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We consider the propagation of nonlinear sound waves in a perfect fluid at rest. By employing the
Riemann wave equation of nonlinear acoustics in one spatial dimension, it is shown that waves carrying a
constant density perturbation at their tails produce an acoustic analogue of gravitational wave memory. For
the acoustic memory, which is in general nonlinear, the nonlinearity of the effective spacetime dynamics is
not due to the Einstein equations, but due to the nonlinearity of the perfect fluid equations. For
concreteness, we employ a box-trapped Bose-Einstein condensate, and suggest an experimental protocol to
observe acoustic gravitational wave memory.
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I. INTRODUCTION

The pinnacle in the history of 21st century experimental
physics so far was undoubtedly the first detection of
gravitational waves (GWs) [1]. One of the most remarkable
features of GWs is that they can present memory [2–4]. A
freely falling test mass (representing an ideal detector) is
permanently displaced after the GW train has passed. The
memory effect is present already in linearized Einstein
theory. There exists however also a genuinely nonlinear
GW memory which is arising from the nonlinearity of the
Einstein equations in the GW amplitude [5]. A physically
particularly lucid explanation of the nonlinear GWmemory
effect, derived in a veritable mathematical tour de force by
Christodoulou, was given by Thorne shortly thereafter, and
was providing an interpretation of nonlinear memory in
terms of the gravitons emitted by the GW source [6].
Proposals to detect the GWmemory effect have been put

forward, e.g., in [7–9], where the Christodoulou nonlinear
memory has already argued early on to be even much more
feeble than its linear counterpart [8,10]. The permanent
displacement of test masses after the wave train has passed
is generally far more difficult to detect than the oscillatory
motion induced by the GW pulse. GW memory, both in its
linear and nonlinear variant, has thus eluded observation
so far.
The study of the propagation of classical and quantum

pseudorelativistic fields on effective curved spacetime
dubbed analogue gravity [11] enables the simulation of
many effects else inaccessible in the lab [12]. After Unruh’s
seminal idea [13], various aspects of analogue gravity have
been treated in particular within the realm of fluid dynam-
ics. These comprise, inter alia, analogues of black holes via
gravity waves [14–17] and in fluids of light [18,19], black
hole radiation [20–25], inflation [26–28], the production of

cosmological quasiparticles [29,30] and their degree of
entanglement [31–33], the Unruh and Gibbons-Hawking
effects [34–37], black hole lasers [38,39] superradiance
[40–42], quasinormal black hole modes [43,44], and
GWs [45,46].
The Unruh paradigm of analogue gravity operates on the

premise that a linearized theory on top of some background
field [47] describes accurately the propagation of the fields
on a spacetime background which is generally curved [48].
In what follows, we establish an acoustic analogue of GW
memory within a nonlinear generalization of analogue
gravity. Our approach is based on the Riemann equation of
nonlinear acoustics, and does not assume that perturbations
can be linearized. We show that the acoustic analogue
of a generally nonlinear GW memory can be observed in a
Bose-Einstein condensate (BEC), for which the nonlinear-
ity of the underlying “ether” is provided by the fluid-
dynamical equations, and not by the Einstein equations.
While GW memory analogues have been introduced
before, within electrodynamics [49] and Yang-Mills theory
[50], respectively, here we consider a system which both
represents an inherently nonlinear theory, and is readily
accessible in experiment.

II. FLUID-DYNAMICAL SETUP

A. Bose-Einstein condensates

The dynamics of BECs is on the mean-field level
captured by the Gross-Pitaevskiı̆ equation (GPE) (ℏ ≔ 1,
atomic mass m ≔ 1) [51]

i
∂ψ
∂t ¼

�
−
∇2

2
þ V trap þ gjψ j2

�
ψ ; ð1Þ
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where ψ is the condensate wave function, t is time, V trap is
the externally imposed trapping potential, and g is the two-
body contact interaction coupling. To leave the salient
physics unobscured, we place the BEC in a box trap [52],
and omit mention of Vtrap in what follows. We work in the
Thomas-Fermi (TF) limit, wherein density variation length
scales are much larger than healing length ξc ¼ ðgρ0Þ−1=2,
where ρ0 ¼ N

V, with V volume and N ¼ R
d3rjψðr; tÞj2

particle number. We use the Madelung transformation
ψ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρðr; tÞp
eiΦðr;tÞ; the density ρ > 0, and the velocity

potential Φðr; tÞ is a real function. It is easily shown that
then the GPE is equivalent to the irrotational flow (exclud-
ing the singular quantized vortex lines) of a perfect fluid
characterized by density and velocity potential as defined
by the Madelung transformation [51]. Continuity equation,
Euler equation, irrotationality condition and polytropic
equation of state are, respectively, using v ¼ ∇Φ,

