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The production of electron-positron pairs from light is a famous prediction of quantum electrodynamics.
Yet it is often emphasized that the number of produced pairs has no physical meaning until the driving
electromagnetic fields are switched off, as otherwise its definition is basis dependent. The common
adiabatic definition, in particular, can predict the “creation” of a number of pairs orders of magnitude larger
than the final yield. We show here, by clarifying exactly what is being counted, that the adiabatic number of
pairs has an unambiguous and physical interpretation. As a result, and perhaps contrary to expectation, the
large numbers of pairs seen at nonasymptotic times become, in principle, physically accessible.
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I. INTRODUCTION

One of the most well-known nonperturbative predictions
of quantum electrodynamics is the Schwinger effect, the
creation of electron-positron pairs from light [1,2]. An
example of quantum tunneling (from the Dirac sea), the
Schwinger effect can be the dominant mechanism behind
charge loss from black holes [3], exhibits features of
universality [4,5], and has analogs in solid-state physics
[6,7], often realized throughLandau-Zener tunneling [8–11].
Experimental progress is bringing us closer to the point
at which the Schwinger effect may be seen in laser
experiments [12–17].
There exist many, mutually consistent methods by

which to calculate the asymptotically late time (final-state)
number of pairs which can be produced from a given electric
field profile [18–26]. However, attempts to define a time-
dependent number of created pairs, NðtÞ, while the electric
field is still turned on, runs into trouble: NðtÞ depends
unphysically on the choice of basis, and while all choices
agree on the asymptotic number of pairs, they differ greatly
at intermediate times. Even the most common and well-
known choice, that of a basis of adiabatic Hamiltonian
eigenstates, yields pair numbers which fluctuate wildly in
time and can exhibit transient values orders of magnitude
higher than the final, unambiguous, number of pairs. This
has led to drastic overestimates for the number of pairs
which could be created in experiments, and as such it is now
repeatedly emphasized that no direct physical meaning

should be attributed to the nonasymptotic number of pairs
[27–30]. [The issue is exemplified by “solitonic” cases for
which NðtÞ is nonzero but falls to exactly zero asymptoti-
cally, meaning no pairs are ultimately produced [28,31,32].]
However, it is also possible to find particular “super-

adiabatic” bases for whichNðtÞ interpolates more smoothly
between 0 and its asymptotic value, without the large
oscillations of other bases [33,34]. What, then, is the
“correct” basis to use in order to describe the time evolution
of the number of pairs [34]? Do the transient excitations
have a physical meaning [35], or should a method be found
to remove them [30]? The same questions apply to analog
Schwinger effects, where e.g. an adiabatic particle number
is also used, and related questions arise in particle creation
from spacetime curvature [36–39], in chaos [40–42] and in
tunneling ionization [43–46]. Progress in understanding the
intermediate particle number would thus shed light on a
nonperturbative quantum phenomenon of relevance to
laser, condensed-matter, gravitational and nuclear physics.
Our aim in this paper is to motivate a change in

perspective: rather than asking which of the infinitely
many bases is physically relevant for pair production
(if any), we will here turn the question around and ask
instead what is the physics contained in different bases? We
suggest that this may be the more physically relevant, and
revealing, question. We will here identify the physical
meaning of adiabatic particle number, by clarifying exactly
what it counts.
This paper is organized as follows. In Sec. II we describe

our physical setup and conventions. We will work through-
out with time-dependent but spatially homogeneous fields;
while these are not directly relevant to future (e.g. laser)
experiments, they are the prototype example used in
the study of nonperturbative pair production, beyond the
completely constant case. In Sec. III we introduce the
adiabatic basis and identify its physical interpretation.
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We also provide some context for our results by applying
them to the problem of pulse shaping to increase pair yields
(though our aim is not to identify an optimum experimental
setup or to go too far into phenomenology). We conclude
in Sec. IV.

II. PAIR PRODUCTION FROM
ELECTRIC FIELDS

We consider electron-positron pair production from an
electric field EðtÞ in 1þ 1 dimensions for clarity. This is
the simplest setup with the correct (fermionic) statistics.
Working in the Schrödinger picture will yield simple
expressions. We set ℏ ¼ c ¼ 1, while m and e are the
electron mass and charge, respectively. EðtÞ can be repre-
sented by the potential A0 ¼ 0 and ∂tA1ðtÞ ¼ EðtÞ, with
A1ð−∞Þ ¼ 0. We write aðtÞ ≔ eA1ðtÞ. Starting from the
usual Hamiltonian density ψ̄ðxÞ½m − iγ1ð∂1 þ iaðtÞÞ�ψðxÞ
for the fermion ψ , the Hamiltonian may be written

HðtÞ ¼
Z

dpΩþðtÞðb†pbp þ d†−pd−pÞ

þΩ−ðtÞðb†pd†−p þ d−pbpÞ;

in which the γ matrices have been represented in terms of
Pauli matrices as γ0 ¼ σ1, γ1 ¼ iσ2, the mode operators
obey fbp; b†qg ¼ fdp; d†qg ¼ δðp − qÞ and, in terms of
the classical electron momentum πðtÞ ≔ p − aðtÞ in the
background, we have ΩþðtÞ ¼ ðπðtÞpþm2Þ=p0 and
Ω−ðtÞ ¼ −maðtÞ=p0. Energies are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
¼p0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2þm2
p

¼π0 as usual.

