even if they possess
a quark core. Therefore, to avoid this confusion, we
avoided using the word “hybrid” in this paper.
With that out of the way, let us now discuss each of the

classes in more detail, beginning with disconnected twins.
Recall that these are stellar sequences in which there are two
disconnected stable branches that are separated by an
unstable branch, i.e., a region in the mass-radius relation
where dM=dεc < 0. In Fig. 10 the unstable branch is shown
as a red dashed line, the first stable branch is in solid black
(this branch is for central densities below the first-order phase
transition), and the second stable branch is shown in blue
(this is for densities above the phase transition).
We can further separate disconnected twins into two

subclasses: high disconnected twins and low disconnected
twins. The high/low term refers to the location of the first-
order phase transition. A high disconnected twin has a
phase transition at high nB, often after some sort of
structure has occurred at lower nB. A low disconnected
twin, instead, has a phase transition at low nB, followed by
structure in the c2s at higher nB. Figure 10 shows a
characteristic mass-radius diagram for low and high dis-
connected twins. Of course, the definition of low/high is
somewhat arbitrary because in realistic EoSs there may be
structure both before and after a phase transition, yet we
still find it useful to distinguish these two subclasses in
this paper.
Let us now discuss the other two classes of neutron star

sequences: connected twins and kinky stars. An EoS with a
first-order phase transition may lead to two stable branches
(identified with the EoS before and before/after the phase
transition) that are connected to each other. We can separate
sequences with connected branches into two distinct classes:
those that lead to stars with approximately the samemass but
different radius (connected twins) and those that do not
(kinky stars). In Fig. 10,we showa characteristicmass-radius
diagram for both connected twins and kinky sequences.
Unlike in the disconnected twin cases, there are no unstable
branches here, and thus no red dashed curve.
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We have to be careful with the definition of connected
twins though. Mathematically speaking, this class of EoSs
does not formally lead to twins because their mass-radius
curves are such that stars of different radii do have different
masses. What distinguishes connected twins from kinky
stars is that there is a stable branch in which stars of
different radius have very similar (though technically not
identical) masses. Observationally, however, it would be
very difficult to distinguish two stars in this stable branch
due to statistical or systematic uncertainties in the obser-
vations. All data comes with uncertainties, and currently,
systems for which we can measure the radius of a neutron
star have errors in the mass of about 10% or more. In the
future, these uncertainties will decrease, but it seems
unlikely that we will be able to distinguish two stars with
radii differing by 1.5 km but mass differing by less than
∼10−1 M⊙. If the existence of connected twins is ignored
and they were to exist in nature, researchers may be led to
believe that they have detected a disconnected twin instead.
Another possibility for EoSs that lead to mass-radius

diagrams with connected stable branches is through a kinky
sequence. We define those as mass-radius curves with more
than two stable branches that are connected at a point in the
mass-radius plane in a nondifferentiable way (i.e., leading
to a mathematical “kink” in the mass-radius relation). At
that kink, the first derivative is discontinuous and the
second derivative (the “curvature”) becomes formally
infinite. Such a mass-radius sequence would look similar
to that of a neutron star without a first-order phase
transition, yet they would differ in the behavior of the
mass-radius curve in the neighbourhood of the kink. The
detection of this kink would require the observation of
several stars with varying masses and the precise meas-
urement of their radii, so as to map the kink structure in the
mass-radius plane.
In the rest of this section, we study all of these classes in

detail through the phenomenological EoS model described
in Sec. II C 2. Just as a reminder, the first-order phase
transitions are implemented by setting c2s ¼ 0 inside a
region in baryon density nB between n1 PT;low

B and n1 PT;hi
B .

The broader the c2s ¼ 0 region across nB, the stronger the
phase transition. After the end of the phase transition, c2s
will be typically a plateau of a given height. Before the start
of the phase transition, c2s will typically have a bump of a
certain width and height. We will study here how all of
these choices affect the structure of neutron stars, and in
particular the mass-radius and Λ–M curves. Importantly,
when showing mass-radius diagrams in this section, wewill
always include all stable and unstable branches (unlike in
Sec. IV where only stable branches were shown).

A. Can there be first-order phase transitions
in ultraheavy neutron stars?

Now that we have established a dictionary of potential
neutron stars with first-order phase transitions, the natural
question that arises is if all of these different types of
sequences can support ultraheavy neutron stars (i.e., stars
with masses larger than 2.5 M⊙). A recent paper [13]
argued that if the light component of the GW190814 was a
neutron star, then it would exclude the possibility of mass
twins. Another work suggested a possible deconfinement
transition at very low baryon densities [14] could produce
mass twins at M < 1 M⊙ but with the hybrid branch
reaching M ≥ 2.5 M⊙. As we will see below, it is actually
possible to produce ultraheavy neutron stars with a twin
sequence, provided it is connected, in addition to kinky
sequences.

1. Connected twins and kinky sequences are possible
for M ≥ 2.5 M⊙

Figure 12 shows that indeed it is possible to produce
ultraheavy stars with either connected twins or kinky
sequences. Recall that in this section we include both
the stable (thick lines) and unstable branches (thin lines) in
the mass-radius diagram, but now the right most panel
showing Λ–M curves. The key general features needed for
these results are a very high peak in the c2s bump at
relatively low densities, and a first-order phase transition
that occurs at not too high of a density. There is an interplay
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FIG. 12. Same as Fig. 5, but for a subfamily of EoSs with first-order phase transitions. Thick curves in the mass-radius panel
correspond to stable branches, while thin curves are unstable branches; in the Λ–M panel, all curves correspond to stable branches.
Observe that one can easily produce ultraheavy neutron stars with masses larger than 2.5 M⊙ with either a connected twin sequence or a
kinky sequence, while still satisfying all other observational constraints.
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between the width of the bump and how strong is its effect
on the mass-radius diagram. For instance, the blue curve in
Fig. 12 has a very thin bump that we place at low density,
and which leads to a kinky mass-radius sequence at about
M ∼ 1.6 M⊙. In contrast, the other EoSs have a wider
bump at a slightly larger densities, which pushes the phase
transition to larger densities. In this second scenario, either
the first-order phase transition makes the neutron star
immediately unstable (green dashed line), or only a small
region extends past the first-order phase transition (purple
and brown EoSs). The stars within this small region still
contain a first-order phase transition that generates a either
a flattening in the mass-radius curve (brown curve) or a
very small kink (purple curve) that cannot be discerned
by eye.
Figure 12 also demonstrates the strong interplay between

