
Critical coupling for two-dimensional ϕ4 theory in discretized
light-cone quantization

James P. Vary ,1 Mengyao Huang ,1 Shreeram Jawadekar ,1 Mamoon Sharaf,1

Avaroth Harindranath ,2 and Dipankar Chakrabarti 3

1Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
2Guruvayur, Kerala 680101, India

3Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Received 7 October 2021; accepted 20 December 2021; published 25 January 2022)

We solve for the critical coupling in the symmetric phase of two-dimensional ϕ4 field theory using
discretized light-cone quantization. We adopt periodic boundary conditions, neglect the zero mode, and
obtain a critical coupling consistent with the critical coupling reported using conformal truncation in light-
front quantization. We find a 17% difference from the critical coupling reported with light-front
quantization in a symmetric polynomial basis.
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I. INTRODUCTION

It is well known that most of our intuition about spectra
and wave functions in quantum mechanics come from
solving Hamiltonians and a variety of methods exist for this
purpose. In molecular, atomic and subatomic quantum
systems, sophisticated and efficient numerical approxima-
tion techniques have been developed and refined over the
years to solve quantum many-body Hamiltonians. One
would like to make use of the intuition developed and
experience gained in solving nonrelativistic systems to
devise methods to solve systems governed by relativistic
quantum field theories. But Hamiltonian methods were
rarely developed for this purpose. “This is a pity”, as was
noted sometime back [1]. There are major stumbling blocks
to this path caused by the presence of infinitely many
degrees of freedom and the mandatory need for renorm-
alization. Especially noteworthy is the severe divergence
caused by vacuum processes which are addressed analyti-
cally in the perturbative framework. One has to learn how
to handle them or at least how to side step them in the
nonperturbative Hamiltonian framework.
It was Dirac [2] who first pointed out the advantages of

light-front dynamics among different Hamiltonian formu-
lations of relativistic many-body theories. Great interest in
light-front dynamics arose because light-front quantization
provides the theoretical basis for the celebrated parton
model [3,4] which facilitates an intuitive understanding

of high energy processes. Many additional virtues of
light-front quantization have been identified and studied
since the work of Dirac, but a nonperturbative numerical
approach was missing. Discretized light-cone quantization
(DLCQ) [5–8] was proposed in the mid 1980s as a novel,
nonperturbative numerical technique to solve quantum
field theories.
Two-dimensional interacting scalar field (ϕ4) theory, in

spite of being the simplest of interacting quantum field
theories, has a rich structure and has been the subject of
both rigorous mathematical analysis [9,10] and various
nonperturbative numerical approaches. Not surprisingly,
soon after the proposal of DLCQ, it was applied to the
symmetric phase of two-dimensional ϕ4 theory [11]. As a
result, many strengths and a few weaknesses of the method
were identified already in those early days. It was known
that the system undergoes a phase transition from the
symmetric phase to the symmetry broken phase at strong
coupling as a result of quantum fluctuations. Among the
observables calculated in Ref. [11] was the critical coupling
for the vanishing mass gap in the odd particle sector as a
function of the dimensionless total longitudinal momentum
K. It was realized that the continuum limit is reached by
taking K → ∞ which requires reliable extrapolation of
finite K results. An extrapolation was attempted in
Ref. [12] using finite K results with maximum K of 20.
The limited data available was extrapolated toK ¼ 100 and
the corresponding critical coupling was found to be ≈33.
The critical coupling has been calculated since then, with

various nonperturbative techniques within both Lagrangian
and Hamiltonian frameworks. Within the light-front
Hamiltonian formalism, two works have recently emerged
which are of immediate relevance to DLCQ, namely
Burkardt et al. [13] and Anand et al. [14].
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In Burkardt et al., the Hamiltonian is expressed in the
Fock space basis in the continuum. Here, using the
positivity of the light-front longitudinal momentum,
the terms in the Hamiltonian containing pure creation or
annihilation operators are dropped. The state also is
expanded in a Fock basis where the coefficients are
multiparticle wave functions. Then the multiparticle wave
functions are expanded in terms of symmetric polynomials.
These polynomials span the entire range of the momentum
fraction x from 0 to 1, including the end points. A finite
dimensional Hamiltonian is obtained by truncating the
maximum number of bosons and the maximum number of
basis functions used.
In Anand et al., the light-cone conformal truncation is

