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Within SU(2) Higgs-Proca theory, we obtain a family of nontopological static solutions describing
localized, finite-energy configurations (Proca balls). The gauge symmetry of the theory is explicitly broken
by introducing a vector Proca field whose components have different masses. Such solutions describe
particlelike systems, the crucial feature of which is that they either possess a nonzero total angular
momentum or have a flux of electric field through the plane of symmetry of such objects. It is shown that
the angular momentum is provided by static crossed electric and magnetic fields. The existence of the
solutions is caused by the fact that we circumvent the conditions of the no-go theorem, according to which
there are no stationary and axially symmetric spinning excitations for the ’t Hooft-Polyakov monopoles,
Julia-Zee dyons, sphalerons, and also vortices. The dependence of some integral physical quantities on the
ratio of the Proca-field masses is studied. It is demonstrated that the inclusion of external sources (charges)
enables one to obtain solutions with equal Proca-field masses. We also discuss the possibilities of using
quarks as sources of the Proca field under investigation and for treating the Proca balls as glueballs in SU(2)
Higgs-Proca theory.
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I. INTRODUCTION

There are numerous studies in the literature on soliton-
like solutions to classical nonlinear equations for various
fundamental fields. The important property of such
solutions is that they describe finite-energy objects with
a localized, nondispersive energy density. Most of the
solitonlike solutions have an essentially nonperturbative
nature, i.e., they cannot be obtained by starting from
solutions of the corresponding linear part of the field
equations and treating the nonlinear terms perturbatively.
The presence of the nonlinearity compensates the field’s
natural tendency to disperse. A role of such nonlinearities
in the system may be played by self-interaction of the
fields or by any other fields (for example, gravita-
tional ones).

In this connection, the search for solitonlike solutions
possessing some new properties is an interesting and rather
complicated problem. For instance, the question can be
asked whether solitonlike solutions with a nonzero total
angular momentum do exist? The answer to this question is
positive. For example, a solution with a nonvanishing
angular momentum describing localized configurations
(Q-balls) in a theory with a nonlinear scalar field was
obtained in Ref. [1]. In Ref. [2], this solution has been
generalized to the case of the presence of a gravitational
field. On the other hand, in Ref. [3], it was shown that in SU
(2) Yang-Mills-Higgs gauge theory there are no stationary
and axially symmetric spinning excitations for all known
topological solitons in the one-soliton sector; that is, for the
’t Hooft-Polyakovmonopoles, Julia-Zee dyons, sphalerons,
and also vortices. Nevertheless, it was demonstrated in
Refs. [4,5] that it is possible to circumvent the conditions
imposed by this no-go theorem by considering SUð2Þ ×
Uð1Þ theory involving complex Higgs scalar fields and a
U(1) gauge field; this enables one to obtain solutions
possessing a finite energy and nonzero angular momentum.
A similar problem occurs in studying the structure of the
proton spin when it is assumed that gluons may also
contribute to the proton spin [6].
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In this study, we show that within SU(2) Higgs-Proca
theory, where the gauge symmetry is explicitly broken by
introducing a massive vector (Proca) field, localized regular
solutions describing configurations with a nonvanishing
total angular momentum can exist. In what follows we will
refer to such configurations as Proca balls (or, for brevity,
P-balls). Interest in studying Proca fields in various aspects
has increased considerably in recent years because of the
possibility of obtaining new solutions suitable for the
description of various physical objects and processes. In
particular, these can be compact, strongly gravitating star-
like configurations [7–12], black holes [13,14], dark matter
[15,16], processes at cosmological scales [17,18], various
effects related to the possible presence of the rest mass of a
photon [19], as well as flux tube configurations filled with
electric and magnetic fields [20–22].
As another interesting problem, one may consider the

question of the existence of solitonlike solutions describing
localized configurations (for example, tubes) with a non-
zero flux of electric field through the plane of symmetry of
such systems. A study of such configurations may be of
considerable interest from the point of view of the confine-
ment problem in quantum chromodynamics where the
existence of a flux of electric field confined inside a tube
connecting quarks and antiquarks is necessary [6].
In our recent paper [23], we have shown that in SU(2)

Higgs-Proca theory containing one real Higgs scalar field
coupled to Proca fields there exist localized flux tube
solutions with a flux of magnetic field through the plane of
symmetry of a tube. In turn, in the presence of a
gravitational field, such systems possess an axially sym-
metric dipole field (a Proca dipole) sourced by a current
associated with the Higgs field [24]. In the present paper,
we consider particlelike, topologically trivial solutions in
SU(2) Higgs-Proca theory where the gauge symmetry is
explicitly broken and which contains a triplet of real Higgs
scalar fields. Our purpose will be to obtain regular localized
solutions describing P-ball type objects possessing such
physically interesting properties like the presence of either
a nonvanishing total angular momentum or a flux of electric
field through the plane of symmetry of such objects.
The paper is organized as follows. In Sec. II, we write

down the general field equations for SU(2) Higgs-Proca
theory, which we use in Sec. III to derive the equations for a
suitable field ansatz. In Sec. IV, we obtain cylindrically
symmetric solutions to the equations of Sec. III describing
infinite tubes with a flux of longitudinal color magnetic
field and nonzero linear angular momentum density along
the tube axis. In Sec. V, we find axially symmetric solutions
to the equations of Sec. III (both with and without charge
and current densities) describing finite-size tubes either
with a nonzero total angular momentum (Sec. V E) or with
a flux of longitudinal chromoelectric field (Sec. V G).
Finally, in Sec. VI, we summarize and discuss the results
obtained in the present paper.

