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Large composite dark matter states source a scalar binding field that, when coupled to Standard Model
nucleons, provides a potential under which nuclei recoil and accelerate to energies capable of ionization,
radiation, and thermonuclear reactions. We show that these dynamics are detectable for nucleon couplings
as small as gn ∼ 10−17 at dark matter experiments, where the greatest sensitivity is attained by considering
the Migdal effect. We also explore type-Ia supernovae and planetary heating as possible means to discover
this type of dark matter.
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I. INTRODUCTION

The existence of darkmatter is well established through its
gravitational interactions with visible matter. However, dark
matter’s cosmological formation, mass, and nongravitational
interactions remain unknown. An intriguing possibility is
that dark matter forms bound states in the early universe,
much like nuclei form during big bang nucleosynthesis, in a
scenario often dubbed “composite dark matter.”
A simple model of composite dark matter that has been

studied in [1–5] consists of a dark matter fermion (X)
coupled to a real scalar field (ϕ) that provides an attractive
force that binds the dark fermions together. It was recently
shown by the authors that this dark matter model leads to
interesting new signatures if the same scalar that binds the
composite together has a small Yukawa coupling to
Standard Model (SM) particles [5]. As we review below,
sufficiently massive composites will be in a saturated state;
the binding field inside the saturated composites takes on a
classical value hϕi ∝ mX, where mX is the mass of the
constituent dark matter fermion, here ranging from GeV–
EeV. For a wide range of couplings, these dark matter
composites will source a large scalar field value, which
implies a large corresponding scalar potential V ∼ hϕi
inside the composite. Nuclei and other Standard Model

particles coupled to ϕ will undergo accelerative processes
at the composite boundary. It follows that the composite’s
Yukawa potential will cause nuclei (or other SM particles)
to scatter, ionize, and undergo other dynamic processes at
the boundary and inside the dark matter (DM) composite.
As shown in [5], the kinetic energy nuclei attain falling into

large DM composites can result in bremsstrahlung radiation
and thermonuclear reactions. In particular, [5] explored how
ionizing radiation can be observed at large neutrino observa-
tories like IceCube and SNO+, as a large composite transits
the detection volume of these experiments. In addition, there
are important astrophysical consequences. For instance, the
transit of these composites through massivewhite dwarf stars
can ignite a type-Ia supernova.
This work examines some new detection modes for large

asymmetric composite dark matter states, including new
searches at underground dark matter experiments, detailed
computations for determining composite DM ignition of
type-Ia supernova, and the extent to which composites heat
the Earth’s interior. The outline of this paper is as follows:
in Sec. II, we discuss the basic properties of composite dark
matter and review its cosmological synthesis. In Sec. III,
we introduce a Yukawa coupling to nucleons and show how
this implies accelerative interactions near the composite
boundary. In Sec. IV, we identify acceleration-based
nuclear recoil signatures at underground dark matter search
experiments, including atomic ionization through the
Migdal effect. Section IV also investigates astrophysical
signatures of nuclei accelerated by composite DM, includ-
ing Earth heating and white dwarf explosions. In contrast to
processes which accelerate nuclei in the presence of the
DM composite’s potential, Sec. V considers to what extent
nuclei may scatter directly with individual constituents
inside the DM composite. A detailed analysis shows that
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for most of the DM composite parameter space we consider,
constituent scattering is negligible due to the highly degen-
erate composite interior. We conclude in Sec. VI.

II. ASYMMETRIC COMPOSITE DARK MATTER

Many details of asymmetric composite dark matter have
been discussed in prior work e.g., [1–8]. Here we will focus
on a model consisting of a Dirac fermion X, corresponding
to the dark matter field, and a real scalar ϕ, which mediates
attractive self-interactions. The Lagrangian for this dark
matter sector is

LD ¼ X̄ðiγμ∂μ −mXÞX þ gXX̄ϕX þ 1

2
m2

ϕϕ
2 þ 1

2
∂μϕ∂μϕ;

ð1Þ

where the bound states we are interested in are composed of
X (and not X̄) particles, i.e., the dark matter is asymmetric
[9,10]. An attractive interaction is a necessary ingredient to
form bound states in the early universe, as we discuss
shortly. Note that while we restrict our attention to the
Lagrangian above for simplicity, much of the work we will
do could be easily extended to the case that there is an
additional repulsive vector coupling between X, or even
pseudoscalar and pseudovector interactions. Such inter-
actions would tend to alter the formation and structure of
the dark matter composites; see e.g., [8]. In what follows
we shall also assume a zero temperature limit for our
composites, but point out that the results outlined here can
be generalized to a finite temperature using appropriate
thermal distribution functions; see e.g., [11].
The synthesis and physical properties of bound states

with a low number of particles pose a complex physical
problem. However, when the number of constituents is
large we can apply relativistic mean-field theory [4], and
approximate the binding field by a classical uniform value
ϕðxÞ → hϕi. In this limit, simple scaling relations in terms
of the constituent number NX are recovered. The scalar
field value inside the composite is determined by minimiz-
ing the energy density,

ε ¼ 1

2
m2

ϕhϕi2 þ
1

π

Z
pF

0

dpp2ðp2 þm2�Þ1=2: ð2Þ

In this expression, m� ¼ mX − gXhϕi is the fermion effec-
tive mass inside the composite, which accounts for the X
self-interactions. The upper integration limit is the Fermi
momentum pF, which implicitly depends on the scalar field
expectation value in the composite, hϕi, via the chemical
potential μ ¼ ðp2

F þm2�Þ1=2. In order to determine hϕi by
minimizing Eq. (2), the chemical potential must in turn
be related to the energy density via μ ¼ ε=nX, where
nX ¼ p3

F=3π
2 is the constituent number density. This is

equivalent to requiring a vanishing pressure, since
p ¼ −ð∂E=∂VÞNX

¼ με − nX. In the limit m� ≪ pF,

simple scaling relations for the effective mass and chemical
potential are recovered,

m� ≃ ð6π2Þ1=2
�
mϕ

gX

�
; ð3Þ

μ ≃ pF ≃ ð6π2Þ1=2
�
mϕ

gX

�
1=2

�
mX

gX

�
1=2

: ð4Þ

It can be seen from the above expressions that μ≃
pF ≫ m�, and so the constituents are effectively relativistic
while in the bound state. This will be especially relevant for
computing nucleus-X scattering; see Sec. V B. The binding
energy per constituent is set by the difference mX − μ, and
related to the total composite mass via

MX ¼ NXmX − NXðmX − μÞ ¼ NXμ: ð5Þ

Using a standard “liquid drop” model, the total
composite mass is made up of a bulk and surface con-
tribution MX ¼ NXm̄X þ N2=3

X ϵsurf , where m̄X is the
amount of composite mass per constituent, which accounts
for their binding energy, and ϵsurf is a coefficient associated
with the decrease of interactions near the composite
boundary. This relation implies that the chemical potential
scales as μ¼ m̄XþN−1=3

X ϵsurf≃m̄X in the limit of large NX.
Thus, from here onward we will take the composite mass as
MX ≃ NXm̄X, and because the constituents are relativistic,
the mass they contribute to the composite is simply m̄X ≃ μ,
which for relativistic constituents will be their Fermi
momentum, m̄X≃ð6π2mϕmXÞ1=2=gX as given by Eq. (4).
The composite radius is consequently

RX ¼
�
9πNX

4m̄3
X

�
1=3

; ð6Þ

where the scaling indicates that the composite volume is
proportional to the composite mass. Therefore, the addition
of an extra particle simply enlarges the composite so that
the number density remains constant. This saturation
number density is

nX ¼ m̄3
X

3π2
≃ 1041 cm−3

�
m̄X

5 GeV

�
3

: ð7Þ

Composites with a number density exceeding the above
expression will be well described by the mass and radius
relations given above. Of course it is often preferable to
quantify the minimum number of dark matter constituents
which render the above approximations to be accurate. As
discussed extensively in [4], the saturation regime can be
defined as the limit where the composite length scale RX

becomes comparable to the mediator range m−1
ϕ , implying

that a composite state must contain a minimum
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NX ≃
�
m̄X

mϕ

�
3

≃ 1010
�
αX
0.3

�3
4

�
mX

TeV

�3
2

�
mϕ

MeV

�
−2

ð8Þ

of dark matter constituents for it to be saturated. Shortly we
will see that by the time that the cosmological synthesis of
these composites ceases, the typical particle numbers NX
are well above this saturation threshold.
The cosmological formation of large asymmetric

composite states has been explored in previous works
[2,3,5,6]. In the case of the composite dark sector indicated
by Eq. (1), composite synthesis occurs in the early universe
when the dissociation of two-body bound states by ϕ
scattering becomes inefficient as the universe cools.
Formation of two-body bound states will occur provided
that [2]

α2XmX ≳mϕ ð9Þ

and

αX ≳ 0.3

�
mX

107 GeV

�2
5

�
ζ

10−6

�1
5

; ð10Þ

with αX ¼ g2X=4π. The parameter ζ ≪ 1 is a dilution factor
that ensures the observed dark matter relic abundance is
attained at the end of synthesis. We specify its origin a few
lines below. Once two-body bound states are formed,
synthesis of larger composites proceeds via inelastic fusion
processes, with cooling of the final composite usually
occurring via ϕ emission. In the strong binding regime
m̄X ≪ mX, the composites will build up in size via dark
fusion reactions of the form NXX þ NXX → 2NXX þ ϕ, until
their rate drops below the expansion rate of the universe.
For masses ≳TeV, this results in an overabundance of dark
matter. However, the correct relic abundance can be
recovered assuming the excess is subsequently depleted
by the decay of a metastable field [12], as was recently
shown in [5]. Such a late-time relic density depletion via
decaying fields is present in many models of high-scale
baryogenesis [13,14]. The amount of asymmetric dark
matter (and baryons) that are depleted is given by Ωdep

X ¼
ΩXζ, where ζ ¼ safter=sbefore is the entropy ratio before and
after the field decays. Conversely, the abundance of dark
matter constituent particles X after freeze-out is in excess
of the standard value by a factor of ζ−1, leading to the
formation of large composite states. The number of dark
matter of particles contained in a composite formed by this
process is [5]

Nc¼
�
20

ffiffiffiffiffiffi
g�ca

p
TrT

3=2
ca Mpl

m̄7=2
X ζ

�6=5

≃1027
�
g�ca
102

�3
5

�
Tca

105GeV

�9
5

�
5GeV
m̄X

�21
5

�
10−6

ζ

�6
5

; ð11Þ

where Tr ≃ 0.8 eV is the temperature of matter-radiation
equality, Tca ≃mX=10 is the X freeze-out temperature, g�ca
is the number of relativistic field degrees of freedom at
freeze-out, and Mpl is the reduced Planck mass. From this
we see the regime in which consistent cosmological
formation can be obtained for dark fermion masses up
to and even exceeding 1010 GeV. The resulting number of
dark matter particles contained per composite is well above
the saturation threshold, Eq. (8), and leads to composite
masses approximately ranging over 1010—1042 GeV,
where even larger masses may be obtained for a smaller
dilution parameter ζ. Thus, the binding field in the
composite interior is hϕi ∝ mX, and potentially results in
highly energetic signatures, as explored in [5]. However, as
we will see in the following sections, even if the composites
are comparatively less massive and hϕi is correspondingly
smaller (i.e., for ζ ¼ 1), even a small coupling between ϕ
and Standard Model nucleons can result in detectable
nuclear scattering and ionization processes at underground
dark matter experiments.

III. NUCLEAR COUPLING AND ACCELERATION

So far we have discussed the properties of saturated
composite states without assuming any coupling of this
dark sector to Standard Model particles. We now introduce
a coupling between the binding field ϕ and SM nucleons by
adding a Yukawa interaction,

Ln ¼ gnn̄ϕn; ð12Þ
to Eq. (1), where gn is the Yukawa coupling between ϕ and
Standard Model nucleons. Note that gn can be either
positive or negative, resulting in either a repulsive or
attractive Yukawa potential for nucleons sourced by the
DM composite. The binding field ϕðxÞ ≃ hϕi is classical
and effectively uniform inside a large composite, and its
value is well approximated by

hϕi ≃mX

gX
; r < RX; ð13Þ

so long asm� ≪ pF; cf. Eq. (3). On the other hand, because
of boundary conditions, the field must rapidly decay
outside the composite state according to

ϕðrÞ ¼ hϕie−mϕðr−RXÞ
�
RX

r

�
; r ≥ RX: ð14Þ

Nuclei coupled to this field ϕ will then have an effective
mass smaller or larger than their vacuum mass in the
composite interior, for an attractive and repulsive potential,
respectively. Energy conservation imposes that their
momenta must change as they enter the boundary of the
composite state (and similarly as they exit) according to

p2 þm2
N ¼ p02 þ ðmN − hφiÞ2; ð15Þ
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where p and p0 are the momenta of a nucleus before and
after entering the composite, respectively,mN ¼ Amn is the
nuclear mass, and we have defined hφi ¼ Agnhϕi. We note
again that the above implies a decrease or increase in the
mass of the nucleus, depending on the sign of gn.
Before continuing, for the sake of clarity we summarize

four interaction regimes for large DM composites with a
Yukawa coupling to nuclei.
(1) hφi≲mN and gn > 0. In this case there will be

energetic interactions between nuclei accelerated
into the composite interior. We have recently studied
signatures of the resulting bremsstrahlung and fu-
sion processes in [5].

(2) hφi ≪ mN and either gn > 0 or gn < 0. Low-energy
attractive or repulsive interactions will result in a soft
nuclear recoil at the boundary of the composite,
yielding scintillation andMigdal ionization at under-
ground experiments as we show for the first time in
this work. Quite recently, repulsive DM composites
were also studied in the context of mineralogical
detection [15].

(3) hφi ≫ mN and either gn > 0 or gn < 0. For a large
enough (and hence relativistic) attractive or repulsive
composite potential, the DM composite boundary
will form a repulsive barrier for incoming nuclei [16],
as discussed in [5]. Most of the nuclear recoil work
presented here will generalize easily to this case.

(4) In addition to interactions between the dark matter
composite’s scalar potential hφi and nuclei, we also

consider nucleus-X (that is nucleus-constituent)
scattering interactions. These can occur as scattering
interactions between nuclei and single-DM constitu-
ents, or take the form of collective excitations of
multiple composite constituents. As detailed in
Sec. V (see also the Appendix B), these interactions
are highly suppressed relative to interactions with
the composite potential, since X constituent particles
in saturated composites are highly degenerate.

Figure 1 shows a schematic of the different recoil and
high-energy processes that arise from a Yukawa coupling
between the binding field for composites (ϕ) and SM
nucleons. In what follows we will focus on the case that gn
is positive and the potential is attractive. For the low-energy
scattering processes we will study in Sec. IVA, the
generalization to gn negative is straightforward, since the
nuclear recoil spectrum implied for an attractive and
repulsive potential are the same.
To quantify the kinetic energy change of nuclei at

the boundary of the composite, we first note that the
field hφi couples directly to the nuclear mass since it is a
Lorentz scalar. When hφi ≪ mN , we neglect the ∼Oðhφi2Þ
term and obtain the kinetic energy change in the non-
relativistic limit,

ΔE ≃
�

p02

2mN
−

p2

2mN

�
≃ Agn

�
mX

gX

�
: ð16Þ

mN, gn > 0 mN

gn < 0

gn > 0

> mN

gn > 0 or gn < 0

nuclear interactions with DM composite internal potential scattering with constituents

1. 2. 4.3.

