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Deep learning algorithms have gained importance in particle physics in the last few years. They have been
shown to outperform traditional strategies in particle identification, tracking and energy reconstruction in the
most modern high-energy physics experiments. The attractive feature of these techniques is their ability to
model large dimensionality inputs and catch nontrivial correlations among the variables, which could be
hidden or not easy to model. This paper focuses on the application of deep neural networks to the event
reconstruction of the Limadou High-Energy Particle Detector on board the China Seismo-Electromagnetic
Satellite. The core of the reconstruction chain is a set of fully connected neural networks that reconstructs the
nature, the arrival direction and the kinetic energy of incoming electrons and protons, starting from the signals
recorded in the detector. These networks are trainedon adedicatedMonteCarlo simulation as representative as
possible of real data.Wedescribe the simulation, architecture andmethodology adopted to design and train the
networks, and finally report on the performance measured on simulated and flight data.

DOI: 10.1103/PhysRevD.105.022004

I. INTRODUCTION

The latest particle physics and astrophysics experiments
have been increasingly including deep learning (DL) based
models in their event reconstruction procedures. Examples

are available in particle identification and tracking [1], as
for offline improvement in the estimation of physics
observables [2]. This approach has the main advantage
that correlations between variables are discovered and
exploited automatically by these algorithms via the min-
imization of a cost function, called loss function, during
the learning procedure. This can help not only because,
in principle, physical intuition can miss some of these
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correlations, but also because the machine can automati-
cally take into account detector asymmetries and data
inhomogeneities to improve its prediction. Moreover, this
approach is particularly powerful when dealing with
particle detectors. Indeed these instruments output multiple
electrical signals, which can be treated as low-level
features. It has been proven that deep neural networks
(DNN) work remarkably well on low level features [3].
Therefore, we can directly input the calibrated signals to
this algorithm and let it learn how to use correlations to
reconstruct interesting event features. A clear example in
this direction is reported in this work, where the event
reconstruction chain for particles traversing the High-
Energy Particle Detector (HEPD) on board the China
Seismo Electromagnetic Satellite (CSES-01) is fully based
on Fully Connected Neural Networks (FCNNs). The net-
works take the signals from the photomultiplier tubes as the
input, and return the type of particle, the arrival direction in
the local frame and the energy as the output.
The article is organized as follows. In Sec. II, the

Limadou HEPD is described, highlighting how the infor-
mation from each sub-detector enters the event recon-
struction chain. In Sec. III, details about the Monte Carlo
(MC) simulation are provided, paying attention to both
training and validation of FCNNs, and to observable
features for the comparison with data. Section IV explains
the architecture of the networks and the training procedure.
Sections V and VI provide information on the performance
achieved on MC and data events respectively. Conclusions
and perspectives follow.

II. THE LIMADOU HIGH-ENERGY PARTICLE
DETECTOR

The reference case of this study is the Limadou HEPD
instrument [4], which represents the main Italian contri-
bution to the CSES-01 mission [5,6]. It is a particle detector
orbiting around the Earth on board the CSES satellite, and it
is designed to: measure fluxes of energetic charged
particles trapped in the Van Allen Belts [7], monitor
impulsive solar activity [8], and extend the lower part of
the cosmic ray spectrum [9]. Moreover, one of the main
scientific goals of the mission is to look for possible
correlations between particle bursts, i.e., anomalous high
fluxes measured during flight in a given time interval, and
medium-strong seismic events [10,11]. Indeed several
studies have reported observations that electromagnetic
emissions induced by earthquakes are able to propagate
toward the magnetosphere [12,13]. Indeed these events
may produce low frequency electromagnetic waves that
propagate toward the magnetosphere [14,15] and interact
with charged particles in the Van Allen Belts causing pitch
angle diffusion of the trapped particles, inducing their
precipitation [16].
The Limadou HEPD has been designed to detect

electrons with kinetic energy 3–100 MeV and protons in
the range 30–200MeV. A technical drawing of the HEPD is

shown in Fig. 1 and it is composed of different subsystems.
For the purposes of this work, the signals of the following
subdetectors are used:

(i) Trigger: a plane made of plastic scintillators, seg-
mented into six paddles (20 × 3 × 0.5 cm3), each
one read by two photo multipliers tubes (PMTs);

(ii) Upper calorimeter: sixteen 15 × 15 × 1 cm3 planes
of plastic scintillator, each one read out by two
PMTs. The two PMTs are evenly distributed on the
edges of each plane in such a way that any two
subsequent planes have their two PMTs placed
along opposite diagonals;

(iii) Lower calorimeter: a 3 × 3 matrix (5 × 5 × 4 cm3)
of LYSO (Lutetium-Yttrium Oxyorthosilicate) in-
organic scintillator crystals, each one read out by
one PMT;

(iv) Veto: five planes of plastic scintillators (0.5 cm
thick) each one read out by 2 PMTs at the edges,
surrounding the detector.