the strength of the first-order phase transition, which is
controlled by its density width, and the observable conse-
quence in the mass-radius sequence. Comparing the purple
dashed and brown dot-dashed curves, one can see that they
both have identical EoSs at nB below the first-order phase
transition, and the only discernible difference is the width
of the phase transition. A stronger first-order phase tran-
sition leads to a more pronounced kink in the mass-radius
curve, which then leads to a connected mass twin sequence.
In contrast, a milder first-order phase transition leads to a
much milder kink (which is present in the purple mass-
radius curve but cannot be discerned by eye), leading to a
nontwin mass-radius sequence.

2. Disconnected twins are probably not possible
for M ≥ 2.5 M⊙

Recent Ref. [14] has established that it is possible to
produce ultraheavy disconnected mass twins, as long as the
second stable branch occurs at very low masses, i.e., a low
disconnected mass twin. In order to produce such a branch,
it was shown that one must introduce structures in the EoS
at very low densities. Until now, we had not considered
introducing such structure, but in this subsection we will do
so to study this possibility further.

We first consider EoSs with a weak first-order phase
transition right around nsat, followed by a bump. A bump is
required to reach up to mass of M ≥ 2.5 M⊙. Figure 13
shows the result of this exercise, where the red solid and
blue dot-dashed curves represent EoSs with very weak and
weak first-order phase transitions respectively. The mass-
radius sequences satisfy all observational constraints, but
there is no discernible disconnected mass twin behavior in
the mass-radius curve. Depending on the strength of this
low-nB first-order phase transition, one could produce a
disconnected mass twin at very low masses, but the
discontinuity would occur below the Chandrasekhar mass
and it would be so small to be essentially unobservable.
Let us now investigate EoSs with a large, thin bump in c2s

slightly above nsat, followed by a wide first-order phase
transition. The skinny bump is needed so that the first-order
phase transition occurs below the maximum central density
probed by these neutron stars. As Fig. 13 shows (green
curves), this leads to a very clear high disconnected mass
twin that satisfies all NICER constraints, but leads to stars
with radii that is outside the LVC constraints. We inves-
tigated a few variations of this model, and were not able to
produce a high disconnected mass twin that led to ultra-
heavy neutron stars. A thorough statistical investigation of
this EoS model would be required to confirm these
findings, but this is outside the scope of this paper.
Thus, we are forced to conclude the following. If the

light component of the GW190814 event is a neutron star,
then a first-order phase transition is possible, but this most
likely not lead to a disconnected mass twin sequence. This
is in agreement with the findings from Ref. [13].

B. Properties of heavy twins with first-order
phase transitions

Let us now no longer constrain the EoS to reproduce a
large maximum mass star, but rather seek to understand
qualitatively how certain features in the c2s , combined with
a first-order phase transition, affect the mass-radius relation
and the existence of connected and disconnected twins,
and kinky mass-radius sequences for heavy neutron stars
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FIG. 13. Same as Fig. 12, but for a subfamily of EoSs with first-order phase transitions that lead to disconnected twins. It is now not
possible to create ultraheavy neutron stars with disconnected twins, while simultaneously satisfying LVC constraints.
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(i.e., for masses M ≥ 2 M⊙ consistent with NICER obser-
vations of PSR J0740þ 6620 [86,87]). We focus on stars
with a speed of sound that combines a large initial
peak followed by a strong first-order phase transition.
Throughout this exercise, we vary the width of the peak,
the width of the phase transition, the slope of the rise to a
constant c2s after the first-order phase transition, and the
height of the c2s plateau at large densities. This is not meant
as a thorough analysis, since for that one would require a
statistical study with a significantly larger number of EoSs;
rather the aim of this investigation is to present a qualitative
understanding of how a first-order phase transition would
manifest in both the mass-radius and the Λ–M diagrams for
EoSs more complex than what is typically considered for
mass twins.

1. From disconnected twins to unstable sequences
through bumps in the speed of sound

Our first step is to look into a variety of bump widths
in the speed of sound. Figure 14 varies the width of the
bumps while keeping the width of the phase transition
(n1PT;lowB − n1PT;hiB ¼ const) and the location of the bump
fixed; following the phase transition, we use a constant
c2s ¼ 0.7. Therefore, bumps that are wider present a first-
order phase transition at slightly higher densities, as shown
in the far left panel of Fig. 14. As one increases the width of
the c2s bump, the mass-radius sequence transitions from a
disconnected mass twin to a single stable branch. Just as in
Sec. IV, the wider the peak, the larger the maximummass of
the stars. Finally, the far right panel shows that the second
stable branch of the disconnected mass twin sequence
presents an almost vertical fall in tidal deformability, thus,
leading to much smaller Λ than their equivalent main
branch counterpart of the same mass. This could also be
seen for the green line in Fig. 13. See Refs. [153] for a
discussion of the tidal deformability in the presence of first-
order phase transitions and twin stars [159–162].
Let us now discuss the maximum central densities that

these sequences achieve. The maximum central density of

the first stable branch and the central densities of the second
stable branch (the minimum and maximum) are shown in
the far left panel of Fig. 14 with symbols (circles and
triangles for the mass-twins and a square and an × for EoSs
with only one stable branch). All EoSs reach their maxi-
mum central density of the first stable branch right after the
first-order phase transition (around nB ∼ 4nsat). Thus, we
see that the effect of the first-order phase transition is to
make stars unstable. After the phase transition, the star
either remains unstable or a second stable branch appears at
even larger densities, depending on the width/strength of
the phase transition. The mass twins’ second stable branch
begins at a slightly larger baryon density and allows the
stars to reach a larger maximum central baryon density (as
high as nB ∼ 7nsat).
As we have clearly demonstrated in Fig. 14, we are easily