FIG. 1. Different interactions are shown between a large DM composite and nuclei, for nucleons that have a Yukawa coupling gn to the
scalar field ϕ that binds the composite constituents X together. For the first three processes, the size of the Yukawa potential for nuclei
inside the DM composite, hφi ¼ Agnhϕi, as compared to the nuclear mass mN , determines the characteristics of nuclear interactions
with the composite’s scalar potential. The sign of the Yukawa coupling gn determines whether the potential is attractive or repulsive. 1.
The first panel shows that for a sizable, attractive, but nonrelativistic Yukawa potential, nuclei emit bremmstrahlung radiation and may
fuse in the composite interior, as studied in [5]. 2. The second panel shows that for a small composite potential hφi ≪ mN , nuclei will
recoil at the boundary of the composite, either accelerating or decelerating, depending on whether the potential is attractive or repulsive.
Note that in the case of a repulsive Yukawa potential, the extent to which the nucleus enters the composite will depend on its initial
kinetic energy as compared to hφi. 3. The third panel shows that for a relativistic internal potential, there will be a large potential barrier
that reflects nuclei [5,16]. 4. The fourth panel depicts nuclear scattering with DM constituents X. As detailed in Sec. V B, this sort of
scattering interaction will be very suppressed since the X particles in the composite are highly degenerate.
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In this limit, the kinetic energies of nuclei can lead to
nuclear fusion and bremsstrahlung we investigated in [5].
Equation (16) above illustrates the central result: the energy
difference per SM nucleon is given by gnmX=gX for large
composites, where the constituent mass mX can span several
orders of magnitude in straightforward cosmologies, ranging
from sub-GeV up to EeV. Such heavy constituents are
accommodated in a cosmology that includes a stage of relic
abundance dilution [5]; cf. Eq. (11). Therefore, even for tiny
coupling values, nuclei can gain or lose substantial kinetic
energy as they cross the composite boundary. In addition, the
composite states considered have large sizes compared to the
atomic separation at densities ρ� ≳ 1 g cm−3, and so they
collect a large number of nuclei in their interior. Thus,
composites with this simple renormalizable coupling to SM
nucleons act as microscopic nuclear accelerators as they
traverse matter.
A number of processes can occur between nuclei and

DM composites, depending on the Yukawa coupling gn, as
this quantity determines the dynamics of SM matter as it
crosses the composite interior. For nuclear kinetic energy
shifts ΔE≲ 100 eV, a small fraction of the entering atoms
will be ionized via collisional processes and the Migdal
effect [17,18], leading to the emission of electromagnetic
radiation. In Sec. IVA, we demonstrate that the Migdal
effect alone permits liquid noble element experiments like
XENON-1T to probe nucleon-scalar Yukawa couplings well
below existing constraints based on stellar cooling argu-
ments. For ΔE≳ 100 eV, low-Z atomic nuclei will be fully
ionized, leading to substantial thermal bremsstrahlung, as
explored in [5]. There, it was shown that this radiation
induced during nuclear transit through the composite leads
to a massive energy release detectable by neutrino observa-
tories like IceCube and SNO+, for composite dark matter in
the mass range 1021 GeV≲MX ≲ 1025 GeV. At temper-
atures T ≳ 100 keV − 1 MeV, thermonuclear reactions
may proceed; however, the specific reactions and their
rate will depend on the composition, density and temper-
ature of the given medium. Reference [5] previously
showed that the heat deposition is adequate to trigger a
thermonuclear runaway in white dwarfs. In Sec. IV B, we
expand our discussion of type-Ia supernova ignition, and
go on to explore implications for planetary heating in
Sec. IV C. At much higher energies, the nonrelativistic
approximation made here breaks down. This can be seen
from Eq. (15): if hφi≳mN , then necessarily p0 < p,
implying that this potential eventually becomes repulsive
in this limit [16]. We have left a detailed treatment of this
case to future work—however, we would point out that
there are bounds on such high values of hφi, because of
stellar cooling limits considerations, which at present limit
the coupling to values gn ≲ 10−10–10−12 over the mediator
mass range mϕ ∼ eV − GeV.
To conclude this section, we discuss the timescale over

which nuclei are accelerated when entering the composite’s

Yukawa potential. As we show below, this timescale is
short compared to the timescale over which the nucleus
crosses the DM composite, since the composite radii
considered here are much larger than the binding force
range, and so nuclei are accelerated over a short distance to
substantial energies. First, we consider the dynamical
expression for the acceleration time

τaccel ¼
�
mN

2

�
1=2

Z
RX

∞
ðεþ φðrÞÞ−1=2dr; ð17Þ

where ε denotes the energy of the nucleus in the composite
rest frame and φðrÞ ¼ AgnϕðrÞ, with ϕðrÞ given by
Eq. (14). The initial energy ε can be expressed in terms
of the energy in the laboratory frame ε0 via ε ¼
ε0 þ p · vX þmNv2X=2, with vX being the velocity of the
composite in such frame. For the phenomenology consid-
ered in this work, ε0 ≪ mNv2X=2 and the initial (precom-
posite crossing) energy of nuclei in the composite rest
frame is well approximated by ε ≃mNv2X=2. Because the
field gradient decays exponentially outside the composite
volume, nuclei accelerate over a short distance near the
composite surface. In terms of the dimensionless variable
χ ¼ r=RX, this length scale is χ ≃ ðmϕRXÞ−1. The accel-
eration timescale is then

τaccel¼RX

�
mN

2ε

�
1=2

×
Z

1

1þðmϕRXÞ−1

�
1þ

�
φ

ε

�
e−mϕRXðχ−1Þ

χ

�−1=2
dχ; ð18Þ

which can be solved numerically. However, for the large
composite masses we consider, it is always the case
that ðRXmϕÞ−1 ≪ 1. Therefore, we can estimate the time-
scale above by approximating χ ≃ 1 and dχ ≃ ðmϕRXÞ−1,
yielding

τaccel ≃
1

mϕ

�
1

v2X þ v2N

�
1=2

≃ 6.5 × 10−19 s

�
mϕ

MeV

�
−1
�

vX
10−3

�
−1
; ð19Þ

where vN ¼ ð2hφi=mNÞ1=2 is the final nuclear velocity in
the composite rest frame. In the rightmost expression, we
show the scaling when vN ≪ vX, which is the case for all
phenomena considered in this work.1 Having now derived

1We note that in the opposite limit vX ≪ vN a finite accel-
eration timescale is also recovered.

τaccel ≃m−1
ϕ

�
2hφi
mN

�
−1=2

≃ 10−18 s

�
mN

10 GeV

�1
2

�
mϕ

MeV

�
−1
� hφi
MeV

�
−1
2

: ð20Þ
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the acceleration timescale for nuclei entering the DM
composite, we turn to associated signatures.

IV. NUCLEAR ACCELERATION SIGNATURES
OF COMPOSITE DM

Standard Model particles accelerated across the boun-
dary of dark matter composites provide new means for dark
matter detection. These include nuclei recoiling across the
composite boundary at underground experiments, and the
associated Migdal effect, along with astrophysical signa-
tures of composites heating planets and igniting white
dwarfs. In this section we detail the detection of accel-
erating dark matter composites using underground dark
matter search experiments, along with white dwarf and
terrestrial observations.

A. Direct searches via nuclear recoil and the
Migdal effect at low energies

Composite dark matter crossing the volume of direct
detection experiments can accelerate atomic nuclei over
a short timescale, thereby ionizing and exciting atoms
with the sudden nuclear recoil induced by the DM
composite’s potential. We first turn to the ionization of
atoms at the DM composite boundary. The nonadiabatic
response of electrons to an impulsive nuclear motion is
called the Migdal effect [17,18]. In essence, the Migdal
formalism relies on a sufficiently rapid change in
nuclear momentum, so that the perturbed electron wave
functions can be modeled by applying a straightforward
momentum boost. Therefore, to apply the Migdal
formalism to large DM composites we will require that
the nuclear recoil interaction time is short compared to
both the electron orbital period τe− ∼ ð10 eVÞ−1 ≃ 6.5 ×
10−17 s and the ratio Ra=vN , where Ra is the atomic
radius and vN is the final nuclear velocity. Before the
interaction the atomic nucleus can be assumed sta-
tionary, and the electron cloud is characterized by its
ground-state wave function jψi. After the interaction has
occurred, the nucleus moves with speed vN . In the rest
frame of the recoiling nucleus, if the interaction
occurred fast enough, the electrons initially have the
same coordinates as when the nucleus was stationary,
but their momenta are boosted by q ¼ mevN. The
perturbed electron cloud wave function is subsequently
expressed as jψ 0i ≃ exp ð−iPa q · raÞjψi, where ra are
the position operators of the electrons in this new rest
frame, with a ¼ 1;…; Z. This yields a finite transition
amplitude to excited and free states, even for the
electrons occupying inner orbitals.
In practice, noble elements used in direct dark matter

searches have large atomic radii of order Ra ≃ 10−8 cm, so
Ra=vN ≫ τe− . Comparing then the electron orbital period
to Eq. (19), we see that the acceleration occurs fast enough
for this approximation to be valid, so long as the composite

is moving sufficiently fast or the potential is sufficiently
short ranged. In this section we will find that Migdal
electrons produced by the composite transit yield excellent
detection prospects for liquid noble element experiments
like XENON-1T.
There have been several proposals for dark matter

searches using the Migdal effect [19–31], especially in
the sub-GeV mass range. As a proof-of-concept for DM
composite detection, we will focus here on XENON-1T and
its first dark matter search [32]. As we show below, the
extremely low electron background of this experiment,
combined with the high mass number of xenon, allows for a
sensitivity to dark matter composite-nucleon couplings
well below existing constraints. Detection prospects using
the Migdal effect have been conducted previously in [24].
Here, because of the nature of the Migdal effect as applied
to DM composites, the recoil energy spectrum will be
different because all atomic nuclei are accelerated to
approximately the same kinetic energy along the compo-
site’s path.
For a large DM composite, the Migdal ionization differ-

ential event rate per unit of exposure is set by

dR
dER

¼ ρX
mNMX

Z
v>vð minÞ

X

dσ
dER

vgðvÞdv ð21Þ

is the dark matter velocity distribution in the laboratory
frame. In our analysis we assume a local dark matter
density ρX ≃ 0.4 GeV cm−3 [32] and use a flux-normalized
velocity distribution outlined in [33],

fðvÞ ¼ N −1ðv2 − v2eÞ3=2 exp
�
ṽ2

v20

�
Θðv − veÞΘðveg − ṽÞ;

ð22Þ

where v ¼ jvj, ve ≃ 11.2 km s−1 is the Earth’s escape
velocity, veg ≃ 528 km s−1 is the galactic escape velocity,
and v0≃220 km s−1 is the velocity dispersion [34,35]. The
variable ṽ2¼v2−v2eþv2rfþ2vrf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−v2e

p
cosφ accounts

for the relative velocity between the solar system with
respect to the galactic frame, with vrf ≃ 230 km s−1 and φ
being the angle between such relative velocity and the dark
matter vector. The constant N −1 is a normalization factor
that enforces

R
∞
0

R
π
0 fðvÞdvdðcosφÞ ¼ 1. The distribution

gðvÞ in Eq. (22) is then given by the integration over φ of
Eq. (23), i.e., gðvÞ ¼ R

π
0 fðvÞdðcosφÞ.

We express the differential cross section per unit of
nuclear recoil energy as the geometric cross section of the
composite, multiplied by a delta function enforcing the fact
that all nuclei along the composite path will be accelerated
to the same energy
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dσ
dER

≃ 2πR2
XδðER − E0

RÞ; ð23Þ

where E0
R ¼ AgnmX=gX (A ≃ 130) denotes the kinetic

energy to which nuclei are accelerated as they cross
the composite boundary; cf. Eq. (16). Note that there is a
factor of 2 in this expression that accounts for nuclei
accelerating both as they approach and exit the composite
boundary.
The minimum integration speed in Eq. (22), unlike other

analyses, is now set by the minimum kinetic energy that
the composite must have to penetrate the experiment’s
overburden, and still reach the detection volume with a
sufficient speed for the Migdal approximation to remain
valid. Depending on the coupling and mediator mass,
radiation or conduction losses will dominate the stopping
power. For couplings sufficiently high so that temperatures
T ≳ 100 eV are reached in the composite interior, matter
will be completely ionized but optically thin to photons,
resulting in an energy loss in the form of thermal brems-
strahlung [5]. At lower couplings, heat conduction losses
will dominate, which we estimate by taking a crust thermal
conductivity ∼1Wm−1K−1≃107 GeVs−1 [36] and apply-
ing Fourier’s law with a thermal gradient ∇T ≃ Tmϕ. Both
of these energy loss channels imply that composites must

have a minimum velocity of order vðheatÞX ≳ 10−4–10−3, and
so an ∼Oð1Þ fraction of the flux will have enough kinetic
energy to penetrate the overburden. On the other hand, for
the Migdal approach to be valid, we require the acceleration
timescale τaccel, given by Eq. (17), to be short enough
compared to the electron orbital period, of order
τe ∼ 10−17 s. Thus, setting τaccel ¼ τe− in Eq. (17), we
obtain the minimum speed

vðmigÞ
X ≃

1

mϕτe−
≃ 10−5

�
MeV
mϕ

�
; ð24Þ

where we have neglected vN in Eq. (17) compared to
ðmϕτe−Þ−1, which is the case for the entire parameter space
considered here.
The differential ionization rate will be given by Eq. (22),

multiplied by the probability of electron emission from a
given energy level [24]

dRion

dERdEe
¼ dR

dER
×

�
1

2π

X
n;l

dpn;l→Ee

dEe

����
q

�
: ð25Þ

in the above equation, Ee is the final kinetic energy of

the ionized electron and dpn;l→Ee
dEe

jq is the differential prob-
ability, for a given momentum change q ¼ mevN ¼
ð2m2

eE0
R=mNÞ1=2, for an electron initially at a level ðn; lÞ

to be ionized with a final kinetic energy Ee. This set of
probabilities was numerically computed for xenon atoms in

[23]; we use the results of that study to evaluate the integral
in Eq. (26) (Table II of [23]). The total energy deposition is
given by Eem ¼ Enl þ Ee, where Enl is the initial binding
energy of the electron. We remark that while Ee is typically
∼OðeVÞ, the ionization energies Enl are ∼OðkeVÞ, and
therefore dominant.
Due to the very narrow nuclear recoil spectrum,

cf. Eq. (24), integration over the nuclear recoil energy
can be performed analytically. We can also integrate over
the electronic energies and obtain

Rion ¼
4πR2

XnX
mN

×

�Z
v>vðminÞ

X

vgðvÞdv
�

×

�
1

2π

X
n;l

Z
dEe εðEemÞ

dpn;l→Ee

dEe

����
q

�
: ð26Þ

We have explicitly included here XENON-1T’s detection
efficiency for a given electromagnetic energy deposition
εðEemÞ [24]. For XENON-1T’s first run, a total exposure of
98 kg yr was achieved [37]. Furthermore, the integral in the
above equation yields a factor of q2, allowing us to express
the total number of Migdal electron events at XENON-1T in
terms of composite parameters; cf. Eqs. (6) and (16),

Nion≃108
�

mX

103GeV

�
−2
5

�
mϕ

10−3GeV

�
−4
5

�
gn

10−10

��
αX
0.3

�
− 1
10

:

ð27Þ

It is also relevant to compute the average number of
electronic recoils produced by a single composite transiting
the detection volume. This is given by the ionization
probabilities, the detection efficiency, and the flux of xenon
atoms through the composite,