Figure 1 also shows the system of local coordinates used
in this work. The polar angle θ is measured from the z axis,
whereas the azimuthal angle ϕ is measured on the x–y
plane, from the x axis toward the y axis. A plane placed at
Δz ¼ 20 mm upstream of the trigger plane has been chosen
as reference plane for the entrance of particles in the HEPD
simulation volume.

III. GEANT4 SIMULATION AND DIGITIZATION

The ideal case for training deep learning (DL) algorithms
is to have a large set of data from the experiment that can be
used as ground truth. In many circumstances, like the one
described in this work, these data are not available or are
not sufficiently dense to suitably cover all the phase space
explored during real data taking. For this reason, the
Limadou collaboration devoted time and resources to the
production of a suitable simulation sample, which has been
used as the input dataset to train DL algorithms.

FIG. 1. Limadou HEPD CAD rendering.

S. BARTOCCI et al. PHYS. REV. D 105, 022004 (2022)

022004-2



The networks presented in this article were trained on a
sample of protons and a sample of electrons. Their
interactions with materials and the response of the detector
have been simulated using GEANT4 [17]. An example of a
200 MeV proton interaction in HEPD is shown in Fig. 2.
The simulated detector is based on the CAD drawing of

the instrument. Both mechanical structures and sensitive
materials have been simulated to correctly reproduce the
detector response. Also the readout chain has been simu-
lated, including the optical photon generation from the
plastic scintillators and LYSO scintillating crystals, as well
as the conversion of light to electric signal as for the real
instrument. The GEANT4 simulation relies on the physics
lists accounting for all physics processes accessible at the
simulated energy range. In these lists electromagnetic and
hadronic interaction, as well as the interaction with heavy
nuclei and ions, are included [17].
The events have been generated to suitably fill the

parameter space of the HEPD data acquisition in beam
tests and during flight. Multiple interactions with HEPD for
protons and electrons with the following features have been
simulated:

(i) Kinetic energy: 10 < EKin
prot < 1000 MeV and 1 <

EKin
elec < 200 MeV;

(ii) Polar angle: 0° < θ < 90°, sampled uniformly in
cos2 θ in order to guarantee an isotropic flux;

(iii) Azimuthal angle: −180° < ϕ < 180°.

(iv) particles have been generated uniformly from a
40 × 40 cm2 window (parallel to the x-y plane)
right above the reference plane.

Electrons (protons) with energy higher than 100 (200) MeV
do not stop their trajectory inside the detector, so that the
energy release does not amount to the total energy. These
particles are referred to as “noncontained” hereafter.
Signals are simulated from the energy deposited by

primary and secondary particles in scintillating materials.
The energy deposit determines the amount of scintillation
(about 104 photons=MeV in HEPD plastic scintillators).
After the generation, photons propagate in the material and
are followed until they either escape the simulation volume
or hit a PMT. In the latter case, the quantum efficiency for
converting photons to photoelectrons is accounted for and
the signal is generated accordingly. The threshold for
trigger and readout electronics has been implemented as
Edep ≥ Em:i:p:=4, where Edep represents the total energy
deposited in the sensitive volume and Em:i:p: the modal
energy released by a minimum ionizing particle (m.i.p.) in
the same volume. The following strategy has been envis-
aged for the signal digitization: photoelectrons are con-
verted to ADC units by comparing PMT response
distributions from beam tests and simulations [18].
Simulated events undergo preselection to reproduce

online trigger masks controlling the HEPD data acquisition.
Trigger masks always involve signals from the trigger
plane, logically combined with signals from plastic scin-
tillator planes. This work has been carried out after the
following preselection:

