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We study an impact of self-interacting bosonic dark matter (DM) on various observable properties of
neutron stars (NSs). The analysis is performed for asymmetric DM with masses from few MeV to GeV, the
self-coupling constant of order Oð1Þ and various DM fractions. Allowing a mixture between DM and
baryonic matter, the formation of a dense DM core or an extended dark halo has been explored. We find that
both distribution regimes crucially depend on the mass and fraction of DM for sub-GeV boson masses in
the strong coupling regime. From the combined analysis of the mass-radius relation and the tidal
deformability of compact stars including bosonic DM, we set a stringent constraint on DM fraction. We
conclude that observations of 2 M⊙ NSs together with Λ1.4 ≤ 580 constraint, set by LIGO/Virgo
Collaboration, favor sub-GeV DM particles with low fractions below ∼5%.
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I. INTRODUCTION

Despite enormous efforts during the past three decades,
the nature of dark matter (DM) still remains unknown.
Currently there are several motivated particle candidates for
DM such as weakly interacting massive particles (WIMPs),
axions, sterile neutrinos, etc. [1,2]. Research into the
detectability of these particles has revealed a vast number
of promising experimental facilities ranging from high-
precision table-top experiments to incorporating astronomi-
cal surveys and gravitational-wave (GW) observations.
The terrestrial experiments have been operating during

the years in order to detect DM particles, including the
recoil experiments that aim to measure the direct evidence
of the interaction between the new particle and nuclear or
atomic targets [3–6]. Due to the null results achieved in the
direct DM searches with masses larger than a few GeV in
the past years, recently an increase of detection efforts have
been conducted in the sub-GeV region, which has a mass
between 1 keV and the mass of proton [7–10]. The sub-
GeV mass range is relatively unexplored because of the
experimental challenges of detecting such light DM par-
ticles with traditional techniques. Recently, the XENON1T
collaboration observed a 3.5σ excess of events from recoil
electrons [11] which might be the evidence for the
existence of DM particles with masses around 90 keV [12].

Other existing DM search strategies are the decay of
known particle into the DM particles, e.g., the anomalous
decay of B-meson reported by the LHCb collaboration
[13], and indirect searches which are looking for self-
annihilation signal generated by DM particles at the
Galactic center [14–16].
On the other hand, compact astrophysical objects such as

neutron stars (NSs) can capture a sizable amount of DM
which provide a unique astrophysical laboratory to indi-
rectly probe the nature of DM. The presence of DM can
substantially alter the star’s structure and its thermody-
namic properties leading to observable signals from
astrophysical measurements [17–23]. An accretion of self-
annihilating DM into a NS can be detected via increasing the
luminosity and the effective temperature [24–27] or by
modifying the cooling curves of the star of a certain mass
[28,29]. However, DM particles with negligible annihilation
rate will settle within the NSs. This scenario is realized as
asymmetric dark matter (ADM) in which a particle-anti-
particle asymmetry in the dark sector exists similar to one of
the baryon asymmetry in the Universe [30–33]. Non-
annihilating ADM whether fermionic or bosonic nature
might form stable compact object named dark stars
[33–35]. Accumulation of ADM in NS could continue until
a black hole (BH) formation which can tightly constraint
ADM models by the presence of old NSs [36–41].
It has been shown that an accretion of massive ADM

particles can significantly reduce the maximum mass of the
host NS making the two solar mass limit unattainable
[42–45]. Thus, observational fact of an existence of two
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heavy pulsars, i.e., PSR J0348þ 0432 with mass 2.01�
0.04 M⊙ [46] and PSR J0740þ 6620 of 2.14þ0.10

−0.09 M⊙
[47], enables us to constrain the properties of massive DM
particles and their fraction inside the compact stars. On the
other hand, light DM particles lead to formation of an
extended halo around the NS and could increase its total
gravitational mass [18,20].
Based on the NS observations, it has been argued that

the presence of light bosonic ADM without self-
interaction has been excluded in the mass range
2 keV–16 GeV due to the BH formation [39].
Furthermore, a similar result has been reported about
tight constraints on the noninteracting scalar ADM with
masses between 5 MeV and 13 GeV [36]. The observed
discrepancy in the low-mass region reported in Ref. [39]
and Ref. [36] is because of an inclusion of an effect of
neutron degeneracy on the capture rate in the latter case.
However, it was shown that taking into account a repulsive
self-interaction among DM particles prevents instability
issues related to the BH formation [18,48–51]. In addition,
self-interacting DM can resolve a series of issues in the
collisionless cold DM (CCDM) scenario for the small-
scale cosmological observations [52–55]. The self-
interaction cross section per unit DM mass in range
0.1 cm2=gr ≲ σ=m≲ 1 cm2=gr is sufficient to explain
various inconsistencies between numerical simulations
and observational results in CCDM paradigm [35,56–59].
Moreover, it has been shown that a self-interacting
complex scalar field can form a Bose-Einstein condensate
(BEC) which yields an attractive solution for the DM
Galactic halo and other astronomical DM issues [60–69].
The stability of a self-gravitating system of fermionic

DM particles without self-interaction is provided by the
Fermi pressure. For bosonic DM the only source of
pressure against the gravitational contraction comes from
the uncertainty principle leading to formation of boson stars
(BSs), for a comprehensive review on BSs see [70–72].
Historically, the idea of BS was proposed by Kaup [73],
Ruffni and Bonazzola [74], they showed that BSs consist-
ing of noninteracting particles have much lower maximum
mass compared to their fermionic counterparts. However,
introducing the repulsive interaction between bosons, e.g.,
proposed by Colpi et al. [75], drastically changes the
physical properties of BSs. Depending on the mass and
strength of the self-interaction between DM particles, BSs
of stellar mass could have observable signatures at GW
detectors [56,76]. Therefore, either self-interacting bosonic
ADM as the complex scalar field or ultra light axions
without self-interaction could form a dark BS of the stellar
mass [35,50,68,77–86]. As other possibilities, the dark BS
can be formed in terms of a Bose-Einstein gravitational
condensation described by Gross-Pitaevskii-Poisson equa-
tion [68,87], or it can be made of bosons with a repulsive
self-interaction described within the mean-field approxi-
mation and general relativity [88]. Both above mentioned

dark BS models were utilized as a DM component within
NSs [18,19,89].
Generally, three different scenarios can be realized for a

DM admixed NS [89–92]:
(i) DM is condensed in a NS core. In this case,

radius of DM component (RD) is smaller than
radius of baryonic matter (BM) component (RB),
i.e., RB > RD;

(ii) DM distributed in entire NS with RB ¼ RD;
(iii) DM creates an extended halo around a NS with

RD > RB.
The above mentioned configurations are valid for only
gravitational interaction between BM and DM, allowing a
mixture of both fluids at the core and the possible
appearance of one of them at the outer shell of the
combined object [18–20,42,45,90–95].
In the case of sufficiently strong nongravitational inter-

action between both components their mixing is prevented
leading to two more scenarios. One of them corresponds to
a star with a pure baryonic core surrounded by a DM halo,
while the other one describes a star with a pure DM core
and a baryonic shell [23,89,96,97]. Meanwhile, in the
presence of the nongravitational interactions between BM
and DM, the whole system can be described by a single
equation of state (EoS) obtained from the relativistic mean-
field model [17,23,98–101].
The recent detections of GWs from the binary NS

mergers opened a new window for probing DM particles
[102,103]. The impact of ADM particles on the internal
structure of NSs can be considered through GW signals
especially during the post-merger stage [104–108]. The
GW signal is also sensitive to the deformation effects of
binary NSs during the inspiral phase. This information
encodes in the tidal deformability parameter which gives
valuable clues into the EoS of NSs [109–113]. The upper
bound on tidal deformability Λ ≤ 800 for M ¼ 1.4 M⊙
was obtained by the GWobservation at the 90% confidence
level for GW170817 created by coalescence of the binary
NSs [102]. An improved estimate of Λ1.4 ¼ 190þ390