Ntransit ≃ ð2πR2
XnXeLdetÞ

×

�
1

2π

X
n;l

Z
dEe εðEemÞ

dpn;l→Ee

dEe

����
q

�

≃ 5 × 1016
�
RX

nm

�
2
�
mX

TeV

��
gn

10−10

��
αX
0.3

�
−1
2

: ð28Þ

In the above expression, Ldet ≃ 100 cm is the length scale
of XENON-1T’s detection volume, nXe ≃ 1022 cm−3 is the
number density of targets, and we assume the composite is
moving fast enough for the Migdal approximation to be
valid. Equation (28) demonstrates that even for tiny
couplings, a composite crossing XENON-1T’s volume could
be observed from the large ionization track it creates.
Finally, we must consider the maximum composite mass

that can be probed by XENON-1T given the total dark matter
flux passing through the experiment. An accurate modeling
of the experiment’s geometry is out of the scope of this
work (see, e.g., [38–42]); however, as a first estimate we
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use the flux through a spherical detector with a radius of
order Rdet ∼ 50 cm, yielding ΦX ≃ 2πR2

dethvXiðρX=MXÞ≃
10−4 s−1ðMX=1015 GeVÞ−1. The maximum mass to which
the experiment is sensitive is then estimated by requiring
ΦXt ≃ 1, where t is the running time. XENON-1T’s first dark
matter search had a total of 34.2 live days [37], resulting in
a mass limit of MðmaxÞ

X ≃ 2 × 1017 GeV.
Figure 2 shows the constraints on the dark matter-

nucleon coupling gn based on XENON-1T’s first dark matter
search results, for composites with different mediator
masses that were synthesized in the early universe without
a dilution stage; cf. Eq. (11) with ζ ¼ 1. A composite

synthesis including a dilution stage ζ ≪ 1 results in much
heavier composites, limiting their detection prospects at
traditional dark matter experiments due to the flux limit set
by their running time and size (however, large neutrino
observatories can still play a role in their detection; see [5]).
The bounds in Fig. 2 are derived from the observation of
Oð1Þ electron recoil events during XENON-1T’s first run.
The composite mass range is limited either by the strong
binding condition, m̄X ≪ mX, or the minimum composite
radius considered here. The upper bound of the constraints
is set by Eq. (29). For larger couplings, a single composite
would create an ionization track while transiting the

FIG. 2. Constraints on the DM-nucleon coupling from XENON-1T’s first dark matter search (SR0) [37] as a function of composite mass
(red), for a fixed dark coupling αX ¼ 0.3, and binding mediator (mϕ) masses as specified. The upper horizontal scale indicates the
corresponding constituent mass. Note that these results assume no dilution during cosmological synthesis [i.e., ζ ¼ 1 in Eq. (11)].
Constraints are drawn from the expected number of Migdal electrons from composites in 98 kg yr of exposure, Eq. (28), compared to the
few electronic recoil events observed. Bounds terminate at highMX due to the composites being so strongly bound that RX < 10−4 nm;
we conservatively require RX > 10−4 nm so that each transiting composite intercepts a few xenon nuclei. At small MX , the strong
binding condition is not met. The line “SR0 flux limit” indicates the maximummass reach of XENON-1T’s first dark matter search. Above
the upper line, a single composite will produce multiple Migdal electrons, requiring a new analysis of XENON-1T data. The dashed blue
line shows where each composite produces multiple ∼keV nuclear recoils, constrained by DAMA [43], analysis of DEAP-3600 data [44]
and Ohya quarry / Skylab [41] (blue). We also show stellar cooling bounds on light scalar fields coupled to nucleons [45,46] (gray).
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detection volume. While clearly detectable, such a signal
requires a dedicated analysis of XENON-1T’s data, which is
out of the scope of this work.
For comparison, we have also indicated the parameter

space region where observable ∼keV nuclear recoils
proceed. Within this region, we display existing constraints
from DAMA [43], a recent analysis of multiscatter signatures
of superheavy dark matter at the DEAP-3600 experiment [44],
and the Ohya quarry [41,47], which are obtained by
identifying the geometric cross section of the composite
with a cross section for scattering with nuclei. Specifically,
we use Eq. (6) with Eq. (11) and the definition of m̄X in the
saturated regime to obtain the geometric cross section for
the composites, which is directly constrained by geometric
composite nuclear scattering as detailed in [41]. We note
that there is a nontrivial relationship between the radius
of the assembled composite and mX; the scaling follows
RX ∝ m−3=5

X , meaning more massive composites with more
massive constituents will be smaller in size. For this work,
we have terminated the bounds at a cutoff radius
RX ≃ 10−4 nm, to ensure that each composite encounters
at least one xenon nucleus during its transit through XENON-

1T’s detection volume. Smaller composite geometric cross
sections can in principle be considered, but we have left a
detailed treatment of this regime for future investigation.
Additional bounds using nuclear scattering should be
obtainable with new multiscatter analyses at experiments
like XENON-1T [38–40,48], as were recently obtained by
DEAP-3600 [44]. We also show existing stellar cooling
constraints on the coupling [45,46]. Overall, these plots
demonstrate that couplings well below existing experimen-
tal or stellar cooling constraints can be probed for large
composite states by accounting for the Migdal effect. We
also remark that for the regions we have constrained, the
bounds are equally valid for a repulsive interaction between
nuclei and the composite state, since the Migdal effect is
independent of the direction of the momentum change.
Finally, we comment on other existing constraints on

nucleon couplings to light scalars from cosmological and
experimental origin. As discussed extensively in [46], the
light scalar ϕ may contribute to the number of relativistic
degrees of freedom at Big Bang Nucleosynthesis (BBN).
However, for couplings gn ≲ 10−9, its resulting contribu-
tion is not in tension with limits on ΔNBBN

eff measured from
primordial H and D abundances, as well as similar limits
from cosmic microwave background data and large-scale
structure. In addition, one might consider whether the
composite states themselves alter cosmological predictions
like BBN; however cosmological observables appear to be
unaltered by these composites, primarily because of their
low number density [5]. There are also constraints on gn
from accelerators. At present, rare B and K meson decays
place limits of order gn ≲ 10−8 [46], which are less
restrictive than the stellar cooling constraints we
account for.

B. White dwarf explosions and type-Ia supernovae

Recent studies [49,50] indicate that a sizable number of
type-Ia supernovae explode from sub-Chandrasekhar mass
white dwarfs. However, the actual mechanism by which
they proceed from such progenitors is not completely
understood. Among the possible ignition scenarios, one
can find matter accretion from a neighboring star [51–53],
binary mergers [54,55] or helium shell ignition [56]. All of
these processes require binary companions, whereas astro-
nomical evidence indicates that a significant fraction of
these events occur in single white dwarf systems [57,58].
In this context, there have been several proposals for dark
sectors capable of igniting a thermonuclear runaway in
single sub-Chansdrasekhar white dwarfs as possible sol-
utions to this problem. These include accumulation and
collapse of asymmetric dark matter cores that transfer their
gravitational energy via dark matter-nucleus scattering
[59–61], evaporation to Hawking radiation of black holes
formed from the collapsed dark matter cores [60,61], heavy
dark matter annihilation or decay to Standard Model
particles [62], pycnonuclear reactions enhanced by charged
massive particles [63], and the transit of primordial black
holes [64,65] (see also [66–76] for related work on dark
matter in white dwarf stars).
Recently in Ref. [5] we identified how large DM

composites could spark the ignition of white dwarfs explo-
sions, and indicated relevant DM composite parameter
space. In this section we provide a more detailed exposition,
and examine how saturated composites produce enough
localized heating via exothermic fusion reactions occurring
in the DM composite interior, to initiate a thermonuclear
runaway at the center of a carbon-oxygen (C/O) white dwarf.
For white dwarf ignition conditions, we follow the numerical
results from [77], where different critical temperatures
and trigger masses were numerically computed for a set
of compositions. A critical temperature Tc ∼ 1010 K ∼
1 MeV is typically sufficient to satisfy ignition for any
composition and trigger mass. Therefore, for ignition the
composite potential must be hφi ¼ AgnðmX=gXÞ ≳ 1 MeV,
as this quantity determines the kinetic energy of nuclei
inside the composite. The carbon and oxygen nuclei
heated to the critical temperature inside the composite
state will fuse in (mostly) exothermic reactions. For a
runaway fusion reaction to occur, the heat released must
overcome the rate at which it is dissipated by the white
dwarf material. As we will show below, this condition
imposes a minimum composite size in order to have a
sufficiently large number of reactions proceeding in the
composite interior.
We first comment on the kinetic state of nuclei in the

white dwarf, in relation to the transiting composites.
Neglecting the initial halo velocity, dark matter composites
will cross the white dwarf at approximately escape velo-
city, vesc ¼ ð2GM�=R�Þ1=2 ≃ 3.5 × 10−2ðM�=1.3M⊙Þ1=2×
ðR�=3000 kmÞ−1=2, where M⊙ is a solar mass. We can
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directly compare this speed to the motion of the stellar
constituents. For cold ∼Gyr-old white dwarfs, nuclei are
arranged in a crystalline lattice, and we assume they vibrate
in their zero-point state j0i with a natural frequency given
by the plasma frequency of the medium,

Ωp¼
�
4πZ2e2nN

mN

�1
2

≃37 keV

�
ρ�

109 gcm−3

�1
2

�
Z
6

��
A
12

�
−1
:

ð29Þ
In such a state, their average velocity is h0jvj0i ¼ 0,

whereas the velocity dispersion is ðh0jv2j0iÞ1=2 ¼
ðΩp=mNÞ1=2 ≃ 10−3 ≪ vesc, for mN ≃ 12–16 GeV.
Therefore, we safely assume nuclei to be at rest compared
to the DM composite velocity in the stellar rest frame.

1. Composite energy loss during white dwarf transit

Between the DM composite and the white dwarf
medium, there are a number of energy transfer rates to
consider: (1) the nuclear energy release rate from thermo-
nuclear reactions from nuclei fusing inside the composite,
and (2) the energy loss rate of accelerated nuclei from the
DM composite constituents scattering with nuclei. As we
will see in Sec. V, the interactions between nuclei and
dark matter constituents inside the composite are severely
suppressed. However, the nuclei accelerated inside the
composite can instead scatter against the degenerate elec-
trons in the white dwarf medium, which efficiently conduct
heat. In addition, these transiting nuclei can also emit
photons and neutrinos.
Since nuclei losing kinetic energy results in the

composite slowing down, as discussed in Appendix A,
these processes can potentially halt the composite transit
through the star, preventing ignition at the center. Now we
discuss these energy loss channels in detail:

(i) Electron conduction: Accelerated nuclei inside the
composite will scatter against degenerate electrons
in the white dwarf medium. Since electrons are
relativistic for stellar densities ρ� ≳ 106 g cm−3,
these are highly efficient heat carriers. This makes
the stellar material beneath the radiative envelope
effectively isothermal, with temperatures T� ∼
ð106–107Þ K for ∼Gyr-old white dwarfs. The heat
conduction rate out of a spherical region of stellar
material of radius RX at the critical temperature Tc is
given by [78]

_Qcond ¼
4π2RXT3

cðTc − T�Þ
15κcρ�

≃
4π2T4

cRX

15κcρ�

≃ 1027GeV s−1
�

ρ�
109 g cm−3

� 4
15

�
RX

μm

�
; ð30Þ

where κc ≃ 10−9 cm2 g−1ðT=107 KÞ2.8 ×
ðρ�=109 g cm−3Þ−1.6 is the conductive opacity of

the relativistic white dwarf electrons [78]. In the
second equality, we have neglected the stellar back-
ground temperature compared to the critical ignition
temperature.

(ii) Photon emission: The heated stellar material inside
the composite will also cool down by radiating
photons. Due to the high opacity of the stellar
material, photons will scatter many times inside
the composite, thermalizing with the heated plasma.
Therefore, we assume this cooling process can be
modeled using a blackbody radiation spectrum at
temperature Tc. The rate at which energy is radiated
out of a composite of radius RX is [79]

_Qrad ¼
4πR2

XσSB∇T4

κrρ�
≃
16πR2

XσSBmϕT4
c

κrρ�

≃ 1024 GeV s−1
�
mϕ

keV

��
RX

μm

�
2

; ð31Þ

where σSB ¼ π2=60 is the Stefan-Boltzmann con-
stant in natural units, and κr ≃ 107 cm2 g−1ðT�=
107 KÞ−7=2ðρ�=109 g cm−3Þ is the white dwarf radi-
ative opacity for free-free electron transitions
[63,80]. In the second equality, we have approxi-
mated the temperature gradient ∇T4 ¼ 4T3∇T≃
4T3

cððTc − T�Þ=m−1
ϕ Þ ≃ 4mϕT4

c. This approximation
is accurate for saturated composites because
m−1

ϕ ≪ RX, so the potential is short ranged com-
pared to the composite size.

(iii) Neutrino emission: At the critical temperature Tc,
neutrino emission is dominated by electron-
positron annihilation, with an emission rate of
1029–1030 GeVcm−3 s−1 in the stellar density range
ð108–1010Þ g cm−3 [81–83]. The white dwarf
material is transparent to neutrinos of ∼MeV en-
ergies, and so they escape the star carrying all of
their energy away. This yields a neutrino energy loss
rate of order _Qν ≃ 1018 GeV s−1ðRX=μmÞ3.

Comparing these energy loss mechanisms, we see that
photon and neutrino losses will be subdominant compared
to electron conduction unless composites have radii
RX ≳ 0.1 cm and RX ≳ 100 cm respectively. However as
we detail below, composites in excess of RX ≳ 1 cm will be
too scarce in DM halos and therefore unable to explode
white dwarfs on ∼Gyr timescales. Thus, we are only
concerned with the energy loss from conduction and, at
the highest composite masses, radiation.
We now turn to the question of whether composites will

be stopped through dissipative processes as they cross the
white dwarf. Let us compare the above energy loss rates to
the composite kinetic energy at the surface of the white
dwarf, and the white dwarf crossing time. The initial
composite kinetic energy at the star surface is
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1

2
MXv2esc ≃ 1027 GeV

�
MX

1030 GeV

��
vesc

3 × 10−2

�
2

: ð32Þ

For sub-Chandrasekhar white dwarfs, with radii ranging
(2500–3000) km, composites will cross the star in ∼1 s.
Thus, comparing Eq. (33) to the conduction and radiation
losses above, we see that composites of masses MX ≳
1030 GeV will not be significantly stopped by these
dissipation processes.