A. The vacuum before and after

We begin in the vacuum j0i and turn on the electric field
EðtÞ at t ¼ t0, which may be finite or −∞. The time-
evolved state j0; ti obeying the Schrödinger equation
i∂tj0; ti ¼ Hj0; ti is

j0; ti ≔ exp

�
−iVϑðtÞ þ

Z
dpΩpðtÞb†pd†−p

�
j0i; ð1Þ

in which V is the spatial volume (over 2π), ϑðtÞ is most
easily determined by overall normalization, while the
“covariance” ΩðtÞ obeys Ωpðt0Þ ¼ 0 and

i _ΩpðtÞ ¼ 2ΩþðtÞΩpðtÞ þ Ω−ðtÞð1 −Ω2
pðtÞÞ: ð2Þ

After the electric field turns off, the potential aðtÞ either
goes to zero or a nonzero constant a∞ (we will see
examples of both cases). This is the same as a pure gauge
background. It is crucial for what follows to understand the
physics in the corresponding vacuum state j0i obeying
Hj0i ¼ 0 (there is only free physics in a pure gauge
background). From (2) the covariance in the pure

gauge vacuum then obeys 0 ¼ 2ΩþΩp þΩ−ð1 −Ω2
pÞ,

implying

Ωp ¼ Ωþ − π0
Ω−

≕ ∪p; ð3Þ

in which the Ω� take constant values after the pulse has
turned off, and the given physical solution is that having the
correct zero-field limit. (We return to the other solution
later.) The vacuum persistence amplitude is h0j0;∞i, and
not h0j0;∞i. Similarly, counting the number of pairs
produced after the field has switched off is equivalent to
counting free particle excitations in the pure gauge vacuum.
The Hamiltonian is easily diagonalized; the normalized
operators which create electrons and positrons of spatial
momentum p from j0i are, respectively, B†

pþa∞ and D†
p−a∞ ,

where

B†
p ≔

b†p− ∪p d−pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∪2

p

q ; D†
−p ≔

d†−pþ ∪p bpffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∪2

p

q : ð4Þ

The momentum assignments of the modes do not corre-
spond to physical momenta because of the pure gauge
terms, but the relation between them is a simple translation.
The number of pairs created from vacuum is equal to the
number of created electrons, so the number (density) of
pairs of physical momentum p created from a pulse of
profile aðtÞ is given by

N ðpjaÞ ≔ V−1 lim
t→∞

h0; tjB†
pþa∞Bpþa∞ j0; ti: ð5Þ

If EðtÞ has compact support t < tf, we may drop the limit
and evaluate (5) at any t > tf.

III. ADIABATIC PAIR NUMBER

In describing pair production at intermediate times,
while the electric field is still turned on, a common choice
of basis states is that of adiabatic (or instantaneous)
eigenstates of the Hamiltonian. The adiabatic vacuum is
defined by promoting ∪p and hence j0i to time-dependent
objects. States are built on the vacuum by the ladder
operators (4) which similarly become time dependent.
The adiabatic “particle number” NpðtÞ is then defined
by NpðtÞ ≔ V−1h0; tjB†

pðtÞBpðtÞj0; ti. By construction we
have limt→∞ Npþa∞ðtÞ ¼ N ðpjaÞ. Using the explicit form
(1) the adiabatic number of pairs is

NpðtÞ ¼
jΩpðtÞ− ∪p ðtÞj2

ð1þ jΩpðtÞj2Þð1þ ∪2
p ðtÞÞ : ð6Þ

For finite time NpðtÞ can exhibit “transient” oscillations
which are orders of magnitude larger than the final number
of pairs; see [27–30] and the figures below.
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∪p ðtÞ is the first (lowest order) of an infinite number of
approximations to ΩpðtÞ found from performing an adia-
batic expansion of the Schrödinger equation (2); see
[33,34]. Each order of approximation provides a candidate
number of pairs, call it nNpðtÞ, obtained from (6) by
replacing ∪p with the nth-order adiabatic approximation

nΩp of Ωp; all differ but yield the same asymptoticN . This
and (6) make explicit an observation in [34]; the number of
produced pairs is supported on the difference between the
exact solution of the Schrödinger equation Ωp and its
adiabatic approximations nΩp. There is therefore a “pair
producing part” of the exact solution to which adiabatic
approximations are blind; a trans-series analysis of this
result would be interesting to pursue. Examples of higher-
order adiabatic numbers are provided in Appendix A, but
our focus here is on finding the meaning of the adiabatic
particle number (6).

