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In a recent paper, Sahoo, Das, and Spiesberger, Phys. Rev. D 103, L111303 (2021), a calculation of the
parity violating 6S − 7S E1 amplitude in Cs is reported, claiming an uncertainty of just 0.3%. In this
Comment, we point out that key contributions have been omitted, and the theoretical uncertainty has been
significantly underestimated. In particular, the contribution of missed QED radiative corrections amounts to
several times the claimed uncertainty.
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I. INTRODUCTION

The 6S–7S atomic parity violation (APV) amplitude in
Cs may be expressed as hf7SjDzjf6Si, where Dz is the z
component of the electric dipole (E1) operator, and jf6Si
and jf7Si are weak-interaction-perturbed atomic states; the
source of this interaction is Z-boson exchange between the
electrons and the nucleus. In the lowest-order single-
particle picture, it may be written

EPV¼
X

n

�h7sjhwjnihnjdzj6si
ε7s−εn

þh7sjdzjnihnjhwj6si
ε6s−εn

�

; ð1Þ

where dz is the single-particle E1 operator, hw ¼
− GF

2
ffiffi

2
p QwρðrÞγ5 is the parity-violating weak interaction

operator, with GF the Fermi constant, Qw the nuclear weak
charge, ρ the nuclear density, and γ5 the Dirac matrix, and n
runs over all p1=2 states including the (occupied) core; see
Ref. [1]. The accuracy of the calculation is determined by
account of many-body effects and smaller corrections
including higher-order relativistic effects. Evaluation of
EPV in Cs with an accuracy matching or exceeding that of
the measurement [2] remains a formidable challenge. There
is a rich history connected to this spanning more than
20 years as the theoretical accuracy has reached the
fraction-of-a-percent level; see, e.g., reviews [1,3,4] and
Ref. [5]. A major development over this time, following
the realization of the significance of the Breit contribution

[6–9], was the recognition of the importance of quantum
electrodynamics (QED) radiative corrections and the for-
mulation of methods to account for them in precision
calculations for heavy atoms [10–17] (see also [18–21]).
We have identified a number of shortcomings in the

theoretical evaluation of EPV in the paper [22], some of
which are detailed below. Most notably, the treatment of
QED radiative corrections omits important contributions to
EPV, which amount to several times the theoretical uncer-
tainty claimed in Ref. [22].

II. QED CORRECTION TO EPV

QED radiative corrections in the strong Coulomb field of
the nucleus make a significant contribution to EPV, ≲1%.
These have been calculated before [11–17,23,24] and are
well established. It is said in the paper [22] that one of the
key improvements is the treatment of these QED correc-
tions. However, details of the QED calculation are not
presented in the paper, and the reader is directed to the
unpublished manuscript [25] for explanation [26]. There it
is said that the self-energy QED correction to EPV (and to
other atomic properties) is accounted for by including the
radiative potential [17,20] into the Hamiltonian from the
start [27], which the authors claim to be a more rigorous
approach compared to previous calculations.
The radiative potential method [17] enables the accurate

inclusion of self-energy corrections to the energies and
wave functions of many-electron atoms. It may also be
used to account for QED corrections to matrix elements
of external fields whose operators act at radial distances
much larger than the electron Compton wavelength,
r ≫ eℏ=ðmecÞ, e.g., the E1 field. However, this is not
the case for operators that act at small distances, including
the weak and hyperfine interactions. We illustrate this in
Fig. 1. For the E1 interaction, the dominant contribution is
given by the left and right diagrams, which may be
accounted for by using the radiative potential method.
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However, for the weak and hyperfine interactions, other
contributions are important. In particular, the middle vertex
diagram—where the external field is locked inside the
photon loop—simply cannot be accounted for using this
method. We refer the reader to the original [17] and
subsequent [24] works for details on the applicability of
the radiative potential method.
The QED correction to the full Cs APV amplitude

(involving both E1 and weak interactions) was determined
in Refs. [16,17]. In Ref. [17], the radiative potential method
was used to calculate corrections to the E1 matrix elements
and energy denominators in the sum (1), with QED
corrections to weak matrix elements hsjhwjp1=2i taken
from previous works [13–15]. In Ref. [16], Shabaev et al.
calculated the total correction by applying a rigorous QED
formalism. The results of Refs. [16,17] are in excellent
agreement, −0.27ð3Þ% and −0.32ð3Þ%, respectively [28].
It is unclear how the authors of [22] arrive at a QED

correction of −0.4% for the weak matrix elements and
−0.3% for EPV, in agreement with existing calculations
[13–17,23,24], given the important short-range effects,
including the vertex contribution, have been omitted. In
an attempt to reproduce the results of Ref. [22], we
calculate the radiative potential value for the QED correc-
tion to weak matrix elements, including vacuum polariza-
tion. The result is −2.1%, too large by a factor of 5
compared to the correct calculations, demonstrating the
importance of the missed short-range effects. This differ-
ence amounts to a change in EPV that is nearly 6 times the
atomic theory uncertainty claimed in Ref. [22].