−120 has
been reported in [114]. It is worth mentioning that most
of BM EoSs obtained from many-body theories, taking
into account the realistic nucleon-nucleon interactions
[18,115–121], produce the tidal deformability in the range
of 100–500. The presence of DM in NSs will alter the
tidal deformability which can be utilized to probe the
parameter space of DM model and the amount of DM
within NSs to be consistent with observational constraints
[18,19,97,100,122–125]. Meanwhile, multimessenger
observations of NSs from combining GW detections
(by, e.g., LIGO/Virgo/KAGRA [126]) with x-ray (by,
e.g., NICER [127,128]) and radio (by, e.g., SKA [129])
data can be used to examine the presence of DM inside or
around the NSs [130].
In this work, we study an effect of bosonic ADM on the

compact star properties such as the maximum mass and
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tidal deformability for different DM distribution regimes.
We focus here on DM mass ranging from a few MeV to
GeV and the strong coupling regime with a coupling
constant of order Oð1Þ. The DM component is treated as
a self-repulsive complex scalar field described by the EoS
proposed by Colpi et al. [75]. Further on we will refer to it
as a bosonic self-interacting DM (SIDM). This EoS is
demonstrated to produce BSs of high enough mass to be
consistent with typical NSs described within hadronic EoSs
[81]. On the other hand, the baryonic component is
modeled by the unified EoS with induced surface tension
(IST) that was successfully applied to describe the nuclear
matter, heavy-ion collision data and dense matter existing
inside NS [131–133].
We show that depending on the mass, fraction and the

strength of DM self-interaction, a DM halo or DM core
can be formed which will modify the GWemission during
the coalescence of two compact stars. Taking into account
two key observable constraints of NSs, i.e., maximum
mass MTmax

≥ 2 M⊙ and tidal deformability Λ1.4 ≤ 580,
we set an upper limit on the fraction of sub-GeV bosonic
DM inside NSs which disfavors the values above ∼5%.
The considered fractions include the conservative
values obtained by the DM accretion from the surrounding
medium [45,134–136], as well as higher values based on
possible scenarios of its augmentation, e.g., enhanced
production of DM during the supernova explosion
stage [18], absorption of primordial DM clumps
[19,91], etc.
The paper is organized as follows. In Sec. II we describe

the EoSs for bosonic DM and BM. In Sec. III we show the
distribution of DM for different values of coupling con-
stant, mass of DM particles and their fraction. Sections IV
and V are devoted to the analysis of an effect of DM on
maximum mass and tidal deformability of NSs. In Sec. VI
we present a constraint on the mass of DM particles and
their fraction. Finally we briefly discuss different scenarios
for the presence of DM inside compact stars in Sec. VII.
The results are summarized in Sec. VIII. We use units in
which ℏ ¼ c ¼ G ¼ 1.

II. DARK AND BARYON MATTER MODELS

A. Dark matter equation of state

In the following, we treat DM as massive self-interacting
bosons carrying conserved charge. Such particles are
described by a complex scalar field with the self-interaction
potential VðϕÞ ¼ λ

4
jϕj4, where λ is a dimensionless cou-

pling constant [75,81]. In this setup a coherent scalar field
is governed by Klein-Gordon equation and can potentially
form Bose Einstein condensate (BEC) if the temperature is
sufficiently low [60,61,68]. In this work, we assume DM to
exist at zero temperature, thus, leading to its total con-
densation. Thermal fluctuations are also suppressed in
this case. This justifies treating BEC of DM within the

mean-field approximation. The corresponding EoS of
bosonic matter with repulsive self-interaction is given by

P ¼ m4
χ

9λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3λ

m4
χ
ρ

s
− 1

�2

; ð1Þ

where mχ is the DM particle mass. Derivation of Eq. (1) is
given in Appendix. This EoS is obtained in locally flat
space-time, which requires small gradients of metrics and
absence of the anisotropy issues [50,57,68–70,77,78,137].
This condition is provided at

λ ≫ 4πðmχ=MPlÞ2 ¼ 8.43 × 10−36
�

mχ

100 MeV

�
2

ð2Þ

which is well inside the range considered in this work. EoS
(1) can be approximated by a polytropic equation, its
corresponding index changes from 2 to 1 at low and high
densities, respectively. The critical density of switching
between the two regimes is estimated as

ρc ¼
m4

χ

3λ
¼ 4.3

λ

�
mχ

100 MeV

�
4

MeV=fm3: ð3Þ

The EoS (1) was applied to study hypothetical compact
objects composed of bosonic DM, i.e., BSs [68,75,81]. The
maximum mass of such objects was found to be

MBS
max ≈ 0.06λ1=2MCh ≈ 10 M⊙λ

1=2

�
100 MeV

mχ

�
2

ð4Þ

where MCh ≈M3
Pl=m

2
χ is the Chandrasekhar mass.

According to Eq. (4), stellar mass BSs can be formed
for λ ∼Oð1Þ and mχ ∼Oð100 MeVÞ [70,76]. On the other
hand, the maximum compactness CðmaxÞ ¼ M=R of the BS
configurations corresponding to our desired parameter
space is about 0.16 which is far below the BH formation
limit [57]. Lower DM mases and/or higher couplings lead
to stiffening of the resulting EoS. It has been further proven
that solutions of the Tolman-Oppenheimer-Volkof (TOV)
equations [138,139] with the present EoS of DM are self-
similar [81], allowing general statements about TOV
solutions without scanning over the whole parameter space.

B. Baryonic matter equation of state

To model BM we utilize the IST EoS developed in
Refs. [132,140]. It reproduces four first virial coefficients
of the gas of hard spheres providing an accurate account of
the short range particle repulsion of the hard-core type
[140]. The long-range attraction between baryons is
incorporated to the present model within the mean field
framework [132]. This EoS is fitted to the nuclear matter
ground state properties [140], fulfills the proton flow
constraint [141], reproduces multiplicities of hadrons
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measured in heavy ion collisions [131,142].
Supplemented by the conditions of electric neutrality
and β-equilibrium the IST EoS was successfully applied
to modeling NS [132,133].
In the present study we utilize the model set up proposed

in Ref. [143] (see set B). It yields the nuclear asymmetry
energy and its slope at saturation density J ¼ 30.0 MeV
and L ¼ 93.19 MeV, respectively, maximum NS mass
Mmax ¼ 2.08 M⊙ and radius of the 1.4 M⊙ star equals
to R1.4 ¼ 11.37 km.
Following Ref. [20] the NS crust is modeled by the

polytropic EoS with γ ¼ 4=3 that mimics the atomic
structure of the outer and inner crusts. The crust EoS
was smoothly matched to the IST EoS at density 0.09 fm−3.