∂tρþ∇ · ðρvÞ ¼ 0; ∂tvþ v · ∇v ¼ −∇p=ρ;
∇ × v ¼ 0; p ¼ 1

2
gρ2: ð2Þ

We then introduce perturbations on top of the constant
density background at rest:

ρðr; tÞ ¼ ρ0 þ δρðr; tÞ; vðr; tÞ ¼ 0þ vðr; tÞ ¼ ∇δΦ;

c2s ¼
∂p
∂ρ ¼ gρ0 þ gδρðr; tÞ ≔ c2s0 þ δc2s : ð3Þ

To set the stage for the following analysis of nonlinear
acoustics in terms of the Riemann wave equation (16), we
restrict ourselves to a strongly laterally confined quasi-one-
dimensional (quasi-1D) BEC [53]. To remain sufficiently
general, we are now considering a polytropic equation of
state, pðρÞ ¼ Kργ (with K > 0, and γ > 1, where the BEC
equation of state in (5) above has γ ¼ 2. The Euler equation
then, after one spatial integration, is taking the form

∂tδΦþ 1

2
ð∂xδΦÞ2 þ c2s

ðγ − 1Þ −
c2s0

ðγ − 1Þ ¼ 0: ð4Þ

A partial time derivative taken of Eq. (4), and a partial
derivative with respect to x gives the two equations

∂2
t δΦþ ð∂xδΦÞð∂x∂tδΦÞ þ c2s

ρ
∂tδρ ¼ 0; ð5Þ

∂t∂xδΦþ ð∂xδΦÞð∂2
xδΦÞ þ c2s

ρ
∂xδρ ¼ 0: ð6Þ

Substituting v ¼ ∂xδΦ in the continuity equation, we find

1

ρ
∂tδρ ¼ −∂2

xδΦ −
1

ρ
∂xδρ∂xδΦ: ð7Þ

Now, we substitute the above expression for 1
ρ ∂tδρ,

replacing therein ∂xδρ using Eq. (6), into Eq. (5),
Thereafter, we use the relation (4) to insert
c2s ¼ c2s0 − ðγ − 1Þð∂tδΦþ 1

2
ð∂xδΦÞ2Þ. As a result, we

obtain a second order nonlinear partial differential equation
in terms of only one variable, δΦ:

ð−∂2
t þc2s0∂2

xÞδΦ¼2ð∂x∂tδΦÞ∂xδΦþðγ−1Þð∂2
xδΦÞ∂tδΦ

þðγþ1Þ
2

ð∂xδΦÞ2∂2
xδΦ: ð8Þ

Thus, the nonlinearity of our problem is manifest in the full
equation for phase fluctuation. Distinct from the case of
linearized perturbations, δΦ does not satisfy a massless
Klein-Gordon (KG) equation when nonlinearity is taken
into account. In Ref. [54], it has been established by us that
such nonlinear perturbations backreact onto the back-
ground, and the definition of the background therefore
changes. A new background solution is then defined
(with an appropriate new notation for the perturbative
expansion), by absorbing the nonlinear perturbation
terms; ρ→ρð0Þ ¼ρ0þδρ, v → vð0Þ, Φ → Φð0Þ ¼ Φ0 þ δΦ.
A higher frequency linear sound wave (the next order of
perturbation in the velocity potential, Φð1Þ) couples to the
new background, and it then satisfies a massless Klein-
Gordon (KG) equation,

∂μ½fμνð0Þðr; tÞ∂νΦð1Þðr; tÞ� ¼ 0; ð9Þ

where we identified the effective spacetime contravariant

tensor fμνð0Þ ≔
ρð0Þ
c2
sð0Þ

�
−1 −vð0Þ

−vð0Þ c2sð0Þ1 − vð0Þ ⊗ vð0Þ

�
.