T ANDP1ANDP2ANDNOT ðLatVetoÞ ð1Þ

where T indicates a signal from the trigger plane, P1 and P2

a signal from the first two plastic scintillators, respectively,
and LatVeto a signal from the lateral veto. Preselection (1)
reproduces the trigger mask mostly used for HEPD since
the launch of CSES in 2018.
In Fig. 3 the generated distributions of polar angle and

energy are shown for electrons before and after the prese-
lection (similar behavior has been observed for protons).
After selection (1), the energy distribution shows a clear

threshold effect due to the minimum energy necessary to
electrons to reach the scintillator plane P2, as well as the
fractional incidence of high-energy events diminishes due to
inclined electrons rejected under theNOT(LatVeto) condition.
The same condition sculpts the θ distribution as well,
favoringquasi on-axis events over inclined ones. Thenumber
of generated protons amounts to Nprot

gen ¼ 5.263 × 106,
whereas Nprot

pres ¼ 5.060 × 105 pass the preselection (1). For
electrons, the numbers are Nelec

gen ¼ 6.921 × 106 and Nelec
pres ¼

6.952 × 105, respectively.
Figure 4 shows the longitudinal profile for an electron of

60 MeV and a proton of 150 MeV in ADC. The profile

FIG. 2. Event display of a nearly-vertical 200 MeV proton.
Sensitive volumes are overlaid in blue, support structures and
auxiliary volumes in gray. The red track represents the primary
proton, while the white square on top is the generation point. The
points represent the energy deposits from particles to materials.
Colors represent the amount deposited energy: white corresponds
to ∼0.1 MeV, green to ∼1 MeV, and purple to ∼100 MeV.
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provides an indication on the type of particle observed by
HEPD. In fact, most electrons steadily deposit energy in the
planes, whereas contained protons exhibit a Bragg peak
[19] or an increasing amount of signal with the number of
traversed planes before reaching the LYSO crystals.
The signals collected by the different sub-detectors are

used as the input for the FCNNs architecture, since they are

correlated with the type of the incoming particle, its arrival
direction and its energy.
These dependencies are well visible in the correlation

matrix of Fig. 5, built with events passing the preselection
(1). It can be noticed how the angles are correlated with the
energy and the signals in the PMTs. The signals on the last
PMTs or on the LYSO crystals are anticorrelated with θ,
because only vertical tracks are allowed to reach to the
deepest objects. For what concerns ϕ or the y coordinate of
the impact position on the reference plane, they are strongly
correlated with the trigger bars and with the signals from
the LYSO crystals, since they carry positional information.
It can be seen how the energy is anticorrelated with θ, for
the same reason as before, i.e., the more energetic the
particle, the deeper the penetration, increasing the chance to
fail passing the preselection cut. Moreover, for protons
[Fig. 5(b)], the signal from the upstream scintillating tiles
anticorrelates with energy: in the kinetic energy range 30–
1000 MeV (Lorentz factor γ ¼ 1 ÷ 0.7) the energy loss
occurs primarily via ionization and higher energy protons
release smaller amounts of energy in the tiles.
Types of particles other than protons and electrons have

not been included in the training set, because the chain of
reconstruction primarily aims at selecting and measuring
protons and electrons. The main inefficiency in particle
identification concerns m.i.p. and quasi-m.i.p. mimicking
electrons. Most of these cases are due to protons of energy
E > 200 MeV, abundantly included in the training set of
protons. After the preselection, the measurement of energy
and arrival direction proceeds with different networks for
electrons and protons. For electrons, no improvement of
performance is expected when positrons and gammas are
included for training, the former being practically indis-
tinguishable from electrons and the latter never triggering

(a) (b)

FIG. 3. Normalized distribution of energy (a) and polar angle θ (b) for simulated electrons are shown in dotted black. The solid black
distribution represents events traversing the trigger and the first two calorimeter planes without hitting the lateral veto. The distributions
are similar for protons.

(a)

(b)

FIG. 4. Signal profiles for the simulation of an electron (a) and a
proton (b). In the latter case the Bragg peak in the 14th-15th
planes is clearly visible. The vertical axis reports the sum of ADC
counts from the pair of PMTs coupled to each scintillating tile.
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(a)

(b)

FIG. 5. Correlation matrices between input and target variables for simulated electrons (a) and protons (b). The color scale represents
the linear correlation coefficient between variables.
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the acquisition. Concerning the performance on protons,
the impact of deuterons, nuclei and isotopes with Z ≥ 2
have been found statistically negligible, since their esti-
mated integral fluxes are more then two order of magni-
tudes below the proton one in a usual HEPD orbit. At the
time of writing, training data sets are being extended to
include protons with kinetic energy up to 10 GeV and
helium nuclei up to 1 GeV.