able to produce mass twins that reach M ∼ 2.1 M⊙, and
thus are consistent with the NICER observations of PSR
J0740þ 6620 [86,87]. In fact, due to the large posterior
distribution in radius emerging from the PSR J0740þ 6620
observations, it is not possible to determine whether this
pulsar belongs to the first or second stable branch, if it were
to be a twin. For this particular example (the brown EoS in
Fig. 14), the first stable branch reaches a maximum mass of
M ∼ 2.09 M⊙ and a radius of R ∼ 13 km. The second
stable branch begins atM ∼ 2.06 M⊙ and R ∼ 11.9 km and
then ends at M ∼ 2.06 M⊙ and R ∼ 11.7 km. Thus, if one
knew somehow that this pulsar was a mass twin and one
wished to determine whether it belonged to the first or the
second stable branch, one would require a much higher
precision in the measurement of the radius, i.e., the
posterior distribution of radius at 90% confidence would
need to have a width in radius no larger than ∼1.3 km.
What would be required for a LIGO/Virgo observation to

distinguish between stable branches of twin stars? Of
course, this depends on the particular mass twin sequence
considered. For the GW170817 event, which is the only
one for which the LVC was able to measure the tidal
deformability, the Λ–M curves below 1.7 M⊙ are all
approximately the same because the phase transition
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FIG. 14. Same as Fig. 12, but for a subfamily of EoSs that contain bumps in the speed of sound of different widths at the same location,
followed by a first-order phase transition of the same width in density, and a region of the same constant speed of sound (i.e., a plateau).
As the bump widens, the mass-radius curves transition from disconnected mass twins to a single stable branch, while the tidal
deformability goes from nearly vertical to slanted.

HUNG TAN et al. PHYS. REV. D 105, 023018 (2022)

023018-20



happens at larger densities. Therefore, one cannot use this
event to distinguish between stable branches of the mass
twin family considered here. One also cannot use the PSR
J0740þ 6620 event that NICER observed to place con-
straints with LIGO/Virgo data, because this pulsar was not
observed by gravitational wave detectors. We can, however,
determine the precision that LIGO/Virgo would have to
measure Λ to in order to distinguish between the two stable
branches. Let us then assume that LIGO/Virgo has
observed the gravitational waves emitted by a binary
system, where one of them has a mass of ∼2.06, and at
a sufficiently high signal-to-noise ratio so that Λ could also
be estimated. If so, the LIGO/Virgo posterior would have to
measure a Λ as low as 20 with less than a 100% error; at
90% confidence, this could be achieved with a sufficiently
loud event when LIGO/Virgo reach design sensitivity.

2. Impact of the strength of first-order phase transition
on the mass-radius sequence

If a first-order phase transition exists within neutron stars,
it is not yet clear how strong of a phase transition it is. What
are the consequences of a strong vs weak first-order phase
transition on the mass-radius sequence and tidal deform-
ability? Let us begin with a very weak first-order phase
transition that is essentially only a spike to c2s → 0, and then
systematically increase the width across nB where c2s ¼ 0
until we reach such a large first-order phase transition that the
second branch is no longer stable. The resulting speeds of
sound andEoS are shown in Fig. 15.Note that for very strong
first-order phase transitions the pressure is well outside the
LIGO 90% posterior obtained from their spectral EoS
analysis using the GW170817 event.
Weak first-order phase transitions lead to two connected

branches with a kink so small that it is not visible, as shown
in the dark blue dashed curve in Fig. 15. As the phase
transition strengthens, a kink in the mass-radius sequence is
formed while the maximum mass lowers, as shown in the
dark green solid curve in Fig. 15. Eventually, for a strong
enough first-order phase transition, the second stable
branch disconnects from the first stable branch and dis-
connected twins appear, as shown in the light green dashed

curve in Fig. 15. Continuing to increase the strength of the
first-order phase transition past this point still maintains a
disconnected mass twin sequence, but the second stable
branch shortens and is shifted to lower masses and radii, as
shown in the maroon long dashed, brown dot-dashed, and
solid black curves in Fig. 15. Eventually, a too strong of a
first-order phase transition shrinks the stable branch to the
point where it disappears entirely, as shown in the light
brown curve in Fig. 15. Analogously, strengthening the
first-order phase transition forces the minimum Λ to be
larger and to occur at lower masses, with a stronger
disconnect from the first stable branch.
The effects discussed in Fig. 15 are in agreement with the

investigation of the strength of the phase transition and its
influence on twin stars from Ref. [163]. In this reference,
the authors investigated the effect of introducing a mixed
phase in the EoS. They found that weakening the phase
transition (in this case by having a softer dip in the speed of
sound) changes the dense matter configurations from twins
to connected branches.

3. Impact of the speed of sound past the first-order
phase transition

Let us now consider the impact of the speed of sound
past the first-order phase transition in the properties of these
heavy neutron stars. First, we consider adding a constant
slope in the speed of sound to transition between c2s ¼ 0 to
some constant value of c2s , as shown in the far left panel of
Fig. 16. Less steep rises in the speed of sound after a first-
order phase transition could easily be reproduced in the
EoS of dense matter through, for example, an excluded
volume prescription, which is used to account for the finite
volume of hadrons [164–166]. This has been used, for
example, to allow for new degrees of freedom, such as
deconfined quarks, to appear in the modeling of dense
matter in the core of neutron stars [50,76,167,168] (see e.g.,
blue dashed line in Fig. 3).
The third panel of Fig. 16 shows that a steeper slope after