A. Physical interpretation

Take any given electric field EðtÞ and imagine instanta-
neously switching it off at some t ¼ τ. To find the number
of created pairs we solve the Schrödinger equation
for ΩpðtÞ with the continuous background aτðtÞ ≔
aðtÞθðτ − tÞ þ aðτÞθðt − τÞ. Note that aτð∞Þ ¼ aτðτÞ.
The solution ΩpðtÞ agrees exactly with that in the back-
ground aðtÞ for t < τ and crucially is continuous at t ¼ τ.
For t > τ, ΩpðtÞ obeys the pure gauge version of (2) where
Ω� are evaluated at t ¼ τ, together with the boundary
condition ΩpðtÞ ¼ ΩpðτÞ. This part of the solution, at
t > τ, is easily found:

ΩpðtÞ ¼
Ωþ − iπ0 tan½π0ðt − τÞ − iκ�

Ω−
; ð7Þ

with Ω� ≡Ω�ðτÞ and κ ¼ tanh−1½ðΩþ −Ω−ΩpðτÞÞ=π0�.
Using (3) and (7) the asymptotic number of pairs is

N ðp − aðτÞjaτÞ≡ V−1h0; tjN̂pðtÞj0; tijt≥τ
¼ jΩpðτÞ− ∪p ðτÞj2

ð1þ jΩpðτÞj2Þð1þ ∪2
p ðτÞÞ ; ð8Þ

constant for t ≥ τ and equal to its value at the switch off by
continuity. The final expression in (8) is nothing but the
adiabatic number of pairs (6) at time τ, calculated in the
original field aðtÞ. Hence we have the result

NpðtÞ ¼ N ðp − aðtÞjatÞ: ð9Þ

This means that adiabatic number at time t is in fact
counting the number of physical pairs which would be
observed, with a shifted momentum, if the field were
snapped off at time t. The remainder of the paper is devoted
to analysis and discussion of this result.

The result (9) may be verified by calculating
N ðp − aðtÞjatÞ in the field at and comparing against
NpðtÞ in the field a. This is shown in Fig. 1 for a
Sauter pulse and for the field aðtÞ ≔ ð1=λÞsecht=λ and
p ¼ 0, for which the exact solution to the Schrödinger
equation is Ωp¼0ðtÞ ¼ ð2λm cosh t=λþ i sinh t=λÞ−1. This
is an example of a “solitonic” pair of field and momentum
for which N0ðtÞ ≠ 0 but N ð0jaÞ ¼ 0 and there is no pair
production asymptotically [28,31,32,47,48]. However, if
we turn the field off at any time t, the solitonic property is
lost and there are pairs.
Other methods could have been used to derive the results

above, e.g. Bogoliubov transforms [49,50] or kinetic
equations. We emphasize, though, that the same choice
of basis and ambiguities arise in kinetic approaches, as
demonstrated in [28,31]. Without a good understanding of
the physics implied by the basis choice, one can obtain
unphysical results—such a problem was encountered in
[28], and we solve this using our first-principles approach
in Appendix C.

B. Smooth switch off and pulse shaping

What we have established so far is that the adiabatic basis
is not simply amathematical artifact but has an interpretation
which is, essentially, physically sensible. The steep field
gradient of a sudden turn-off naturally adds higher-
frequency modes to the field, which assist the production
of pairs, but it is obviously not experimentally realizable; we
therefore turn nowmore toward phenomenology, and ask the

FIG. 1. Upper panel: comparison of adiabatic particle number
NpðtÞ and asymptotic number N ðp − aðtÞjatÞ for aðtÞ ¼
1=3sechðt=3Þ and p ¼ 0. Np¼0ðtÞ is calculated analytically from
Ωp¼0 in the text, whileN ðp − aðtÞjatÞ is calculated numerically;
the results are identical, verifying (9). (All in units where m ¼ 1.)
Lower panel: the same comparison for a Sauter pulse
aðtÞ ¼ eE0=ωð1þ tanhωtÞ, with E0 ¼ 1=4, ω ¼ 1=10 and
p ¼ 5=2. NpðtÞ contains a great deal of structure and the peak
at t ≃ 0 is 3 orders of magnitude larger than the final number of
pairs at t → ∞.
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question: to what extent do our results hold in the more
physical case that the electric field turns off rapidly and
smoothly, rather than instantaneously? To address this,
define aτ;ΔðtÞ by replacing the step functions in aτðtÞ
with smooth functions, such that the larger Δ is, the more
rapidly the field switches off. Figure 2 gives two examples of
smoothing function applied to the Sauter pulse and ofNpðtÞ.
If Δ is large, then the numbers of pairs is, as shown, not
greatly affected by using a smooth switch off, and
N ðp−atðtÞjat;ΔÞ≃N ðp−atðtÞjatÞ. AsΔ becomes smaller,
the asymptotic number of pairs N ðp − atðtÞjat;ΔÞ may be
larger or smaller than the adiabatic number, depending on
the smoothing used but, importantly, it continues to track the
adiabatic number, independent of the choice of smoothing
function. This includes both the large peaks ofNpðtÞ and its
finer details; see Fig. 2.
If the turn-off is slow (smallΔ), such that the shape of the