2. Composite heating of white dwarf material

Next, to determine whether the composite can cause a
thermonuclear runaway in thewhite dwarf, wemust compare
the above composite cooling rates to a number of timescales
relevant for thermonuclear reactions inside the composite as it
crosses the white dwarf. First we look at the timescale for
stellar material to be heated as it crosses the DM composite’s
boundary. The heat capacity of the white dwarf ions is
Cv ≃ 2πρ�R3

X=mN . Using the acceleration timescale
Eq. (17), we estimate the heating rate of the stellar material
from accelerating across the composite boundary to be

_Qnuc≃CvTcτ
−1
accel

≃1034 GeVs−1
�

vX
10−2

��
mϕ

keV

��
ρ�

109 gcm−3

��
RX

μm

�
2

:

ð33Þ

This is much larger than the above cooling rates for the
parameters indicated. Hence, for composites with radii
RX ≳ 10−2 μm, _Qnuc ≫ _Qcond, _Qrad, and so neither conduc-
tive nor radiative losses prevent stellar material from being
rapidly heated to the critical ignition temperature during the
composite transit.
The same cooling mechanisms discussed above must

also be compared to the timescale required for the thermo-
nuclear runaway itself. Specifically, to ignite the white
dwarf star we must require the heat diffusion rate to fall
below the rate at which energy is released from the
thermonuclear reactions. At the critical temperature Tc,
the ions can be treated as an ideal gas and nuclear reactions
proceed in the classical thermonuclear regime, i.e., screen-
ing effects are negligible. For a C/O white dwarf, there
will be three primary fusion processes we will consider:
12Cþ 12C, 12Cþ 16O and 16Oþ 16O. These reactions
respectively produce the compound nuclei 24Mg, 28Si
and 32S, each decaying via n-, p- and α- channels. The
nuclear burning rate is set by the astrophysical S factor
which determines the fusion cross section at low energies,
as well as the Coulomb barrier penetration factor, which are
extensively discussed in [84,85]. Using the formalism
outlined in these references, we find the specific rates
for each reaction per unit volume,

d _RCþC

dV

����
Tc

≃ 1043 cm−3 s−1
�
XC

0.5

�
2
�

ρ�
109 g cm−3

�
2

; ð34Þ

d _RCþO

dV

����
Tc

≃ 1042 cm−3 s−1
�
XC

0.5

��
XO

0.5

��
ρ�

109 g cm−3

�
2

;

ð35Þ

d _ROþO

dV

����
Tc

≃ 1040 cm−3 s−1
�
XO

0.5

�
2
�

ρ�
109 g cm−3

�
2

; ð36Þ

where XC þ XO ¼ 1 are the mass fractions of carbon and
oxygen. Each fusion process releases QCþC ≃ 3.16 MeV,
QCþO ≃ 6.51 MeV and QOþO ≃ 13.09 MeV of average
heat per reaction [86]. The subsequent nuclear energy
release rate is

_Qfus ≃
4π

3
R3
X

� X
j¼CC;CO;OO

Qj
d _Rj

dV

����
Tc

�
ð37Þ

The nuclear energy release rate Eq. (38) scales as R3
X,

whereas the heat conduction rate Eq. (31) only scales as RX.
This implies that there is a minimum composite radius for
which the nuclear energy released exceeds the conduction
rate and the runaway commences. For concreteness, we
consider two benchmark cases: a pure XC ¼ 1 composi-
tion, and an XC ¼ XO ¼ 0.5 C/O mixture. Using the
reaction rates above, we obtain a nuclear energy release
rate of _Qfus ≃ 1033 GeV s−1ðρ�=109 g cm−3Þ2ðRX=μmÞ3
for pure carbon, and _Qfus ≃ 4 × 1032 GeV s−1ðρ�=
109 g cm−3Þ2ðRX=μmÞ3 for a C/O mixture. For both bench-
mark compositions, composites with radii above RX ≳
10−2 μm will satisfy _Qnuc ≫ _Qcond; _Qrad. Using Eq. (6),
this implies a minimum composite mass MX ≳ 1023 GeV,
which is smaller than the required mass for the composites
to reach the stellar core, cf. Eq. (33) and surrounding
discussion. Thus, we conclude that composites with masses
and radii

MX ≳ 1030 GeV; RX ≳ 10−2 μm; ð38Þ

are capable of reaching the core of a massive C/O white
dwarf and ignite a nuclear runaway, so long as their
coupling to SM nucleons is sufficiently strong. Such
minimum coupling is determined from the critical temper-
ature by setting Eq. (16) equal to Tc. Following this
procedure, the minimum coupling for igniting a thermo-
nuclear runaway in the white dwarf is

gn ≳ 10−12
�

mX

108 GeV

�
−1
: ð39Þ

We remark that given stellar cooling constraints, which
already bound the coupling gn ≲ 10−12 for mediators with
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masses ≲keV, typically it will be composite states made of
heavy mX ≫ PeV constituents, which have a sufficiently
strong potential, that will cause a white dwarf star to
explode, as we explored in [5]. Thus, a cosmological
synthesis with a dilution stage is necessary to synthesize
composites with an adequate size and coupling to produce
type-Ia supernovae; cf. ζ ≪ 1 in Eq. (11).
The existence of old white dwarfs in the mass range

ð1.1–1.4Þ M⊙, corresponding to central densities
ρ� ≃ ð108–1010Þ g cm−3, implies constraints on the
nucleon-dark matter coupling gn, assuming at least one
encounter with a composite occurred during their ∼Gyr
lifespan. Although some fraction of these white dwarfs will
possess O/Ne cores, which have not been discussed here,
we remark that multiple studies [87–89] indicate that an
Oð1Þ fraction of massive C/O white dwarfs are formed as
the result of binary mergers [90,91]. Furthermore, there
exist single-evolution channels by which massive C/O
white dwarfs may form, such as reduced mass loss rates
in the asymptotic giant branch phase [92,93] or enhanced
rotation [93,94]. Searching the Montreal White Dwarf
Database [95], we find an ∼Oð103Þ sample of single white
dwarfs in the mass range of interest, with cooling ages
ranging 1–5 Gyr at distances ≲103 pc. Based on the above
considerations, a fraction of this sample must be C/O white
dwarfs that have not exploded, implying that either ignition
conditions were not satisfied, or else they have not
encountered a composite in their lifetime. The former
condition constrains gn according to Eq. (40), whereas
the latter condition implies that such constraints are valid
for composites with masses MX ≲ 1042 GeV, assuming a
dark matter halo density ρX ≃ 0.4 GeVcm−3. We empha-
size that any C/O white dwarf within this mass range will
impose a similar condition on the minimum mass and
radius of ignition-capable composites, since the central
density spans ∼2 orders of magnitude, resulting in an
∼Oð1Þ correction factor to the minimum composite radius
for ignition.

C. Terrestrial heat flow

A number of works have studied the impact of dark
matter on planets and their satellites [33,96–105]. In
particular, bounds have been placed on different dark
matter models based on the heat that captured dark matter
would produce in the Earth’s core from annihilation
[98,100,101] or gravitational collapse into evaporating
black holes [33], which would exceed the _Q⊕ ≲ 44 TW ≃
1023 GeV s−1 of heat flow from the surface of the Earth
[106,107]. In this section, we discuss the heat signature
produced by large composites in the Earth’s mantle and
core, and argue that although a significant fraction of the
composite dark matter flux can be gravitationally captured
by the Earth, these composites do not produce a heat flow
comparable to the value currently measured.

Composite dark matter can be captured by the Earth’s
crust and mantle from the various energy dissipation
mechanisms which, as detailed in Appendix A, translates
into lost kinetic energy as it travels through matter. The
composite dark matter number flux through the Earth is

ΦX ¼ 2πR2
⊕hvXi

ρX
MX

≃ 105 s−1
�

MX

1020 GeV

�
−1
; ð40Þ

where R⊕ ¼ 6371 km is the radius of the Earth, hvXi ≃
300 km s−1 is the average DM velocity entering the Earth,
and ρX ≃ 0.4 GeV=cm3 is the local DM mass density
[32,98,101,108]. By itself, the kinetic energy of this
DM flux falls well short of the observed heat flow of
the Earth. Each composite has a kinetic energy of order
∼1013 GeV ðMX=1020 GeVÞðvX=300 km s−1Þ2, in contrast
with the ∼ _Q⊕=ΦX ≃ 1018 GeVðMX=1020 GeVÞ required
per composite to produce an observable deviation in the
heat flow from Earth. However, we must consider if the
composites that are captured release further energy into
the core and mantle through nuclear collisions and reac-
tions in their interiors. At temperatures ≳100 keV, thermal
bremsstrahlung will significantly stop composites in the
mantle [5], which will then slowly drift and settle at
the core, on a timescale that can be computed using the
methods described in [33,101]. Given that the mantle
composition is predominantly 16O, we expect sizable oxy-
gen burning reactions to occur at such temperatures. Once
the composites have settled at the core, they could later
release heat as matter is accumulated in their interior, since
matter they accumulate will have fallen into the compo-
site’s potential, and would radiate a corresponding amount
of potential energy. Finally, we should also consider
whether these dark matter states might congregate at the
center of the Earth and gravitationally collapse into a black
hole light enough to evaporate via Hawking radiation,
provided enough dark matter is captured [33]. Below we
detail each of these processes:

(i) Fusion reactions: The captured composites could
release heat via fusion reactions occurring in their
interiors. The Earth’s mantle is mostly composed of
16O and silicon, while the core is mostly composed
of 56Fe, which can no longer fuse and therefore is not
considered in this analysis. Oxygen burning is the
only plausible reaction that can occur at temper-
atures T ∼ 100 keV–1 MeV, with a highly temper-
ature-dependent rate we extract from [86]. To
achieve such temperatures, given that stellar cooling
constraints limit the dark matter-nucleon coupling to
gn ≲ 10−12–10−10 in the eV—GeV mediator range,
constituent masses must be in excess of
mX ≳ 106 GeV. In t⊕ ≃ 4.5 Gyr ≃ 1017 s, about
1022ðMX=1020 GeVÞ−1 composites are captured.
Each of them must then release at least
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10 GeV s−1ðMX=1020 GeVÞ to produce _Q⊕. How-
ever, the energy released from oxygen burning
reactions per composite is ∼10−1 GeV s−1 ×
ðMX=1020 GeVÞðm̄X=5 GeVÞ−4. Thus, oxygen fu-
sion reactions in the mantle triggered by these
composites cannot substantially alter the observed
Earth heat flow.

(ii) Gravitational collapse: The composites accumulated
in the Earth’s core will eventually fuse into a single
larger composite state. We do not discuss the time-
scale for such process here. Instead, we point out
that if the critical mass is exceeded, the dark matter
will collapse into a black hole which can either
overheat or destroy the Earth depending on its initial
mass, as discussed extensively in [33]. However,
the critical mass for collapse is Mcoll ≃M3

pl=m̄
2
X ≃

1055 GeVðm̄X=5 GeVÞ−2 [109]. The total dark mat-
ter mass flux, on the other hand, is 2πR2

⊕hvXiρX≃
1025 GeV s−1, cf. Eq. (41), and therefore insufficient
for the critical mass to be accumulated in
t⊕ ≃ 4.5 Gyr ≃ 1017 s.

(iii) Matter compression: A detailed study of the phase of
matter after a captured composite has settled is out
of the scope of this work. A simple estimate,
however, indicates that the heat released as nuclei
settle in the composite interior is insufficient to
produce _Q⊕. As specified above, each captured
composite would need to deposit ∼ _Q⊕=ΦX ≃
1018 GeVðMX=1020 GeVÞ in the form of compres-
sional heating once they reach the core and thermal-
ize. By contrast, nuclei would ultimately release
an energy of order hφi in the form of heat, resulting
in a total energy deposition of nNhφiR3

X∼
MeVðnN=1023 cm−3Þðhφi=MeVÞðMX=1020 GeVÞ×
ðm̄X=5 GeVÞ−4, where the number density has been
normalized to the Earth’s inner core value. However,
it is probably the case that Standard Model nuclear
material collected into the composite will continue
to accumulate, potentially reaching a density well
beyond 1023 cm−3, until it is stabilized against
further accumulation by electron or nucleon degen-
eracy pressure. Put differently, we should consider
whether nuclei continue to collect until the interior
of DM composites resembles “white dwarf” or
“neutron star” material. In this case, the above
estimates indicate that composites with an extremely
small in-medium mass (e.g., m̄X ≪ 5 MeV, assum-
ing a 1032 cm−3 “WD” nuclear density) may appre-
ciably heat the Earth. We leave a proper study of this
phenomenon to future work.

From these estimates we conclude that while dark
matter composites captured by the Earth may be respon-
sible for a fraction of the heat output, they cannot account
for the total flow observed, via fusion reaction of

gravitational collapse. On the other hand, we found that
for “matter compression” a bound might be attained for
larger composites than those we consider, in the case that
the accumulated nuclear material inside the composite
comes to exceed terrestrial densities by many order of
magnitude. We have left this possibility open to future
inquiry, since this will depend on the eventual equilib-
rium SM nuclear state of very large DM composites
inside the Earth. Before concluding, we proceed to
examine interactions between SM nuclei and constituents
inside DM composites.

V. SCATTERING INTERACTIONS OF NUCLEI
WITH CONSTITUENTS

In this section, we discuss a few different interactions
between nuclei and dark matter constituents, i.e., processes
that fall under the fourth category depicted in Fig. 1. These
processes are of some interest, since if nuclei lose kinetic
energy while scattering in the composite, this will cause a
kinetic drag on the composite state, resulting in a stopping
force as the composite moves through matter (for more
discussion see Appendix A). However, we will find that the
effect of constituent scattering processes is extremely
suppressed for degenerate dark matter fermionic compo-
sites, relative to the nuclear acceleration processes detailed
above. Nevertheless, for completeness we hereafter analyze
coherent composite-nucleus scattering as well as up-
scattering of individual dark matter constituents above
the Fermi level. In addition, this calculation may prove
more relevant for less degenerate composites not consid-
ered here. In Appendix B, we also comment on nuclear
interactions with low-lying collective excitations, which we
also find to be negligible for the composite parameter space
considered in this study.

A. Coherent composite-nucleus scattering

We first consider the scattering process NXXðpÞ þ
NðkÞ → NXXðp0Þ þ Nðk0Þ whereby a composite with NX
constituents and radius RX coherently scatters against a
nucleus and transfers a fraction of its total momentum
and kinetic energy. The cross section for this process
can be parametrized in terms of the individual scattering
cross section against constituents, multiplied by adequate
form factors that encapsulate the nuclear and composite
substructure [7,110],

�
d2σ̄
dqdω

�
XN→XN

¼ σ̄0

�
q

2v2Xm
2
N

�
Sðq;ωÞ; ð41Þ

where Sðq;ωÞ ¼ A2jFaðqrNÞj2δðω − q2=2mNÞ is the
nuclear structure factor. This function sets the dispersion
relation between momentum and energy exchanged in the
nonrelativistic limit. The variables ω and q are respectively
the energy and momentum transfer in the collision.