II. SU(2) HIGGS-PROCA THEORY

The Lagrangian describing a system consisting of a non-
Abelian SU(2) Proca field Aa

μ coupled to a triplet of real
Higgs scalar fields ϕa can be taken in the form (hereafter,
we work in units such that c ¼ ℏ ¼ 1)

L ¼ −
1

4
Fa
μνFaμν −

1

2
ðμ2Þab;μνAa

μAbν þ 1

2
Dμϕ

aDμϕa

−
Λ
4
ðϕaϕa − v2Þ2: ð1Þ

Here Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν is the field strength

tensor for the Proca field, where ϵabc are the SU(2) structure
constants (the completely antisymmetric Levi-Civita sym-
bol), g is the coupling constant, a, b, c ¼ 1, 2, 3 are SU(2)
color indices, μ, ν ¼ 0, 1, 2, 3 are spacetime indices;
Dμϕ

a ¼ ∂μϕ
a þ gϵabcAb

μϕ
c. The Lagrangian (1) also con-

tains the arbitrary constants v and Λ and the Proca field
mass tensor ðμ2Þab;μν, which we suppose to be symmetric
with respect to the color and spacetime indices.
Using Eq. (1), the corresponding field equations can be

written in the form

DνFaμν þ ðμ2Þab;μνAbν ¼ gϵabcϕbDμϕc þ jaμ; ð2Þ

DμDμϕa ¼ −Λϕaðϕbϕb − v2Þ; ð3Þ

where, for the sake of generality, we have also added the
current four-vector jaμ. For such a system, the symmetric
energy-momentum tensor (EMT) coming from the
Lagrangian (1) is

Tμν ¼ −Fa
μαFaα

ν þ 1

4
gμνFa

αβF
aαβ þDμϕ

aDνϕ
a

− gμν

�
1

2
Dαϕ

aDαϕa −
Λ
4
ðϕaϕa − v2Þ2

�

− ðμ2Þab;ανAa
αAb

μ þ
1

2
gμνðμ2Þab;αβAa

αAbβ: ð4Þ

Here, the following remark is to be made. The above
EMT was obtained by varying the Lagrangian (1) with
respect to the metric. However, the Lagrangian contains the
Proca field mass tensor with mixed spacetime indices
which, in principle, can be raised/lowered by introducing
the corresponding metric tensor. In obtaining the EMT (4),
we did not do it, but only lowered the spacetime index on
the vector potential Abν, assuming that the Proca field mass
tensor with mixed spacetime indices is regarded as a
fundamental tensor. However, if we would drop this
assumption and suppose that the Proca field mass tensor
with contravariant or covariant indices is fundamental,
then, before performing the variation, it would be necessary
to raise/lower the spacetime index on the Proca field mass
tensor in Eq. (1). As a result, there would already be two
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metric tensors, with respect to which the variation would
have to be carried out. Then the resulting EMT would
contain a mass term different from that given in Eq. (4). It is
evident that such an inherent ambiguity in defining the
EMT is related to our initial assumption that different
components of the vector potential of the Proca field have
different masses. As will be demonstrated below, in

considering a physically more realistic situation where
the system contains charges (for example, quarks), it is
possible to obtain solutions with equal masses of all
components of the vector potential (i.e., the Proca field
mass tensor becomes a scalar quantity).
Making use of Eq. (4), the field energy density of the

system under consideration can be recast in the form

ε ¼ 1

2
ðEa

i Þ2 þ
1

2
ðHa

i Þ2 − ðμ2Þab;α0Aa
αAb

0 þ
1

2
ðμ2Þab;αβAa

αAbβ þ 1

2
ðDtϕ

aÞ2 þ 1

2
ðDiϕ

aÞ2 þ Λ
4
ðϕaϕa − v2Þ2; ð5Þ

where i ¼ 1, 2, 3 and Ea
i and Ha

i are the components of the electric and magnetic field strengths, respectively.

III. THE ANSATZ AND EQUATIONS

Our purpose is to obtain regular localized axially symmetric solutions in SU(2) Higgs-Proca theory. Consistent with this,
we take the ansatz for the Proca and scalar fields in the form

A1
t ¼

fðρ; zÞ
g

; A1
φ ¼ ρkðρ; zÞ

g
; A3

t ¼
hðρ; zÞ

g
; A3

φ ¼ ρwðρ; zÞ
g

; ϕ ¼ fϕ1ðρ; zÞ; 0;ϕ3ðρ; zÞg; ð6Þ

written in cylindrical coordinates ft; ρ;φ; zg. For such a choice, there are the following nonvanishing color electric and
magnetic fields (physical components),

E1
z ¼ −

f;z
g
; E3

z ¼ −
h;z
g
; E1

ρ ¼ −
f;ρ
g
; E3

ρ ¼ −
h;ρ
g
; ð7Þ

H1
z ¼ −

ρk;ρ þ k

gρ
; H3

z ¼ −
ρw;ρ þ w

gρ
; H1

ρ ¼
k;z
g
; H3

ρ ¼
w;z

g
; ð8Þ

where a comma in lower indices denotes differentiation
with respect to the corresponding coordinate.
In what follows we will consider the simplest case where

h ¼ −f; k ¼ −w; ϕ1 ¼ ϕ3 ¼ ϕ: ð9Þ

In this case Eqs. (2) and (3), after substitution of the
components (6), yield

Δx;yf − 2ϕ2f þ f ¼ j1t; ð10Þ

Δx;yw −
w
x2

− 2ϕ2wþ α2w ¼ j3φ; ð11Þ

Δx;yϕþ ½2ðf2 − w2Þ − Λð2ϕ2 − v2Þ�ϕ ¼ 0; ð12Þ

where Δx;y ¼ ∂xx þ ∂yy þ ∂x=x is the Laplacian in the
coordinates x, y. Equations (10)–(12) are written in terms of
the dimensionless variables