electric field is changed significantly to the past of the
switch-off time, then the asymptotic and instantaneous
numbers obviously differ—this is also consistent with the
non-Markovian nature of pair production [51,52], in that
the process depends on its past history.
As the final number of pairs tracks the adiabatic number

even with a smooth (but rapid) turn-off, it confirms that one

can in principle, meaning with sufficiently good pulse
shaping, produce numbers of pairs similar to that predicted
by the adiabatic NpðtÞ. Crucially, this means that large pair
numbers seen at intermediate times, such as in Fig. 1, are
not something to be removed or avoided but can in
principle be pursued. The first step is to identify where
the large peaks in NpðtÞ lie. Using the Schrödinger
equation to simplify ∂tNpðtÞ, one finds that there are
always extrema given by ∂t ∪p ðtÞ ¼ 0, i.e. EðtÞ ¼ 0,
which are not of interest. Writing ΩpðtÞ ¼ xðtÞ þ iyðtÞ,
one finds that nontrivial extrema lie on a circle in the
complex plane,

ðx −Ωþ=Ω−Þ2 þ y2 ¼ π20=Ω2
−; ð10Þ

which, onceΩpðtÞ is known, is to be solved for t to find the
local maxima of NpðtÞ. Note that if the imaginary part is
zero, then (10) reduces to Ωp ¼∪p, implying that j0; ti has
collapsed back to the vacuum. Hence we are only interested
in solutions of (10) with, somewhat naturally, an imaginary
part. To illustrate, we can solve (10) in the solitonic case,
using the exact form of Ωp¼0ðtÞ; the maxima occur at

t ¼ λ logð ffiffiffi
2

p � 1Þ. [That these are the maxima of EðtÞ
seems to be a coincidence of this case.]

C. UV behavior and total yield

We remark that, in expanding universes, the total adia-
batic particle yield isUVdivergent and requires higher-order
adiabatic terms for its regularization [36–38]. If the same
were true in QED, it could cast doubt on the interpretation of
(9). We show in Appendix B, though, by repeating our
calculations in 1þ 3 dimensions to capture the correct UV
behavior, that the total yield in QED is indeed finite.
With this, a natural question is whether the preceding

results for larger pair yields at fixed momentum translate
into larger total pair yields. To answer this in the most
direct manner, we make a simplification by calculating
NpðtÞ perturbatively, to lowest order in powers of the field.
Using (6) and (2) we find

Z
dpNpðtÞ ≃

Z
dp

m2

4p4
0

����
Z

t

−∞
dsa0ðsÞe2ip0s

����
2

: ð11Þ

We calculate this total adiabatic yield in Fig. 3 for a weak
electric field with a sin3 profile and again compare with
(asymptotic) yields for which we include a smooth switch
off. We note two results. First, the total yield, like the
differential, can be higher than in the original field. Second,
while a slow and therefore more physical turn-off gives a
smaller yield than the adiabatic result, it is still significantly
higher than the original yield. The parameters chosen in
Fig. 3 are not special; the field strength, for example, is
clearly an overall scaling in this perturbative approxima-
tion. We only want to demonstrate the principle that the

FIG. 2. Top: electric fields ET;ΔðtÞwith smooth turn-off defined
by two step regularizations; θðtÞ → 1

2
ð1þ tanhΔtÞ and

θðtÞ → 1
2
þ 1

π tan
−1 Δt. Middle: asymptotic particle number

N ðp − aðtÞjat;ΔÞ for different smoothing functions and param-
eters (color), compared to adiabatic number NpðtÞ (black).
Electric field and momentum parameters are as for the Sauter
pulse in Fig. 1. The asymptotic number tracks the adiabatic,
including its large peaks and (bottom) finer structure.
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total yield can be enlarged. The extent to which such
increases can be achieved in realistic experimental scenar-
ios is beyond the scope of this paper.
We comment briefly on why the number of pairs is not

monotonic increasing in time. Pairs created at different
times with different momenta can be accelerated by the
field to the same asymptotic momentum—this leads to
quantum (path) interference which can enhance or deplete
the pair number; see [21,53–55] for examples. Created
pairs can also annihilate into the field via the “inverse”
Schwinger process; this is not often discussed in the
literature, but see [56,57], so we provide example calcu-
lations in Appendix D which show that the annihilation
probability can be nonzero.