III. DARK HALO AND DARK CORE
FORMATION REGIMES

In order to study the compact objects formed by the
admixture of BM and bosonic SIDM, we consider two-
fluid TOV formalism where each component is described
as a perfect fluid. Due to the negligibly weak interaction
between DM and BM we consider their interaction only
through gravity [19,45,92–94]. In this case, the energy-
momentum tensors of each component are conserved
separately (for an explicit derivation see Refs. [20,42])
and the system of equations for relativistic hydrostatic
equilibrium is defined as

dpB

dr
¼ −ðpB þ ϵBÞ

dν
dr

; ð5Þ

dMB

dr
¼ 4πϵBr2; ð6Þ

dpD

dr
¼ −ðpD þ ϵDÞ

dν
dr

; ð7Þ

dMD

dr
¼ 4πϵDr2; ð8Þ

dν
dr

¼ ðMB þMDÞ þ 4πr3ðpB þ pDÞ
rðr − 2ðMB þMDÞÞ

; ð9Þ

where pBðpDÞ and ϵBðϵDÞ are pressure and energy density
of BM (DM) component, and r is the distance from the
center of a star. Thus, total pressure p ¼ pB þ pD and
energy density ϵ ¼ ϵB þ ϵD have two contributions from
BM and DM.
The system of Eqs. (5–9) was obtained from the Einstein

ones for spherically symmetric metric

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dΩ2; ð10Þ

where is λ and ν are the metric functions.

In general to solve single fluid TOVequations [138,139]
the boundary conditions should be determined. In the case
of the two-fluid formalism, two sets of boundary conditions
for DM and BM have to be considered [93,94]. For the
fixed values of central pressure, pB and pD, and mass in the
center of a star, MBðr ≃ 0Þ ¼ MDðr ≃ 0Þ ≃ 0, we per-
formed a numerical integration of Eqs. (5–9) up to a radius
at which pressure of one of the components vanishes. In
principle this radius can be realized as DM core radius RD
or BM core radius RB.
Thus, for (i) and (ii) scenarios described in the

Introduction for which DM is distributed inside the NS
(RB ≥ RD) we continue the numerical integration to reach
the visible radius of the star where pBðRBÞ ¼ 0. In this case
the total gravitational mass of the star is defined by

MT ¼
Z

RB

0

4πr2½ϵBðrÞ þ ϵDðrÞ�dr: ð11Þ

For a NS surrounded by an extended DM halo (see
(iii) scenario in the Introduction), i.e., RD > RB, where
pBðr > RBÞ ¼ 0, in order to find the total mass one has to
replace the upper limit of the integration in Eq. (11) by RD.
Consequently, the total gravitational mass of a DM
admixed NS is

MT ¼ MBðRBÞ þMDðRDÞ: ð12Þ

However, the observable radius of the star is still defined
by RB, this is due to the visibility of RB compared to RD
and technical difficulties in direct detection of dark
radius RD.
The DM fraction is a crucial parameter in our analysis,

which characterizes the amount of DM in a DM admixed
NS and is defined as

Fχ ¼
MDðRDÞ

MT
: ð13Þ

As the distribution of DM depends on the particle’s mass
mχ , fraction Fχ and the value of the coupling constant λwe
perform a thorough analysis to show the role of each
parameter. Thus, Fig. 1 shows energy density and mass
profiles for mχ ¼ 400 MeV, λ ¼ π values and different
DM fractions Fχ between 10%–50%. It was implemented
by fixing pressure of both components in the center in
such a way to obtain the desired fraction. For better
understanding each matter component is depicted sepa-
rately, i.e., BM (dashed lines) and DM (solid lines). From
Fig. 1, we see that a DM core with RD ≈ 5 km is
embedded in a baryonic star with bigger radius. An
increase of DM fraction from 10% to 50% leads to an
increase of the size and mass of the DM core, while these
properties of baryonic component decrease and it becomes
more compact.
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Another type of behavior is demonstrated in Fig. 2 where
energy density and mass profiles for mχ ¼ 100 MeV are
presented. As it is seen the light DM particles lead to a
formation of a halo around BM star with much larger radius
that is a function of DM fraction. Higher fractions lead to an
increase of mass and radius of DM halo.
A comparison of Figs. 1 and 2 makes us to conclude

that a transition from DM core to halo occurs from mχ ¼
400 MeV to 100 MeV for λ ¼ π and different values of
Fχ . To spot the exact value of mχ at which this transition
happens, we plot the energy density profiles for BM
and DM separately with mχ varies from 100 MeV to
500 MeV at fixed λ and Fχ . As it is seen on the upper
panel of Fig. 3 at mχ ≈ 175 MeV radii of both compo-
nents coincide (RB ≈ RD), while a slight decrease of mχ

leads to the formation of halo structure with RD > RB. In
the opposite case, the DM core will be formed for more
massive SIDM particles. The middle and lower panels
show how the DM distribution is changed by varying the
value of coupling constant and DM fraction. By a
thorough analysis of an effect of model parameters from
Fig. 3, one can show that a DM halo is always formed
around NS for Fχ ¼ 10% and λ in the range between
0.5π–2π formχ ≤ 140 MeV. A compatible result has been

obtained recently in Ref. [20] but for fermionic DM
without any self-interaction.
Therefore, as a general behavior we can conclude that

light DM particles with mχ < 200 MeV tend to form halo
around aNS,while heavier ones for lowDMfractionswould
mainly create a DM core inside a compact star. However, for
massive DMparticles it would be still possible to form aDM
halo for high values of Fχ . More detailed consideration of
the role of DM fraction in the formation of DMcore andDM
halo will be presented in the following section.

IV. MASS-RADIUS RELATION IN THE
PRESENCE OF BOSONIC DM

The mass-radius (M-R) relations for DM admixed NSs
are shown in Figs. 4 and 5 in whichM ¼ MT ¼ MB þMD.
Here R is the outermost radius of the star which is
determined by RB for (i) and (ii) scenarios and by RD
for (iii) scenario that includes a DM halo formation. A solid
black curve on each panel corresponds to the M-R relation
for pure baryonic stars described by the IST EoS. Gray
dashed horizontal line indicates the 2 M⊙ maximum mass
limit for NS, magenta and cyan regions mark causality and
GR limits, respectively.
In Fig. 4 we show an effect of different values of mχ and

λ on the maximum mass and profile of the M-R relation of

FIG. 2. Energy density (upper panel) and enclosed mass (lower
panel) profiles for DM admixed NSs. Calculations are made for
mχ ¼ 100 MeV, λ ¼ π and different DM fractions between
10%–50%. Solid and dashed lines correspond to DM and BM
components, respectively. For the considered values of param-
eters the DM halo is formed around a NS.