ðx; yÞ ¼ μfðρ; zÞ; ðϕ̃; ṽÞ ¼ g
μf

ðϕ; vÞ; ðf̃; w̃Þ ¼ 1

μf
ðf; wÞ; ðj̃1t; j̃3φÞ ¼ 1

μ3f
ðj1t; j3φÞ; Λ̃ ¼ Λ

g2
; α ¼ μw

μf
;

with the following components of the Proca field mass
tensor: μ2f ≡ ðμ2Þ11;tt and μ2w ≡ ðμ2Þ33;φφ. To make the
notation simpler, we have omitted the tilde sign over the
dimensionless variables in Eqs. (10)–(12). Also notice that
in the absence of the currents, Eqs. (10) and (11) can be
regarded as Schrödinger-type equations with the potentials
2ϕ2 and ð1=x2 þ 2ϕ2Þ, respectively. This enables us to

assume that regular solutions to these equations can exist
only if a solution for the scalar field ϕ ensures the existence
of a potential well which allows the presence of positive
energy levels; this, in turn, assumes that ϕ → v=

ffiffiffi
2

p
at

infinity.
We must emphasize here the following point; although

Eqs. (10) and (11) look like equations for U(1) Proca scalar
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electrodynamics, this is not so, however. The reason is that
if we ignore the simplifying assumption (9), an equation,
for example, for the potential f would take the form

Δρ;zf − ðw2 þ g2ϕ2
3Þf þ hkwþ g2hϕ1ϕ3 þ μ2ff ¼ j1t:

ð13Þ

This equation already contains the nonlinear terms fw2 and
hkw, and this reflects the non-Abelianity of the theory
under consideration. A similar situation occurs for other
equations as well.
Finally, the Poynting vector is

Si ¼ ϵijkffiffiffi
γ

p Ea
jH

a
k; ð14Þ

where γ is the determinant of the space metric. For the field
strengths (7) and (8), this expression gives the following
nonvanishing dimensionless physical component,

S̃φ ≡ g2

μ4f
Sφ ¼ 2

�
f;x

�
w;x þ

w
x

�
þ f;yw;y

�
: ð15Þ

IV. INFINITE FLUX TUBE SOLUTIONS

Before proceeding to finding localized solutions (that is,
solutions possessing a finite total energy and linear sizes),
we will obtain solutions describing an infinite tube filled
with electric and magnetic fields. For such a tube, the
derivatives with respect to y in Eqs. (10)–(12) vanish, and
we have the following set of equations (without charges and
currents),

f00 þ 1

x
f0 − 2ϕ2f þ f ¼ 0; ð16Þ

w00 þ 1

x
w0 −

w
x2

− 2ϕ2wþ α2w ¼ 0; ð17Þ

ϕ00 þ 1

x
ϕ0 þ ½2ðf2 − w2Þ − Λð2ϕ2 − v2Þ�ϕ ¼ 0; ð18Þ

where the prime denotes differentiation with respect to x.
Such a tube contains the following nonvanishing color
electric and magnetic fields (physical components)
obtained from Eqs. (7) and (8)

E1
x ¼ −E3

x ¼ −f0; H1
y ¼ −H3

y ¼
xw0 þ w

x
; ð19Þ

where the dimensionless ðE1
x; H1

yÞ ¼ ðg=μ2fÞðE1
ρ; H1

zÞ.
We seek a solution to Eqs. (16)–(18) in the vicinity of the

origin of coordinates in the form

fðxÞ ¼ f0 þ f2
x2

2
þ… with f2 ¼

f0
2
ð2ϕ2

0 − 1Þ; ð20Þ

wðxÞ ¼ w1xþ…; ð21Þ

ϕðxÞ ¼ ϕ0 þ ϕ2

x2

2
þ… with

ϕ2 ¼ ϕ0

�
Λ
�
ϕ2
0 −

1

2
v2
�
− f20

�
; ð22Þ

where the expansion coefficients f0, ϕ0, and w1 are
arbitrary.
In turn, the asymptotic behavior of the functions f, w,

and ϕ can be found from Eqs. (16)–(18) in the form

fðxÞ ≈ f∞
e−x

ffiffiffiffiffiffiffiffi
v2−1

p

ffiffiffi
x

p ; wðxÞ ≈ w∞
e−x

ffiffiffiffiffiffiffiffiffi
v2−α2

p

ffiffiffi
x

p ;

ϕðxÞ ≈ vffiffiffi
2

p − ϕ∞
e−x

ffiffiffiffiffiffiffiffi
2Λv2

p

ffiffiffi
x

p ; ð23Þ

where f∞, w∞, and ϕ∞ are integration constants.
The derivation of solutions to the set of equations (16)–(18)

is an eigenvalue problem for the system parameters α, Λ,
and v (or, equivalently, for the expansion coefficients f0,
ϕ0, and w1). The numerical solution describing the behav-
ior of the Proca field potentials and of the corresponding
electric and magnetic fields is given in Fig. 1. This figure
also shows the energy density obtained from Eq. (5) using
(6) and (19) in the form