IV. EVENT RECONSTRUCTION BASED ON A DNN

A. Reconstruction chain

The goal of this work is the identification of the particle
that traverses the detector, and the measurement of its
energy (Ekin) and arrival direction (ϕ; θ).
The input available for the algorithms is a set of 52

numbers per event: 32 PMT signals from 16 plastic
scintillators and 9 from the LYSO crystals; 6 booleans
from the trigger bars and 5 from the veto planes. Signals
from plastic scintillators and LYSO crystals are used as they
come from data acquisition or Monte Carlo digitization.
The digitization of Monte Carlo simulations is consistent
with the calibration curves reported in [18] and inherits
systematic uncertainties described therein. The calibration
at beam tests did not regard trigger bars and veto planes,
therefore signals from these subsystems are transformed
into booleans before use (1 if the signal is above threshold,
0 otherwise). This device makes networks more robust
against statistical and systematic effects of the Monte Carlo
digitization.
The input vector is used to train a reconstruction chain

based on three fully connected neural networks (FCNNs)
[20]: one to identify the type of particle (FCNNpid) and two
others to predict the energy, the arrival direction and the
impact position of the incoming particle. These two net-
works (FCNNkin) are independent of each other and they
are tuned for electrons and protons. FCNNpid is trained on a
balanced dataset of protons and electrons, while the two
FCNNkin are trained only on the targeted particle type. The
authors applied FCNNkin on inputs from misidentified
particles. Information useful to assess systematic effects
on physics analyses was retrieved, but no need for
modification of the training dataset emerged.
The reconstruction algorithm starts determining the type

of particle using FCNNpid. The outcome of the classifica-
tion is then used to decide which FCNNkin must be used to
reconstruct the kinematics of the event, whether that for
electrons or for protons.
All FCNNs share the same architecture: they have six

layers, i.e., the input layer, four hidden layers and the
output layer, with 52, 512, 512, 512, 256 and n nodes
respectively. n ¼ 1 for FCNNpid and n ¼ 7 for FCNNkin.
All layers have a Relu [21] activation function, except the
output layer of FCNNpid, which uses a Sigmoid activa-
tion. The Dropout [22] layers are placed between the

hidden ones to prevent overfitting. The dropout parameter
p, representing the fraction of dropout nodes in each hidden
layer, is set to 0.1. A grid along the number of layers
and nodes, the hyperparameters and the dropout value has
been devised and explored to optimize the architecture
of FCNNs.

B. Training procedure

The networks are implemented using a combination of
Sklearn [23] and PyTorch [24] libraries that provide useful tools
for training and validation in the design and the construction
of the models. For the particle type separation, the model is
trained minimizing a BCELoss1 [25]. For the prediction of
the energy and of the arrival direction (θ;ϕ) the models were
trained minimizing the sum of different terms, where all
terms are scaled to contribute with the same weight to the
total loss.

Losstotal ¼ LossEkin
þ Lossðθ;ϕÞ þ Losscontrol ð2Þ

The L1Loss2 metric is adopted for the term LossEkin
[26]. It

weightsmore the core of the distribution thanoutliers. For the
term Lossðθ;ϕÞ, a loss representing the angular difference
between the true and the predicted direction is used:

Ψ¼ arccosðv⃗tr · v⃗prÞ

v⃗tr ¼

0
B@

sinθtr cosϕtr

sinθtr sinϕtr

cosθtr

1
CA; v⃗pr ¼

0
B@

sinθpr cosϕpr

sinθpr sinϕpr

cosθpr

1
CA ð3Þ

where v⃗pr and v⃗tr are the unitary vector of the true direction
and that of the predicted direction, respectively. In addition to
the energy Ekin and the arrival direction ðθ;ϕÞ, other control
variables are predicted, i.e., the impact position ðx; yÞ on the
reference plane, the energy released in the tower of scintil-
lator planes and the energy released in the LYSO crystals,
using the metric L1Loss. The two auxiliary energies
contribute to supervise the model, yet unneeded for the
event reconstruction. Conversely, x and y are exploited to
enforce a fiducial selection that will be described in the
following.
For all FCNNs, 80% of the Monte Carlo (MC) dataset is

used for training and validation, while the remaining 20%
for test. In order to reduce the number of epochs necessary
during the training, a learning rate (LR) scheduler [27]
starting from a LR of 10−3 and a 2% decrease each epoch is
used. Figure 6 reports training and validation losses for
FCNNkin and FCNNpid. In order to choose the best model
during training and to prevent overtraining, a checkpoint