FIG. 1. Energy density (upper panel) and enclosed mass (lower
panel) as a function of star radius for DM admixed NSs.
Calculations are made for mχ ¼ 400 MeV, λ ¼ π and different
DM fractions between 10%–50%. Solid and dashed lines
correspond to DM and BM components, respectively. For the
considered values of parameters the DM core is formed
inside a NS.
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DM admixed NSs for a fixed DM fraction 20%. In the
lower panel, it is shown that a decrease of mχ leads to an
increase of the maximum mass. We find that the star’s
radius grows very drastically for lower DM masses com-
pared to heavy masses, due to the fact that the outermost
radius of the star in the former case is determined by RD
(DM EoS), while the latter one is defined by RB (BM EoS).
Formχ ¼ 100 MeV (red dashed curve in the lower panel of
Fig. 4) for which a DM halo forms around a baryonic NS,
the total maximum mass increases. On the other hand for
mχ > 200 MeV a DM core forms inside a NS leading to a

decrease of the total mass compared to a pure BM star. As
an intermediate regime, we want to point out on the blue
dashed curve in the lower panel of Fig. 4 obtained for
mχ ¼ 200 MeV, Fχ ¼ 20% and λ ¼ π which shows a
reduction of the maximum mass although a DM halo is
formed (see Fig. 11 for more details).
In the upper panel of Fig. 4 an effect of self-coupling

constant λ ¼ ð0.5; 1; 1.5; 2Þπ on the total maximum mass
of the compact stars is investigated. Here M-R profiles are
shown for mχ ¼ 100 MeV (dashed curves) as an example
of a DM halo and mχ ¼ 400 MeV (solid curves) to
illustrate a DM core formation. As you can see on the
upper panel of Fig. 4, DM particles with mass 400 MeV
lead to a decrease of the maximum mass leaving it below
2 M⊙ constraint. At the same time, an increase of λ rises the
maximum mass for both DM masses while the star’s radius
has a small reduction for mχ ¼ 400 MeV and drastically
increases for mχ ¼ 100 MeV.
We show an impact of DM fraction on the M-R profiles

of compact stars in Fig. 5. For light DM particles with mass

FIG. 3. Energy density profiles of DM admixed NSs for
different set of model parameters: λ ¼ π, Fχ ¼ 10% and different
values of boson mass (upper panel); mχ ¼ 175 MeV, Fχ ¼ 10%

and different values of coupling constant (middle panel);
mχ ¼ 175 MeV, λ ¼ π and different values of DM fraction Fχ

(lower panel).

FIG. 4. M-R relations of DM admixed NSs with Fχ ¼ 20%.
Note, that R corresponds to the outermost radius, RB or RD
depending on the DM distribution for DM core or DM halo
formation, respectively. The upper panel shows curves for
different values of the coupling constant and two different values
of boson mass: mχ ¼ 400 MeV (solid curves) and mχ ¼
100 MeV (dashed curves). The lower panel demonstrates an
effect of boson mass variation mχ ¼ ð100–500Þ MeV, while the
coupling constant is fixed at λ ¼ π. The green dashed curve
shows a DM core-halo transition for which the outermost radius
changes from RB to RD (see details in the text).
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100 MeV (see the upper panel) the bigger fraction causes a
grow of the maximum mass and radius of stars. For heavier
DM particlesmχ ¼ 400 MeV, we see an opposite behavior
that prompt a reduction of total maximum mass and radius
with an increase of fraction (lower panel on Fig. 5). It is
worth mentioning that for all above mentioned cases in
which a DM halo is formed (RD > RB), the visible radius of
a star remains to be RB.
We see here that in agreement with previous studies the

existence of a DM core decreases the maximum stable mass
and the corresponding minimum radius while the formation
of a DM halo increases these quantities [18–20,43].
Moreover, we report a new interesting behavior presented
on the lower panel of Fig. 4 for mχ ¼ 300 MeV and Fχ ¼
20% and on the lower panel of Fig. 5 for mχ ¼ 400 MeV
and Fχ ¼ 40%, 50% which occurs due to a DM core—halo
transition. In fact, for a given mχ , λ and Fχ values the
outermost radius of the object may interchange between RB
and RD along the M-R profile for DM admixed NSs. To
clarify this new interesting feature, we plotted the radius of
BM and DM components separately (see Figs. 6 and 7).
Thus, Fig. 6 for mχ ¼ 300 MeV (green dashed curve)
shows that for an intermediate mass range the radius of the
DM component exceeds the BM one, RD > RB, while for
the low and high mass tails the baryonic component has a

FIG. 5. M-R profiles of DM admixed NSs calculated for
various DM fractions and a fixed value of the self-coupling
constant λ ¼ π. The upper and lower panels correspond to mχ ¼
100 MeV and mχ ¼ 400 MeV, respectively. Here R is the
outermost radius defined by either BM or DM component.

FIG. 6. Radius of DM and BM components separately as a
function of the total gravitational mass obtained for λ ¼ π, Fχ ¼
20% and three different values of boson mass. The radius of BM
component (RB) is shown by solid curves and DM component
(RD) is depicted by dashed curves. Red (mχ ¼ 100 MeV) and
blue (mχ ¼ 500 MeV) curves indicate two different DM distri-
bution regimes: DM halo and DM core formation, respectively.
Green curves represent a DM core—halo transition that corre-
sponds to the M-R profile calculated for mχ ¼ 300 MeV in the
lower panel of Fig. 4.

FIG. 7. Radius of BM RB (red curves) and DM RD (blue
curves) components as a function of total gravitational mass are
depicted for Fχ ¼ 40% (upper panel), Fχ ¼ 50% (lower panel),
fixed value of boson mass mχ ¼ 400 MeV and λ ¼ π. These
plots indicate that a transition occurs between two regimes of DM
distribution, from a core to a halo structure and vice-versa. Both
panels aimed to illustrate and explain a behavior shown on lower
panel of Fig. 5.
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larger radius. Fig. 7 illustrates a similar transition for
particles with mχ ¼ 400 MeV and high DM fractions
40% and 50%. Along the M-R relation RD < RB for the
low mass stars, RD > RB in the intermediate region of total
gravitational masses, and RD < RB for massive stars.
According to our best knowledge, this is a new feature
never reported before, we named it a DM core-halo
transition.
To have a clear understanding on how the results depend

on DM model parameters, we present a behavior of the
maximum total gravitational mass of DM admixed NSs in a
wide range of DM fractions in Fig. 8. This figure shows that
considering λ ¼ π, (i) for mχ ≤ 105 MeV, the maximum
mass is always above 2 M⊙ for any DM fraction. The
limiting masses for different self-coupling constants are
given as ðλ; mχÞ ¼ ð0.5π; 88.4 MeVÞ, (1.5π, 116 MeV)
and (2π, 125 MeV). (ii) For a DM mass range between
105 MeVand 200 MeV the maximum total mass decreases
for low DM fractions, and goes below 2 M⊙. However, by
increasing Fχ , the maximum total mass after reaching to a
local minimum gradually increases above 2 M⊙ for high
DM fractions. This behavior is a signature of a core to halo
transition induced by variation of amount of DM fraction.
(iii) For bosons with masses of about mχ ≳ 300 MeV, we
clearly see a DM core formation inside NSs leading to a
reduction of the total mass by increasing the DM fraction.
For massive DM particles and high fractions, we see a small
rise of the total maximummass, however it never reaches to
2 M⊙ limit even for a pure DM star.
The effect of different values of self-coupling constant

λ ¼ ð0.5; 1; 1.5; 2Þπ on the total maximum mass as a
function of DM fraction is depicted in Fig. 9 for
mχ ¼ 100, 200 and 400 MeV. This figure shows that the
total maximum mass grows by increasing λ and the DM
fraction at which MTmax

crosses 2 M⊙ line has a strong
dependence on λ. Fig. 10 illustrates a contribution of BM