the phase transition increases the maximum mass of stars,
specifically raising slightly the maximum mass of the
second branch. Additionally, the steepness of the slope
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FIG. 15. Same as Fig. 12, but for a subfamily of EoSs with different strengths of the first-order phase transition. The strength is related
to having a connected branch, kinky, disconnected or connected twins, in addition to the radius range for twin stars.
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is directly connected to the slope in mass versus radius of
the second stable branch. What this implies is that a softer
slope after the phase transition leads to a flatter second
stable branch, whereas a steep slope leads to a second stable
branch that increases more in mass as the radius decreases.
This same effect is seen in the Λ–M curves of the far right
panel. Furthermore, this panel demonstrates that one does
not require a step transition to the causal limit in order to
produce a mass-twin; rather, there is some flexibility in the
form of c2s after the first-order phase transition that still
allows for mass twins.
Let us now consider the influence of the high density part

of c2s , beyond the first-order phase transition. Figure 17
demonstrates how a higher speed of sound plateau after a
first-order phase transition largely affects the mass-radius
and Λ–M relations. A lower plateau leads to no stable
second branch, while higher plateaus generate either a
connected or a disconnected twin branch, depending on
how large the constant value of c2s is after the phase
transition. In this scenario, we are able to produce a twin
mass star that is consistent with the NICER observations of
PSR J0740þ 6620 [86,87]. Unlike the brown EoS in
Fig. 14, where both the fist branch and twin branch reached
masses consistent with PSR J0740þ 6620, in this scenario

only the high-density regime of the EoS would reach the
mass-radius range of PSR J0740þ 6620.

VI. COMPARISON BETWEEN NEUTRON STARS
WITH FIRST-ORDER AND HIGHER-ORDER

PHASE TRANSITIONS

Up until now, we have discussed EoS models with
higher-order phase transition structure separately from
models with first-order phase transitions. In this section,
we bring both of these features together so that we
can compare and contrast them. We will begin with a
discussion of how central baryon densities are affected
by these structures in the speed of sound. We will then
describe whether these structures affect the I-Love-Q
relations.

A. Central baryon density and maximum masses

EoSs that produce mass twins reach much larger
central densities in stable stars when compared to nearly
equivalent EoSs that only produce one stable branch [149].
Figures 14–17 demonstrate this quite well. The EoSs
that only have one stable branch reach baryon central
densities of about nB ∼ 4nsat, whereas the mass twins in
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FIG. 16. Same as Fig. 12, but for a subfamily of EoSs that have bumps in the speed of sound of the same width, followed by a first-
order phase transition of the same length in density, but different rises to a region with constant speed of sound (i.e., plateaus). The
steeper the rise of the speed of sound after the first-order phase transition, the (slightly) higher the maximum mass of the second stable
branch.
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FIG. 17. Same as Fig. 12, but for a subfamily of EoSs that have bumps in the speed of sound of the same width, followed by a first-
order phase transition of the same length in density, that rise rapidly to a plateau in the speed of sound of different heights. For
sufficiently high plateaus, a disconnected twin branch appears.
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those figures reach almost up to nB ∼ 10nsat; note that
these figures consider EoSs that lead to neutrons stars
with maximum masses that are consistent with PSR
J0740þ 6620. Fig. 15 demonstrates nicely that as the
phase transition strengthens the maximum central baryon
density reaches as well.
However, if we allow neutron stars to reach higher

maximum masses, as is the case in Fig. 12 where all
neutron stars reach M ≥ 2.5 M⊙, then their maximum
central densities are now similar to what we found in
Sec. IV, i.e., the maximum central density is nB ≤ 6nsat.
Thus, if the light component of the GW190814 event is a
neutron star, then the maximum central density within the
core for such a sequence could be nB ≤ 6nsat. If even
heavier neutron stars are measured, then this would further
restrict the maximum central density to even lower values,
as seen in Fig. 11, where the constraint of producing stars
with M ≥ 2.9 M⊙ leads to a maximum central density of
nB ≤ 5nsat. If we fix the maximum mass, and look at a
variety of neutrons stars that reach that maximum mass (or
surpass it), the ones that reach the largest maximum central
baryon density are also the ones that have the smallest radii
at that fixed mass. Thus, information about the radius of
heavy neutron stars can help us to also determine the
maximum central density reached within these stars (when
constrained to reach the same minimum maximum mass).
Before proceeding, a small caveat: the crust model does

affect the maximum central baryon density reached in a
neutron star sequence, as shown in Fig. 8. In particular, a
softer crust (e.g., QHC19) results in a larger rise to the
causal limit, which results in the lowest central baryon
densities. However, the stiffest crust we considered (SKA),
which has a shorter rise to the causal limit, leads to a larger
maximum central baryon density.

B. I-Love-Q relations

Let us now consider whether the I-Love-Q relations
remain approximately EoS insensitive when one includes
nonsmooth structure in the speed of sound, such as higher-
order phase transition features or first-order phase tran-
sitions. As described in Sec. II B 1, the I-Love-Q relations
are those that connect a dimensionless version of the
moment of inertia, the Love number and the quadrupole
moment. For EoSs that do not contain the speed of sound
structure considered here, these relations have been shown
to be EoS insensitive to better than 1% in relative fractional
difference [169,170]. Figure 18 shows the I-Love-Q rela-
tions for all of the EoSs considered in this paper. In spite
of the nonsmooth structure introduced in the speed of
sound, the I-Love-Q relations remain EoS insensitive. In
particular, the relative fractional variability between all of
the data is less than ∼1.5%. This means that inferences
made from measurements of any of these quantities can still
be made, in spite of the possibility of the presence of
nonsmooth structure in the speed of sound.