used. As explained in detail in Ref. [15], one starts from the
conformal limit of the two-dimensional ϕ4 theory, which is
a free massless theory. A complete set of basis states of
conformal quadratic Casimir C is constructed using pri-
mary operators. These states are used to express the
Hamiltonian of the two-dimensional ϕ4 theory in light-
cone quantization. After truncating the basis to states with
Casimir eigenvalue C below some threshold Cmax, the
resulting finite dimensional Hamiltonian matrix is numeri-
cally diagonalized. The positivity of the light-front longi-
tudinal momentum is employed in this work.
By the use of basis functions in the continuum in the

above two references, sensitivity to the small longitudinal
momentum region can be explored and handled very
efficiently. On the other hand in the previous and current
work on two-dimensional ϕ4 theory with periodic boun-
dary conditions (PBC), exactly zero longitudinal momen-
tum, which is a constrained (nondynamical) mode in the
symmetric phase, is dropped. Furthermore, DLCQ, in
contrast with Refs [13,14], uses a uniform grid.
Therefore, an arbitrarily small longitudinal momentum
can be accessed only in the continuum limit. Thus, by
approaching the continuum limit in DLCQ numerically and
comparing the resulting value for the critical coupling with
those of Refs [13,14], we can quantify the efficiency and
legitimacy of the DLCQ program.
Motivated by the work of Rozowsky and Thorn [16],

who argued that the exactly zero longitudinal momentum
mode (hereafter referred to as the zero mode) is not
necessary to describe spontaneous breaking of symmetry,
the symmetry broken phase of two-dimensional ϕ4 theory
was investigated in DLCQ in detail with both PBC with the
omission of the zero mode [17] and antiperiodic boundary
conditions (APBC) [18,19] where the zero mode is natu-
rally absent. Masses of low-lying states, their parton
distributions and coordinate space (x−) profiles were
successfully calculated. These accumulated results provide
another motivation to revisit the symmetric phase of two-
dimensional ϕ4 theory in DLCQ.
To analyze realistic quantum field theory problems in

3þ 1 dimensions, currently, the most efficient light-front

Hamiltonian approach is the basis light-front quantization
(BLFQ) method [20,21], which frequently employs DLCQ
in the light-front longitudinal direction and orthonormal
basis functions in the transverse space. BLFQ utilizes
the vast practical experience gained in solving strongly
interacting nuclear many-body systems and employs the
same methodology and techniques to diagonalize the
Hamiltonians of enormous dimensionality. Thus the lessons
learned in studying the convergence and extrapolation issues
of DLCQ applied to strong coupling problems in 1þ 1
dimensions are also directly relevant for the BLFQprogram.
Within the Hamiltonian-based approaches, in order to

quantitatively assess the strengths and weaknesses of
DLCQ, corresponding calculations in the Instant form with
a Fock-space based Hamiltonian are a must. This was
lacking for a long time. Fortunately, results of such
calculations in both the symmetric [22] and broken [23]
phases of two-dimensional ϕ4 theory have become recently
available. We also note that, over the past two decades there
have also been many studies of the critical coupling of two-
dimensional ϕ4 theory. See, for example, Refs. [24–30].
However, with the exception of Refs. [13] and [14], a direct
comparison of the value of critical coupling via DLCQ
presented in this work with the other works cited is not
possible because of the matching problem between equal-
time and light-front methods [13,31].
Our primary focus in the present work is to obtain

the critical coupling of two-dimensional ϕ4 theory in the
continuum limit of DLCQ for the transition from the
symmetric phase to the broken phase. To be more precise,
we extract three separate critical couplings that each
produce a vanishing mass gap at finite resolution, K.
These are the critical couplings for the lowest state of
the odd sector, the lowest state of the even sector and the
first excited state of the odd sector. We find agreement of all
three critical couplings in the continuum limit (K → ∞),
implying degeneracy at a vanishing mass gap, to within
numerical uncertainties, which we interpret as the signal for
spontaneous symmetry breaking.