IV. DISCUSSION

We have shown that adiabatic particle number in the
Schwinger effect has a definite physical interpretation. The
adiabatic number of pairs at any given time is the number of
physical pairs which would be observed, with a properly
identified momentum, if the field were (very) rapidly
switched off at that time. As a lesson in pulse shaping,
our results say that steep field gradients (implying high-
frequency components) can be beneficial for creating the
very large number of pairs predicted by the adiabatic
particle number.
Our results suggest a change in perspective: rather than

trying to identify a correct pair number, one can instead try
to identify what a given number operator really measures,
as different bases describe different observables. The
challenge is to understand what these are. As a simple
first example in this line of investigation, we recall from the
quadratic above (3) that there is a second solution of the
Schrödinger equation describing the (pure gauge and)
adiabatic vacuum. This solution, ∩p≔ −1= ∪p, diverges
in the free-field limit and so will not count the asymptotic
number of pairs correctly, but when the field is on we can
still define a vacuum and basis of states from it and an

instantaneous number of excitations (of something) ÑpðtÞ
as in (6) but with ∪p replaced by ∩p. The physical content
of this basis is easily found: a direct calculation shows that
ÑpðtÞ is, due to Pauli blocking, the “unoccupied” number
density ÑpðtÞ ¼ 1 − NpðtÞ; i.e. Ñp is trivially counting one
minus the adiabatic number of pairs, for which we have
already established the physical meaning.
There are several topics for future research. One is to

identify the physical meaning of higher-order and super-
adiabatic bases and in this context explore the properties of
operators such as the current [30,58,59]. Another is to
pursue the impact of pulse shaping in more realistic
settings, which include e.g. spatial inhomogeneities, and
to identify optimal field configurations for Schwinger pair
production [60–68]. The results here can also be extended
to related, and analog, Schwinger effects in other areas of
physics, such as monopole production [69].
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APPENDIX A: (SUPER)ADIABATIC BASES
IN THE SCHRÖDINGER PICTURE

Though normally considered via solutions of the Klein-
Gordon and Dirac equations [33,34], the adiabatic expan-
sion of the Schrödinger equation is easily found; we
rearrange (2) in the text to write the “solution” as

ΩpðtÞ ¼
ΩþðtÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π20ðtÞ − iℏΩ−ðtÞ∂tΩpðtÞ

q
Ω−ðtÞ

; ðA1Þ

in which we have reinstated ℏ and fixed the sign of the
square root using the zero-field limit. The adiabatic
expansion is an expansion in powers of time derivatives,
which are clearly counted here simply by powers of ℏ. We
denote the nth-order adiabatic expansion of Ωp by nΩp;
low orders are easily constructed from (A1):

0ΩpðtÞ ¼
ΩþðtÞ − π0ðtÞ

Ω−ðtÞ
≡ ∪p ðtÞ;

1ΩpðtÞ ¼ ∪pðtÞ þ iℏ
∂t ∪p ðtÞ
2π0ðtÞ

; ðA2Þ

although general expressions for higher n quickly become
unwieldy. [We note in passing that one could perform a
partial resummation of the series by retaining the square
root in (A1) and expanding only under it; for the examples
considered here the effect seems to be roughly equivalent to
advancing the entirely perturbative approach by one order.]
We can then define an nth-order adiabatic number of pairs
nNp from the vacuum nΩp and excitations built on it using

FIG. 3. Total pair yield in the electric field a0ðtÞ ¼
E0∂t sin3ðωtÞ for a weak field E0 ¼ 1=20 and ω ¼ 1=8, switched
off using the regulated step function 1=2erfcðΔðt − tfÞÞ. The
adiabatic number or hard cutoff (11) is obtained for Δ → ∞ (top
curve). Compared to this, a slow turn-off (Δ ¼ 1, lowest curve)
reduces the total yield, but even this yield remains orders of
magnitude higher than the total yield in the original pulse, which
in this example is ∼10−6.