VII. FUTURE DIRECTIONS

We have investigated the properties of neutron stars that
result from equations of state (EoSs) with structures in the
speed of sound, including bumps, spikes, plateaus, kinks,
and first-order phase transitions. We find that these struc-
tures can easily lead to ultraheavy neutron stars, i.e., those
with masses larger than 2.5 M⊙, and can allow for
disconnected, connected mass twins, and mass-radius
sequences with kinks at least up to ∼2 M⊙ (>2.5 M⊙ in
some cases). How heavy a neutron star can be depends
sensitively on the structure in the speed of sound intro-
duced, the crust model, and precise marginalized radius
posteriors derived from observations. Whether mass twins
or kinky mass-sequences appear in the mass-radius
sequence also depends sensitively on the particular details
of the speed of sound structure (see Sec. I for an executive
summary).
One of our findings suggests that future observations

could lead to stringent constraints on the speed of sound. In
particular, an accurate measurement of the tidal deform-
ability could constrain the density at which the speed of
sound changes rapidly. Similarly, an accurate measurement
of the mass and radius of very massive neutron stars could
lead to a constrain on the value of the speed of sound at
large densities, and possible secondary structures. Current
data, however, is not sufficiently informative to accurately
map the entire behavior of the speed of sound at densities
above nuclear saturation in neutron stars.
However, the association of the light companion of the

GW190814 event with a neutron star would have strong
implications for the speed of sound. In particular, neutron
stars as massive as 2.5 M⊙ would require a steep rise in the
speed of sound, after which more complicated structure
could be possible. These conclusions, however, must be
taken with a pinch of salt because the crust model also has a
strong influence, even at these high stellar masses. In
particular, a softer crust model can support stars with a
larger maximum mass. This suggests that it may be
interesting to carry out a Bayesian inference study of the
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FIG. 18. I-Love and Love-Q relations for all the EoSs shown in
this paper. Observe that regardless of the inclusion of higher-
order phase transition structure or first-order phase transitions in
the speed of sound, the I-Love-Q relations remain EoS insensi-
tive, with a relative fractional variability smaller than 1.5%.
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properties of the speed of sound and crust using the
GW190814 event.
But what if even heavier neutron stars existed, such as

the companion of V723 Mon? Such extremely heavy
neutron stars would possess exceedingly small tidal
deformabilities (dimensionless Λ ∼ 2). A very high sig-
nal-to-noise ratio event would be required to unambigu-
ously measure such a small tidal deformability with a
posterior that does not have support at the black hole limit
of zero deformability, i.e., that the error bars of the
measurement in Λ at some confidence interval does not
overlap zero. Such a measurement may be possible with
third-generation detectors.
Ultraheavy neutron stars (M ≥ 2.5 M⊙) can indeed be in

a mass twin configuration, but it must be connected.
Disconnected mass twins (i.e., where the two stable
branches are disconnected) are not possible with any of
the structures we studied in the speed of sound. The only
possibility for ultraheavy and disconnected mass twins
would be to introduce a first-order phase transition at very
small low baryon densities. The disconnected branches
would then occur at exceedingly small masses, and would
thus not be relevant to astrophysical observations.
Our results also imply that it may be exceedingly

difficult to infer with certainty the existence of a heavy
mass twin from an observation in the mass-radius plane.
This is because although heavy mass twins have roughly
the same mass, their difference in radius is not that large.
The difference in radius, in fact, can be less than half a
kilometer, depending on the EoS model. Marginalized
posterior distributions on the radius would then have to
be smaller than this at some confidence interval to
guarantee that a twin star was observed. Once more, this
may be possible in the future, with the advent of third-
generation detectors, but it seems unlikely with current
instruments.
Our results also imply that future observations of

massive neutron stars may place important constraints on
the maximum baryon densities achievable at the center of
neutron stars. For example, if the light companion in the
binary that produced GW190814 was indeed a neutron star,
then the maximum baryon density could not exceed six
times nuclear saturation density. As more gravitational

wave observations are made in the future, it becomes a real
possibility to further constraint the maximum central
baryon density, and thus the analysis of data should not
be restricted to necessarily small central baryon densities
a priori.
Note that a combination of a signal for strong first-order

phase transition in neutron stars, such as twin configura-
tions or sharp kinks in the mass-radius diagram, and a limit
on stellar central density (as discussed above) would give
valuable new insight into nuclear physics. This is because a
strong phase order phase transition in the regime reached in
neutron stars is usually associated with deconfinement to
quark matter, which so far has not been constrained at low
temperature, either in nature or in density range.
Our analysis clearly reveals that nonsmooth structure in

the speed of sound should be included in the analysis of
future x-ray and gravitational wave data. This can be done
through the parametrized models introduced in this paper.
With such models, it would be straightforward to carry
out a Bayesian analysis of gravitational wave data to
determine whether the data prefers the presence of non-
trivial structure. Such a study will be the focus of future
investigations.

ACKNOWLEDGMENTS

The authors would like to thank Hank Lamm, Mauricio
Hippert, Deep Chatterjee, Alejandro Cárdenas-Avendaño,
and Abhishek Hegde for useful discussions related to this
work J. N. H. and T. D. acknowledge the support from the
US-DOE Nuclear Science Grant No. DE-SC0020633.
H. T. and N. Y. acknowledge support from NASA
Grants No. NNX16AB98G, No. 80NSSC17M0041, and
No. 80NSSC18K1352 and NSF Grant No. 1759615.
V. D. acknowledges support from the National Science
Foundation under Grant No. PHY-1748621 and PHAROS
(COST Action No. CA16214). The authors also acknowl-
edge support from the Illinois Campus Cluster, a comput-
ing resource that is operated by the Illinois Campus Cluster
Program (ICCP) in conjunction with the National Center
for Supercomputing Applications (NCSA), and which is
supported by funds from the University of Illinois at
Urbana-Champaign.

[1] N. K. Glendenning, Phys. Lett. 114B, 392 (1982).
[2] I. Bednarek, P. Haensel, J. L. Zdunik, M. Bejger, and R.

Manka, Astron. Astrophys. 543, A157 (2012).
[3] M. Fortin, J. L. Zdunik, P. Haensel, and M. Bejger, Astron.

Astrophys. 576, A68 (2015).
[4] M. Buballa et al., J. Phys. G 41, 123001 (2014).

[5] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.
Vuorinen, Nat. Phys. 16, 907 (2020).

[6] D. D. Ivanenko and D. F. Kurdgelaidze, Astrophysics 1,
251 (1965).