1BCELoss ¼ PN
i¼0 yn · logxn þ ð1 − ynÞ · logð1 − xnÞ

2L1Loss ¼ PN
i¼0 jyi

true − yi
predj
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system, saving the model as long as the validation loss
decreases, is employed.

V. RESULTS WITH MONTE CARLO

In this section the performance obtained using the NN
based algorithm on MC samples are presented. The
performance has been evaluated on a set of simulated
events statistically independent of the training dataset, after
applying the preselection (1).

A. Particle identification

FCNNpid takes as input the signal of all photomultiplier
tubes (PMTs). It uses the information of the PMT signals
and the plane-by-plane profile of the signal to distinguish
electrons from protons. The output of the network is a
particle identification (PID) number, ranging from 0 to 1.
We set 0.5 as the threshold above which the particle is
identified as an electron, otherwise the particle is tagged as
a proton. The efficiency is defined as follows:

Effpart ¼
NevðTAG≡ partÞ

NevðTRUTH≡ partÞ
where “Nev” stands for number of events, “part” indicates
either electron or proton, “TAG” is the reconstructed
particle type and “TRUTH” is the MC true particle type.
The efficiency is shown as a function of the primary kinetic
energy in Fig. 7.
Tagging efficiency for electrons exceeds 99% from the

threshold up to kinetic energies as large as Eelec
u:c: ¼

30 MeV. For protons, it never drops below 95% up to
Eprot
u:c: ¼ 150 MeV, being stable at 98% above threshold.

Eelec
u:c: and E

prot
u:c: are the energy limits within which the energy

release mostly takes place in the upper calorimeter. This
condition favors particle identification because the event
topology of a proton exhibiting a Bragg peak is easily
distinguished from the smooth profile of an electron (see

Fig. 4). For energies larger than Eprot
u:c: , the tagging efficiency

for protons drops because the Bragg peak is not so well
localized in LYSO crystals as in plastic scintillator tiles. For
kinetic energies larger than 500 MeV (Lorentz boost
γ⪆1.6), protons behave like quasi-m.i.p., making it more
likely to tag them as electrons. The same effect is visible in
the smooth decrease of the efficiency of electrons after
Eelec
u:c: : the prediction of FCNNpid worsens due to E ≫ Eelec

u:c:

electrons being possibly confused with E ≫ Eprot
u:c: protons.

B. Fiducial selection for the reconstruction
of kinetic quantities

As in other approaches to the event reconstruction,
performance depends on the selection applied to data.
Given the size of the HEPD effective area, almost two
orders of magnitude larger than competitors and predeces-
sors [28,29], a tight selection on the predicted impact

(a) (b) (c)

FIG. 6. Validation losses for FCNNpid (a), FCNNkin for electrons (b) and FCNNkin for protons (c), represented for training and
validation as a function of training epoch.

0.5 1 1.5 2 2.5 3

(Energy [MeV])
10

log

0.7

0.8

0.9

1

1.1

1.2

E
ffi

ci
en

cy

protons

electrons

FIG. 7. DL-based particle identification efficiency as a function
of the kinetic energy of primary electrons (red triangles) and
protons (black squares). Error bars represent statistical uncer-
tainty.
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position of the particle was envisaged, i.e., the control
variables x and y. The performance of the prediction on
these variables is shown for protons in Fig. 8. The y
coordinate is better determined than x because trigger bars
are deployed along the y direction.
Before the launch, beam tests with protons and electrons

were carried out with particles entering HEPD at different
points. The positions with the largest fraction of statistics are
P1ðx;yÞ¼ ð−17.5;−18ÞmmandP2ðx; yÞ ¼ ð17.5; 18Þ mm
on the reference plane, where the axes origin lays on the axis
of the apparatus.P1 andP2 are symmetric with respect to the
instrument axis. The MC digitization and the calibration of
the HEPD response have been carried out using data
collected during beam tests at points P1 and P2. To achieve
full control of the estimate of theperformance and to suppress
effects due to data/MC discrepancies, the following fiducial
selection was applied, consisting of the union of two squares
of 15 mm side, centered at points P1 and P2:

ðx; yÞ ∈ squareðP1; 15 mmÞ ∪ squareðP2; 15 mmÞ ð4Þ

C. Kinetic energy reconstruction

The performance of FCNNkin is different for protons and
electrons, according to different mechanisms of the energy
release in scintillators.
Figure 9 reports the performance of the energy estima-

tion by FCNNkin for protons and electrons after the fiducial
selection. Good performance is obtained for protons even
above the energy limit of containment, corresponding to the
design value of 200 MeV. This result is due to FCNNkin
being sensitive to the increasing energy loss per unit length
that protons suffer while reaching the Bragg peak, even if
the peak itself is not observed. Saturation effects, related to
the energy range chosen for training, are barely visible.
Electrons energy is reconstructed with poorer resolution.
As for protons, the lowest energy interval mostly suffer
from unobserved energy deposited in passive materials. But

FIG. 8. Predicted versus true position for protons after preselection (1). The color scale specifies the number of events per bin. The red
line is the bisector.

(a)

(b)

FIG. 9. Energy predicted by the DL-based algorithms as a
function of true energy for protons (a) and electrons (b). The color
scale represents the number of events in each bin. The red line is
the bisector.
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relevant amounts of energy can leave HEPD undetected
also for electrons of higher energy, due to Bremsstrahlung.
The predicted energy for electrons shows clustering at
about 150 MeV. This effect is due to events with energy
limited by containment (100 MeV) and maximum MC
energy (200 MeV): their energy releases do not sufficiently
differ from each other to allow FCNNkin to make accurate
predictions. The mid-value of 150MeV is often provided as
output, as it minimizes the loss function. Such an effect has
little or no impact on data analysis, because no electrons
with energy larger than 100 MeV are usually considered.
Bremsstrahlung photons are copiously emitted by electrons
from few tens of MeV on, often leaving the detector
unobserved. This radiation is the main contribution to
the spread of the energy measurement released by the
primary particles. When the FCNN has to predict the
kinetic energy, the energy interval over which the predic-
tion is allowed, plays a role, biasing the result by excess.

To account for this effect, the following correction has been
derived with a linear fit in the containment energy range
0–100 MeV (0–200 MeV) for electrons (protons):

Eele
true ¼ 1.01ð�0.04Þstat · Eele

pred − 2.03ð�0.93Þstat ð5Þ

Eprot
true ¼ 0.99ð�0.03Þstat · Eprot

pred − 1.53ð�3.23Þstat ð6Þ

where all variables and numbers are in MeV.
The energy resolution after corrections (5) and (6) is

reported in Fig. 10, in the energy ranges targeted by HEPD
for electrons and protons. It is obtained by fitting the
distribution of the difference Epred − Etrue to a standard
gaussian and normalizing σ to the predicted energy.
Averaged over of the full solid angle accessible to
HEPD, the resolution improves with the energy, reaching
10% for 80 MeV electrons and 6% for 150 MeV protons.

(a)

(b)

FIG. 10. Energy resolution of FCNNkin as a function of the
predicted energy for electrons (a) and protons (b). Error bars
represents the statistical uncertainty. See the text for details.

(a)

(b)

FIG. 11. Angular difference Ψ between the predicted arrival
direction and the true one is shown for protons (a)
and electrons (b).
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D. Arrival direction reconstruction

The set of detectors considered in this work is not
designed to be sensitive to the arrival direction of the
impinging particle. It is quite challenging to estimate θ and
ϕ on the basis of the light produced in scintillators,
scattered all around the sensitive volumes (the attenuation
length for HEPD plastic scintillators is 380 cm [30]) and
then collected by a sparsified readout of PMTs. The DL-
based reconstruction strategy exploits the following infor-
mation: (i) correlations between PMTs responses coupled
with the same scintillator; (ii) coarse positional information
from trigger bars and LYSO crystals; (iii) anticorrelation
between polar angle and kinetic energy, as shown by the
correlation matrices in Fig. 5. Without FCNNkin, the best
estimation of ðθ;ϕÞ for each event would be (0,0) (the axis
of the apparatus), because no information on the arrival
direction is directly attainable from plastic and LYSO
crystal scintillators. ðθ;ϕÞ ¼ ð0; 0Þ is the average expected
arrival direction of particles and it constitutes the natural
benchmark to evaluate the performance of FCNNkin. The
distribution of Ψ (see definition (3) in Sec. IV B) for
electrons and protons passing selection (4) is shown in
Fig. 11, together with the benchmark. After averaging out
over the whole energy range, the distributions show that
FCNNkin provides remarkable gains over the benchmark.
Three figures of merit—mode, full width at half maximum
(FWHM) and 90% quantile of Ψ distributions—are