(dashed curves) and DM (dot-dashed curves) components
to the maximum total gravitational mass (solid curves) of
DM admixed NSs. As you can see, in contrast toMB,MD is
increasing with Fχ , however, the variation rates of these
two masses are considerably different for a DM halo (e.g.,
mχ ¼ 100 MeV) and for a DM core (e.g.,mχ ¼ 400 MeV).
We see from Fig. 11 that depending on the DMmasses for a
fixed λ ¼ π, a DM halo starts to form at a specific fraction
of DM when RD > RB. The upper panel shows the
variation of radii of the DM component RD (dotted curves)
and the BM one RB (solid curves) as a function of DM
fraction for different mχ . It indicates that RB ≈ 10 km,
while RD gradually increases toward larger values. The
condition RD ≈ RB satisfies when a DM halo appears. On
the lower panel of Fig. 11, the total maximum mass (solid
curves), RD (dashed curves) and RB (dotted curves) are
presented in a single plot. It can be seen that a DM halo is
appeared for mχ ¼ 100 MeV, 150 MeV at Fχ < 10% and
for mχ ¼ 200 MeV at Fχ < 20%. However, the total
maximum mass of DM admixed NS starts to increase at

FIG. 8. Maximum total gravitational mass of DM admixed NSs
as a function of DM fraction Fχ obtained for a fixed value of
coupling constant λ ¼ π and different values of mχ . It shows that
formχ ≤ 105 MeV and λ ¼ π, the 2 M⊙ constraint is satisfied for
all Fχ values.

FIG. 9. Maximum total gravitational mass of DM admixed NSs
as a function of DM fraction Fχ for mχ ¼ ð100; 200; 400Þ MeV
and λ ¼ 0.5π (solid curves), λ ¼ π (dashed curves), λ ¼ 1.5π
(dotted curves), λ ¼ 2π (dot-dashed curves).

FIG. 10. The maximum total gravitational mass, mass of BM
(MB) and DM (MD) components are separately presented by
solid, dashed and dot-dashed curves, respectively, for λ ¼ π. The
gray dashed line indicates 2 M⊙ limit.
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higher DM fractions compared to the one of halo
formation.

V. AN EFFECT OF BOSONIC DM ON TIDAL
DEFORMABILITY

In this section, we analyse an effect of bosonic SIDM on
the tidal deformability Λ of a DM admixed NS. The
quadrupole tidal distortion Qij in terms of external tidal
tensor Eij can be parametrized as follows

Qij ¼
2

3
k2R5Eij ¼ λtEij; ð14Þ

where k2 is the tidal Love number which can be calculated
from the TOV equations [109,111]. Therefore, the tidal
deformability λt strongly depends on the star’s EoS.
Unlike λt which has dimension, dimensionless tidal

deformability Λ can be defined as

Λ ¼ λt
M5

¼ 2

3
k2

�
R
M

�
5

: ð15Þ

Here R and M are the radius and mass of a compact star, k2
is calculated by the method presented in Refs. [109–111] as

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ
þ 2C2ð1þ yÞ� þ 3ð1 − 2CÞ2½2 − y

þ 2Cðy − 1Þ� lnð1 − 2CÞg−1; ð16Þ

here C ¼ M=R is the compactness and y is related to the
quadrupolar perturbed metric function. It is determined at
the star’s surface y≡ yðrÞjr¼R through solving the follow-
ing differential equation with the appropriate boundary
conditions [109]

ry0ðrÞ þ yðrÞ2 þ yðrÞeλðrÞf1þ 4πr2½pðrÞ − ϵðrÞ�g
þ r2QðrÞ ¼ 0: ð17Þ

Assuming a spherically symmetric star, the metric func-
tions λðrÞ and νðrÞ are given by

eλðrÞ ¼
�
1 −

2MðrÞ
r

�
−1
; ð18Þ

dν
dr

¼ 2

r

�
MðrÞ þ 4πpðrÞr3

r − 2MðrÞ
�
: ð19Þ

By using EoSs for BM and DM as inputs and setting
the initial condition yð0Þ ¼ 2 [111,144], the values
of y, k2 and Λ can be calculated by simultaneously solving
the TOV equations and Eq. (17). For a two fluid system
composed of DM and BM, the parameters ϵ, p and M are
defined as

p¼
X
i

pi; ϵ¼
X
i

ϵi; M¼
X
i

Mi; i¼BM;DM:

ð20Þ

The parameter QðrÞ (see Appendix B of Ref. [145]) is
given by

QðrÞ ¼ 4πeλðrÞ
�
5ϵðrÞ þ 9pðrÞ þ

X
i

ϵiðrÞ þ piðrÞ
dpi=dϵi

�

− 6
eλðrÞ

r2
− ðν0ðrÞÞ2: ð21Þ

Note that in a DM admixed NS, y and C and, therefore, k2
should be determined at the outermost radius of the object.
In other words, the tidal deformability parameter is sensi-
tive to the gravitational radius which might be different
from the visible radius of the star. For a DM halo R ¼ RD
and for a DM core R ¼ RB. Meanwhile, stiffness and
softness of the EoS affects the tidal deformability through
k2 parameter.

FIG. 11. Upper panel: radii of BM and DM components as a
function of DM fraction are presented for different boson mass.
RB and RD are depicted by solid and dashed curves, respectively.
Lower panel: maximum total gravitational mass of DM admixed
NSs (solid curves) as a function of DM fraction. On the right side
of vertical axis, radii of BM (dotted curves) and DM (dashed
curves) components are shown. Gray horizontal dashed line
represents 2 M⊙ constraint. Calculations were made for λ ¼ π.
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In the following, we investigate the effect of the
bosonic SIDM distributed either as a DM core or a
DM halo on the dimensionless tidal deformability param-
eter. The dependence of Λ on the total gravitational mass
and radius of DM admixed NSs is shown in Figs. 12–14
for different values of mχ , λ and Fχ . In these figures the
gray horizontal dashed lines indicate the LIGO/Virgo
upper bound Λ1.4 ¼ 580 [114], the gray solid vertical
lines show MT ¼ 1.4 M⊙ and the colored dashed vertical
lines stand for R1.4 radius for the corresponding model
parameters.
The tidal deformability calculated for the pure baryonic

IST EoS (see Sec. II B) is denoted by the solid black curve
in Figs. 12–14. As you can see, its Λ1.4 value is well below
the LIGO/Virgo constraint. Thus, within the IST EoS we
are able to model both core and halo distributions without
violating the tidal deformability constraint. It is related to
the fact that the presence of a dense DM core or an
extended halo effectively leads to decrease or increase of Λ,
respectively. However for those BM EoSs for which
Λ1.4 > 580, in order to be compatible with GW170817
tidal limit, the presence of DM mainly as a core component
is allowed.

FIG. 12. Dimensionless tidal deformability (Λ) as a function of
total gravitational mass (upper panel) and outermost radius (lower
panel) presented for various boson masses. Calculations are
performed for fixed λ ¼ π and Fχ ¼ 10%. The black solid curve
corresponds to pure BM stars (without DM), gray solid and
dashed lines denote M ¼ 1.4 M⊙ and Λ ¼ 580, respectively. On
the lower panel each vertical line corresponds to R1.4 obtained for
different values of boson mass.

FIG. 14. The same as Figs. 12–13, but for various self-coupling
constants at fixed Fχ ¼ 10% and mχ ¼ 200 MeV values. On the
lower panel each vertical line corresponds to the R1.4 obtained for
different values of λ.