B. Redefining the effective spacetime metric in 1 + 1D

Evidently, the new background solution from nonlinear-
ity results in a modification of the acoustic metric,
gμν → gμν in 1þ 1D. We use the conformal factor in the
physical 3þ 1D spacetime, leading to the acoustic
spacetime metric in 3þ 1D being given by

Gμν ¼ ρð0Þ
csð0Þ

�
−ðc2sð0Þ − v2ð0ÞÞ −vð0Þ

−vð0Þ 1

�
, and then consider

that transverse directions are frozen out, see the
Appendix A. Absorbing a constant conformal factor related
to the uniform density of the background, we obtain the
metric we work with:

gμνðx; tÞ ¼
�
−c2s0 0

0 1

�
þ hμνðx; tÞ; μ; ν ¼ t; x: ð10Þ

The metric perturbations are to second order given by

htt ¼ −c2s0

�ðγ þ 1Þ
2

δρ

ρ0
þ ðγ2 − 1Þ

8

�
δρ

ρ0

�
2
�
þ v2; ð11Þ
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htx ¼ hxt ¼ −v
�
1þ ð3 − γÞ

2

δρ

ρ0

�
; ð12Þ

hxx ¼
ð3 − γÞ

2

δρ

ρ0
−
ð3 − γÞðγ − 1Þ

8

�
δρ

ρ0

�
2

: ð13Þ

Now, if the spatiotemporal variation of Φð1Þ is sufficiently
fast, to be regarded as in the eikonal limit, then we are in the
geometric regime [11], i.e., the massless scalar field Φð1Þ
then follows a null geodesic given by

ds2 ¼ gμνdxμdxν ¼ 0: ð14Þ

C. Riemannian fluid dynamics

As established in the seminal work of Riemann on the
exact description of shock waves [55], an analytical
approach to nonlinear waves in perfect fluids is furnished
by Riemann invariants [56,57], associated to a Riemann
wave equation [58–60]. To render our argument as trans-
parent as possible, we consider below simple waves, for
which the constancy of one of the two Riemann invariants
yields (cf. Sec. 104 in [61])

ρ ¼ ρ0

�
1� ðβ − 1Þ v

cs0

� 1
β−1
; ð15Þ

where � indicates propagation along the positive (þ) or
negative (−) x direction and β ¼ γþ1

2
. Derived from the set

of Eqs. (3) (cf. Sec. 101 in [61]), the Riemann wave
equation then reads

∂v
∂t þ ð�cs0 þ βvÞ ∂v∂x ¼ 0: ð16Þ

In a stable BEC with contact interactions, the constant
K ¼ g=2 > 0 and β ¼ 3

2
. The wave equation (16), a non-

linear first-order partial differential equation, specifies the
solution of the nonlinear acoustics problem once an
initial wave profile v ¼ fðxÞ at t ¼ 0 is given. For small
v amplitudes, one has the linearized equation ∂tvþ
cs0∂xv ¼ 0 (assuming right-moving waves in what fol-
lows), which then leads to the conventional Unruh para-
digm of analogue gravity.
We solve Eq. (16) by using the method of characteristics

[57,62], which employs constant v curves in the evolving
flow. For the characteristics curve specified by dv

dt ¼ 0, we
seek the contour map on the x–t plane, each contour curve
representing a fixed v,

dx
dt

����
v
¼ cs0 þ βv; x ¼ ðcs0 þ βvÞtþ ξ; ð17Þ

and v ¼ fðξÞ depends on the characteristics parameter
ξ, …jq denoting constant q ¼ fv; δρ;…g. We also have,

from (15) and (16), dx
dt jv ¼ dx

dt jδρ ¼ cs0 þ βv ¼ cs þ v.
Since the Riemann wave solution fully incorporates non-
linearity, redefining the background here yields ρ0 → ρð0Þ,
v → vð0Þ. From now on, we consider the Riemann wave as
providing the background, and switch to this notation. We
also note here that Ref. [63] experimentally realizes such an
emergence of an effective metric in the geometric limit,
governed by a nonlinear simple wave solution of the
Riemann wave equation in photon fluids.

D. Avoiding shock waves

Considering an initially (t ¼ 0) monochromatic wave
profile, vð0Þ ¼ A cos kξ, we find that at t ¼ tshock ¼ 1

βAk, the
derivatives of v with respect to x and t diverge at zeros with
negative slope of v, see Appendix B. For t > tshock (the first
instant at which the wave profile becomes infinitely steep),
v and (thus δρ), becomes multivalued, i.e., at a given instant
of time, a fixed position can correspond to different values
of v. The characteristic lines of Eq. (17) start to intersect
with each other, resulting in shock waves (≡ discontinuities
in v and ρ) [57], studied for BECs in [64,65]. We restrict
ourselves to nonlinear acoustic flow without shock waves
developing, i.e., consider times t < tshock. Imposing
βA < cs0

2π implies 2π
cs0k

< tshock [57,61]. For the acoustic
GW memory analogue, we need a wave train passing
through the BEC cloud without encountering a shock wave
discontinuity. Indeed, for times of order tshock a perturbative
theory breaks down. When parts of the wave profile
become steeper over time, evidently the TF approximation
fails. However, the quantum pressure term in the GPE in
fact prohibits such a discontinuity to emerge, and it has
been shown that instead an oscillation pattern in density
forms as t approaches tshock [66].