reported in Table I, quantifying the average performance
of FCNNkin in reconstructing the arrival direction. As
expected, the benchmark gives the same result for electrons
and protons, whereas FCNNkin performs better for protons
than for electrons, as already seen and motivated for the
prediction of kinetic energy.

VI. RESULTS WITH DATA

This section illustrates the performance of FCNNkin
applied to real data, collected during beam tests and in flight.

A. Beam-test data

Before launch, a campaign of tests was carried out to
calibrate the detector response to charged particles [18]. In
October 2016 the detector was irradiated with electrons at
the INFN Beam Test Facility (BTF) in Frascati. In
November 2016 HEPD was tested with a proton beam
delivered at the Trento APSS Proton Therapy Center. In the
context of this work, these tests are used to validate the
FCNNs on data for which energy and arrival direction are
known. Whenever possible, the FCNNpid network was
applied to beam test events. The tagging efficiency found
with Monte Carlo simulation and described in Sec. V has
been confirmed for protons, 98% of which have been
correctly tagged in the energy range 37–228 MeV. For
electrons in the energy range 30–90 MeV, the tagging
efficiency has been found to be 95%. Figure 12 illustrates
the performance of FCNNkin for electrons of energy
Ebeam ¼ 60 MeV and arrival direction ðθ;ϕÞ ¼ ð0; 0Þ,
impacting on positions P1 and P2 (19530 events in total,
4728 after selections). To be included in the performance
estimation, the events must pass the selection (4) and be
tagged as electrons. The predicted energy is compatible
with the beam energy declared by the facility and the
measured resolution ð7.9� 0.3%Þ is compatible with the
value expected for an isotropic distribution of arrival
directions (12%, see Fig. 10). This similarity is confirmed

TABLE I. Angular reconstruction performances are shown for
electrons and protons. The “vertical” case represent the case in
which the vertical pointing is used as the predicted direction.

Particle type Method Mode FWHM 90%

Protons FCNN 3.7 7.5 32
Protons Benchmark 13.7 17.5 38
Electrons FCNN 3.7 10.0 40
Electrons Benchmark 11.2 17.5 43

FIG. 12. Kinetic energy (a) and arrival direction (b) predictions from FCNNkin for beamed electrons (Ebeam ¼ 60 MeV and
ðθ;ϕÞ ¼ ð0°; 0°Þ). The color scale specifies the number of events.
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by MC simulations of isotropic and beamed fluxes and is
due to multiple Coulomb scattering [31] that electrons
undergo at such low energy. The arrival direction is also
efficiently predicted: most events are reconstructed within
the circle sin θ ¼ 0.2, i.e., with polar angle less than 12°.
Figure 13 illustrates the performance of FCNNkin for

protons. Also in this case, only events passing the selection
(4) and tagged as protons are included. Two cases are
reported: (i) energy Ebeam ¼ 154 MeV and arrival direction
ðθ;ϕÞ ¼ ð0; 0Þ (30001 events in total, 10003 after selec-
tions); (ii) energy Ebeam ¼ 70 MeV and arrival direction
ðθ;ϕÞ ¼ ð15°; 270°Þ (21590 events in total, 13323 after
selections). Protons impacted on HEPD on positions P1

and P2. In the second case the predicted energy is 3 MeV
lower than Ebeam. This prediction is well compatible with
MC expectations, showing that 70MeV protons lost 3 MeV
in air before reaching HEPD in the APSS experimental hall.
In both cases, the energy resolution turns out to be better
than what has been found for the average result shown in
Fig. 10. This effect is correctly reproduced by MC
simulations of proton beam tests, where multiple
Coulomb scattering does not dilute the dependence of
the energy resolution on the polar angle, as it does for

electrons. Indeed, the performance of FCNNkin 70 MeV
protons beamed at θ ¼ 0° is better than the average one
obtained for the same energy but θ randomly sampled in
0–90°. Concerning the arrival direction, it can be seen how
FCNNkin correctly predicts ðsin θ;ϕÞ ¼ ð0.3; 270°Þ, corre-
sponding to ðθ;ϕÞ ¼ ð15°; 270°Þ.