FIG. 13. The same as Fig. 12, except for various DM fractions
at fixed λ ¼ π and mχ ¼ 200 MeV. On the lower panel each
vertical line corresponds to R1.4 obtained for different values
of Fχ .
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In fact, a general profile of the tidal deformability in
Figs. 12–14 is a decreasing (increasing) function of the total
gravitational mass (radius). From Eq. (15), we can see that
Λ is a function of R=M, and, therefore, its lowest value is
associated with the maximum mass and/or minimum radius
of the DM admixed NS. The main reason that the tidal
deformability increases when a DM halo forms around a
NS and reduces when a DM core forms inside it, is related
to a strong dependence of Λ on the stellar radius (the
outermost radius) and mass through Eq. (15).
The effect of varying the boson mass mχ on the tidal

deformability is illustrated in Fig. 12 for λ ¼ π and
Fχ ¼ 10%. As you can see, a decrease of the DM particle’s
mass leads to an increase of Λ. Such a behavior is in
agreement with our understanding, since for light DM
particles a DM halo tends to form. It consequently causes a
growth of the outermost radius of the object giving rise to
higher values of the tidal deformability parameter. On the
lower panel of Fig. 12, it is shown how R1.4 grows as mχ

becomes smaller. At the same time in the upper panel, the
tidal deformability for mχ < 200 MeV lies above the curve
for the IST EoS (black curve). However, when a DM core is
formed inside a NS (e.g., mχ ≥ 300 MeV), Λ value drops
below the one for the IST EoS. Note that a change in the
behavior of the tidal deformability curve as a function of
R for mχ ¼ 200 MeV is an indication of a DM core‐halo
transition which has been extensively discussed in Sec. IV.
During a transition the outermost radius of the star switches
between RB and RD.
Figure 13 shows how DM fraction affects the tidal

deformability of DM admixed NSs at the fixed value
of boson mass mχ ¼ 200 MeV and λ ¼ π. Higher DM
fractions correspond to a DM halo formation leading to
higher Λ values and Λ1.4 ≤ 580 constraint is fulfilled for
Fχ ≤ 25%. However, low DM fractions give rise to a DM
core formation, and, consequently, cause a reduction of the
tidal deformability to be below the IST curve. A DM core-
halo transition is among the features that appears by
changingFχ . In Fig. 14, the tidal deformability is calculated
for different values of the self-coupling constant between
0.5π and 2π for mχ ¼ 200MeV and Fχ ¼ 10%. It turns out
that higher values of λ generate larger Λ. Note, that a core-
halo transition can be observed for all curves in Fig. 14.
It is important to note that in the case of a DM halo

formation for relatively light DM particles with
mχ ≤ 100MeV, radius of DM component RD (see Figs. 4
and 5) can reach even above 100 km, which leads to
significant enhancement of the value of tidal deformability.
At the moment, an analysis of the inspiral phase of NS-

NS coalescence does not include hydrodynamic simula-
tions, and therefore it is limited to a case of finite separation
between the stars. To stay in agreement with the present
GW analysis, we restrict ourselves to RD ≤ 75 km to
prevent an overlap of DM halos which corresponds to
lower frequencies detectable by Ad. LIGO [18,19].

To give more insight, taking into account the observable
constraint from GW170817 [102,114], in Fig. 15, we
demonstrate the tidal deformability as a function of Fχ

for a fixedvalue of the total star’smass 1.4 M⊙. On the upper
panel, the tidal deformability is an increasing function of
DM fraction for the light DM particles where a DM halo is
formed forFχ ≤ 6%. The horizontal gray line indicatesFχ at
which aDMadmixedNS satisfies theΛ1.4 ≤ 580 constraint.
On the middle panel, we consider an intermediate mass
range between 200 MeV–230 MeV for which the tidal
deformability behavior shows the features of both aDMcore
(part of the curve depicted as dashed) and a DMhalo (part of

FIG. 15. Dimensionless tidal deformability (Λ) vs DM fraction
plotted for light mχ at which a DM halo is formed (upper panel),
intermediatemχ values that show both a DM core (dashed curves)
and a DM halo (solid curves) formation (see the middle panel),
high mχ values cause a DM core formation (lower panel). For all
panels λ ¼ π and MT ¼ 1.4 M⊙. Gray dashed line on the first
two panels denotes Λ1.4 ¼ 580 constraint.
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the curve depicted as solid). We see that for low DM
fractions Fχ ≤ 10%, DM tends to condensate in the core
of a NS and Λ is a decreasing function of Fχ . The tidal
deformability reaches minimum at a specific value of DM
fraction at which a core to halo transition occurs and
afterwards Λ starts to grow with Fχ .
On the lower panel of Fig. 15, we show three curves

calculated for mχ ¼ ð300; 400; 500Þ MeV that tend to
create a dense DM core inside a NS. In this case the tidal
deformability is a monotonically decreasing function,
which heavier DM particles cause bigger reduction in Λ
at a fixed fraction. Regarding the tidal deformability of NSs
admixed with heavy DM particles, we should be careful
about the lower tidal limit reported by LIGO/Virgo
Collaborations to be Λ1.4 ¼ 70 [114]. Meanwhile, accord-
ing to the recent results of NICER [127,128,146] and
astrophysical observations [147,148], we know that R1.4 is
about 12 km, this is an additional reason for cutting the DM
core curves at a specific DM fraction.
Finally, for the sake of completeness, the effect of DM

self-interaction strength λ formχ ¼ 100 MeV (upper panel)
and mχ ¼ 400 MeV (lower panel) for 1.4 M⊙ star is
presented in Fig. 16. It turns out that for higher values
of the coupling constant an allowed range of DM fractions,
consistent with Λ1.4 ≤ 580 constraint, is decreased (see the
upper panel of Fig. 16). The lower panel shows that higher
λ leads to higher tidal deformability for a fixed DM

fraction. In fact the DM EoS for the higher coupling
constants is stiffer which causes larger values of the tidal
deformability. Thus, regardless of the DM being distributed
in a core or a halo, higher values of λ leads to larger Λ at
fixed Fχ for DM admixed NSs.
In summary, we show that in agreement with the

previous studies the DM halo causes an increase of the
tidal deformability [18], while the DM core reduces
the tidal deformability compared to the case of pure BM
[19]. Interestingly for the first time we show that there is a
continues transition between a DM core and a DM halo
regimes for different DM masses and fractions. In fact
depending on the DM fraction, particles of different masses
in sub-GeV range can form either a DM core or a DM halo,
as was shown previously in Fig. 11. The light bosons mχ ≲
200 MeV form a DM core at very small fractions and DM
halo at intermediate and large fractions while heavy bosons
mχ ≳ 300 MeV lead to a DM halo at very large values of
Fχ and a DM core at intermediate and small Fχ .