III. ACOUSTIC GW MEMORY

Owing to general covariance, the movement of a single test
particle causedby aGWcanbe nullified to first order inhTTμν by
a proper choice of coordinate system [67] and permanent
relative displacements of at least two test particles need to be
measured to ascertain the impact of a GW, also see
Appendix C. This change of distance occurs due to a
permanent change in the TT component of hμν. When the
oscillatory part of aGWwithmemory vanishes as t → ∞, i.e.,
a freely falling test mass does not feel a gravitational
acceleration due to GW, then the relative distance between
two test particles ultimately settles to a permanent change due
to the presence of a remainingnonoscillatory part of the signal.
In our nonrelativistic laboratory setup, the observer has

the Newtonian notions of distance and absolute time. In the
context of our acoustic GW analogue, we therefore have no
obvious choice of geodesic test particles at our disposal to
determine the impact of a GW. We therefore use as our
primary tool fiducial particles (FPs). We define the FPs as
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particles which move with the flow. As the FP moves ξ
changes; a specific value of ξ gives a characteristic curve,
i.e., the sound wave trajectory. The equation of motion
is just dx

dt ¼ vð0Þ, with the initial condition x ¼ ξi at t ¼ 0.
We find vð0Þ ¼ vð0ÞðξÞ ¼ vðx; tÞ by solving for ξ ¼ ξðx; tÞ
from Eq. (17). For a sound (null) ray, dxdt ¼ ð�csð0Þ þ vð0ÞÞ.
For vð0Þ>0, vð0Þ < csð0Þ þ vð0Þ, for vð0Þ < 0, vð0Þ>
−csð0Þ þvð0Þ, we have already established in the above that
vð0Þ < csð0Þ and csð0Þ ¼ cs0 þ βvð0Þ. We conclude that
∀ ðx; tÞ the FP lies inside an intersecting pair of null lines.
To visualize the change in shape of the wave profile, due to
the nonlinearity, β ≠ 0, in the Riemann Eq. (16), we
construct a comoving reference ðx0; tÞ frame moving at
cs0 along the positive x axis, cf. the right plot in Fig. 1.
To establish the analogy, we need, as explained in the

above, to realize a permanent change in the metric after the
GW has passed. For simplicity, we choose to work with
vð0Þ ¼ fðξÞ ¼ B for 0 < ξ < nπ

2k; vð0Þ ¼ fðξÞ ¼ A cos kξþ
B for nπ

2k ≤ ξ ≤ ξi with n being a positive odd integer,
fðξiÞ ¼ 0. This wave profile of vð0Þ causes a permanent
change in hμν once the GW has passed. We note that even if
one were to consider a FP following the geodesic equation
of phonons and not moving with the flow, constant hμν
would produce no relative acceleration between two FPs.
The permanent metric changes in the metric components
due to the presence of such a constant part at the trailing
end of the GW signal then are, up to second order in the
velocity perturbation constant B,

Δhtt ¼
�
−
ðγ þ 1Þ

2
cs0Bþ ð3 − γÞ

4
B2

�
;

Δhtx ¼
�
−B −

ð3 − γÞ
2

B2

cs0

�
;

Δhxx ¼
�ð3 − γÞ

2

B
cs0

þ ð3 − γÞð2 − γÞ
4

B2

c2s0

�
: ð18Þ

Distinct from the real transverse GW,we have a longitudinal
wave in the BEC medium as the acoustic analogue of a GW
in our fluid-dynamical setup. Here the component hxx plays
a similar role to that of the transverse component hþ in a real
GW. We observe here that the nonlinear part of analogue
GW memory, in distinction to its Einstein-gravitational
counterpart, is also nonvanishing in the (however hypo-
thetical, because thermodynamically unstable) case when
β ¼ 0 (γ ¼ −1). This is due to the relation (15) (v2ð0Þ terms do

not vanish for β ¼ 0) and thus reflects the underlying
structure of the medium (a polytropic gas), in which the
analogueGWpropagates.We also note that β ¼ 2 (γ ¼ 3) is
a special case. Using Eq. (15), which for β ¼ 2 yields a
linear relation between density and velocity perturbations,
one readily shows that Δhxx ¼ 0 to any order in B, and that
in Δhtt and Δhtx all terms higher than linear in B exactly
vanish.