FIG. 1. Infinite flux tube solutions with the system parameters v ¼ 1.65, Λ ¼ 0.4, α ¼ 1.1. Left panel shows the profiles of the Proca
field potentials f and w and of the scalar field ϕ; middle panel—the profiles of the color electric, E1

x, and magnetic, H3
y, fields from

Eq. (19); right panel—the profiles of the linear energy density from Eq. (24) and of the linear momentum density given by Eq. (27).
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ε̃≡ g2

μ4f
ε ¼ f2;x þ w2

;x þ ϕ2
;x þ 2

ww;x

x
þ 2ðf2 þ w2Þϕ2

− f2 − α2w2 þ w2

x2
þ Λ

4
ð2ϕ2 − v2Þ2: ð24Þ

It is seen from Fig. 1 that the cylindrically symmetric
solutions obtained can be used for the description of
infinitely long tubes within non-Abelian Higgs-Proca
theory under consideration. Such tubes possess the finite
linear energy density,

E ¼ 2π

Z
∞

0

εðρÞρdρ < ∞; ð25Þ

and the finite flux of the longitudinal color magnetic
field H1

z ,

ΦH
z ¼ 2π

Z
∞

0

H1
zρdρ < ∞: ð26Þ

A similar flux occurs for the fieldH3
z in a direction opposite

to that of for the component H1
z .

Also, the system contains the following nonvani-
shing component of the energy flux/momentum density
[cf. Eq. (15)]

S̃φ ¼ 2f;x

�
w;x þ

w
x

�
; ð27Þ

whose behavior is demonstrated in the right panel of Fig. 1.
The presence of such component ensures the presence in
the system of a nonzero linear angular momentum density
along the tube axis: Lz ¼ ρSφ.
Note that, unlike the configurations considered by us

earlier in Refs. [20–22], these tubes contain no flux of the
longitudinal color electric field Ea

z .

V. FINITE FLUX TUBE SOLUTIONS

Having considered the infinite tube solutions, we turn
now to the study of regular solutions with finite sizes/
energies describing particlelike objects (Proca balls) pos-
sessing either a nonzero total angular momentum or a flux
of electric field through the plane z ¼ 0. In both cases, the
solutions will be non-Abelian ones, since, as pointed out
above, regardless of the fact that the potentials A1

t;φ and A3
t;φ

belong to two subgroups Uð1Þ ⊂ SUð2Þ, the presence of the
terms fw2 and hkw in Eq. (13) reflects the non-Abelianity
of the system. The same remarks are applicable to the
remaining equations as well.

A. Boundary conditions

In the present paper we choose such boundary conditions
that the components of the electric field strength are even or
odd functions of z. Consider first the case where the com-
ponentE1

z is an odd function andE1
ρ is an even function. This

presupposes the use of the following boundary conditions

∂f
∂ρ

����
ρ¼0

¼ ∂ϕ
∂ρ

����
ρ¼0

¼ 0; wjρ¼0 ¼ 0;
∂f
∂z

����
z¼0

¼ ∂w
∂z

����
z¼0

¼ ∂ϕ
∂z

����
z¼0

¼ 0;

f ¼ w ¼ 0; ϕ ¼ vffiffiffi
2

p as ρ2 þ z2 → ∞: ð28Þ

In what follows we will refer to configurations with such choice of the boundary conditions as the type A systems.
In turn, for the case where E1

z is an even function of z and E1
ρ is an odd function of z, we choose the boundary

conditions

∂f
∂ρ

����
ρ¼0

¼ ∂ϕ
∂ρ

����
ρ¼0

¼ 0; wjρ¼0 ¼ 0;
∂w
∂z

����
z¼0

¼ ∂ϕ
∂z

����
z¼0

¼ 0; fjz¼0 ¼ 0;

f ¼ w ¼ 0; ϕ ¼ vffiffiffi
2

p as ρ2 þ z2 → ∞; ð29Þ

and refer to configurations with this choice as the type B
systems.

B. Asymptotic behavior

Even before obtaining numerical solutions, it is possible
to estimate their asymptotic behavior, keeping in mind that
for the functions f and w we will seek solutions that decay

exponentially with distance, and for the function ϕ—a
solution that goes exponentially to a constant. For this
purpose, it is convenient to take a spherical coordinate
system fr; θ;φg. In this case, as r → ∞, the scalar field
ϕ ≈ v=

ffiffiffi
2

p
− η → v=

ffiffiffi
2

p
, and the functions f, w, η → 0

exponentially fast. As a result, from Eqs. (10)–(12), one can
obtain asymptotic equations
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△r;θf − ðv2 − 1Þf ¼ 0; ð30Þ

△r;θw −
w

r2sin2θ
− ðv2 − α2Þw ¼ 0; ð31Þ

△r;θη − 2Λv2η ¼ 0; ð32Þ

where △r;θ is the Laplacian in the coordinates r, θ.
Eqs. (30) and (32) have obvious solutions in the form

f ≈ CfðYÞ0lf
e−r

ffiffiffiffiffiffiffiffi
v2−1

p

r
; ð33Þ

η ≈ CηðYÞ0lη
e−r

ffiffiffiffiffiffiffiffi
2Λv2

p

r
; ð34Þ

where ðYÞ0lf;η are spherical functions and Cf;η are constants.