ACCELERATING COMPOSITE DARK MATTER DISCOVERY WITH … PHYS. REV. D 105, 023012 (2022)

023012-13



Assuming the nucleus is initially at rest, the maximum
momentum exchange is qmax ≃ 2mNvX in the limit
mN ≪ MX. The function

FaðqrNÞ ¼
3j1ðqrNÞ

qrN
e−q

2r2N ; ð42Þ

is the nuclear Helm form factor [111,112] that accounts for
nuclear substructure, where j1 is a spherical Bessel function
of first kind and rN ≃ ð1.25 fmÞA1=3 is the nuclear radius.
The constant σ̄0 in Eq. (42) reads

σ̄0 ¼
g2ng2Xm

2
N

4πm̃4
ϕ

; ð43Þ

and is a reference cross section for pointlike dark matter
scattering against a free nucleus in the limit mN ≪ MX.
This reference cross section includes the mediator mass
correction due to screening effects, m̃2

ϕ ¼ m2
ϕ þ δm2

ϕ with

δm2
ϕ ≃ ð4παXm̄4

XÞ1=2. Equation (41) therefore corresponds
to a differential cross section for pointlike dark matter with
the mass and couplings of a composite. This cross section is
related to the cross section for an extended composite state
through multiplication of additional form factors associated
with the composite internal structure [7,110],

�
d2σ
dqdω

�
XN→XN

¼N2
Xf

2ðΛÞjFXðqRXÞj2×
�

d2σ̄
dqdω

�
XN→XN

;

ð44Þ

where the NX factor explicitly contains the coherent
enhancement. The function fðΛÞ is

fðΛÞ ¼ min

�
1;

�
Λ
RX

�
3
�
; ð45Þ

where ratio ðΛ=RXÞ3 accounts for the partial overlap of the
nucleus wave function with the composite state [113], and
Λ is the spatial spread of the nucleus. In other words, when
Λ ≪ RX, the reduced wave function extent of the scatterer
compared to the size of the composite state effectively
limits the number of targets for coherent scattering. For the
composite sizes we consider here, which are comparable to
the atomic separation in any medium, this suppression is
significant. The extra form factor above is

FXðqRXÞ ¼
3j1ðqRXÞ

qRX
; ð46Þ

and accounts for the composite structure. Note that FX
corresponds to a sphere of homogeneous density, multiplied
by NX which explicitly contains the coherent enhancement.
To estimate the energy loss from composite-nucleus

scattering as the composite goes through a material

medium, we proceed to integrate Eq. (45) over the energy
transfer ω,

�
dσ
dq

�
XN→XN

¼ A2N2
Xf

2ðΛÞσ̄0
�

q
2m2

Nv
2
X

�

× jFXðqRXÞj2jFaðqrNÞj2: ð47Þ

The energy loss per unit distance traveled by the composite
in a given medium is obtained by integrating Eq. (48) over
all possible momentum exchanges up to qmax ≃ 2mNvX,
and multiplying by the target density nN,

�
dE
dx

�
XN→XN

¼ nN

Z
qmax

0

dq
q2

2mN

�
dσ
dq

�
XN→XN

: ð48Þ

The integration of the form factors above is numerically
performed for each composite radius and target mass.
Finally, we discuss the choice of the spatial extent Λ for
the scatterer wave function; cf. Eq. (48). We consider two
separate cases in this work:

(i) Cold dense plasma: This is the case for white dwarfs
that have undergone crystallization. Electrons are
fully ionized and form a degenerate gas that provides
a neutralizing background, while nuclei are arranged
in a lattice and vibrate at their zero-point states with
a natural frequency determined by the plasma
frequency; cf. Eq. (30). Therefore, assuming nuclei
occupy the ground state j0i of a harmonic oscillator
potential, we expect their initial wave function to be
Gaussian with a spatial spread given by

Λwd ¼ ðh0jr2j0iÞ12 ¼
�

1

2mNΩp

�1
2

≃ 4 × 10−12 cm

�
6

Z

�1
2

�
106 g cm−3

ρ�

�1
4

: ð49Þ

As we have shown in Sec. IV B, in order to ignite
a carbon-oxygen sub-Chandrasekhar white dwarf,
composite radii must be RX ≳ 10−2 μm. Comparing
this to the length scale above, we see that the ratio
ðΛ=RXÞ3 ≲ 10−21, so the coherent enhancement
factor N2

X is substantially reduced.
(ii) Earth matter: For matter at low densities and

pressures, we approximate the wave-function spread
Λ by the thermal de Broglie wavelength at a
temperature T,

Λth¼
�

2π

mNT

�1
2

≃10−9 cm

�
16

A

�1
2

�
103K
T

�1
2

≃10−9 cm

�
130

A

�1
2

�
177K
T

�1
2

; ð50Þ
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where in the upper line we have normalized the
expression for 16O, which is the most abundant
element in mass and concentration in the Earth’s
crust and mantle, and a temperature of ∼103 K. The
expression in the lower line, on the other hand, has
been normalized to 130Xe and a temperature
∼177 K, corresponding to the parameters of the
XENON-1T experiment, which applies to Sec. IVA.

B. Single-particle excitations

In addition to quasicoherent composite-nucleus scatter-
ing, accelerated nuclei in the interior of the composite may
lose energy by exciting individual dark matter constituents
above their Fermi level. We consider the dark matter
constituents to form a noninteracting Fermi gas of particles
with effective mass m�, with m�≪pF, when the composite
state is sufficiently massive; cf. Eqs. (3) and (4). Since the
dark matter constituents are ultrarelativistic, we must then
carefully analyze both the phase space available for scatter-
ing and the relativistic kinematics of the collisions. In
[114,115], a Lorentz-invariant formalism was developed to
compute the dark matter capture efficiency of relativistic
degenerate electrons in neutron stars. Such formalism
accounts for both relativistic kinematics and Pauli blocking
of the targets. Here, we adapt those results to estimate the
scattering rate and the subsequent energy loss of nuclei
inside the composite from exciting constituents above the
Fermi level. To begin, we consider the scattering rate of a
nucleus against dark matter constituents in the composite
rest frame [115],

ΓNX→NX� ¼ nX

Z
pF

pmin

dpp2

VF

Z
dφdðcosθÞ

×
Z

dαdðcosψÞΘðΔEþp−pFÞṽ
�
dσ
dΩ

�
ðCMÞ

;

ð51Þ
whereVF ¼ 4πp3

F=3 is the occupied phase-space volume of
the target dark matter particles, nX ¼ p3

F=3π
2 is the

dark matter number density, ðdσ=dΩÞðCMÞ is the dark
matter-nucleus differential cross section in the center-of-
momentum frame, and

ṽ ¼
� ðpμkμÞ2 −m2�m2

N

ðp2 þm2�Þðm2
N þ k2Þ

�
1=2

ð52Þ

is the Moller velocity [116,117], with pμ and kμ respectively
being the four-momentum of the dark matter particle and the
nucleus in the composite rest frame. The latter is determined
from Eq. (16). The Moller velocity relates differential cross
sections in different frames for noncollinear scattering
processes. In this case, the frames considered are the
composite rest frame, where the Fermi surface is spherical,
and the center-of-momentum frame, where the collision

kinematics are more easily analyzed. The scattering rate
given by Eq. (52) integrates over the target Fermi sphere,
and accounts for the potentially large boost between both
frames for relativistic targets. The first two integrals
correspond to integrating the differential cross section over
the azimuthal and polar scattering angles ðα;ψÞ in the
center-of-momentum frame. The integrals that follow cor-
respond to integrating over the azimuthal and polar angles
ðφ; θÞ on the Fermi sphere (the integral over φ yields a 2π
factor). These angles determine the momentum direction of
the dark matter targets in the composite rest frame. The final
integral to the left corresponds to integrating over the
momentum magnitude p of the dark matter constituents,
also in the composite rest frame. Note that it runs from some
p ¼ pmin set by the Pauli blocking condition, i.e., only
those dark matter particles occupying states sufficiently
close to the Fermi surface will be excited. This condition is
enforced by the Heaviside step function, where ΔE is the
energy deposited by the nucleus in the composite frame;
see below.
The differential nucleus-dark matter scattering cross

section, in the center-of-momentum frame, is determined
by the t-channel matrix element of the Yukawa interaction,
suitably averaged over spins,

�
dσ
dΩ

�
ðCMÞ

¼ hjMtj2i
64π2s

¼ 3A2g2ng2X
16π2

t
ðtþm2

ϕÞ2
: ð53Þ

In the above expression, we have neglected the effective
mass m� ≪ pF of the dark matter constituents. We do not
include the Helm form factor as it evaluates to unity for
the momentum exchanges involved here. The Mandelstam
variables are s ¼ E2

cm and t ¼ 4k2cm sin2 ðψ=2Þ, where
kcm ¼ jkcmj and Ecm respectively are the three-momentum
magnitude of the nucleus and total energy in the center-of-
momentum frame.
The energy transfer ΔE in the composite rest frame

is [115]

ΔE ¼ γβkcmðcos δð1 − cosψÞ − j sin δj cos α sinψÞ; ð54Þ

where γ and β ¼ jβj are the boost parameters relating the
composite rest frame to the center-of-momentum frame of
the nucleus-dark matter system,

β ¼ pþ k
pþmN

; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p : ð55Þ

The function cos δ in Eq. (55) is

cos δ ¼ pk2 −mNp2 þ ðp −mNÞp · k
ðpþmNÞβEcmkcm

; ð56Þ

where this quantity determines the kinematic suppression
of the scattering angles ðα;ψÞ. In short, when cos δ > 0 the
integration over ðα;ψÞ is unconstrained. However, if
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cos δ < 0 there is a maximum scattering angle ψmax for
which the energy transfer ΔE is positive and satisfies the
Pauli blocking condition; see [115] for details. In the
nonrelativistic limit considered here (see Appendix C),
cos δ ≃ −1, resulting in a substantial suppression of the
available scattering phase space. The maximum scattering
angle is [115]

tan2
�
ψmax

2

�

¼ k2p2sin2θ ðmNðmN þ 2pÞ − 2pk cos θÞ
pk2 −mNp2ðp −mNÞpk cos θ

cos2α: ð57Þ

For the parameter space considered, ψmax ≪ 1 which
substantially simplifies integration of Eq. (52). The maxi-
mum energy transfer occurs for α ¼ π and cosψ ¼ − cos δ,
and is given by

ΔEmax ¼ γβkcmðcos δþ 1Þ: ð58Þ

We remark that ΔEmax depends on θ, i.e., it is determined
by the momentum direction of the dark matter particle in
the composite rest frame. In Appendix C, we provide the
nonrelativistic expressions of all the kinematic quantities
listed above, which are obtained by replacing k ≃mNvN ,
and Taylor expanding in vN . In order to analytically
integrate Eq. (52), we assume a maximal energy loss
independent of the scattering directions, which conserva-
tively maximizes the Fermi shell where scattering is
kinematically permitted. The details of the computation
can also be found in Appendix C. With this assumption, we
find the rate at which a nonrelativistic nucleus scatters
against composite constituents is

ΓNX→NX� ≃
3A2g2ng2Xm

4
NðmN þ 2pFÞv6N
40πp4

F
: ð59Þ

This scattering rate is strongly suppressed by an Oðv6NÞ
factor at the lowest order in the nuclear velocity, with vN ≲
10−2 for the most energetic signatures of this model.
Following our conservative assumption of maximal energy
loss, we estimate the energy loss rate by multiplying the
above expression by ΔEmax,

_ENX→NX� ≃ ΔEmax ΓNX→NX� ≃
3A2g2ng2Xm

5
NðmN þ 2pFÞv8N
80πp4

F
:

ð60Þ

Given theOðv8NÞ suppression, this result demonstrates that,
due to the relativistic kinematics and degeneracy consid-
erations, scattering between the two particle species is
extremely suppressed. As we discuss in Appendix C, this
expression largely overestimates the scattering phase space
available and, in practice, this energy loss rate should be

much smaller. The total stopping power from this inelastic
process in this approximation is then

�
dE
dx

�
NX→NX�

≃ nN

�
4πR3

X

3

�
_ENX→NX� : ð61Þ

We conclude that the stopping power from inelastic
nuclear-constituent interactions is negligible for the
strongly bound composites we have studied. We remark
that the above computation implicitly assumes that an
excitation created by a nucleus is uncorrelated with
excitations created by other nuclei. In general, the up-
scattered dark matter particle, as well as the hole below the
Fermi surface that is created, will have complicated
dynamics since we are considering dark matter particles
with self-interactions. A detailed study of how these
excitations evolve, and how the composite decays back
to its ground state, is beyond the scope of this paper and left
for future study. However, from Fermi liquid theory,
we expect the up-scattered dark matter particle to have a
rapid decay rate proportional to the binding energy
τ−1 ∼ ðmX − m̄XÞ, much greater than the rate ΓXN at the
which dark matter particles are up-scattered by nuclei.
Therefore, we expect the above estimate for the total energy
loss rate to hold.

VI. CONCLUSIONS

We have explored a new effect recently identified
in [5], whereby the Yukawa potential that binds together
composite DM can accelerate Standard Model particles at
the composite periphery. The asymmetric DM composites
we focused on consist of a dark matter fermion coupled to a
real scalar field, which provides the attractive force to form
bound states. Such large bound states form in the early
universe when smaller bound states fuse into bigger ones,
followed by the emission of scalar mediators, so long as the
binding energy per dark matter particle is comparable to its
mass, i.e., the strong binding limit. This synthesis process
may also include a subsequent dark matter dilution stage
that depletes any excess abundance, permitting the for-
mation of bound states with constituent masses ranging
from MeV—EeV.
A Yukawa interaction between nuclei and the scalar

composite binding field results in rich phenomenology
when the composite sizes exceed ≳nm scales. Since the
binding scalar field takes on values ∝ mX, even for a
minuscule DM-SM Yukawa coupling, nuclei can substan-
tially accelerate at the composite boundary. The composite
DM signatures we have identified depend on the coupling
strength and the sign of the Yukawa term, and include heat
dissipation, collisional ionization, thermal bremsstrahlung,
nuclear recoils, ionization via the Migdal effect, and even
thermonuclear reactions. New aspects of this study include
a detailed analysis of the different scattering processes
between the nuclei and the dark matter, an expanded
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discussion on white dwarf explosions induced by
composite transit, implications for planetary heating, and
direct detection prospects at dark matter experiments from
the Migdal effect.
Due to the large composite size, the small dark matter-

nucleon coupling, and mediator screening effects, coherent
scattering of the composite with nuclei, as well as the
excitation of low-lying collective modes, is largely sup-
pressed. On the other hand, we have also considered single-
particle excitations whereby a nucleus scatters against
individual constituents, exciting them above the Fermi
level. This analysis is complicated by the fact that, for
large composite states, the dark matter constituents are
highly degenerate and relativistic, resulting in a tiny phase-
space region where scattering can proceed. Because of such
kinematic considerations, we also find that nuclei do not
scatter frequently with the constituents. In short, nuclei
losing energy by interacting with the dark matter is
negligible. By contrast, nuclei also lose energy via heat
dissipation in the form of conduction and radiation, and
these processes are the main contribution to the stopping
power. The exact energy loss rate depends on the coupling
strength as well as the specific material the composite state
is transiting.
We have studied in further detail how large composite

states can ignite a carbon-oxygen white dwarf by simply
passing through its stellar core. Nuclei accelerated in the
composite interior can fuse in the thermonuclear regime,
provided their temperature reaches ∼MeV, leading to a
nuclear runaway if the composite is sufficiently large.
The critical ignition size of the composites was determined
by requiring that nuclear energy release overcomes heat
dissipation rate in the white dwarf material. We have found
that composites with radii RX ≳ 10−2 μm and masses
MX ≳ 1030 GeV are capable of reaching and igniting the
core of massive white dwarfs. Based on the survival of
these stellar objects on ∼Gyr timescales, we have placed
bounds on the dark matter-nucleon coupling in the
composite mass range 1030 GeV≲MX ≲ 1042 GeV,
where the upper mass limit is determined from requiring
at least one encounter with a composite over a ∼Gyr
timescale for a dark matter density of order
ρX ≃ 0.4 GeVcm−3. We have discussed as well the impli-
cations of this model for planetary heating, and find that
although a substantial fraction of composites could be
captured by the Earth, composite capture alone cannot
account for the entire heat flow observed, even if they
induce exothermic fusion reactions in the mantle.
Finally, we have analyzed for the first time the direct

detection prospects for DM composites with very weak
nuclear couplings at noble liquid experiments by consid-
ering the Migdal effect, which in this case consists of the
excitation and ionization of electrons from the impulsive
motion of an atomic nucleus as it accelerates at the
boundary of a DM composite. For XENON-1T, this effect

is particularly potent at putting bounds on DM composite
couplings to nuclei, given the low electron background of
this experiment, combined with the high ionization prob-
abilities of the outer-shell electrons in xenon atoms. We
have computed the expected number of electron recoils
using the exposure of XENON-1T’s first dark matter search,
and used it to place bounds on the dark matter-nucleon
coupling, in the mass range 1012 GeV≲MX ≲ 1017 GeV,
where these limits arise from requiring the composite to be
strongly bound and be larger than the size of a xenon
nucleus. The constraints we placed are as low as
gn ≲ 10−17, and lie well below existing bounds from stellar
cooling arguments and previous dark matter searches based
on the observation ∼keV nuclear recoils. We have also
found a significant region of parameter space where
composites are large enough to produce ionization tracks.
At present, these coupling values cannot be ruled out as this
signature would require a dedicated analysis of the experi-
ment’s data, which accounts for multiple Migdal electron
ionization events over the course of composite DM’s transit
through the liquid xenon. We have left the study of this
regime, as well as certain aspects of weakly bound DM
composites, for future work.