B. Flight data

On the 2nd of February 2018 the CSES-01mission started
with the launch of the satellite from China. HEPD and all
other payloads have been smoothly operated since then, and
scientific data are regularly transmitted to the ground seg-
ment [32,33]. The reconstruction chain described in this
work is included in data processing and executed on all
events collected byHEPD. In this section, the performance of
FCNNkin is described for data collected in flight on August
1°, 2018 (first day of post-commissioning operations). Out of
5903533 events, 35834 pass the selections (1) and (4).
Since MC events have been generated with flat energy

spectrum, they have to be reweighted before comparing
them with flight data. Nonetheless, HEPD is triggered by
particles of different types and different populations along

FIG. 13. Kinetic energy and arrival direction predictions from FCNNkin for beamed protons. In plots (a) and (b) protons have
Ebeam ¼ 154 MeV and ðθ;ϕÞ ¼ ð0°; 0°Þ). In plots (c) and (d) protons have Ebeam ¼ 70 MeV and ðθ;ϕÞ ¼ ð15°; 270°Þ. The color scale
specifies the number of events.
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its orbit: trapped electrons and positrons, trapped protons,
galactic electrons, galactic protons, electrons and protons
from the South Atlantic Anomaly [34]. All of these
populations have different energy spectra and to separate
each contribution goes beyond the scope of this work. The
authors opted for reweighting MC events on the basis of
their true energy, using power laws:

wele ¼ Eαele
true; wprot ¼ E

αprot
true

The spectral indices αele and αprot are obtained by a χ2

minimization procedure, fitting the MC energy distribution
to flight data tagged as electrons and protons respectively.
The best indices were found to be αele ¼ −0.842 and
αprot ¼ −1.564. Figure 14 shows that the power law

hypothesis guarantees fair agreement between flight and
MC data on the reconstructed energy distribution.
Since all particle populations enter the data energy

distribution, the best-fit values of αele and αprot have to
be considered as effective indices, useful to compare the
performance of FCNNkin on flight and MC data for what
concerns the prediction of the arrival distribution.
In fact, good agreement can be observed in Fig. 15,

where the distribution of the polar angle θ is represented for
flight and MC data, for both electrons and protons. Within
uncertainties, the prediction of FCNNkin on MC data
matches that on flight data, up to fairly large values
(40°). The authors observe that no pointlike sources are
available to test the performance on the estimation of the
arrival direction, neither patterns of ðθ;ϕÞ due to magnetic
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FIG. 14. Distribution of reconstructed energy for protons (a) and electrons (b). Monte Carlo events (red triangles) are reweighted as
described in the text. Error bars represent statistical uncertainty.
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FIG. 15. Distribution of reconstructed polar angle θ for protons (a) and electrons (b). Monte Carlo events (red triangles) are reweighted
as described in the text. Error bars represent statistical uncertainty.
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field gradients or time variations of particle fluxes can be
easily exploited. Indeed, averaging out these dependencies
on time and geomagnetic latitude is the main source of
systematic uncertainty, that anyway is less than the angular
resolution mentioned in Table I. The result shown in Fig. 15
is the simplest and most powerful check that the
reconstruction of the arrival direction of electrons and
protons by FCNNkin is reliable.

VII. CONCLUSIONS

The reconstruction of events collected by the High
Energy Particle Detector on board the CSES satellite has
been based on a deep learning approach. Fully connected
neural networks allow to efficiently tag protons and
electrons, and to reconstruct with good accuracy the energy
of incoming particles. Remarkably, it has been demon-
strated that:

(i) the arrival direction can be reasonably inferred, just
using information from detectors insensitive to the
impact position;

(ii) the networks efficiently reconstruct the energy also
for noncontained particles, a result difficult to

achieve with methods based on analytical extrapo-
lation of the energy deposit versus the traversed
material thickness.

Results from Monte Carlo simulations have been validated
with data from beam tests and flight operations.
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