In turn, Eq. (31) has a solution similar to (33), but only with
the angular part expressed in terms of special functions (we
do not show this expression here to avoid overburdening
the text). The general solution of Eqs. (30)–(32) represents

a superposition of the above solutions, and it is obtained
by summing over lf and lη. It follows from the above
expressions that there are lower limits for the parameter v
ensuring the exponential asymptotic decay of the solutions:
v > 1 and v > α.

C. Charges and currents

When the system contains any charged particles (for
example, quarks), the right-hand sides of the Proca equa-
tions (10) and (11) should contain nonvanishing current
densities. In considering a self-consistent problem with a
tube connecting quarks, such currents must be created by
spinor fields describing quarks. For the sake of simplicity,
herewe consider a toymodel where the currents are given by
hand. This means that the location of the quarks and the
magnitude of color currents and charges created by them
are fixed.
In the simplest case the currents can be given, for

instance, by the Gaussian distribution. Bearing in mind
the symmetry of the problems at hand, we will use the
following expressions

For the type A systems∶ j1t ¼ ðj0Þ1t exp
�
−
x2 þ ðy − lÞ2

R2
0

�
; j3φ ¼ ðj0Þ3φ exp

�
−
y2 þ ðx − lÞ2

R2
0

�
; ð35Þ

For the type B systems∶ j1t ¼ ðj0Þ1ty exp
�
−
x2 þ ðy − lÞ2

R2
0

�
; j3φ ¼ ðj0Þ3φ exp

�
−
y2 þ ðx − lÞ2

R2
0

�
; ð36Þ

where ðj0Þ1t, ðj0Þ3φ, l, and R0 are arbitrary constants. Such
a choice for j1t implies that a “quark” is located on the tube
axis at a distance l from the origin of coordinates. In turn,
the expression for j3φ implies the presence of the current of
quarks in the z ¼ 0 plane located on a circle of radius l.

D. Numerical approach

The set of three coupled nonlinear elliptic partial differ-
ential equations (10)–(12) for the unknown functions f, w,
and ϕ will be solved numerically subject to the boundary
conditions (28) and (29). Keeping in mind that we will seek
solutions which are symmetrical about the plane z ¼ 0,
numerical computations will be carried out only in the
region z > 0. In doing so, for numerical calculations, it is
convenient to introduce new compactified coordinates

x̄ ¼ x
1þ x

; ȳ ¼ y
1þ y

; ð37Þ

the use of which permits one to map the infinite region
½0;∞Þ to the finite interval [0, 1].
All results of numerical calculations given below have

been obtained using the package FIDISOL [25] where the

numerical method based on the Newton-Raphson method is
employed. This method provides an iterative procedure for
obtaining an exact solution starting from an approximate
solution (an initial guess). As such initial guess, we use the
solution for the infinite tube obtained in Sec. IV. Solutions
are sought on a grid of 51 × 51 points, covering the region
of integration 0 ≤ x̄, ȳ ≤ 1 given by the compactified
coordinates from Eq. (37). This enables us to get solutions
with typical relative errors on the order of 10−4.

E. P-ball with a nonzero total angular momentum

Consider first the case of the type A configurations. In
this case the component E1

zðρ; z ¼ 0Þ ¼ 0 [see Eq. (7)]; this
implies that there is no flux of electric field through the
plane z ¼ 0. However, it turns out that the color electric and
magnetic fields are arranged so that there is a nonzero
Poynting vector ensuring the presence of nonvanishing
total angular momentum for the P-ball under consideration.
The corresponding results of computations are given in

Figs. 2 and 3. As in the case of an infinite tube of Sec. IV,
the input parameters are eigenparameters α, Λ, and v,
whose magnitudes determine the solution completely.
(Notice here that by imposing appropriate boundary
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conditions to Eqs. (10)–(12), one can reproduce the
solutions for an infinite flux tube obtained in Sec. IV.)
Fig. 2 shows the typical profiles of the components of the
vector potential f and w and the Higgs scalar field ϕ, as
well as of the Poynting vector and the energy density.
Figure 3 shows the distributions of the electric, E⃗1, and
magnetic, H⃗3, fields both in the absence of the sources in
Eqs. (10) and (11) and when the charges/currents given in
the form (35) are present.
Notice here the following interesting and important

point. As the calculations indicate, in the absence of the
charges/currents in the right-hand sides of Eqs. (10) and
(11), regular solutions exist only for α ≠ 1. This corre-
sponds to the fact that in this case the masses of the Proca
fields ff; hg and fw; kg are not equal to each other.
However, it is of physical interest to find solutions with
μf ¼ μw, i.e., when α ¼ 1; this would correspond to the

fact that the Proca mass tensor ðμ2Þab;μν appearing in
Eq. (1) would become a scalar. It turns out that this can
be achieved when the system contains a nonzero charge
density j1t given by the model (35). Examples of the
corresponding distributions of the electric and magnetic
fields are given in the third column of Fig. 3. In turn, this
enables us to assume that in considering more realistic
models where quarks are self-consistently described by
involving spinor fields into the system, solutions with α ¼ 1
will also exist.
For the type A systems, the φ-component of the Poynting

vector (15) is an even function of z. Since this vector is
proportional to the momentum density, this ensures the
presence in the system of a nonzero angular momentum
density directed along the tube axis: Mz ¼ ρSφ. This
situation is similar to what we have for the case of infinite
tubes considered in Sec. IV, where there exists a nonzero