ACKNOWLEDGMENTS

We thank Nirmal Raj for useful discussions. We thank
the anonymous referee for constructive comments on our
manuscript. The work of J. A., J. B., and A. G. is supported
by the Natural Sciences and Engineering Research Council
of Canada (NSERC). Research at Perimeter Institute is
supported in part by the Government of Canada through
the Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Colleges and Universities.

APPENDIX A: ENERGY DISSIPATION
AND COMPOSITE STOPPING

In this Appendix, we detail how a dark matter composite
slows down due to nuclei losing kinetic energy from
various scattering processes occurring in their interior.
This can be understood from considering momentum
and energy conservation: if a nucleus loses kinetic energy
while transiting the composite, then when it exits the
composite its momentum will be more aligned with the
direction of motion of the composite. The net result is that
the dark matter composite slows down. Below we confirm
that the decrease in DM composite kinetic energy matches
the kinetic energy transferred to the nucleus inside the
composite, in the nonrelativistic limit considered in this
work. This treatment will be specific to the case that nuclei
are accelerated by an attractive potential inside the DM
composite—in the case of a repulsive potential, standard
two-body kinematics apply.
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Let us consider a single nucleus entering the composite
volume while the composite moves through a given stellar
(or planetary) medium with an initial speed vi in the stellar
rest frame. In what follows, we assume the center-of-mass
(CM) frame for this system is equivalent to the composite
rest frame, since we are always in the limit mN ≪ MX.
Upon acceleration from the composite potential, energy
conservation in the CM frame reads

1

2
mNv2i ¼

1

2
mNv2N þ φ; ðA1Þ

where vN is the velocity of the nucleus after accelerating
to the final kinetic energy and φ < 0 is the potential
energy, with jφj ≪ mN in the nonrelativistic limit;
cf. Eq. (15). In the stellar rest frame, this velocity is
ðvNÞsta ¼ vi − ðvi − 2φ=mNÞ1=2, and momentum conserva-
tion imposes

MXvi ¼ MXðvXÞsta þmNðvNÞsta: ðA2Þ

This yields a velocity for the composite after the nucleus
has accelerated given by ðvXÞsta ¼ vi − ðmN=MXÞðvi−
ðvi − 2φ=mNÞ1=2Þ. Note that since mN ≪ MX, the
composite barely recoils in the process.
As discussed in the main text, the nucleus can undergo

several inelastic processes while inside the composite state
that reduce its kinetic energy by an amount we denote here
by δE < 0. Furthermore, we assume jδEj ≪ jφj, which is
the case throughout this work. If δE ∼ φ then the nucleus
would remain bound to the composite and the analysis
below would be different. Upon deceleration, energy
conservation in the CM frame now is

1

2
mNðv0NÞ2 þ φ ¼ 1

2
mNðv00NÞ2; ðA3Þ

where the velocity v0N now is related to vN above via
δE¼ðmN=2Þðv02N−v2NÞ. Then, v0N ¼−ðv2Nþ2δE=mNÞ1=2¼
−ðv2i þ2ðδE−φÞ=mNÞ1=2, and we solve for v00N in the above
equation to obtain v00N ¼ −ðv2i þ 2δE=mNÞ1=2. Boosting
back to the stellar rest frame, conservation of momentum
now requires

MXðvXÞsta þmNðv0NÞsta ¼ MXðv0XÞsta þmNðv00NÞsta; ðA4Þ

where the unknown velocity above is ðv0XÞsta. The two
velocities computed above in the stellar rest frame
are ðv0NÞsta ¼ vi − ðv2i þ 2ðδE − φÞ=mNÞ1=2 and ðv00NÞsta ¼
vi − ðv2i þ 2δE=mNÞ1=2. Solving for ðv0XÞsta above yields

ðv0XÞsta − vi ¼
mN

MX

�
vi −

�
vi þ

2ðδE − φÞ
mN

�
1=2

− vi

þ
�
v2i −

2φ

mN

�
1=2

− vi þ
�
v2i þ

2δE
mN

�
1=2

�
:

ðA5Þ

In the limit jδEj ≪ jφj, the first four terms on the right-
hand side cancel out. Similarly, we can expand ðv2iþ
2δE=mNÞ1=2 ¼ við1þ 2δE=mNv2i Þ1=2 ≃ við1þ δE=mNv2i Þ
in the limit jδEj ≪ mNv2i . Therefore,

ðv0XÞsta − vi ≃
δE

MXvi
: ðA6Þ

Squaring this expression and multiplying by MX=2 yields

1

2
MXðv0XÞ2sta ¼

1

2
MX

�
vi þ

δE
MXvi

�
2

≃
1

2
MX

�
v2i þ

2δE
MX

�
:

ðA7Þ

Thus, in the stellar rest frame, the kinetic energy of the
composite is reduced by

1

2
MXðv0XÞ2sta −

1

2
MXv2i ≃ δE < 0: ðA8Þ

This result implies that for nuclei traveling through an
attractive potential inside a DM composite, any nuclear
energy dissipation processes occurring in the composite
interior, such as heat conduction, radiation or endothermic
reactions, will continuously decrease the DM composite
kinetic energy, as viewed in the stellar rest frame. On the
other hand, if there are processes that heat the nuclear
matter, such as exothermic reactions, the stopping power
would be subsequently reduced.

APPENDIX B: COLLECTIVE MODES

Here we address nuclear scattering and excitation of
collective modes of constituent particles comprising the
dark matter composite. A full treatment of composite
collective modes is out of the scope of this work, as there
are many possible modes; namely surface and compres-
sional modes, rotational modes, spin waves, and so forth.
The excitation rate of the different collective modes, for a
given momentum transfer q and energy transfer ω, will be
encoded in an appropriate response function SXðq;ωÞ
which, to our knowledge, has not been yet computed for
this dark matter model. Reference [7] studied the lowest-
lying vibrational surface modes for such composite states,
which have an excitation gap of order
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ΔEsurf ≃
�
ϵsurfm̄X

NX

�1
2

≃ 2.2 eV
�
mX

TeV

�1
2

�
m̄X

5 GeV

�1
2

�
NX

1020

�
−1
2

; ðB1Þ

where ϵsurf ≃mX − m̄X ≃mX is a constant related to the
surface energy of the composite state [4]. Although in terms
of the energy required these modes could easily be excited,
the cross section for creating a single phonon with angular
momentum number l is highly suppressed due to the large
composite size and mediator screening. The cross section
for such inelastic process can be expressed as

�
dσ
dq

�
0→1l

≃ A2N2
Xf

2ðΛÞσ̄0
�

q
2m2

Nv
2
X

�

× jFϕðqÞj2jFðlÞ
surfðqRXÞj2; ðB2Þ

where, as before, we include the mediator mass correction
due to screening in σ̄0, cf. Eq. (44), as well as the ratio
between the scatterer wave-function spread Λ and the
composite size RX, given by Eq. (46). The cross section
for exciting surface modes has an additional form factor:

FðlÞ
surfðqRXÞ ¼ ϵlð2lþ 1Þ1=2jlðqRXÞ; ðB3Þ

where the quantity ϵl is the amplitude of the mode, which
scales as

ϵl ∝ m−1=4
X m̄−3=2

X R−7=4
X

≃ 10−14
�
mX

TeV

�
−1
4

�
m̄X

5 GeV

�
−3
2

�
RX

nm

�
−7
4

: ðB4Þ

The creation of multiple vibration quanta in a given
mode l results in extra powers of ϵl, and therefore further
suppression of the cross section. Computing the stopping
power, cf. Sec. VA, we have verified that the energy
loss from this inelastic process is negligible. Similarly, we
expect other collective modes to be suppressed from the
same screening effects as well as having potentially higher
excitation gaps.

APPENDIX C: SCATTERING RATE AGAINST
DARK MATTER CONSTITUENTS

In this Appendix, we provide details of the phase-space
integration that yields the scattering and energy loss rate
from nuclei scattering against single dark matter constitu-
ents, Eq. (52), in the limit that the nucleus is nonrelativistic,
i.e., vN ≪ 1. In such case, all the kinematic quantities
are considerably simplified. In the composite rest frame,
the four-momentum of the nucleus is kμ ≃ ðmN;kÞ, with
k ≃mNvN . A dark matter constituent, on the other
hand, will be ultrarelativistic, i.e., m� ≪ pF, with a four-

momentum pμ ≃ ðp;pÞ. We neglect the effective mass of
the constituent m� as the nucleus will only scatter off
dark matter constituents with momenta very close to the
Fermi surface.
The relevant kinematic variables are the Moller velocity

ṽ, center-of-momentum energy Ecm and the nucleus three-
momentum magnitude kcm, the boost parameter β relating
the center-of-momentum frame to the composite rest frame,
cos δ given by Eq. (57), the maximum energy transfer
ΔEmax, and the maximum scattering angle ψmax. To lowest
order in the nuclear speed vN , these quantities read

ṽ ≃ 1 − vN cos θ; ðC1Þ

E2
cm ≃m2

N þ 2mNpð1 − vN cos θÞ; ðC2Þ

k2cm ≃
mNp2

mN þ 2p
−
2mNp2ðmN þ pÞvN cos θ

ðmN þ 2pÞ2 ; ðC3Þ

β ≃
p

mN þ p
þmNvN cos θ

mN þ p
; ðC4Þ

cos δ ≃ −1þmNðmN þ 2pÞv2N sin2 θ
2p2

; ðC5Þ

ΔEmax ≃
1

2
mNv2N sin2 θ; ðC6Þ

ψmax ≃
ðmNðmN þ 2pÞÞ1=2vN cos α

p
: ðC7Þ

Note that cos δ ≃ −1 in the nonrelativistic limit, and
therefore the scattering angle is bounded by ψ ≲ ψmax.
This maximum angle is in turn ψmax ≪ 1, and so the
integration of the differential cross section, cf. Eq. (54), is
considerably simplified. We can approximate sin2 ψ=2≃
ψ2=4, so the Mandelstam variable is t ≃ k2cmψ2.
Furthermore, we include the correction to the mediator
mass from the dense dark matter medium, given by
δm2

ϕ ≃ g2XhX̄Xi=m̄X ¼ ð4παXp4
FÞ1=2. With these consider-

ations, the cross section reads

�
dσ
dΩ

�
ðCMÞ

≃
3A2g2ng2X
16π2

k2cmψ2

ðk2cmψ2 þ m̃2
ϕÞ2

; ðC8Þ

where m̃2
ϕ ¼ m2

ϕ þ δm2
ϕ. Approximating dðcosψÞ ¼

ðsinψÞdψ ≃ ψdψ as well in this small-angle limit, we
can analytically integrate the cross section over the scatter-
ing angle ψ ,

Z
ψmax

0

dðcosψÞṽ
�
dσ
dΩ

�
ðCMÞ

¼ 3A2g2ng2X
32π2k2cm

�
log ð1þ x2Þ − x2

1þ x2

�
ð1 − vN cos θÞ: ðC9Þ
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Here we have defined x ¼ kcmψmax=m̃ϕ. This ratio is x ≪ 1

in the parameter space considered here, and so we expand
both functions above using logð1þ x2Þ ≃ x2 − x4=2þ
Oðx6Þ and x2ð1þ x2Þ−1 ≃ x2 − x4 þOðx6Þ. The first terms
in each series mutually cancel, and so the lowest-order
contribution is Oðx4Þ. The integrated cross section is then
simplified to

Z
ψmax

0

dðcosψÞṽ
�
dσ
dΩ

�
ðCMÞ

≃
3A2g2ng2X
64π2

k2cmψ4
max

m̃4
ϕ

ð1 − vN cos θÞ: ðC10Þ

Since ψ4
max ∼ v4N , we only need to consider the lowest-

order term in k2cm and the Moller velocity ṽ. In order to

perform analytically the remaining integrals in Eq. (52), we
assume that the energy transfer is always maximal. This
estimate is highly conservative, since in practice the energy
transfer ΔE is peaked around a specific ψ� < ψmax with
α ¼ π and θ ¼ π=2, while any other angle values α, ψ , θ
yield an energy exchange smaller by several orders of
magnitude. The lower integration pmin in Eq. (52) is then
independent of the angular integration variables, and set by
the condition

pmin ≃ pF −
1

2
mNv2N: ðC11Þ

Thus, Eq. (52) splits into

Z
pF

pmin

dpp2

Z
π

0

dðcos θÞ
Z

2π

0

dα

�
3A2g2ng2X
64π2

k2cmψ4
max

m̃4
ϕ

�

≃
�
3A2g2ng2Xm

3
Nv

4
N

64π2p4
F

�
×

�Z
pF

pmin

dpðmN þ 2pÞ
�
×

�Z
π

0

dðcos θÞ
Z

2π

0

cos4α

�
: ðC12Þ

The remaining angular integration yields a factor 8π=5,
whereas integration of the momentum magnitude p yields
a factor ∼ðmN þ 2pFÞðpF − pminÞ, in the limit that
pmin ≪ pF. The resulting scattering rate is therefore

ΓNX→NX� ≃
3A2g2ng2Xm

4
NðmN þ 2pFÞv6N
40πp4

F
: ðC13Þ

Multiplying the above rate by the maximum energy transfer
equation (C6), we recover Eq. (61). This expression is

usefully valid for mN either greater or smaller than pF, and
demonstrates that even with the assumption of maximal
energy loss in any scattering direction, the excitation of
dark matter constituents above the Fermi level in highly
degenerate “saturated” composites, is highly infrequent due
to a resulting Oðv6NÞ velocity suppression of the scattering
rate. It follows that individual dark matter particle excita-
tions are not a relevant energy loss channel for nuclei
traveling through the composite interior.

[1] M. B. Wise and Y. Zhang, Yukawa bound states of a
large number of fermions, J. High Energy Phys. 02 (2015)
023.

[2] M. B. Wise and Y. Zhang, Stable bound states of
asymmetric dark matter, Phys. Rev. D 90, 055030
(2014).

[3] M. I. Gresham, H. K. Lou, and K.M. Zurek, Early Uni-
verse synthesis of asymmetric dark matter nuggets, Phys.
Rev. D 97, 036003 (2018).

[4] M. I. Gresham, H. K. Lou, and K. M. Zurek, Nuclear
structure of bound states of asymmetric dark matter, Phys.
Rev. D 96, 096012 (2017).

[5] J. F. Acevedo, J. Bramante, and A. Goodman, Nuclear
fusion inside dark matter, Phys. Rev. D 103, 123022
(2021).

[6] E. Hardy, R. Lasenby, J. March-Russell, and S. M. West,
Big bang synthesis of nuclear dark matter, J. High Energy
Phys. 06 (2015) 011.

[7] E. Hardy, R. Lasenby, J. March-Russell, and S. M. West,
Signatures of large composite dark matter states, J. High
Energy Phys. 07 (2015) 133.

[8] M. I. Gresham, H. K. Lou, and K. M. Zurek, Astrophysical
signatures of asymmetric dark matter bound states, Phys.
Rev. D 98, 096001 (2018).

[9] K. Petraki and R. R. Volkas, Review of asymmetric dark
matter, Int. J. Mod. Phys. A 28, 1330028 (2013).