PHYSICS OF ADIABATIC PARTICLE NUMBER IN THE … PHYS. REV. D 105, 016021 (2022)

016021-5



operators like those in (4) in the text. Provided we deal with
electric fields which vanish smoothly as t → ∞, each of the
nΩp go over to 0Ωp ¼∪p asymptotically, and so each gives
the same value for the asymptotic number of pairs. We have

nNpðtÞ ≔
jΩp − nΩpj2

ð1þ jΩpj2Þð1þ jnΩpj2Þ
;

N ðpjaÞ ¼ lim
t→∞ nNpþa∞ for all n: ðA3Þ

We illustrate this in Fig. 4 using the Sauter pulse

EðtÞ¼E0sech2ðωtÞ; aðtÞ¼ eE0

ω
ð1þ tanhðωtÞÞ; ðA4Þ

and see immediately the appearance of the superadiabatic
behavior presented in [33,34]; as the order n of the
adiabatic expansion increases, the transient oscillations
in the nNpðtÞ decrease in amplitude to an almost mono-
tonically increasing function interpolating between 0 and
the asymptotic value N . This continues until an “optimal”
order, here n ¼ 6, beyond which (we have confirmed) the
oscillations reemerge. From (A3) we see that pair produc-
tion is supported entirely on the difference between ΩpðtÞ
and its adiabatic expansions. Similarly to [34], we find that
there is a phase difference between the real and imaginary
parts of ðΩp − nΩpÞ2 in the numerator of nNpðtÞ which is
responsible for the oscillations in the pair number and that
this sums to give an almost monotonic, smooth function at
the optimal truncation order. The physical interpretation of
these higher-order adiabatic particle numbers (also in
cosmology [39]) is an intriguing topic for future work.

APPENDIX B: SCALAR PAIR PRODUCTION IN
3+ 1, UV BEHAVIOR AND BENCHMARKING

An objection to the interpretation of our results could be
raised by observing that, in the analogous process of
particle creation from an expanding universe, the lowest-
order adiabatic particle number is, when summed over all
momenta, UV divergent [36]. This is unphysical and,
moreover, in order to define a finite number of created

pairs one must include higher-order terms in the adiabatic
expansion [38].
As UV behavior is sensitive to the number of dimen-

sions, we give here the extension of our methods and results
to 1þ 3 dimensions. We will show that the total number of
pairs created according to our results is UV finite. For this
investigation we go to scalar rather than spinor QED: this is
partly for simplicity and partly as it will afford us an
opportunity to benchmark against the literature. There are
many similarities to QED 1þ 1, so we can be brief.
The gauge field is now eAμ ¼ ð0; 0; 0; aðtÞÞ and the

Hamiltonian is, for ϕ the charged scalar and Π its canonical
momentum,

HðtÞ ¼
Z

d3xΠ†Πþ j∂⊥ϕj2 þ ji∂zϕ − aðtÞϕj2 þm2jϕj2:

ðB1Þ

We use the usual free-field mode expansions

ϕ ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ22p0

p e−ip:xðap þ b†−pÞ;

Π ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ22p0

p ip0eip:xðap − b†−pÞ; ðB2Þ

with ½ap; a†q� ¼ ½bp; b†q� ¼ δ3ðp − qÞ. The Hamiltonian
takes a similar form to that in QED 1þ 1:

HðtÞ ¼
Z

d3pΩþðtÞða†pap þ b†−pb−pÞ

þΩ−ðtÞða†pb†−p þ apb−pÞ; ðB3Þ

but note that the definitions of Ω� differ:

Ω�ðtÞ ¼
π20ðtÞ � p2

0

2p0

; ðB4Þ

in which the classical energy is now π0 ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ðpz − aðtÞÞ2 þm2

p
, with p⊥ ¼ ðpx; pyÞ. The

time-evolved vacuum state is

FIG. 4. (Super)adiabatic particle number in the Sauter pulse (A4) with parameters E0 ¼ 1=4, ω ¼ 1=10 and p ¼ 5=2. The fluctuations
in particle number decrease in size as the order n of the adiabatic expansion increases, up to n ¼ 6, and then begin to reemerge.
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j0; ti ¼ exp

�
−iVϑðtÞ −

Z
d3pΩpðtÞa†pb†−p

�
j0; ti;

i∂tΩp ¼ 2ΩþΩp −Ω−ð1þ Ω2
pÞ; ðB5Þ

in which the Schrödinger equation for the covariance
ΩpðtÞ, shown on the right, differs in signs compared to
that for spinors. From these expressions we read off the
adiabatic vacuum and associated creation and annihilation
operators:

∪p ðtÞ ¼ ΩþðtÞ − π0ðtÞ
Ω−ðtÞ

; A†
p ¼ a†pþ ∪p b−pffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ∪2
p

q ;

B†
−p ¼ b†−pþ ∪p apffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ∪2
p

q : ðB6Þ

The adiabatic number of pairs NpðtÞ is easily found.
Solving the Schrödinger equation for a field which is
snapped off at some time t, one finds the same direct
interpretation of adiabatic pair number as for 1þ 1 QED,
(9) in the text:

NpðtÞ ¼
jΩpðtÞ− ∪p ðtÞj2

ð1− ∪2
p ðtÞÞð1 − jΩpðtÞj2Þ

¼ N ðp⊥; pz − aðtÞjatÞ: ðB7Þ

We pause to benchmark our expression for NpðtÞ against
[33], in which more common methods based on “second-
order” approaches were used. The reason for doing so is
that, if the adiabatic particle number really is a good
observable as we claim, then we should be able to calculate
using any method we choose. Figure 5 shows exact
agreement with [33].