IV. EXPERIMENTAL SETUP

A. Phase-imprinting memory analogues

To provide a memory-related quantity which can be
experimentally accessed by a quantum-optical observer in
the laboratory, we consider specifically a homogeneous
cloud of ultracold atoms in a cylindrical box trap [52] with
radius Rð≪ ξcÞ and length Lð≫ ξcÞ, see Fig. 3. We suggest
to employ the phase imprinting technique, readily available
in the quantum optical setup of ultracold gases [68,69], to
implement a specific GW profile corresponding to the
initial velocity perturbation. We create a spatial variation in
the phase of the initial condensate wave function, within the
source region (S) of length l, by red-detuned laser light
turned on for a short duration T (as short as to stay within
the Raman-Nath regime of simple diffraction). The super-
fluid phase pattern ΦðxÞ ∝ IðxÞ=δ, corresponding to the
velocity pattern discussed above, where IðxÞ is laser
intensity and δ detuning from resonance, is then imprinted
in S, where the phase profile is chosen as

ΦðxÞ ¼ Bxþ C; for 0 < x <
nπ
2k

;

ΦðxÞ ¼ A
k
sinðkxÞ þ Bxþ C; for

nπ
2k

≤ x < l; ð19Þ

where n is an odd integer. Here, we put A;B;C ≥ 0, and the
constant C is chosen such that ΦðxÞ > 0 within S (red-
detuning ∀ x ∈ S), cf. 2 for an illustration of the resulting
hxx component. We note that in the hxx series, using in (18)
the relation (15) (with aþ sign), the second power term in v
does not appear for a BEC which has γ ¼ 2, and we have
hxx ¼ v=2cs0 up to cubic order.
To simplify the calculation, we choose to work with

the above nonsmooth ansatz for Φ (noting that experi-
mentally any required smooth profile can be engineered).
The thus created bipartite 1D configuration, cf. Fig. 3,

−0.05
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−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−4 −2 0 2 4 6 8

FIG. 1. Schematic illustration of the GW amplitude hxxð¼ vð0Þ
2cs0

Þ
for β ¼ 3

2
(γ ¼ 2). We choose vð0Þ ¼ A cos kx; x; x0 ¼ x − cs0t

and t are in units of 1=k and 1=ðcs0kÞ, respectively. Left: hxx in
the x, t plane (A ¼ 0.05). Right: temporal change of initial cosine
profile; greater value of hxx corresponds to smaller speed vð0Þ,
clearly visible in the frame ðx0; tÞ comoving at cs0. Here,
tshock ¼ 40

3
.
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produces simple waves [61]. At t ¼ 0, vð0ÞðξiÞ ¼
vð0ÞðlÞ ¼ 0 ⇒ B < A; this is how the constant magnitude
of the profile at its edge is bounded by the amplitude in
the oscillatory part in the front. Considering 87Rb as a BEC
as employed in the Hawking radiation experiment of
Ref. [25], with healing length ξc ¼ 1.8 μm (geometrically
averaged between upstream and downstream regions rel-
ative to the horizon), we also have cs0 ¼ 0.39 mm= sec. We
consider that the amplitude A=cs0 ¼ 0.025, and that the
wave vector k ¼ 0.25ξ−1c is of order the dominant Hawking
mode in Ref. [25]. Such a value of k can be achieved by
phase-imprinting with an infrared laser.
We now aim at generating the memory associated to hxx,

similar to what we expect to have in the hþ signal for a real
GW in relative proportion to the highest magnitude of the
oscillatory part of the GW. The maximum value of hxx in
the oscillatory part of the phase-imprinted simple wave in

Eq. (19) is ðAþBÞcs0
2

, and the expression (18) yields Bcs0=2
(for a BEC γ ¼ 2). Therefore B

A ¼ 1
n0 with n

0 ≥ 1, produces a
signal having a memory part 1=ð1þ n0Þth of the maximum
value in the oscillatory part. We denote this ratio
w ¼ 1=ð1þ n0Þ. Hence in the specific phase-imprinting
example (19), w ≤ 1=2, ∵n0 ≥ 1. For example, referring
here to Fig. 1 in the review of Ref. [7], which displays a
typical gravitational wave signal having memory, w is there
roughly 1=3, and thus the corresponding value of n0 used
for phase-imprinting is about two.
In the region of observation (RO), the observers in the

lab take density images by absorption imaging at discrete

times. A constant density tail of the wave in the RO, as
depicted in the Fig. 3 represents the memory of the signal.
Equation (15) gives this constant density shift, which is, up
to order B2,

Δρ ¼ ρ0

�
B
cs0

þ ð3 − γÞ
4

B2

c2s0

�
with B < A < cs0: ð20Þ

An auxiliary condition is that discontinuities due to a
shock developing have to be avoided. The mean speed of
the signal equals the speed of the constant part of the wave
train, i.e., cs0 þ βB, as follows from Eq. (17). The wave
train’s oscillatory part encounters a shock at t ¼ tshock ¼
1

βAk (cf. Appendix B). To avoid discontinuities, we thus

design the experiment such that l
ðcs0þβBÞ < tshock. With the

aforementioned parameters from [25], tshock ¼ 0.57 sec;
for B=A ¼ 1=2, A ¼ 0.025, l < 0.23 mm. Absorption
images are then taken at times t < tshock.