[10] K. M. Zurek, Asymmetric dark matter: Theories, signa-
tures, and constraints, Phys. Rep. 537, 91 (2014).

[11] J. Walecka, Theoretical Nuclear and Subnuclear Physics
(Imperial College Press, London, 1995), Vol. 16.

ACEVEDO, BRAMANTE, and GOODMAN PHYS. REV. D 105, 023012 (2022)

023012-20

https://doi.org/10.1007/JHEP02(2015)023
https://doi.org/10.1007/JHEP02(2015)023
https://doi.org/10.1103/PhysRevD.90.055030
https://doi.org/10.1103/PhysRevD.90.055030
https://doi.org/10.1103/PhysRevD.97.036003
https://doi.org/10.1103/PhysRevD.97.036003
https://doi.org/10.1103/PhysRevD.96.096012
https://doi.org/10.1103/PhysRevD.96.096012
https://doi.org/10.1103/PhysRevD.103.123022
https://doi.org/10.1103/PhysRevD.103.123022
https://doi.org/10.1007/JHEP06(2015)011
https://doi.org/10.1007/JHEP06(2015)011
https://doi.org/10.1007/JHEP07(2015)133
https://doi.org/10.1007/JHEP07(2015)133
https://doi.org/10.1103/PhysRevD.98.096001
https://doi.org/10.1103/PhysRevD.98.096001
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1016/j.physrep.2013.12.001


[12] J. Bramante and J. Unwin, Superheavy thermal dark matter
and primordial asymmetries, J. High Energy Phys. 02
(2017) 119.

[13] I. Affleck and M. Dine, A new mechanism for baryo-
genesis, Nucl. Phys. B249, 361 (1985).

[14] M. Dine, L. Randall, and S. D. Thomas, Baryogenesis
from flat directions of the supersymmetric standard model,
Nucl. Phys. B458, 291 (1996).

[15] R. Ebadi et al., Ultra-heavy dark matter search with
electron microscopy of geological quartz, Phys. Rev. D
104, 015041 (2021).

[16] W. Greiner, Relativistic Quantum Mechanics: Wave Equa-
tions (Springer, New York, 1990).

[17] A. B. Migdal, Qualitative Methods in Quantum Theory
(Westview Press, Boulder, 1977), Vol. 48.

[18] L. D. Landau and E. Lifshits, Quantum Mechanics: Non-
Relativistic Theory, Vol. v.3 of Course of Theoretical
Physics (Butterworth-Heinemann, Oxford, 1991).

[19] J. D. Vergados and H. Ejiri, The role of ionization electrons
in direct neutralino detection, Phys. Lett. B 606, 313
(2005).

[20] C. Moustakidis, J. Vergados, and H. Ejiri, Direct dark matter
detection by observing electrons produced in neutralino-
nucleus collisions, Nucl. Phys. B727, 406 (2005).

[21] H. Ejiri, C. Moustakidis, and J. Vergados, Dark matter
search by exclusive studies of X-rays following WIMPs
nuclear interactions, Phys. Lett. B 639, 218 (2006).

[22] R. Bernabei et al., On electromagnetic contributions in
WIMP quests, Int. J. Mod. Phys. A 22, 3155 (2007).

[23] M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, Migdal effect
in dark matter direct detection experiments, J. High Energy
Phys. 03 (2018) 194.

[24] M. J. Dolan, F. Kahlhoefer, and C. McCabe, Directly
Detecting Sub-GeV Dark Matter with Electrons from
Nuclear Scattering, Phys. Rev. Lett. 121, 101801 (2018).

[25] R. Essig, J. Pradler, M. Sholapurkar, and T.-T. Yu, Relation
between the Migdal Effect and Dark Matter-Electron
Scattering in Isolated Atoms and Semiconductors, Phys.
Rev. Lett. 124, 021801 (2020).

[26] D. Baxter, Y. Kahn, and G. Krnjaic, Electron ionization via
dark matter-electron scattering and the Migdal effect, Phys.
Rev. D 101, 076014 (2020).

[27] G. Grilli di Cortona, A. Messina, and S. Piacentini, Migdal
effect and photon Bremsstrahlung: Improving the sensi-
tivity to light dark matter of liquid argon experiments, J.
High Energy Phys. 11 (2020) 034.

[28] C. P. Liu, C.-P. Wu, H.-C. Chi, and J.-W. Chen, Model-
independent determination of the Migdal effect via photo-
absorption, Phys. Rev. D 102, 121303 (2020).

[29] V. V. Flambaum, L. Su, L. Wu, and B. Zhu, Constraining
sub-GeV dark matter from Migdal and boosted effects,
arXiv:2012.09751.

[30] S. Knapen, J. Kozaczuk, and T. Lin, Migdal Effect in
Semiconductors, Phys. Rev. Lett. 127, 081805 (2021).

[31] N. F. Bell, J. B. Dent, B. Dutta, S. Ghosh, J. Kumar, and
J. L. Newstead, Low-mass inelastic dark matter direct
detection via the Migdal effect, Phys. Rev. D 104,
076013 (2021).

[32] F. Iocco, M. Pato, G. Bertone, and P. Jetzer, Dark Matter
distribution in the Milky Way: Microlensing and dynami-
cal constraints, J. Cosmol. Astropart. Phys. 11 (2011) 029.

[33] J. F. Acevedo, J. Bramante, A. Goodman, J. Kopp, and T.
Opferkuch, Dark matter, destroyer of worlds: Neutrino,
thermal, and existential signatures from black holes in
the Sun and Earth, J. Cosmol. Astropart. Phys. 04 (2021)
026.

[34] J. I. Read, The local dark matter density, J. Phys. G 41,
063101 (2014).

[35] M. Pato, F. Iocco, and G. Bertone, Dynamical constraints
on the dark matter distribution in the Milky Way, J.
Cosmol. Astropart. Phys. 12 (2015) 001.

[36] G. R. Beardsmore and J. P. Cull, Crustal Heat Flow: A
Guide to Measurement and Modelling (Cambridge
University Press, Cambridge, England, 2001).

[37] E. Aprile et al. (XENON Collaboration), First Dark Matter
Search Results from the XENON1T Experiment, Phys.
Rev. Lett. 119, 181301 (2017).

[38] J. Bramante, B. Broerman, R. F. Lang, and N. Raj,
Saturated overburden scattering and the multiscatter
frontier: Discovering dark matter at the planck mass and
beyond, Phys. Rev. D 98, 083516 (2018).

[39] J. Bramante, B. Broerman, J. Kumar, R. F. Lang, M.
Pospelov, and N. Raj, Foraging for dark matter in large
volume liquid scintillator neutrino detectors with multi-
scatter events, Phys. Rev. D 99, 083010 (2019).

[40] M. Clark, A. Depoian, B. Elshimy, A. Kopec, R. F. Lang,
and J. Qin, Direct detection limits on heavy dark matter,
Phys. Rev. D 102, 123026 (2020).

[41] A. Bhoonah, J. Bramante, B. Courtman, and N. Song,
Etched plastic searches for dark matter, Phys. Rev. D 103,
103001 (2021).

[42] J. F. Acevedo, J. Bramante, and A. Goodman, Old
Rocks, New Limits: Excavated Ancient Mica Searches
ForDark Matter, arXiv:2105.06473 [Phys. Rev. Lett. (to be
published)].

[43] R. Bernabei et al., Extended Limits on Neutral Strongly
Interacting Massive Particles and Nuclearites from NaI(Tl)
Scintillators, Phys. Rev. Lett. 83, 4918 (1999).

[44] P. Adhikari et al., First Direct Detection Constraints on
Planck-Scale Mass Dark Matter with Multiple-Scatter
Signatures Using the DEAP-3600 Detector, Phys. Rev.
Lett. 128, 011801 (2022).

[45] E. Hardy and R. Lasenby, Stellar cooling bounds on new
light particles: Plasma mixing effects, J. High Energy
Phys. 02 (2017) 033.

[46] S. Knapen, T. Lin, and K. M. Zurek, Light dark matter:
Models and constraints, Phys. Rev. D 96, 115021 (2017).

[47] S. Orito et al., Search for Supermassive Relics with
2000-m2 Array of Plastic Track Detector, Phys. Rev. Lett.
66, 1951 (1991).

[48] J. Bramante, J. Kumar, and N. Raj, Dark matter astrometry
at underground detectors with multiscatter events, Phys.
Rev. D 100, 123016 (2019).

[49] R. A. Scalzo, A. J. Ruiter, and S. A. Sim, The ejected mass
distribution of type Ia supernovae: A significant rate of
non-Chandrasekhar-mass progenitors, Mon. Not. R. As-
tron. Soc. 445, 2535 (2014).

ACCELERATING COMPOSITE DARK MATTER DISCOVERY WITH … PHYS. REV. D 105, 023012 (2022)

023012-21

https://doi.org/10.1007/JHEP02(2017)119
https://doi.org/10.1007/JHEP02(2017)119
https://doi.org/10.1016/0550-3213(85)90021-5
https://doi.org/10.1016/0550-3213(95)00538-2
https://doi.org/10.1103/PhysRevD.104.015041
https://doi.org/10.1103/PhysRevD.104.015041
https://doi.org/10.1016/j.physletb.2004.11.085
https://doi.org/10.1016/j.physletb.2004.11.085
https://doi.org/10.1016/j.nuclphysb.2005.08.033
https://doi.org/10.1016/j.physletb.2006.03.037
https://doi.org/10.1142/S0217751X07037093
https://doi.org/10.1007/JHEP03(2018)194
https://doi.org/10.1007/JHEP03(2018)194
https://doi.org/10.1103/PhysRevLett.121.101801
https://doi.org/10.1103/PhysRevLett.124.021801
https://doi.org/10.1103/PhysRevLett.124.021801
https://doi.org/10.1103/PhysRevD.101.076014
https://doi.org/10.1103/PhysRevD.101.076014
https://doi.org/10.1007/JHEP11(2020)034
https://doi.org/10.1007/JHEP11(2020)034
https://doi.org/10.1103/PhysRevD.102.121303
https://arXiv.org/abs/2012.09751
https://doi.org/10.1103/PhysRevLett.127.081805
https://doi.org/10.1103/PhysRevD.104.076013
https://doi.org/10.1103/PhysRevD.104.076013
https://doi.org/10.1088/1475-7516/2011/11/029
https://doi.org/10.1088/1475-7516/2021/04/026
https://doi.org/10.1088/1475-7516/2021/04/026
https://doi.org/10.1088/0954-3899/41/6/063101
https://doi.org/10.1088/0954-3899/41/6/063101
https://doi.org/10.1088/1475-7516/2015/12/001
https://doi.org/10.1088/1475-7516/2015/12/001
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevD.98.083516
https://doi.org/10.1103/PhysRevD.99.083010
https://doi.org/10.1103/PhysRevD.102.123026
https://doi.org/10.1103/PhysRevD.103.103001
https://doi.org/10.1103/PhysRevD.103.103001
https://arXiv.org/abs/2105.06473
https://doi.org/10.1103/PhysRevLett.83.4918
https://doi.org/10.1103/PhysRevLett.128.011801
https://doi.org/10.1103/PhysRevLett.128.011801
https://doi.org/10.1007/JHEP02(2017)033
https://doi.org/10.1007/JHEP02(2017)033
https://doi.org/10.1103/PhysRevD.96.115021
https://doi.org/10.1103/PhysRevLett.66.1951
https://doi.org/10.1103/PhysRevLett.66.1951
https://doi.org/10.1103/PhysRevD.100.123016
https://doi.org/10.1103/PhysRevD.100.123016
https://doi.org/10.1093/mnras/stu1808
https://doi.org/10.1093/mnras/stu1808


[50] R. Scalzo et al. (Nearby Supernova Factory Collaboration),
Type Ia supernova bolometric light curves and ejected
mass estimates from the Nearby Supernova Factory,
Mon. Not. R. Astron. Soc. 440, 1498 (2014).

[51] K. Nomoto, Accreting white dwarf models for type I
supernovae. I—Presupernova evolution and triggering
mechanisms, Astrophys. J. Lett. 253, 798 (1982).

[52] Z.-W. Han and P. Podsiadlowski, The single degenerate
channel for the progenitors of type Ia supernovae, Mon.
Not. R. Astron. Soc. 350, 1301 (2004).

[53] B. Wang, Mass-accreting white dwarfs and type Ia super-
novae, Res. Astron. Astrophys. 18, 049 (2018).

[54] A. Kashi and N. Soker, A circumbinary disc in the final
stages of common envelope and the core-degenerate
scenario for type ia supernovae, Mon. Not. R. Astron.
Soc. 417, 1466 (2011).

[55] D.-D. Liu, B. Wang, P. Podsiadlowski, and Z. Han, The
violent white dwarf merger scenario for the progenitors of
type ia supernovae, Mon. Not. R. Astron. Soc. 461, 3653
(2016).

[56] R. Pakmor, M. Kromer, S. Taubenberger, and V. Springel,
Helium-ignited violent mergers as a unified model for
normal and rapidly declining type ia supernovae, As-
trophys. J. Lett. 770, L8 (2013).

[57] R. P. Olling, R. Mushotzky, E. J. Shaya, A. Rest, P. M.
Garnavich, B. E. Tucker, D. Kasen, S. Margheim, and
A. V. Filippenko, No signature of ejecta interaction with a
stellar companion in three type Ia supernovae, Nature
(London) 521, 332 (2015).

[58] D. Maoz, F. Mannucci, and G. Nelemans, Observational
clues to the progenitors of Type-Ia supernovae, Annu. Rev.
Astron. Astrophys. 52, 107 (2014).

[59] J. Bramante, Dark Matter Ignition of Type Ia Supernovae,
Phys. Rev. Lett. 115, 141301 (2015).

[60] J. F. Acevedo and J. Bramante, Supernovae sparked by
dark matter in white dwarfs, Phys. Rev. D 100, 043020
(2019).

[61] R. Janish, V. Narayan, and P. Riggins, Type Ia supernovae
from dark matter core collapse, Phys. Rev. D 100, 035008
(2019).

[62] P. W. Graham, R. Janish, V. Narayan, S. Rajendran, and P.
Riggins, White dwarfs as dark matter detectors, Phys. Rev.
D 98, 115027 (2018).

[63] M. A. Fedderke, P. W. Graham, and S. Rajendran, White
dwarf bounds on charged massive particles, Phys. Rev. D
101, 115021 (2020).

[64] P. W. Graham, S. Rajendran, and J. Varela, Dark matter
triggers of supernovae, Phys. Rev. D 92, 063007 (2015).

[65] P. Montero-Camacho, X. Fang, G. Vasquez, M. Silva,
and C. M. Hirata, Revisiting constraints on asteroid-mass
primordial black holes as dark matter candidates, J.
Cosmol. Astropart. Phys. 08 (2019) 031.

[66] G. Bertone and M. Fairbairn, Compact stars as dark matter
probes, Phys. Rev. D 77, 043515 (2008).

[67] M. McCullough andM. Fairbairn, Capture of inelastic dark
matter in white dwarves, Phys. Rev. D 81, 083520 (2010).

[68] D. Hooper, D. Spolyar, A. Vallinotto, and N. Y. Gnedin,
Inelastic dark matter as an efficient fuel for compact stars,
Phys. Rev. D 81, 103531 (2010).

[69] P. Amaro-Seoane, J. Casanellas, R. Schödel, E. Davidson,
and J. Cuadra, Probing dark matter crests with white
dwarfs and IMBHs, Mon. Not. R. Astron. Soc. 459, 695
(2016).