The total number of pairs created in the adiabatic
approximation is given by integrating NpðtÞ over all
momenta p. We will show that this integral is UV finite.
To do so we need to know how NpðtÞ behaves in the UV,
i.e. for large jpj. Going to polar coordinates, let pz ¼
jpj cosðθÞ and jp⊥j ¼ jpj sinðθÞ. We now solve the
Schrödinger equation (B5) for an arbitrary background
aðtÞ in a large jpj expansion. We find

ΩpðtÞ ¼ −
aðtÞ cosðθÞ

2jpj −
aðtÞ2 cosð2θÞ þ ia0ðtÞ cosðθÞ

4jpj2
þOðjpj−3Þ: ðB8Þ

The corresponding expansion of the adiabatic vacuum
(B6) is

∪p ðtÞ ¼ −
aðtÞ cosðθÞ

2jpj −
aðtÞ2 cosð2θÞ

4jpj2 þOðjpj−3Þ: ðB9Þ

The leading-order terms, in powers of jpj−1, in (B8) and
(B9) are the same; hence, it is necessary to go to next-to-
leading order to identify the first nonzero contribution to
the number of pairs. Interestingly, the real part of the next-
to-leading-order term in (B8) is also exactly equal to that in
the adiabatic vacuum. There is, though, an imaginary part
on which the number of pairs has its support, and we
conclude from (B7)–(B9) that

NpðtÞ ∼
a0ðtÞ2
16jpj4 cos

2 θ þOðjpj−5Þ: ðB10Þ

Dropping irrelevant constants, the UV contribution to the
total number of pairs thus behaves as

Z
d3pNpðtÞ ∼ a0ðtÞ2

Z
∞ djpj
jpj2 ðB11Þ

FIG. 5. Adiabatic pair number (B7) in the Sauter pulse EzðtÞ ¼ E0sech2ωt, aðtÞ ¼ eE0=ωð1þ tanhωtÞ, with E0 ¼ 1=4, ω ¼ 1=10,
p⊥ ¼ 0 and pz ¼ 5=2, corresponding to final physical z momentum ¼ −5=2, in units where m ¼ 1. Parameters are chosen to
benchmark against Fig. 1 in [33]; our physical momentum assignments correspond to k⊥ ¼ 0 and kk ¼ 0 in that paper (where the gauge
potential is not zero in the asymptotic past): the curves are identical to those in [33] and we find the same asymptotic number of pairs, as
highlighted by the red line in the second panel.

PHYSICS OF ADIABATIC PARTICLE NUMBER IN THE … PHYS. REV. D 105, 016021 (2022)

016021-7



and is finite. This supports our interpretation of the
adiabatic particle number as an observable.
It would, in this light, be very interesting to reconsider

the properties of operators other than the number of pairs,
such as the current, its adiabatic approximations, and their
renormalization [30,70,71].

APPENDIX C: PAIR PRODUCTION
IN A DELTA-FUNCTION PULSE

We return to 1þ 1 dimensions, considering here pair
production in a delta-function electric field, EðtÞ ∼ δðtÞ
meaning a potential step aðtÞ ≔ a∞θðtÞwith a∞ a constant.
The potential is everywhere pure gauge, except at t ¼ 0.
This setup was considered in [28] using kinetic equations,
but observables such as the number of produced pairs were
found to carry an unphysical time dependence even for
t ≫ 0, where the field is wholly absent. We stress that the
resolution of this issue can be deduced within kinetic theory
from [31], but it does not seem to have appeared explicitly
in the literature. We present it here. This section helps to
emphasize that understanding the choice of basis clarifies
the physics of pair creation.
As in the text, we need to solve the Schrödinger equation

to identify how the vacuum evolves through the delta-
function pulse; the equation for the vacuum state covari-
ance ΩpðtÞ is
i∂tΩpðtÞ ¼ 2ΩþΩpðtÞþΩ−ð1−Ω2

pðtÞÞ;

where Ωþ ¼
�0 t < 0;

ðp−a∞Þpþm2

p0
t > 0;

Ω− ¼
�
0 t < 0;

−ma∞
p0

t > 0:

ðC1Þ
Clearly ΩpðtÞ≡ 0 ∀ t < 0. While the potential and Ω�
jump at t ¼ 0, the covariance ΩpðtÞ must remain continu-
ous for the Schrödinger equation to be obeyed; hence we
just need to solve (C1) for t > 0 with the initial condition
Ωpð0Þ ¼ 0. This is trivial because the Ω� are constants at
t > 0. The solution is