B. A proposal for simulating more realistic signals

In the case of a real GW, the transverse part of hμν, hþ, is
an observable and the memory part of it, e.g., depends on
the total mass of the binary system, its reduced mass ratio,
the distance between source and observer, the angle
between source and direction of observation, and on the
time evolution of the dominant source quadrupole moment
from t → −∞ to the retarded time of detection, see for a
discussion Ref. [70]. The latter detection time can in
principle be arbitrarily large, distinct from our analogue
nonlinear acoustics model. In our setup, we have an
indirect memory signal because we are not measuring
permanent changes in the acoustic metric (however see
below). This indirect observable is a change in density, and

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20 40 60 80 100

phase-imprinted signal without memory
phase-imprinted signal with memory

FIG. 2. The initial t ¼ 0 metric hxx according to Eq. (13)
in the source region, resulting in a GW with memory [blue
curve, for B ¼ A=2, A ¼ 0.025, and n ¼ 7 in Eq. (19)], and
without memory [red curve, for which we set ΦðxÞ ¼
0.0375 cosð0.25xÞ þ 0.01875x for 64π

3
≤ x ≤ 112π

3
; and ΦðxÞ ¼

constant for 0 ≤ x < 64π
3
]. We put k ¼ 0.25ξ−1c ; B=A ¼ 1=2, A ¼

0.025 in units of cs0, and ξ is in units of the healing length ξc. The
length of the source region is assumed to be l ¼ 112π

3
ξc. Here,

ξc ¼ 1.8 μm (as in Ref. [25]). For the profile with memory, this
results in l ¼ 0.21 mm, less than the maximum allowed value of
l ¼ 0.23 mm, which would lead to shock formation.

FIG. 3. Observing the acoustic analogue of GW memory in a
quasi-1D BEC. The grey shading represents the schematic
density variation. a) The GW signal with memory is produced
in the source region by phase imprinting at t ¼ 0, b) Zoomed-in
region of observation at a time of observation less than tshock. The
uniform grey shading represents constant density [increase or
decrease depending on the sign of B in Eq. (20)]. The memory
of the signal is captured by absorption imaging when the
oscillatory part is already completely residing within the region
of observation.
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the signal is longitudinal. We can however in principle
engineer a more realistic profile (possible by phase imprint-
ing) having an inspiral part and a ringdown part along with
a memory part (referring here again to Fig. 1 of Ref. [7]) by
knowing the Fourier spectrum of the signal, where an
obvious rescaling of the length scales and timescales of the
real GW signal will need to be performed.

C. Direct method to access metric changes

As stated in the above, measuring Δρ is an indirect
method of observing the permanent change in the metric as
expressed in Eq. (18). We now propose to access more
directly the permanent change in the metric by observing
the time it takes for sound rays to propagate in the presence
of the analogue GW signal. Let us assume a sound ray
propagating on top of the simple Riemann wave in the
region of observation. From Eq. (14), the sound cone will
have different opening angles in the presence of the GW
which may be represented as

cs0dt
dx

¼
− htx

cs0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2tx
c2s0

− ð1þ hxxÞð−1þ htt
c2s0
Þ

r
ð−1þ htt

c2s0
Þ . ð21Þ

Putting hμν to zero, one verifies that cs0dt
dx ¼ �1. As the

sound ray passes, in the memory region we have
hμν ¼ Δhμν. With the values chosen in the above,
B=A ¼ 1=2, A ¼ 0.025, we obtain for the sound ray going
in the direction of GW propagation, cs0dtdx ≃ 0.98, and for the
sound ray going opposite to the direction of the GW,
cs0dt
dx ≃ −1.01. Therefore, detecting the travel times of sound
pulses in the eikonal approximation in the presence of the
GW memory potentially yields direct access to the perma-
nent change in the metric incurred by GWs with memory.