[70] J. Bramante, A. Delgado, and A. Martin, Multiscatter
stellar capture of dark matter, Phys. Rev. D 96, 063002
(2017).

[71] B. Dasgupta, A. Gupta, and A. Ray, Dark matter capture in
celestial objects: Improved treatment of multiple scattering
and updated constraints from white dwarfs, J. Cosmol.
Astropart. Phys. 08 (2019) 018.

[72] D. Curtin and J. Setford, Direct detection of atomic dark
matter in white dwarfs, J. High Energy Phys. 03 (2021)
166.

[73] C. J. Horowitz, Nuclear and dark matter heating in massive
white dwarf stars, Phys. Rev. D 102, 083031 (2020).

[74] H.-S. Chan, M.-C. Chu, S.-C. Leung, and L.-M. Lin,
Delayed detonation thermonuclear supernovae with an
extended dark matter component, Astrophys. J. 914, 138
(2021).

[75] B. Dasgupta, R. Laha, and A. Ray, Low Mass Black Holes
from Dark Core Collapse, Phys. Rev. Lett. 126, 141105
(2021).

[76] N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles,
and M. Virgato, Improved treatment of dark matter capture
in white dwarfs, J. Cosmol. Astropart. Phys. 10 (2021)
083.

[77] F. X. Timmes and S. E. Woosley, The conductive propa-
gation of nuclear flames. I—Degenerate Cþ O and Oþ
NEþMG white dwarfs, Astrophys. J. 396, 649 (1992).

[78] A. Potekhin, D. Baiko, P. Haensel, and D. Yakovlev,
Transport properties of degenerate electrons in neutron star
envelopes and white dwarf cores, Astron. Astrophys. 346,
345 (1999).

[79] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs, and Neutron Stars: The Physics of Compact
Objects (John Wiley & Sons, New York, 1983).

[80] R. Kippenhahn, A. Weigert, and A. Weiss, Stellar
Structure and Evolution (Springer, New York, 2012),
Vol. 9783642303043.

[81] P. J. Schinder, D. N. Schramm, P. J. Wiita, S. H. Margolis,
and D. L. Tubbs, Neutrino emission by the pair, plasma,
and photo processes in the Weinberg-Salam model, As-
trophys. J. 313, 531 (1987).

[82] N. Itoh, T. Adachi, M. Nakagawa, Y. Kohyama, and H.
Munakata, Neutrino energy loss in stellar interiors. III.
Pair, photo-, plasma, and bremsstrahlung processes, As-
trophys. J. 339, 354 (1989).

[83] N. Itoh, H. Hayashi, A. Nishikawa, and Y. Kohyama,
Neutrino energy loss in stellar interiors. VII. Pair, photo-,
plasma, bremsstrahlung, and recombination neutrino proc-
esses, Astrophys. J. Suppl. Ser. 102, 411 (1996).

[84] L. Gasques, A. Afanasjev, E. Aguilera, M. Beard, L.
Chamon, P. Ring, M. Wiescher, and D. G. Yakovlev,
Nuclear fusion in dense matter: Reaction rate and carbon
burning, Phys. Rev. C 72, 025806 (2005).

[85] D. G. Yakovlev, L. R. Gasques, M. Beard, M. Wiescher,
and A. V. Afanasjev, Fusion reactions in multicomponent
dense matter, Phys. Rev. C 74, 035803 (2006).

ACEVEDO, BRAMANTE, and GOODMAN PHYS. REV. D 105, 023012 (2022)

023012-22

https://doi.org/10.1093/mnras/stu350
https://doi.org/10.1086/159682
https://doi.org/10.1111/j.1365-2966.2004.07713.x
https://doi.org/10.1111/j.1365-2966.2004.07713.x
https://doi.org/10.1088/1674-4527/18/5/49
https://doi.org/10.1111/j.1365-2966.2011.19361.x
https://doi.org/10.1111/j.1365-2966.2011.19361.x
https://doi.org/10.1093/mnras/stw1575
https://doi.org/10.1093/mnras/stw1575
https://doi.org/10.1088/2041-8205/770/1/L8
https://doi.org/10.1088/2041-8205/770/1/L8
https://doi.org/10.1038/nature14455
https://doi.org/10.1038/nature14455
https://doi.org/10.1146/annurev-astro-082812-141031
https://doi.org/10.1146/annurev-astro-082812-141031
https://doi.org/10.1103/PhysRevLett.115.141301
https://doi.org/10.1103/PhysRevD.100.043020
https://doi.org/10.1103/PhysRevD.100.043020
https://doi.org/10.1103/PhysRevD.100.035008
https://doi.org/10.1103/PhysRevD.100.035008
https://doi.org/10.1103/PhysRevD.98.115027
https://doi.org/10.1103/PhysRevD.98.115027
https://doi.org/10.1103/PhysRevD.101.115021
https://doi.org/10.1103/PhysRevD.101.115021
https://doi.org/10.1103/PhysRevD.92.063007
https://doi.org/10.1088/1475-7516/2019/08/031
https://doi.org/10.1088/1475-7516/2019/08/031
https://doi.org/10.1103/PhysRevD.77.043515
https://doi.org/10.1103/PhysRevD.81.083520
https://doi.org/10.1103/PhysRevD.81.103531
https://doi.org/10.1093/mnras/stw433
https://doi.org/10.1093/mnras/stw433
https://doi.org/10.1103/PhysRevD.96.063002
https://doi.org/10.1103/PhysRevD.96.063002
https://doi.org/10.1088/1475-7516/2019/08/018
https://doi.org/10.1088/1475-7516/2019/08/018
https://doi.org/10.1007/JHEP03(2021)166
https://doi.org/10.1007/JHEP03(2021)166
https://doi.org/10.1103/PhysRevD.102.083031
https://doi.org/10.3847/1538-4357/abfd32
https://doi.org/10.3847/1538-4357/abfd32
https://doi.org/10.1103/PhysRevLett.126.141105
https://doi.org/10.1103/PhysRevLett.126.141105
https://doi.org/10.1088/1475-7516/2021/10/083
https://doi.org/10.1088/1475-7516/2021/10/083
https://doi.org/10.1086/171746
https://doi.org/10.1086/164993
https://doi.org/10.1086/164993
https://doi.org/10.1086/167301
https://doi.org/10.1086/167301
https://doi.org/10.1086/192264
https://doi.org/10.1103/PhysRevC.72.025806
https://doi.org/10.1103/PhysRevC.74.035803


[86] G. R. Caughlan and W. A. Fowler, Thermonuclear reaction
rates. 5., At. Data Nucl. Data Tables 40, 283 (1988).

[87] S. Toonen, M. Hollands, B. T. Gänsicke, and T. Boekholt,
The binarity of the local white dwarf population, Astron.
Astrophys. 602, A16 (2017).

[88] D. Maoz, N. Hallakoun, and C. Badenes, The separation
distribution and merger rate of double white dwarfs:
Improved constraints, Mon. Not. R. Astron. Soc. 476,
2584 (2018).

[89] K. D. Temmink, S. Toonen, E. Zapartas, S. Justham, and
B. T. Gänsicke, Looks can be deceiving. Underestimating
the age of single white dwarfs due to binary mergers,
Astron. Astrophys. 636, A31 (2020).

[90] S.-C. Yoon, P. Podsiadlowski, and S. Rosswog, Remnant
evolution after a carbon-oxygen white dwarf merger, Mon.
Not. R. Astron. Soc. 380, 933 (2007).

[91] P. Loren-Aguilar, J. Isern, and E. Garcia-Berro, High-
resolution Smoothed Particle Hydrodynamics simulations
of the merger of binary white dwarfs, AIP Conf. Proc.
1122, 320 (2009).

[92] L. Decin, W. Homan, T. Danilovich, A. de Koter, D.
Engels, L. B. F. M. Waters et al., Reduction of the maxi-
mummass-loss rate of OH/IR stars due to unnoticed binary
interaction, Nat. Astron. 3, 408 (2019).

[93] L. G. Althaus, P. Gil-Pons, A. H. Córsico, M. Miller
Bertolami, F. De Gerónimo, M. E. Camisassa, S. Torres,
J. Gutierrez, and A. Rebassa-Mansergas, The formation of
ultra-massive carbon-oxygen core white dwarfs and their
evolutionary and pulsational properties, Astron. Astro-
phys. 646, A30 (2021).

[94] I. Dominguez, O. Straniero, A. Tornambe, and J. Isern, On
the formation of massive C-O white dwarfs: The lifting
effect of rotation, Astrophys. J. 472, 783 (1996).

[95] P. Dufour, S. Blouin, S. Coutu, M. Fortin-Archambault, C.
Thibeault, P. Bergeron et al., The montreal white dwarf
database: A tool for the community, in Proceedings of the
20th European White Dwarf Workshop, edited by P.-E.
Tremblay, B. Gaensicke, and T. Marsh, Vol. 509 of
Astronomical Society of the Pacific Conference Series
(Astronomical Society of the Pacific, San Francisco,
2017), p. 3.

[96] M. Kawasaki, H. Murayama, and T. Yanagida, Can the
strongly interacting dark matter be a heating source of
Jupiter?, Prog. Theor. Phys. 87, 685 (1992).

[97] S. Mitra, Uranus’ anomalously low excess heat constrains
strongly interacting dark matter, Phys. Rev. D 70, 103517
(2004).

[98] G. D. Mack, J. F. Beacom, and G. Bertone, Towards
closing the window on strongly interacting dark matter:
Far-reaching constraints from Earth’s heat flow, Phys. Rev.
D 76, 043523 (2007).

[99] S. L. Adler, Planet-bound dark matter and the internal heat
of Uranus, Neptune, and hot-Jupiter exoplanets, Phys. Lett.
B 671, 203 (2009).

[100] B. Chauhan and S. Mohanty, Constraints on leptophilic
light dark matter from internal heat flux of Earth, Phys.
Rev. D 94, 035024 (2016).

[101] J. Bramante, A. Buchanan, A. Goodman, and E. Lodhi,
Terrestrial and martian heat flow limits on dark matter,
Phys. Rev. D 101, 043001 (2020).

[102] R. Garani and P. Tinyakov, Constraints on dark matter from
the Moon, Phys. Lett. B 804, 135403 (2020).

[103] M. H. Chan and C. M. Lee, Constraining the spin-
independent elastic scattering cross section of dark matter
using the Moon as a detection target and the background
neutrino data, Phys. Rev. D 102, 023024 (2020).

[104] R. K. Leane and J. Smirnov, Exoplanets as Sub-GeV Dark
Matter Detectors, Phys. Rev. Lett. 126, 161101 (2021).

[105] R. K. Leane and T. Linden, First analysis of jupiter in
gamma rays and a new search for dark matter, arXiv:
2104.02068.

[106] D. L. Williams, R. P. Von Herzen, J. G. Sclater, and R. N.
Anderson, The Galapagos spreading centre: Lithospheric
cooling and hydrothermal circulation*, Geophys. J. Int. 38,
587 (1974).

[107] C. R. B. Lister, J. G. Sclater, E. E. Davis, H. Villinger, and
S. Nagihara, Heat flow maintained in ocean basins of great
age: investigations in the north-equatorial West Pacific,
Geophys. J. Int. 102, 603 (1990).

[108] J. Buch, S. C. J. Leung, and J. Fan, Using Gaia DR2 to
constrain local dark matter density and thin dark disk,
J. Cosmol. Astropart. Phys. 04 (2019) 026.

[109] M. I. Gresham and K. M. Zurek, Asymmetric dark
stars and neutron star stability, Phys. Rev. D 99, 083008
(2019).

[110] A. Coskuner, D. M. Grabowska, S. Knapen, and K. M.
Zurek, Direct detection of bound states of asymmetric dark
matter, Phys. Rev. D 100, 035025 (2019).

[111] R. H. Helm, Inelastic and elastic scattering of 187-Mev
electrons from selected even-even nuclei, Phys. Rev. 104,
1466 (1956).

[112] J. Lewin and P. Smith, Review of mathematics, numerical
factors, and corrections for dark matter experiments based
on elastic nuclear recoil, Astropart. Phys. 6, 87 (1996).

[113] D. M. Grabowska, T. Melia, and S. Rajendran, Detecting
dark blobs, Phys. Rev. D 98, 115020 (2018).

[114] A. Joglekar, N. Raj, P. Tanedo, and H.-B. Yu, Relativistic
capture of dark matter by electrons in neutron stars, Phys.
Lett. B 809, 135767 (2020).

[115] A. Joglekar, N. Raj, P. Tanedo, and H.-B. Yu, Kinetic
heating from contact interactions with relativistic targets:
Electrons capture dark matter in neutron stars, Phys. Rev.
D 102, 123002 (2020).

[116] L. Landau, The Classical Theory of Fields, Course of
Theoretical Physics (Elsevier Science, New York, 2013).

[117] M. Cannoni, Lorentz invariant relative velocity and rela-
tivistic binary collisions, Int. J. Mod. Phys. A 32, 1730002
(2017).

ACCELERATING COMPOSITE DARK MATTER DISCOVERY WITH … PHYS. REV. D 105, 023012 (2022)

023012-23

https://doi.org/10.1016/0092-640X(88)90009-5
https://doi.org/10.1051/0004-6361/201629978
https://doi.org/10.1051/0004-6361/201629978
https://doi.org/10.1093/mnras/sty339
https://doi.org/10.1093/mnras/sty339
https://doi.org/10.1051/0004-6361/201936889
https://doi.org/10.1111/j.1365-2966.2007.12161.x
https://doi.org/10.1111/j.1365-2966.2007.12161.x
https://doi.org/10.1063/1.3141311
https://doi.org/10.1063/1.3141311
https://doi.org/10.1038/s41550-019-0703-5
https://doi.org/10.1051/0004-6361/202038930
https://doi.org/10.1051/0004-6361/202038930
https://doi.org/10.1086/178106
https://doi.org/10.1143/ptp/87.3.685
https://doi.org/10.1103/PhysRevD.70.103517
https://doi.org/10.1103/PhysRevD.70.103517
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1016/j.physletb.2008.12.023
https://doi.org/10.1016/j.physletb.2008.12.023
https://doi.org/10.1103/PhysRevD.94.035024
https://doi.org/10.1103/PhysRevD.94.035024
https://doi.org/10.1103/PhysRevD.101.043001
https://doi.org/10.1016/j.physletb.2020.135403
https://doi.org/10.1103/PhysRevD.102.023024
https://doi.org/10.1103/PhysRevLett.126.161101
https://arXiv.org/abs/2104.02068
https://arXiv.org/abs/2104.02068
https://doi.org/10.1111/j.1365-246X.1974.tb05431.x
https://doi.org/10.1111/j.1365-246X.1974.tb05431.x
https://doi.org/10.1111/j.1365-246X.1990.tb04586.x
https://doi.org/10.1088/1475-7516/2019/04/026
https://doi.org/10.1103/PhysRevD.99.083008
https://doi.org/10.1103/PhysRevD.99.083008
https://doi.org/10.1103/PhysRevD.100.035025
https://doi.org/10.1103/PhysRev.104.1466
https://doi.org/10.1103/PhysRev.104.1466
https://doi.org/10.1016/S0927-6505(96)00047-3
https://doi.org/10.1103/PhysRevD.98.115020
https://doi.org/10.1016/j.physletb.2020.135767
https://doi.org/10.1016/j.physletb.2020.135767
https://doi.org/10.1103/PhysRevD.102.123002
https://doi.org/10.1103/PhysRevD.102.123002
https://doi.org/10.1142/S0217751X17300022
https://doi.org/10.1142/S0217751X17300022