[7] B. D. Keister and L. S. Kisslinger, Phys. Lett. 64B, 117
(1976).

HUNG TAN et al. PHYS. REV. D 105, 023018 (2022)

023018-24

https://doi.org/10.1016/0370-2693(82)90078-8
https://doi.org/10.1051/0004-6361/201118560
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1051/0004-6361/201424800
https://doi.org/10.1088/0954-3899/41/12/123001
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1007/BF01042830
https://doi.org/10.1007/BF01042830
https://doi.org/10.1016/0370-2693(76)90370-1
https://doi.org/10.1016/0370-2693(76)90370-1


[8] F. Grassi, Z. Phys. C 38, 307 (1988).
[9] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Astrophys. J. Lett. 896, L44 (2020).
[10] H. Tan, J. Noronha-Hostler, and N. Yunes, Phys. Rev. Lett.

125, 261104 (2020).
[11] V. Dexheimer, R. O. Gomes, T. Klähn, S. Han, and M.

Salinas, Phys. Rev. C 103, 025808 (2021).
[12] T. Demircik, C. Ecker, and M. Järvinen, Astrophys. J. Lett.

907, L37 (2021).
[13] J.-E. Christian and J. Schaffner-Bielich, Phys. Rev. D 103,

063042 (2021).
[14] D. Blaschke and M. Cierniak, Astron. Nachr. 342, 227

(2021).
[15] A. Ayriyan, D. Blaschke, A. G. Grunfeld, D. Alvarez-

Castillo, H. Grigorian, and V. Abgaryan, arXiv:
2102.13485.

[16] A. Li, Z. Y. Zhu, E. P. Zhou, J. M. Dong, J. N. Hu, and C. J.
Xia, J. High Energy Astrophys. 28, 19 (2020).

[17] K. Otto, M. Oertel, and B.-J. Schaefer, Eur. Phys. J. Special
Topics 229, 3629 (2020).

[18] R. Nandi and S. Pal, arXiv:2008.10943.
[19] M. Ferreira, R. Câmara Pereira, and C. Providência, Phys.

Rev. D 102, 083030 (2020).
[20] E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla,

Mon. Not. R. Astron. Soc. 499, L82 (2020).
[21] T. Broadhurst, J. M. Diego, and G. F. Smoot, arXiv:

2006.13219.
[22] M. Fishbach, R. Essick, and D. E. Holz, Astrophys. J. Lett.

899, L8 (2020).
[23] A. Nathanail, E. R. Most, and L. Rezzolla, Astrophys. J.

Lett. 908, L28 (2021).
[24] L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J. Lett.

852, L25 (2018).
[25] S. Khadkikar, A. R. Raduta, M. Oertel, and A. Sedrakian,

Phys. Rev. C 103, 055811 (2021).
[26] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and

K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018).
[27] M. Alford, A. Harutyunyan, and A. Sedrakian, Phys. Rev.

D 100, 103021 (2019).
[28] T. R. Routray, S. P. Pattnaik, C. Gonzalez-Boquera, X.

Viñas, M. Centelles, and B. Behera, arXiv:2006.15430.
[29] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J.

Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, and
M. Stephanov, Phys. Rev. C 101, 034901 (2020).

[30] J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C.
Ratti, and R. Rougemont, Phys. Rev. D 104, 034002
(2021).

[31] J. M. Karthein, D. Mroczek, A. R. Nava Acuna, J.
Noronha-Hostler, P. Parotto, D. R. P. Price, and C. Ratti,
Eur. Phys. J. Plus 136, 621 (2021).

[32] S. S. Avancini, D. P. Menezes, M. D. Alloy, J. R. Marinelli,
M. M.W. Moraes, and C. Providencia, Phys. Rev. C 78,
015802 (2008).

[33] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K.
Szabo, Nature (London) 443, 675 (2006).

[34] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz,
P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 126, 232001 (2021).

[35] M. Asakawa and K. Yazaki, Nucl. Phys.A504, 668 (1989).
[36] J. Berges and K. Rajagopal, Nucl. Phys. B538, 215 (1999).

[37] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A.
Stephanov, and J. J. M. Verbaarschot, Phys. Rev. D 58,
096007 (1998).

[38] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126,
092301 (2021).

[39] V. Dexheimer, J. Noronha, J. Noronha-Hostler, C. Ratti,
and N. Yunes, J. Phys. G 48, 073001 (2021).

[40] C. Ratti, Rep. Prog. Phys. 81, 084301 (2018).
[41] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and

N. Xu, Phys. Rep. 853, 1 (2020).
[42] A. Monnai, B. Schenke, and C. Shen, Int. J. Mod. Phys. A

36, 2130007 (2021).
[43] U. H. Gerlach, Phys. Rev. 172, 1325 (1968).
[44] B. Kampfer, J. Phys. A 14, L471 (1981).
[45] S. Han and M. Prakash, Astrophys. J. 899, 164 (2020).
[46] P. T. H. Pang, T. Dietrich, I. Tews, and C. Van Den Broeck,

Phys. Rev. Research 2, 033514 (2020).
[47] P. Jakobus, A. Motornenko, R. O. Gomes, J. Steinheimer,

and H. Stoecker, Eur. Phys. J. C 81, 41 (2021).
[48] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[49] G. Baym, Physica (Amsterdam) 96A, 131 (1979).
[50] V. Dexheimer, R. Negreiros, and S. Schramm, Phys. Rev.

C 91, 055808 (2015).
[51] M. Dutra, O. Lourenço, and D. P. Menezes, Phys. Rev. C

93, 025806 (2016); 94, 049901(E) (2016).
[52] L. McLerran and S. Reddy, Phys. Rev. Lett. 122, 122701

(2019).
[53] M. G. Alford and A. Sedrakian, Phys. Rev. Lett. 119,

161104 (2017).
[54] A. Zacchi, M. Hanauske, and J. Schaffner-Bielich, Phys.