V. CONCLUSION

Extending the linearized analogue gravity paradigm to
nonlinear acoustics, we have demonstrated that an acoustic
analogue of GW memory can be simulated in a BEC.
For clarity, we delineate and reiterate now again the

primary differences to Einsteinian GW memory, also see
Appendix C: (a) Our GW analogue is a longitudinal
(instead of transverse) wave and lives in 1þ 1D; (b) it
is imposed locally by a quantum optical experiment,
whereas an Einsteinian GW in 3þ 1D contains the physical
distance rs from source to detector; (c) The Einsteinian
GW and its memory is detected by relative geodesic
acceleration.
The acoustic GW memory analogue, on the other hand,

offers an alternative perspective on GW memory allowing
to disentangle its fundamental aspects. For GW memory
and its acoustic analogue, e.g., the impact of the effective
equation of state of the underlying “ether” on the memory

signal can be studied. The acoustic memory analogue can
potentially play a role akin to Hawking radiation analogues,
which led to the clear recognition that distinct from
black hole entropy, radiation is of a kinematical rather
than Einstein-dynamical origin [71]. Checking the ether
dependence can for example be performed by phase-
imprinting in ultracold gases waveforms akin to those of
real gravitational waves, and then checking whether the
memory signal response of real and acoustic GW memory
displays a qualitatively similar behavior. Finally, ultracold
gases lend themselves naturally to the simulation of the
impact of exotic solitonic or vortical structures [68,69] in
the GW train onto characteristic features of the memory
signal.
Looking further ahead, we expect a significant number

of novel insights gained from the inherently nonlinear
dynamics of fluids for simulating curved spacetimes. Apart
from the concrete example of BECs discussed in the above,
this applies equally well, e.g., to shallow water or fluids
of light.
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APPENDIX A: THE QUASI-1D GAS AND
GENERAL DIMENSIONALITY

In a quasi-1D system along the x axis, the dynamics
along y, and z axes is by definition frozen out, v1 ¼ vð0Þ,
v2 ¼ v3 ¼ 0. We may then write

Gμνðr; tÞ≡ ρð0Þ
csð0Þ

2
666664
−ðc2sð0Þ − v2ð0ÞÞ −vð0Þ 0 0

−vð0Þ 1 0 0

0 0 1 0

0 0 0 1

3
777775: ðA1Þ

In quasi-1D, the variables ρð0Þ (hence csð0Þ), vð0Þ are
functions of ðx; tÞ. Therefore, the transverse dimensions
y, z does not play any role in the fluid dynamics. Therefore,
we can construct an effective metric gcμνðx; tÞ:

gcμνðx; tÞ ¼
ρð0Þ
csð0Þ

"
−ðc2sð0Þ − v2ð0ÞÞ −vð0Þ

−vð0Þ 1

�
; ðA2Þ

where gcxx ¼ Gyy ¼ Gzz. In quasi-1D, one can indeed work
with Gμν, we however choose to work with gcμνðx; tÞ for
convenience.
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In the main text, we consider this quasi-1D set up,
embedded in 3D spatial dimensions. The acoustic metric
gets reduced to 1þ 1D from 3þ 1D due to the circular
(trapping) symmetry. In this section, we show that the
whole analysis can be performed starting from dþ 1D
embedding dimensions for general positive integer d ≥ 2.
We work with the conformal factor in dþ 1D [11].
Indicating the metric with inclusion of the conformal factor
by the superscript c, and where we assume already that
transverse dimensions are frozen out, we have

gcμνðx; tÞ ¼
�
ρð0Þ
csð0Þ

� 2
d−1

"
−ðc2sð0Þ − v2ð0ÞÞ −vð0Þ

−vð0Þ 1

#
: ðA3Þ

The conformal factor, ð ρð0Þcsð0Þ
Þ 2
d−1 ¼ ðρ0cs0Þ

2
d−1ð1þ δρ

ρ0
Þ3−γd−1 by using

a barotropic equation of state. The nonzero constant ð ρ0cs0Þ
2

d−1

factor can be absorbed into a redefined metric. We find

gμνðx; tÞ ¼ gμν þ hμνðx; tÞ; ðA4Þ

where the background metric is

gμν ≔
�
−c2s0 0

0 1

�
; ðA5Þ

and the perturbation metric hμνðx; tÞ is, considering terms
up to second order,

htt ¼ −c2s0

��
γðd − 2Þ − dþ 4

d − 1

�
δρ

ρ0
þ
�ðγðd − 2Þ − dþ 4Þðγðd − 2Þ − 2dþ 5Þ

2ðd − 1Þ2
��

δρ

ρ0

�
2
	
þ v2; ðA6Þ

htx ¼ hxt ¼ −v
�
1þ ð3 − γÞ

ðd − 1Þ
δρ

ρ0

�
; hxx ¼

�
3 − γ

d − 1

�
δρ

ρ0
þ ð3 − γÞð4 − γ − dÞ

2ðd − 1Þ2
�
δρ

ρ0

�
2

: ðA7Þ

Note that the perturbed fluid velocities v and vð0Þ are
identical because we start with a static background.