III. HYPERFINE CONSTANTS

In the paper [22], calculations of hyperfine constants are
performed to test the accuracy of the wave functions in the
nuclear region, crucial for assessing the accuracy of APV
calculations (see Refs. [29–32] for recent studies of the
nuclear magnetization distribution for Cs). By demonstrat-
ing excellent agreement with experiment, the authors
conclude the accuracy of their wave functions is high,
and so estimate a tremendously small uncertainty for the
APV calculation. However, it appears that serious omis-
sions have been made in the hyperfine calculations.

As for EPV, the vertex and short-range contributions to
QED corrections to hyperfine constants are important
[29,33] (see also [34–38]). Moreover, the magnetic loop
vacuum polarization correction gives a significant contribu-
tion [29,33]. In the paper [22], the radiative potential method
is employed, with no account for these contributions. Given
this, it is unclear how the authors of [22,25] arrive at a
correction of −0.3% to the hyperfine constants for s states of
Cs, in good agreement with existing calculations [29,33]. To
investigate this result, we again use the radiative potential
method and find it gives a correction of −1.2%, 3 times too
large compared to rigorous QED calculations [29,33],
confirming the importance of the omitted effects. This
difference amounts to 2 times the uncertainty of the hyper-
fine calculations (0.4%) claimed in the paper [22].

IV. CORE CONTRIBUTION

The contribution to EPV coming from the (occupied)
n ¼ 2–5 terms in Eq. (1) is called the “core” (or auto-
ionization) contribution. In the paper [22], it is said that the
main difference in the EPV result compared to the previous
calculation of Dzuba et al. [39] stems from the opposite
sign of the core contribution. The difference in core
contribution between Refs. [22] and [39] is larger than
the theoretical uncertainty claimed in the paper [22] and
should be investigated thoroughly.
In Ref. [39], Dzuba et al. showed that many-body effects

(core polarization and correlations) have a significant impact
on the core contribution, changing its sign compared to the
lowest-order Hartree-Fock value; see also Ref. [3]. The
authors of Ref. [22] claim their result confirms the core
calculation of Ref. [40] and agreeswith the result of Ref. [41].
However, in both of those works, the core contribution was
evaluated in the lowest-order approximation.
Here, we reexamine the core contribution in detail in an

attempt to elucidate the source of this difference, though
the comparison of individual contributions across different
methods may not be straightforward, as discussed in
Ref. [4]. We include core polarization using the time-
dependent Hartree-Fock (TDHF) method [42], in which the
single-particle operators are modified: dz→ d̃z¼dzþδVd,
and hw → h̃w ¼ hw þ δVw. The δV corrections are found
by solving the set of TDHF equations for all electrons in the
core [42]. We obtain the corrections to lowest order in the
Coulomb interaction by solving the set of equations once,
and to all-orders by iterating the equations until self-
consistency is reached [42] (equivalent to the random-phase
approximation with exchange, RPA [43]). The equations for
δVd are solved at the frequency of the 6S–7S transition (see
[44] for a numerical study). We account for correlation
corrections using the second-order [45] and all-orders [46]
correlation potential methods (see also [12]).
The core contribution arises as the sum of two terms, due

to the weak perturbation of 6s and 7s states, respectively.
These have similar magnitude though opposite sign, and

FIG. 1. Feynman diagrams for self-energy corrections to matrix
elements. Dashed line with triangle represents the external field
(e.g., E1, weak, hyperfine), wavy line the photon propagator, and
double line the bound electron wave function and propagator. The
middle diagram is a vertex correction.
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strongly cancel, meaning numerical error may be signifi-
cant. We test the numerical accuracy in a number of ways.
First, we vary the number of radial grid points used for
solving the differential equations, and vary the number of
basis states used in any expansions. We find numerical
errors stemming from grid/basis choices can easily be made
insignificant. More importantly, we have three physically
equivalent, but numerically distinct, ways to compute EPV:

X

n

�h7sjh̃wjnihnjd̃zj6si
ε7s − εn

þ h7sjd̃zjnihnjh̃wj6si
ε6s − εn

�

ð2Þ

¼ hδψ7sjd̃zj6si þ h7sjd̃zjδψ6si ð3Þ

¼ h7sjh̃wjΔψ6si þ hΔψ7sjh̃wj6si; ð4Þ

where δψ and Δψ are corrections to the valence wave
functions (ψ) due to the time-independent weak interaction,
and the time-dependent E1 interaction, respectively. These
are called the sum-over-states (2), weak-mixed-states (3),
and E1-mixed-states (4) methods [47].
In the sum-over-states method, a B-spline basis (e.g.,