VI. CONSTRAINT ON THE FRACTION
AND MASS OF DARK MATTER

As it was shown in the Secs. III–V, the properties of DM
admixed NSs depend on three model parameters: boson
mass mχ , DM fraction Fχ and the value of the coupling
constant λ. To make the final conclusion about the allowed
range of parameters in a 2D plot, we fixed λ ¼ π as the
medium and most representative value of the coupling
constant in our consideration. In Fig. 17, the remaining two
parameters are plotted with an indication of the total
maximum mass and the tidal deformability values. The
solid black curve in Fig. 17 indicates the values of Fχ and
mχ for which the total maximum gravitational mass equals
to MTmax

¼ 2 M⊙. Thus, any point below the black curve
(cyan region in Fig. 17) gives MTmax

> 2 M⊙ which is in
agreement with the two heaviest observed pulsars [46,47].
The dark red curve depicts the tidal deformability con-
straint Λ1.4 ¼ 580 [114]. Hence, all the parameter space on
the right hand side of the red line (dark red region in
Fig. 17) yields Λ1.4 ≤ 580 values. Note that in a log scale
the Λ1.4 ¼ 580 constraint is a straight line. A DM core
formation constraints an upper limit of the allowed range of
parameters due to decrease of the maximum mass of DM
admixed NS for mχ > 200 MeV and Fχ ≲ 10%. However,
lighter bosons that form a DM halo around a NS impose a
lower limit on the allowed range of parameters, since a DM
halo increases the tidal deformability and could exceed the
limit reported by the LIGO/Virgo Collaboration.
From Fig. 17, we see that allowed DM fractions inside

NS drastically narrowed down by inclusion the tidal
deformability constraint, more specifically for mχ ≲
70 MeV it imposes a limit on the amount of DM to be
less than 1% of the total NS mass. We can conclude that for
sub-GeV bosonic DM, the existing observational data

FIG. 16. The same as Fig. 15, but for different values of self-
coupling constant at fixed mχ ¼ 100 MeV (upper panel) and
mχ ¼ 400 MeV (lower panel). The gray dashed line on the upper
panel denotes Λ ¼ 580 constraint for 1.4 M⊙ star.
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support low DM fractions below 5%. According to our
study, the recent measurements for the maximum mass and
tidal deformability of NSs are in agreement with the DM
admixed NS scenario. The fraction of DM in their interior is
compatiblewith the amount accreted during star’s lifetime as
well as its possible augmentation that will be discussed in
Sec. VII. By applying two observable quantities we set a
stringent constraint on the amount of DM inside NSs.
Further narrowing down the DM fractions is possible by
considering simultaneousmeasurements ofmass and radius,
e.g., by ongoing NICER observations [146,148,149].
It is worth mentioning that Fig. 17 shows the results for

one value of the coupling constant λ ¼ π. For the higher
values of λ the MTmax

¼ 2 M⊙ curve will be lifted up,
increasing the range of fractions compatible with the
heaviest observed NSs. On the other hand, the Λ1.4 ¼
580 curve will be shifted to the right, limiting the allowed
values of Fχ consistent with the LIGO/Virgo constraint. A
detailed analysis of the above mentioned effects and a scan
over different values of the coupling constants will be
subject of a following paper.

VII. DARK MATTER ACCUMULATION REGIMES

An important question we want to address at this section
is related to how compact stars can contain and accumulate

DM in their interior. The capturing rate of DM by NSs
depends on the local density of DM, the DM-BM scattering
cross section, and the DM mass [150–152]. If the DM
decay or annihilation is permitted, the number of DM
particles in a NS could be depleted. The most plausible
scenario for the presence of DM in NSs is its accumulation
throughout different stages of star’s lifetime. In this regard,
four main evolution phases should be considered: (a) pro-
genitor, (b) main sequence star, (c) supernova explosion
with formation of a proto-NS, and (d) equilibrated NS.
Depending on the distance of a star from the Galactic
center the local DM density varies significantly, and con-
sequently the amount of accreted DM [20,123,153–157].
The total accreted mass in a spherically symmetric accretion
scenario for a typical NS withM ¼ 1.4 M⊙ and R ¼ 10 km
is given by

Macc ≈ 10−14
�

ρdm
0.3 GeV=cm3

��
σχn

10−45 cm2

��
t

Gyr

�
M⊙;

ð22Þ

where ρdm is the local density of DM, σχn is the
nucleon-DM elastic cross section and t denotes the age
of the NS [49,158]. While the DM density in the Solar
system is about 0.3 GeV= cm3, it can reach at most
∼ð1011–1012Þ GeV= cm3 near the center of the Galaxy
for certain DM profiles [159–161]. It can be shown that
the accreted mass can be varied from ∼10−13–10−14 M⊙ to
∼10−5–10−8 M⊙ [20,134–136,162]. Moreover, DM produc-
tion in the NS interior might be an additional effective
mechanism which should be taken into account. For
instance, due to high baryon density in the core of
compact stars, during a supernova explosion or a binary
NSs merger a creation of DM particles from nucleons could
be triggered, whereas a major part of DM could be created
and trapped inside a NS [18,19]. High DM fractions
[43,89,93,94,123,163] cannot be easily obtained during a
typical star’s lifetime from normal accretion processes
considering only a smooth spatial distribution of DM in
the Galaxy. However, high DM factions inside compact stars
can be acquired by accounting for additional scenarios:
(i) clumps of DM were present at the early stages of the
Universe forming seeds/accretion centers for BM, this
process may lead to a DM admixed NS even with dominant
contribution of DM. In fact, instead of accretion of DM onto
ordinary NS, one may assume accretion of ordinary matter
onto a pre-existing dark core [19,45,91,94]. (ii) Since the
density of DM at a certain distance from the Galactic center
in a first approximation is homogeneous, a NS can pass
through a region in space with locally high DM density
leading to an accretion of a large amount of DM
[44,45,93,157,164–167]. (iii) One might speculate a for-
mation of a stable compact object composed of ADM as a
dark star [35,81,168]. Hence, NS could capture DM from the
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FIG. 17. The fraction of DM as a function of its particle mass
for λ ¼ π. The black curve represents the maximum total
gravitational mass to be equal to 2 M⊙. The cyan region is in
agreement with 2 M⊙ constraint, while the magenta area corre-
sponds to not allowed region of parameters. The dark red line
indicates Λ1.4 ¼ 580 constraint on tidal deformability. The region
below the black curve and on the right from the dark red line is in
a full agreement with the heaviest known NSs and LIGO/Virgo
constraints.
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dark star companion [19,42,91] or a merger like event may
occur [23,93,94]. Regarding all above three possible scenar-
ios, we showed that the existence of high DM fractions is
tightly constrain by joint observations of the tidal deform-
ability and the maximum mass.

VIII. CONCLUSION AND REMARKS

In this paper, we have investigated the possible effects of
bosonic ADM with repulsive self-interaction on the com-
pact star properties including its radius and gravitational
mass. We have shown that depending on DM model
parameters such as boson mass mχ , self-coupling constant
λ and DM fraction Fχ , DM can be distributed either in a
core or a halo. The impact of various DM distribution
regimes on observable quantities, e.g., the maximum total
gravitational mass and the tidal deformability has been
considered. We found that DM condensed in the core of a
NS leads to decrease of the total gravitational mass, radius
and the tidal deformability compared to a typical baryonic
NS. On the other hand, the presence of DM particles in the
halo around the NS increases those observable quantities. A
rich phenomenology of the scenario presented in this article
allows a transition between the DM core and halo for
different particle’s masses and fractions. During the DM
core-halo transition, the outermost radius of the object
interchanges from the radius of BM to DM component.
This leads to some new features in mass-radius profile
and the tidal deformability-radius behavior of the DM
admixed NS.
As our main result, we show a combined analysis of the

observational data for the heaviest observed NSs and the
upper bound on the tidal deformability, in order to put a
stringent constraint on the DM fraction for sub-GeV
bosonic particles (see Fig. 17). We see that allowed region
in which both the total maximum mass MTmax