Rev. D 93, 065011 (2016).
[55] D. E. Alvarez-Castillo, D. B. Blaschke, A. G. Grunfeld,

and V. P. Pagura, Phys. Rev. D 99, 063010 (2019).
[56] J. J. Li, A. Sedrakian, and M. Alford, Phys. Rev. D 101,

063022 (2020).
[57] Q.-w. Wang, C. Shi, Y. Yan, and H.-S. Zong, arXiv:

1912.02312.
[58] K. Bitaghsir Fadafan, J. Cruz Rojas, and N. Evans, Phys.

Rev. D 101, 126005 (2020).
[59] C. Xia, Z. Zhu, X. Zhou, and A. Li, Chin. Phys. C 45,

055104 (2021).
[60] T. Yazdizadeh and G. H. Bordbar, Iran. J. Sci. Technol. A

43, 2691 (2019).
[61] M. Shahrbaf, D. Blaschke, A. G. Grunfeld, and H. R.

Moshfegh, Phys. Rev. C 101, 025807 (2020).
[62] A. Zacchi and J. Schaffner-Bielich, Phys. Rev. D 100,

123024 (2019).
[63] T. Zhao and J. M. Lattimer, Phys. Rev. D 102, 023021

(2020).
[64] L. L. Lopes and D. P. Menezes, Nucl. Phys. A1009,

122171 (2021).
[65] D. Blaschke, H. Grigorian, and G. Röpke, Particles 3, 477

(2020).
[66] D. C. Duarte, S. Hernandez-Ortiz, and K. S. Jeong, Phys.

Rev. C 102, 025203 (2020).
[67] M. Rho, arXiv:2004.09082.
[68] M. Marczenko, Eur. Phys. J. Special Topics 229, 3651

(2020).
[69] T. Minamikawa, T. Kojo, and M. Harada, Phys. Rev. C

103, 045205 (2021).

EXTREME MATTER MEETS EXTREME GRAVITY: ULTRAHEAVY … PHYS. REV. D 105, 023018 (2022)

023018-25

https://doi.org/10.1007/BF01574554
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.125.261104
https://doi.org/10.1103/PhysRevLett.125.261104
https://doi.org/10.1103/PhysRevC.103.025808
https://doi.org/10.3847/2041-8213/abd853
https://doi.org/10.3847/2041-8213/abd853
https://doi.org/10.1103/PhysRevD.103.063042
https://doi.org/10.1103/PhysRevD.103.063042
https://doi.org/10.1002/asna.202113909
https://doi.org/10.1002/asna.202113909
https://arXiv.org/abs/2102.13485
https://arXiv.org/abs/2102.13485
https://doi.org/10.1016/j.jheap.2020.07.001
https://doi.org/10.1140/epjst/e2020-000155-y
https://doi.org/10.1140/epjst/e2020-000155-y
https://arXiv.org/abs/2008.10943
https://doi.org/10.1103/PhysRevD.102.083030
https://doi.org/10.1103/PhysRevD.102.083030
https://doi.org/10.1093/mnrasl/slaa168
https://arXiv.org/abs/2006.13219
https://arXiv.org/abs/2006.13219
https://doi.org/10.3847/2041-8213/aba7b6
https://doi.org/10.3847/2041-8213/aba7b6
https://doi.org/10.3847/2041-8213/abdfc6
https://doi.org/10.3847/2041-8213/abdfc6
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.1103/PhysRevC.103.055811
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevD.100.103021
https://doi.org/10.1103/PhysRevD.100.103021
https://arXiv.org/abs/2006.15430
https://doi.org/10.1103/PhysRevC.101.034901
https://doi.org/10.1103/PhysRevD.104.034002
https://doi.org/10.1103/PhysRevD.104.034002
https://doi.org/10.1140/epjp/s13360-021-01615-5
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1038/nature05120
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/S0550-3213(98)00620-8
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.1088/1361-6471/abe104
https://doi.org/10.1088/1361-6633/aabb97
https://doi.org/10.1016/j.physrep.2020.01.005
https://doi.org/10.1142/S0217751X21300076
https://doi.org/10.1142/S0217751X21300076
https://doi.org/10.1103/PhysRev.172.1325
https://doi.org/10.1088/0305-4470/14/11/009
https://doi.org/10.3847/1538-4357/aba3c7
https://doi.org/10.1103/PhysRevResearch.2.033514
https://doi.org/10.1140/epjc/s10052-020-08779-x
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1016/0378-4371(79)90200-0
https://doi.org/10.1103/PhysRevC.91.055808
https://doi.org/10.1103/PhysRevC.91.055808
https://doi.org/10.1103/PhysRevC.93.025806
https://doi.org/10.1103/PhysRevC.93.025806
https://doi.org/10.1103/PhysRevC.94.049901
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevLett.119.161104
https://doi.org/10.1103/PhysRevLett.119.161104
https://doi.org/10.1103/PhysRevD.93.065011
https://doi.org/10.1103/PhysRevD.93.065011
https://doi.org/10.1103/PhysRevD.99.063010
https://doi.org/10.1103/PhysRevD.101.063022
https://doi.org/10.1103/PhysRevD.101.063022
https://arXiv.org/abs/1912.02312
https://arXiv.org/abs/1912.02312
https://doi.org/10.1103/PhysRevD.101.126005
https://doi.org/10.1103/PhysRevD.101.126005
https://doi.org/10.1088/1674-1137/abea0d
https://doi.org/10.1088/1674-1137/abea0d
https://doi.org/10.1007/s40995-019-00731-3
https://doi.org/10.1007/s40995-019-00731-3
https://doi.org/10.1103/PhysRevC.101.025807
https://doi.org/10.1103/PhysRevD.100.123024
https://doi.org/10.1103/PhysRevD.100.123024
https://doi.org/10.1103/PhysRevD.102.023021
https://doi.org/10.1103/PhysRevD.102.023021
https://doi.org/10.1016/j.nuclphysa.2021.122171
https://doi.org/10.1016/j.nuclphysa.2021.122171
https://doi.org/10.3390/particles3020033
https://doi.org/10.3390/particles3020033
https://doi.org/10.1103/PhysRevC.102.025203
https://doi.org/10.1103/PhysRevC.102.025203
https://arXiv.org/abs/2004.09082
https://doi.org/10.1140/epjst/e2020-000093-3
https://doi.org/10.1140/epjst/e2020-000093-3
https://doi.org/10.1103/PhysRevC.103.045205
https://doi.org/10.1103/PhysRevC.103.045205


[70] M. Hippert, E. S. Fraga, and J. Noronha, Phys. Rev. D 104,
034011 (2021).