[48,49]) is used to sum over the set of intermediate states. In
contrast, the mixed-states approach does not require a basis
at all; the δ and Δ corrections are found by solving the
differential equations [50]:

ðh − εÞδψ ¼ −h̃wψ ð5Þ

ðh − ε − νÞΔψ ¼ −d̃zψ ; ð6Þ

where h is the single-particle atomic Hamiltonian, and ν is
the 6S–7S transition frequency. In the mixed-states
approach, the core contribution is found by projecting the
corrections δψ andΔψ onto the core states, while in the sum-
over-states method it is found by restricting the sum to
include only core states. Note that the numerics involved in
solving each of the above equations is significantly different,
and the coincidence of results is indicative of high numerical
accuracy. Even with moderate choice for the radial grid, we
find the results of the two mixed-states methods agree to
parts in 108, and the mixed-states and sum-over-states
methods agree to parts in 107, demonstrating excellent
numerical precision and completeness of the basis.
Our calculations of the core term are summarized in

Table I. The sign change in the core contribution is mostly
due to polarization of the core by the external E1 field. This
is sensitive to the frequency of the E1 field. While
correlations beyond core polarization are important, they
affect both terms in roughly the same manner; the core term
and its sign are robust to the treatment of correlations. We
also performed calculations for the 7S − 6D3=2 EPV for
223Raþ to test against previous calculations; at the RPA
level, we find the core contribution to be 6.81 [in units
−10−11ið−Qw=NÞjejaB], in excellent agreement with the
result 6.83 of Ref. [51] (see also [52,53]). It is unclear why
the sign of the result of the paper [22] remains the same as
the Hartree-Fock value.

V. CONCLUSION

For the above reasons, we are not convinced the result
presented in the paper [22] is an improved value for the
Cs EPV. We conclude that the most reliable and accurate
values that have been obtained to date are: EPV ¼ 0.898ð5Þ
[12,17] and EPV ¼ 0.8977ð40Þ [39,40], in units
−10−11ið−Qw=NÞjejaB, which agree precisely and were
obtained using different approaches. These results are also
in excellent agreement with previous calculations
[8,23,41,54], though in disagreement with the result of
the paper [22].

TABLE I. Core contribution to 133Cs 6S-7S EPV in different
approximations, in units −10−11ið−Qw=NÞjejaB, where N ¼ 78
is the number of neutrons.a Here, HF denotes relativistic Hartree-
Fock, δVð1Þ and δVð∞Þ denote lowest-order and all-orders core
polarization, respectively, with subscripts w and d indicating
polarization by the weak or E1 fields, Σð2Þ and Σð∞Þ denote
second- and all-orders correlations, respectively, and λ indicates
correlations have been rescaled to reproduce the lowest exper-
imental binding energies.

Method hδψ7sjd̃zj6si h7sjd̃zjδψ6si Sum

HF −0.02645 0.02472 −0.00174
HFþ δVð1Þ

w −0.03747 0.03539 −0.00208
HFþ δVð∞Þ

w −0.04319 0.04119 −0.00201

E1 TDHF equations solved at HF frequency:

HFþ δVð∞Þ
w þ δVð1Þ

d −0.05506 0.05442 −0.00063
HFþ δVð∞Þ

w þ δVð∞Þ
d

b −0.05822 0.05992 0.00170

E1 TDHF equations solved at experimental frequency:

HFþ δVð∞Þ
w þ δVð1Þ

d −0.05468 0.05466 −0.00002
HFþ δVð∞Þ

w þ δVð∞Þ
d

b −0.05784 0.06043 0.00259

Including correlation corrections (and δVð∞Þ
w þ δVð∞Þ

d ):

Σð2Þ −0.06739 0.06924 0.00184
λΣð2Þ −0.06547 0.06732 0.00184
Σð∞Þ −0.06514 0.06695 0.00181
λΣð∞Þ −0.06516 0.06696 0.00181

Other calculations:

HF [41] −0.002
HF [40] −0.002
Σð∞Þ þ RPA [39] 0.00182

Values from the paper [22]:

HF [22] −0.0017
RCCSD [22] −0.0019
RCCSDT [22] −0.0018

aTo avoid possible ambiguity in the sign, we note that the total
amplitude is positive in these units; at the HF level it is 0.7395.

bHFþ δVð∞Þ
w þ δVð∞Þ

d is commonly called RPA level.
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