FIG. 2. Typical distributions of the fields ϕ, f, w, the total energy density of the system ε̃ from Eq. (39), and the component S̃φ of the
Poynting vector given by Eq. (15). The graphs for the type A system (P-ball with a nonzero total angular momentum) are plotted by
choosing the parameters v ¼ 1.65, Λ ¼ 0.4, and α ¼ 1.1; for the type B system (P-ball with a nonzero flux of electric field through the
plane z ¼ 0)—by choosing v ¼ 1.0, Λ ¼ 0.4, and α ¼ 0.8. In all cases the charge/current densities are taken to be zero.
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FIG. 3. The dimensionless color electric, E⃗1, and magnetic, H⃗3, fields strength distributions for different values of the parameters for
the type A systems (SA) and type B systems (SB). For the systems with the charge/current, the values of the free parameters l and R0

appearing in Eqs. (35) and (36) are taken to be l ¼ 0.5 and R0 ¼ 1.
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linear angular momentum density determined by the φ-
component of the Poynting vector (27). But unlike the
infinite tube that has an infinite total angular momentum,
the finite tube will have a finite total angular momentum.
In the latter case, since the function Sφ is an even function
of z, for the P-ball under consideration, the total angular
momentum calculated by integration over the whole
volume dV ¼ ρdρdφdz with 0 ≤ ρ < ∞, 0 ≤ φ ≤ 2π,
and −∞ < z < ∞ is

P̃z ≡ g2Pz ¼ 4π

Z
∞

0

dy
Z

∞

0

S̃φx2dx ð38Þ

already written in the dimensionless form.
In turn, the total dimensionless energy density of the

system under consideration can be obtained from Eq. (5),
using Eqs. (6)–(8), in the form

ε̃≡ g2

μ4f
ε ¼ f2;x þ f2;y þ w2

;x þ w2
;y þ ϕ2

;x þ ϕ2
;y

þ 2
ww;x

x
þ 2ðf2 þ w2Þϕ2 − f2 − α2w2

þ w2

x2
þ Λ

4
ð2ϕ2 − v2Þ2: ð39Þ

As is seen from Fig. 2, the energy density can be negative
in some regions. To see whether this will give a negative
total energy of the system or not, we calculate the
dimensionless total mass (energy) of the configurations
under consideration,

M̃tot ≡ g2

μf
Mtot ¼ 4π

Z
∞

0

dy
Z

∞

0

ε̃xdx: ð40Þ

The results of calculations for the total mass and total
angular momentum as functions of the parameter α (for
fixed values of two other free system parameters v and Λ)
are given in the left panel of Fig. 4 for the values of α for
which we have succeeded in obtaining numerical solu-
tions to the required accuracy. As the computations for
the type A systems indicate, with increasing α, there is
some critical αðcritÞ ≈ 1.23 for which the function f → 0

(the electric field is switched off), and with further
increase of α, it always remains equal to zero.
Consequently, the configurations with α≲ αðcritÞ possess
both the magnetic and electric fields, but for α≳ αðcritÞ
only the magnetic field is present. In the latter case, the
system under investigation becomes a configuration that
can already be described within U(1) Proca scalar
electrodynamics.
Apart from the total angular momentum Pz, it is also of

interest to follow the behavior of a linear angular momen-
tum density

P̃z ≡ g2

μf
Pz ¼ 2π

Z
∞

0

S̃φx2dx; ð41Þ

which describes a distribution of the angular momentum
density along the tube axis. Examples of the corresponding
distributions are given in the right panel of Fig. 4. As is seen
from this figure, the angular momentum for the type A
systems is always directed in one direction.

FIG. 4. Left panel: The dependence of the total mass (40) and of the total angular momentum (38) of the configurations under
consideration on α for fixed values of the parameters v ¼ 1.65 and Λ ¼ 0.4 (for the type A systems) and v ¼ 1.0 and Λ ¼ 0.4 (for the
type B systems). For the type A systems, the thin vertical line separates the systems containing both the electric and magnetic fields
(located to the left of the line) from those possessing only the magnetic field (located to the right of the line). Right panel: The
distributions of the linear angular momentum density (41) along the tube axis for the solutions shown in Fig. 2. The arrows show the
directions of the angular momentum density.
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Summarizing the results for the solutions of this sort, in
SU(2) Higgs-Proca theory where the gauge symmetry is
explicitly broken and which contains a triplet of real Higgs
scalar fields, there exist particlelike solutions (P-balls)
possessing a nonvanishing total angular momentum. The
existence of such solutions is a consequence of the non-
Abelianity of the fields. Both in pure SU(2) Proca theory
(i.e., when scalar fields are absent) and in a system
containing only Higgs fields (i.e., in the absence of
Proca fields) there are no such solutions.