ΩpðtÞ ¼
Ω−

iπ0 cotðπ0tÞ − Ωþ
; ðC2Þ

which is time dependent, but there is no reason it should not
be. [The covariance must carry, for example, the free
energy phases ∼ expð−2iπ0tÞ of any created pairs.] To
proceed we need the pure gauge vacuum j0i, for which the
covariance is Ωp →∪p as given in the text. For complete-
ness we write down the fully normalized state:

j0i ¼ exp

�Z
dp ∪p b†pd

†
−p −

V
2
logð1þ ∪2

pÞ
�
j0i: ðC3Þ

From here we calculate the number of produced pairs
from

N ðpja∞θÞ ¼ V−1h0; tjB†
pþa∞Bpþa∞ j0; tijt>0; ðC4Þ

finding that at any t > 0

N ðpja∞θÞ ¼
jΩqðtÞ− ∪q j2

ð1þ ∪2
qÞð1þ jΩqðtÞj2Þ

����
q¼pþa∞

¼ ∪2
pþa∞

1þ ∪2
pþa∞

; ðC5Þ

which is time independent, as it should be. Note that (C5)
says that the number of created pairs is supported on the
deviation of Ωp, the solution of the Schrödinger equation,
from the pure gauge (empty) vacuum, which is sensible.
N is easily evaluated explicitly:

N ðpja∞θÞ¼
1

2
−
Ωþ
2π0

¼ 1

2
−

pa∞þp2
0

2p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþa∞Þ2þm2

p ; ðC6Þ

and is plotted in Fig. 6. This resolves the issues in [28]; the
unphysical time dependence encountered there was due
only to incorrectly defining physical states at t > 0 in terms
of the Fock vacuum j0i, instead of the physical vacuum j0i.
A direct calculation of h0j0i shows that the vacuum
persistence probability is also constant at t > 0:

Ppersist¼jh0j0;tij2jt>0¼ exp

�
−V

Z
dp logð1þ∪2

pÞ
�
: ðC7Þ

APPENDIX D: ANNIHILATION

An applied electric field can produce pairs via the
Schwinger effect. The inverse process is that a pair initially
present annihilates when an electric field is applied. As this
process is perhaps unfamiliar we give some example
calculations here. We begin with the initial state jpairi ¼
V−1b†pd

†
−pj0i at t ¼ −∞ describing a pair in the vacuum.

Solving the Schrödinger equation in a background electric
field yields the time-evolved state jpair; ti:

FIG. 6. Momentum distribution N ðpja∞θÞ of produced pairs
with physical momentum p, (C6), created in a delta pulse of
various strengths a∞=m ¼ −2;−4… as labeled. The distribution
becomes broader as ja∞j increases, and its peak is at p ¼ −a∞=2.
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jpair; ti ≔ ðγðtÞ þ V−1ΛðtÞb†pd†−pÞj0; ti; ðD1Þ

in which the coefficient functions obey the equations

i _Λ ¼ 2ðΩþ −Ω−ΩpÞΛ; i_γ ¼ Ω−Λ; ðD2Þ

along with the initial conditions γðtÞ → 0 and ΛðtÞ ∼
e−2ip0t as t → −∞. The amplitude for pair annihilation is
given by taking the overlap of jpair; ti with the pure gauge
vacuum at t ¼ ∞. We find

h0jpair; ti ¼
�
γ þ ∪p Λ

1þ ∪p Ωp

�
h0j0; ti: ðD3Þ

This is nonzero in general. To illustrate, we calculate the
annihilation probability for the delta-function field in
Appendix B. In this case (D2) is easily solved to find

jh0jpair; tij2 ¼∪2
p jh0j0; tij2 ∀ t > 0: ðD4Þ

For completeness we give also an example where the
annihilation probability vanishes. We recall the solitonic
pair of field and momentum considered in the text, that is
aðtÞ ≔ ð1=λÞsecht=λ and p ¼ 0 meaning, here, a pair
initially at rest. The covariance Ωp¼0 describing the

evolution of the vacuum and the pure gauge vacuum
covariance Up¼0 are

Ωp¼0ðtÞ ¼
1

2λ cosh t=λþ i sinh t=λ
and

∪p¼0 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2 þ 1

p
− 1

aðtÞ : ðD5Þ

Using these, the solution to (D2) is

ΛðtÞ ¼ ð2λ − iÞ2e−2it
ð2λþ i tanhðtλÞÞ2

;

γðtÞ ¼ ði − 2λÞe−2it
ð2λþ iÞ ΩðtÞ: ðD6Þ

As t → ∞, we see that Ωp¼0, ∪p¼0, γ and therefore the
amplitude (D3) for pair annihilation all go to zero; as such,
the pair annihilation probability for the solitonic pair is, like
the pair creation probability, zero. (D3) suggests that this
will be a generic property of solitonic cases. It would be
interesting to compare creation and annihilation probabil-
ities in other fields; see e.g. [72] and references therein for
analytically tractable cases.
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