[71] R. D. Pisarski, Phys. Rev. D 103, L071504 (2021).
[72] S. Sen and L. Sivertsen, Astrophys. J. 915, 109 (2021).
[73] J. R. Stone, V. Dexheimer, P. A. M. Guichon, A. W.

Thomas, and S. Typel, Mon. Not. R. Astron. Soc. 502,
3476 (2021).

[74] J. I. Kapusta and T. Welle, Phys. Rev. C 104, L012801
(2021).

[75] R. Somasundaram and J. Margueron, arXiv:2104.13612.
[76] A. Motornenko, J. Steinheimer, V. Vovchenko, S.

Schramm, and H. Stoecker, Phys. Rev. C 101, 034904
(2020).

[77] G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H.
Togashi, Astrophys. J. 885, 42 (2019).

[78] S. Sen and N. C. Warrington, Nucl. Phys. A1006, 122059
(2021).

[79] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[80] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019).
[81] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[82] T. Jayasinghe et al., arXiv:2101.02212.
[83] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and

T. Takatsuka, Rep. Prog. Phys. 81, 056902 (2018).
[84] I. A. Rather, A. A. Usmani, and S. K. Patra, Nucl. Phys.

A1010, 122189 (2021).
[85] M. Ferreira and C. Providência, Phys. Rev. D 102, 103003

(2020).
[86] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021).
[87] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021).
[88] K. Yagi and N. Yunes, Phys. Rep. 681, 1 (2017).
[89] G. Martinon, A. Maselli, L. Gualtieri, and V. Ferrari, Phys.

Rev. D 90, 064026 (2014).
[90] M. G. Alford, S. P. Harris, and P. S. Sachdeva, Astrophys.

J. 847, 109 (2017).
[91] J. P. Pereira, C. V. Flores, and G. Lugones, Astrophys. J.

860, 12 (2018).
[92] M. G. Alford, S. Han, and K. Schwenzer, Phys. Rev. C 91,

055804 (2015).
[93] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 121, 161101 (2018).
[94] P. Landry and R. Essick, Phys. Rev. D 99, 084049 (2019).
[95] R. Essick, P. Landry, and D. E. Holz, Phys. Rev. D 101,

063007 (2020).
[96] P. Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D

101, 123007 (2020).
[97] K. Yagi and N. Yunes, Classical Quantum Gravity 33,

13LT01 (2016).
[98] K. Yagi and N. Yunes, Classical Quantum Gravity 34,

015006 (2017).
[99] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D

81, 105021 (2010).
[100] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A.

Vuorinen, Astrophys. J. 789, 127 (2014).
[101] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[102] M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R.

Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201
(2012).

[103] M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).

[104] F. J. Fattoyev, J. Carvajal, W. G. Newton, and B.-A. Li,
Phys. Rev. C 87, 015806 (2013).

[105] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich,
Nucl. Phys. A881, 62 (2012).

[106] J. J. Li, A. Sedrakian, and F. Weber, Phys. Lett. B 783, 234
(2018).

[107] V. Dexheimer, S. Schramm, and D. Zschiesche, Phys.
Rev. C 77, 025803 (2008).

[108] C. C. Moustakidis, T. Gaitanos, C. Margaritis, and G. A.
Lalazissis, Phys. Rev. C 95, 045801 (2017); 95, 059904(E)
(2017).

[109] P. Bedaque and A.W. Steiner, Phys. Rev. Lett. 114,
031103 (2015).

[110] G. Malfatti, M. G. Orsaria, I. F. Ranea-Sandoval, G. A.
Contrera, and F. Weber, Phys. Rev. D 102, 063008 (2020).

[111] P. A. M. Guichon, K. Saito, E. N. Rodionov, and A.W.
Thomas, Nucl. Phys. A601, 349 (1996).

[112] V. Dexheimer and S. Schramm, Astrophys. J. 683, 943
(2008).

[113] V. A. Dexheimer and S. Schramm, Phys. Rev. C 81,
045201 (2010).

[114] M. Fortin, C. Providencia, A. R. Raduta, F. Gulminelli,
J. L. Zdunik, P. Haensel, and M. Bejger, Phys. Rev. C 94,
035804 (2016).

[115] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 011001 (2019).

[116] https://github.com/jnoronhahostler/Neutron_Star_EOS.
[117] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R.

Schaeffer, Nucl. Phys. A635, 231 (1998); A643, 441(E)
(1998).

[118] F. Douchin, P. Haensel, and J. Meyer, Nucl. Phys. A665,
419 (2000).

[119] F. Douchin and P. Haensel, Phys. Lett. B 485, 107 (2000).
[120] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151

(2001).
[121] H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H.

Suzuki, and M. Takano, Nucl. Phys. A961, 78 (2017).
[122] T. Aumann and C. A. Bertulani, arXiv:1910.14094.
[123] P. Danielewicz and J. Lee, Nucl. Phys. A818, 36 (2009).
[124] F. Gulminelli and A. R. Raduta, Phys. Rev. C 92, 055803

(2015).
[125] I. Tews, J. Margueron, and S. Reddy, Phys. Rev. C 98,

045804 (2018).
[126] K. Yagi, K. Kyutoku, G. Pappas, N. Yunes, and T. A.

Apostolatos, Phys. Rev. D 89, 124013 (2014).
[127] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys.

J. 860, 149 (2018).
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