F. Comparison with spinning electroweak sphalerons

It is of interest to compare the configurations from the
previous subsection with spinning electroweak sphalerons
found in Refs. [4,5]. Those systems, obtained within
SUð2Þ × Uð1Þ theory involving Higgs scalar fields and a
U(1) gauge field, also possess a finite energy and nonzero
total angular momentum. The corresponding Lagrangian
was taken to be

L ¼ −
1

4g2
Fa
μνFaμν −

1

4g02
YμνYμν þ ðDμΦÞ†DμΦ

−
β

8
ðΦ†Φ − 1Þ2; ð42Þ

where Yμν ¼ ∂μYν − ∂νYμ is the field tensor for the U(1)
gauge field Yμ and Φ is a doublet of complex Higgs fields
with DμΦ ¼ ð∂μ − i

2
Yμ − i

2
σaAa

μÞΦ, where σa are the Pauli
matrices; g and g0 are the gauge coupling constants and β is
the self-coupling constant for the Higgs field.
The presence of the U(1) gauge field ensures the

following relation between the total angular momentum
Pz and electric charge Q [4]

Pz ¼
n
gg0

Q; ð43Þ

where n is an integer. Consequently, it is seen that the
presence of the angular momentum in SUð2Þ × Uð1Þ theory
is directly related to the presence of a U(1) electric charge.
Thus, there is a fundamental difference in the manner of

the occurrence of the angular momentum in the systems of
Refs. [4,5] and those considered in the present study. This,
in turn, means that the conditions imposed by the no-go
theorem of Ref. [3], according to which there are no
stationary and axially symmetric spinning excitations for
the ’t Hooft-Polyakov monopoles, Julia-Zee dyons, spha-
lerons, and also vortices, can be circumvented either by
introducing an extra U(1) gauge field (as is done in
Refs. [4,5]) or by explicitly violating the gauge symmetry,
as is done in the present paper when there is no need to
introduce an extra U(1) gauge field.

G. P-ball with a nonzero flux of electric field

In this subsection we consider the case of the type B
configurations, which already have Ezðρ; z ¼ 0Þ ≠ 0, i.e.,
there is a flux of electric field through the plane z ¼ 0. For
this case, Fig. 2 shows the typical profiles of the compo-
nents of the vector potential f and w, the Higgs scalar field
ϕ, and also the Poynting vector and the energy density. In
turn, Fig. 3 shows the distributions of the electric, E⃗1, and
magnetic, H⃗3, fields both in the absence of the sources in
Eqs. (10) and (11) and when the charges/currents given in
the form (36) are present.
As in the case of the type A configurations considered in

the previous subsection, for the type B systems, it is
possible to obtain regular solutions with equal masses of
the Proca fields ff; hg and fw; kg only in the presence of a
nonzero charge density j1t. Its choice in the form (36)
enables us to obtain the required solutions with typical
distributions of the electric and magnetic fields shown in
the third column of Fig. 3. Since in this case the component
Sφ of the Poynting vector is an odd function of z, so that,
despite the presence of a nonzero angular momentum in
the hemispace z > 0 (see Fig. 2), the total angular
momentum calculated over the whole space will be zero,
that is, Pz ¼ 0.
In turn, the left panel of Fig. 4 shows the dependence of

the total mass of the type B configurations on the parameter
α. Unlike the type A systems, in this case, for all values of α
for which we were able to obtain solutions to the required
accuracy, the systems always contain both the electric and
magnetic fields.
As regards the linear angular momentum (41), unlike the

type A systems in which the angular momentum is always
directed in one direction, for the type B configurations, the
direction of the angular momentum varies along the tube
axis, as is depicted in the right panel of Fig. 4.
Summarizing the results of this subsection, it is shown

that there exist P-ball type solutions possessing a flux of
electric field through the plane of symmetry z ¼ 0. For such
configurations, to the right and to the left of this plane, there
are equal in modulus but oppositely directed angular
momenta; consequently, the total angular momentum of
the system vanishes.

VI. DISCUSSION AND CONCLUSIONS

In the present study, we have shown that in SU(2) Higgs-
Proca theory there exist regular solitonlike static solutions
possessing a finite total energy. Such solutions can be used
for the description of localized Proca-ball-type configura-
tions. The latter are in equilibrium due to the force balance:
the non-Abelian Proca field is purely repulsive, whereas the
Higgs scalar field is purely attractive. The crucial feature of
such systems is that they have the following physically
interesting properties: they either possess a nonzero total
angular momentum (despite the fact that the solutions are
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static) or have a flux of electric field through the plane of
symmetry z ¼ 0. It is important to notice that separately
neither in SU(2) Proca theory nor in the system supported
only by the Higgs scalar field the existence of such
solutions is possible. From the mathematical point of view,
that is because the non-Abelian Proca equations (10) and
(11) are Schrödinger-type equations for the functions f and
w; for regular solutions of these equations to exist, one has
to have a potential well that, in the present case, is created
by the scalar field ϕ obeying Eq. (12). In the absence of
such a scalar field, Eqs. (10) and (11) will have only
singular solutions. In turn, according to Derrick’s theorem
[26], in the absence of extra fields, the equation for the
scalar field ϕ has no (3þ 1)-dimensional regular solutions.
The following feature of the systems under consideration

should be mentioned. In the absence of external
sources [that is, when in Eq. (2) the four-current jaμ ¼ 0]
we were able to obtain regular solutions to the set of
equations (10)–(12) only in the case where masses of the
Proca fields ff; hg and fw; kgwere different. However, it is
of special physical interest to get solutions for a system in
which all components of the Proca field would have equal
masses. It turns out that this can be achieved if a nonzero
charge density is included in the system. In our case, to
model the charge, we have used toy models in the form (35)
and (36); this enabled us to get solutions with equal Proca-
field masses. In a more realistic case, the toy models used
here must be replaced by suitable four-currents created, for
example, by a spinor field ψ in the form jaμ ∼ ψ̄γμσaψ ,
where γμ and σa are the Dirac and Pauli matrices, respec-
tively. If it would be possible to obtain regular solutions for
such a self-consistent SU(2)-Higgs-Proca-Dirac system, it
might be an argument in favor of the possibility of using such
systems for, e.g., the approximate modeling of the confine-
ment phenomenon in QCD. The hope for obtaining sol-
utions for such a system is related to the fact that we have
already found particlelike solutions in SU(2) Higgs-Proca-
Dirac theory [21,27], aswell asmonopole solutions in SU(2)
Yang-Mills-Dirac theory [28,29].
It is evident that the problem of the existence of Proca