≥ 2 M⊙ and
tidal deformability Λ1.4 ≤ 580 constraints are satisfied is
limited to relatively low DM fractions Fχ ≲ 5% at the fixed
value of the self-coupling constant λ ¼ π.
The upper limit for the allowed DM fraction reduces

significantly for light bosons going well below 1%. In our
study we explore not only the conservative range of
fractions achieved by accretion, but also alternative scenar-
ios that predict large amount of DM inside a star. We
showed that the existing data on compact stars do not
contradict to the DM admixed NS scenario, and every
observed NS could potentially contain low DM fraction
distributed in a core or in an extended halo. Moreover, DM
admixed NS can serve as a satisfactory explanation for the
unusual observational evidences on compact stars, e.g., the
secondary object in the GW190814 event with the mass
about 2.6 M⊙ [169].
Note that for sub-GeV boson masses depending on

the DM fraction, formation of both DM core and halo
are possible for fixed mχ and λ. In order to break the
degeneracy and answer the question whether DM

exists in the form of halo or core inside NSs, additional
observable quantities other than the tidal deformability
and the maximum mass are essential. The ongoing
observations by the NICER [146,148,149,170] and
LIGO/Virgo/KAGRA Collaboration [126,169,171,172],
as well as the future Advanced Telescope for High Energy
Astrophysics (ATHENA) [173,174], the enhanced X-ray
Timing and Polarimetry mission (eXTP) [175–177], and
the Spectroscopic Time-Resolving Observatory for
Broadband Energy X-rays (STROBE-X) [178,179] tele-
scopes may shed more light on the possible forms of
bosonic SIDM in NSs.
The outermost radius of a compact star with DM

condensed in its core equals to the baryonic radius.
However, observation of the outermost radius in the case
of a DM halo formation imposes much bigger challenges.
Due to the fact that DM component distributed in the halo is
undetectable through the spectroscopic measurements, the
use of multimessenger astronomy is unavoidable. Thus,
combining analysis of astrophysical and GW observations,
as well as searches for microlensing or other gravitational
effects close to the surface of compact stars, may give
information about the halo structure around them.
Moreover, an additional piece of valuable data is

expected from the radio telescopes, e.g., the Karoo
Array Telescope (MeerKAT) [180], the Square Kilometer
Array (SKA) [181,182], and the Next Generation Very
Large Array (ngVLA) [183,184], that will look into the
Galactic center. Despite a big dust extinction in the most
central part of the Galaxy, we expect to find pulsars and
magnetars in the region up to 70 pc from the center. This
region may contain a high DM fraction, and therefore, can
host DM admixed compact stars with altered properties.
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APPENDIX

The DM EoS (1) has been originally obtained by Colpi
et al. [75]. For the readers convenience we present its
derivation in a flat space-time. Such a treatment is justified
by the fact that gradients of metrics are small compared to
the spatial scales. This can be shown by considering the
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gradient of the time-time component gtt. Using the explicit
expression from Ref. [139] one gets

∂gtt
∂r ¼ −

2gtt
Pþ ρ

dP
dr

ðA1Þ

with P and ρ being local pressure and energy density. We
consider this quantity on the stellar surface where space-
time is the most curved. In this case gtt ¼ 1 − 2Mtot

R , P ¼ 0

and gradient of the pressure can be expressed using the
TOV equation as dP

dr ¼ − ρMtot
R2gtt

. This yields ∂gtt∂r ¼ 2Mtot
R2 < 1

R,

where the Schwarzschild limit 2Mtot
R ¼ 1 was used on the

second step. Thus, for a NS of radius R ∼ 10 km within
the spherical layer of thickness Δr ∼ 1 m, which is
enough to be treated as a macroscopical scale allowing
thermodynamic treatment of DM, relative deviation
of the metrics from the flat one can be estimated
as Δr dgtt

dr ≲ Δr
R ∼ 10−4.

The model of bosonic SIDM used in this work corre-
sponds to the Lagrangian

L ¼ 1

2
∂μϕ

�∂μϕ −
m2

χ

2
ϕ�ϕ −

λ

4
ðϕ�ϕÞ2: ðA2Þ

Under the mean-field approximation deviation of the field
bilinear ϕ�ϕ from its expectation value hϕ�ϕi is assumed to
be small. Therefore interaction term in L can be expanded
up to terms linear in ϕ�ϕ − hϕ�ϕi. Thus, the linearized
mean-field Lagrangian becomes

LMF ¼ 1

2
∂μϕ

�∂μϕ −
m�2

χ

2
ϕ�ϕþ λ

4
hϕ�ϕi2: ðA3Þ

First two terms of this Lagrangian describe free quasipar-
ticles with the effective mass m�2

χ ¼ m2
χ þ λhϕ�ϕi. At zero

temperature they form BEC (see, e.g., Kapusta and Gale
[185]). The corresponding contribution to the total pressure
is ζ2ðμ2χ −m�2

χ Þ, where ζ represents the amplitude of zero
mode and μχ is bosonic chemical potential. The last term in
the mean-field Lagrangian does not include any dynamical
fields but only the average of their product. Consequently,
this term contributes the total pressure just as a constant
term. Thus

P ¼ ζ2ðμ2χ −m�2
χ Þ þ λ

4
hϕ�ϕi2: ðA4Þ

The amplitude of zero bosonic mode ζ attains a value,
which maximizes the total pressure, i.e., ∂p

∂ζ ¼ 0.
Condensate hϕ�ϕi also maximizes the pressure leading
to the condition ∂p

∂hϕ�ϕi ¼ 0. Finally, number density of

bosons can be defined using the thermodynamic identity
nχ ¼ ∂P

∂μχ. This leads to

2ζðμ2χ −m�2
χ Þ ¼ 0; ðA5Þ

λ

�
−ζ2 þ hϕ�ϕi

2

�
¼ 0; ðA6Þ

nχ ¼ 2ζ2μχ : ðA7Þ

Equations (A6) and (A7) immediately yield ζ2 ¼ hϕ�ϕi
2

and
nχ ¼ hϕ�ϕiμχ . Since ζ≠ 0 in the condensate, then Eq. (A5)
gives μ2χ ¼ m�2

χ or equivalently μ2χ ¼ m2
χ þ λhϕ�ϕi. This

defines hϕ�ϕi ¼ μ2χ−m2
χ

λ . Consequently, total pressure and
DM particle number density become

P ¼ 1

4λ
ðμ2χ −m2

χÞ2; ðA8Þ

nχ ¼
μχ
λ
ðμ2χ −m2

χÞ: ðA9Þ

Energy density can be found using the thermodynamic
identity

ρ ¼ μχnχ − P ¼ 3

4λ
ðμ2χ −m2

χÞ2 þ
m2

χ

λ
ðμ2χ −m2

χÞ

¼ 3Pþ 2m2
χ

ffiffiffiffi
P
λ

r
; ðA10Þ

where on the second step μ2χ −m2
χ was expressed through

the pressure. This is a quadratic equation with respect toffiffiffiffi
P

p
yielding to

ffiffiffiffi
P

p
¼ 1

3

"
−
m2

χffiffiffi
λ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

χffiffiffi
λ

p
�

2

þ 3ρ

s #
: ðA11Þ

The sign “þ” should be taken in order to provide
positiveness of the solution. This gives exactly the Eq. (1).
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