APPENDIX B: SHOCK WAVES

We consider for simplicity an initially monochromatic
wave traveling along the x axis, which has vð0Þ ¼ A cos kξ.
Hence, we find from the Eq. (17) in the main text

x ¼ ðcs0 þ βA cos kξÞtþ ξ: ðB1Þ

Therefore, we also find, by using (B1),

∂tvð0Þ ¼ −Ak sinðkξÞ∂tξ ¼ −Ak
ðcs0 þ A cos kξÞ
ðβAkt sin kξ − 1Þ sin kξ;

∂xvð0Þ ¼ −Ak sinðkξÞ∂xξ ¼
Ak sin kξ

βAkt sin kξ − 1
: ðB2Þ

Using the above two equations, one can check that the
Riemann equation (16) is satisfied. One can also see that at
t ¼ tshock, ∂tvð0Þ and ∂xvð0Þ, become infinity. Different ξ
values correspond to different tshock, and the minimum
value of tshock is given by

tshock ¼
1

βAk
; ðB3Þ

which is inversely proportional to the amplitude of velocity
perturbation, A. Evidently, the expression Eq. (B3),

remains unchanged if we add a constant to vð0Þ, i.e.,
vð0Þ ¼ A cos kξþ B. For t > tshock, the density and velocity
of the medium becomes multivalued, i.e., at a single
coordinate ðx; tÞ, more than one solution in vð0Þ and ρð0Þ
exists. This singular situation for t > tshock is handled by
introducing discontinuities in density and velocity, as
discussed in [57,61]. Discontinuous density and velocity
solutions are generally called shock solutions.

APPENDIX C: GW MEMORY IN GENERAL
RELATIVITY VS ANALOGUE MEMORY

1. Memory effect in general relativity

Owing to general covariance, the movement of a single
test particle by GW can be nullified to first order in the
(traceless-transverse gauge) perturbation hTTμν by a proper
choice of coordinates [67], and relative displacements of at
least two test particles have to be employed to ascertain the
impact of a GW [67,72]. To measure the motion of a single
test particle, we would then need to compare its displace-
ment to neighboring objects (in some definite reference
frame) which are also moving with the GW.
The memory effect is characterized by the permanent

change in separation between two freely falling particles
(ideal detector) after a GW train has passed. The vectorial
separation between two freely falling particles initially at rest
relative twoeach other separatedbya distance lk, changes due
to the GW field. The vectorial change δlj is given by (as
derived from the equation of geodesic deviation) [67]
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δlj ¼
1

2
hTTjk l

k: ðC1Þ

After a GW causing no memory has passed, δlj becomes
zero, and the test particles come back to their original
positions, which is not the case for a GWpresentingmemory.
We note in this regard that the precise nature of GWmemory,
as originally proposed in [2], has been debated. Arguments
have been put forward that after the (plane) GW wave train
has passed, two given freely falling test particles do not come
to rest again, as stated by [2], but retain a finite velocity
relative to each other [73–75].

2. Memory effect in the analogue model

In analogue models, general (coordinate) covariance is
absent. In other words, for our analogue, the observers in
the lab are not affected by the GW which is a sound wave
propagating in the BEC medium. In the analogue models
based on the description of fluid motion in Newtonian
framework, the notion of time and space is absolute [76],
which is simply reflected in the preferred frame of the

(Newtonian) lab in which the experimentalist carries out his
or her work.
To build our analogy, we defined in the main text fiducial

test particles which move with the flow. We note here that
one can imagine to define internal observers in the spirit of
Ref. [77]. In the latter reference, the authors postulate the
existence of internal observers as observers living in a
world of phonons, which can perform Michelson-Morley
type interferometry with them. This gedankenexperiment
then gives a zero fringe-shift (null) result explained by the
Lorentz-FitzGerald contraction in such an internal pho-
nonic world. However, the internal observer picture, in our
context, comes with an inherent difficulty. For nonlinear
sound, signal propagation depends on the amplitude of
perturbations [cf. Eq. (16)] One would therefore be posed
with the formidable task to construct, for obtaining a null
result, an internal phonon interferometer which has non-
linear Lorentz-FitzGerald contraction for different signal
amplitudes. On the other hand, even if general covariance is
lost in the case of nonlinear sound, we can still define an
internal observer in the phononic world, which is having
access to the acoustic metric.
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