fields in nature is of great importance (as briefly discussed,
e.g., in Refs. [23,24]). As a first possibility, one may
assume that the Proca fields are fundamental; but this
implies the violation of the gauge principle according to
which all fundamental integer-spin fields must be gauge
invariant. The second possibility presupposes that the Proca
fields are phenomenological; this means that they are
introduced in a theory to give an approximate description
of some nonperturbative quantum phenomena. In any case,
there are some motivations for introducing such fields, as
discussed, in particular, in the literature devoted to various
aspects of using Proca fields [7–22].
Let us also note the following properties of the solutions

obtained:

(a) Regular finite-size tube solutions exist both with and
without external sources (charges/currents).

(b) According to the no-go theorem of Ref. [3], there are no
stationary and axially symmetric spinning excitations
for all known topological solitons in the one-soliton
sector, that is, for the ’t Hooft-Polyakov monopoles,
Julia-Zee dyons, sphalerons, and also vortices. The
existence of the solutions with a nonvanishing total
angular momentum obtained here is possible since we
circumvent the conditions of this theorem inview of the
fact that (i) the gauge symmetry is explicitly broken by
introducing the mass tensor for the non-Abelian field,
and (ii) the solutions at hand are topologically trivial.
Notice also that the ways to circumvent the conditions
imposed by this no-go theorem employed in Refs. [4,5]
and in the present study are fundamentally different; in
Refs. [4,5], an extra U(1) gauge field is introduced,
whereas in the present work the gauge symmetry is
explicitly broken. As a result, for the configurations of
Refs. [4,5], there is some relation between an angular
momentum and U(1) electric charge (and no charge ¼
no angular momentum), whereas in our case there is no
such a relation.

(c) There is a profound difference between Q-balls and
P-balls related to the fact that the angular momentum
of a Q-ball is provided by a spinning scalar field,
whereas the angular momentum of a P-ball is created
by static crossed electric and magnetic Proca fields. In
a certain sense, the systems with a nonzero total
angular momentum, in analogy to Wheelers concep-
tion of “charge without charge”, may be called the
configurations possessing “rotation without rotation”.

(d) The inclusion in the system of a charge permits one to
obtain solutions with equal masses of all components
of the vector potential. In this case the Proca field mass
tensor becomes a scalar quantity; this enables one to
avoid ambiguities in defining the energy-momentum
tensor [see the discussion after Eq. (4)].

(e) In the general case the P-balls are essentially non-
Abelian objects. However, it is demonstrated that for
the configurations with a nonzero total angular mo-
mentum there exists some critical value of the system
parameter α for which the electric field is switched off
and only the magnetic field remains nonzero. In this
case the system becomes a configuration that can
already be described within U(1) Proca scalar electro-
dynamics.

(f) For the systems obtained the Meissner-like effect is
seen; the electric, magnetic, and scalar fields expel one
another. In a certain sense, this is analogous to the
well-known effect in dual QCD when a color electric
field is expelled by magnetic monopoles.

(g) There are P-ball solutions supported only by the non-
Abelian Proca and scalar fields, without involving any
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sources of such fields (such as quarks, for example).
This can be regarded as a close analogue of the
problem of obtaining glueballs in QCD; this enables
us to assume that P-balls may play the role of glueballs
in SU(2) Higgs-Proca theory.

The solutions obtained have no nodes and can be
regarded as fundamental P-balls (cf. the fundamental
Q-balls of Refs. [1,2]). For such configurations, for fixed
values of the system parameters α, Λ, and v, there are the
only values of the total energy/mass and angular momen-
tum. Apparently, for the same values of the above param-
eters, solutions with nodes (if they exist) will describe
excited states of the system whose total energy/mass and
angular momentum will already be different.
In conclusion, a few words should be said about the

question of stability of the systems under investigation. The
configurations considered here are described by nontopo-
logical solutions (no topological charge) and supported by
real fields (no conserved charge or particle number). For
this reason, it is impossible to apply to them the stability
criteria based on the conservation of the topological
charge (as is done, for example, in the case of topological
(kinklike) solutions for scalar fields or in the case of the
’t Hooft-Polyakov monopole solution [30]) or related to the
presence of some other conserved quantities (for instance,
the isospin in SU(2) theory with a Higgs-type field [31] or a

nonzero charge associated with a complex scalar
field [32]).
In this connection we see two possible ways of studying

the stability of the systems under consideration. First, one
can examine the stability with respect to axisymmetric
perturbations (both linear and nonlinear), as is done for
nontopological systems (see, e.g., Ref. [33]) and in the case
of various objects supported by non-Abelian fields (see,
e.g., the problems with linear [34] and nonlinear [35]
perturbations). Second, it is possible to study the stability
within catastrophe theory [36]. In both cases, for axially
symmetric systems of the type considered in the present
paper, this is a technically complicated problem that
requires a careful analysis, and we plan to do this in a
separate work.
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