II. THEORETICAL FRAMEWORK

A. Two-dimensional ϕ4 theory in discretized
light-cone quantization

We seek to solve a Hamiltonian (H) eigenvalue problem
expressed in a suitable basis to obtain the low-lying mass
spectroscopy. In this work, we solve for and present the
eigenvalues of the mass-squared operator proportional to
H. In principle, once the eigenvectors are obtained, we
could evaluate matrix elements of additional observables O
but we defer those efforts to a future project. For the present
work, we aim to obtain that spectroscopy in the region of
critical coupling producing a vanishing mass gap at a
sequence of basis space cutoffs K. We then perform
detailed extrapolations of these results to the continuum
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limit (infinite matrix dimension) accompanied by an
uncertainty analysis.
The Hamiltonian for two-dimensional ϕ4 theory in

DLCQ was first presented in Ref. [11]. We start from
the two-dimensional Lagrangian density

L ¼ 1

2
∂þϕ∂−ϕ −

1

2
μ2ϕ2 −

λ

4!
ϕ4 ð1Þ

with the light-front variables defined by x� ¼ x0 � x1.
The Hamiltonian density

P− ¼ 1

2
μ2ϕ2 þ λ

4!
ϕ4 ð2Þ

defines the Hamiltonian

P− ¼
Z

dx−P− ≡ L
2π

H; ð3Þ

where L defines our compact domain −L ≤ x− ≤ þL.
Throughout this work we address the energy spectrum
of H.
The longitudinal momentum operator is

Pþ ¼ 1

2

Z þL

−L
dx−∂þϕ∂þϕ≡ 2π

L
K ð4Þ

where K is the dimensionless longitudinal momentum
operator. The mass-squared operator M2 ¼ PþP− ¼ KH
whose eigenvalues we present in this work.
With PBC we can write

ϕ ¼ ϕ0 þΦ; ð5Þ

where ϕ0 is the zero mode operator and Φ contains
nonzero modes.
By integrating the equation of motion ∂þ∂−ϕþ μ2ϕþ

λ
3!
ϕ3 ¼ 0 over the longitudinal space, one can show that

(1) the zero mode operator vanishes in the free field theory,
and (2) in the interacting theory, the zero mode operator is
constrained and obeys a nonlinear operator equation. Thus
incorporating the zero mode in DLCQ is a nontrivial
problem. To the best of our knowledge, this problem has
not yet been solved in a satisfactory manner. When the
constraint equation is solved perturbatively, it leads to
additional interaction terms in the Hamiltonian. For some
processes studied, contributions of these new terms, how-
ever were found to vanish [32,33] in the infinite volume
limit (L → ∞).
For the nonzero mode part Φ we use the solution of the

equation of motion for the free massive scalar field in the
continuum theory, which provides a convenient Fock space
basis:

Φðx−Þ ¼
Z

dkþ

2ð2πÞkþ θðkþÞ½aðkþÞe−i
2
kþx− þ a†ðkþÞei

2
kþx− �:

ð6Þ

Note that zero mode is absent in this expression. In DLCQ,
the corresponding field expansion is

Φðx−Þ ¼ 1ffiffiffiffiffiffi
4π

p
X
n

1ffiffiffi
n

p ½ane−inπL x− þ a†nei
nπ
L x

− �; ð7Þ

with n¼ 1;2;3;… with PBC and n¼ 1
2
;3
2
;5
2
… with APBC.

The normal ordered dimensionless longitudinal momen-
tum operator

K ¼
X
n

na†nan: ð8Þ

The normal ordered Hamiltonian is given by

H¼μ2
X
n

1

n
a†nan

þ λ

4π

X
k≤l;m≤n

1

N2
kl

1

N2
mn

1ffiffiffiffiffiffiffiffiffiffiffi
klmn

p a†ka
†
l anamδkþl;mþn

þ λ

4π

X
k;l≤m≤n

1

N2
lmn

1ffiffiffiffiffiffiffiffiffiffiffi
klmn

p ½a†kalamanþa†na
†
ma

†
l ak�δk;lþmþn

ð9Þ

with

Nlmn ¼ 1; l ≠ m ≠ n;

¼
ffiffiffiffi
2!

p
; l ¼ m ≠ n; l ≠ m ¼ n;

¼
ffiffiffiffi
3!

p
; l ¼ m ¼ n; ð10Þ

and

Nkl ¼ 1; k ≠ l;

¼
ffiffiffiffi
2!

p
; k ¼ l: ð11Þ

B. Symmetries and vanishing mass gaps

Since the Hamiltonian exhibits the ϕ → −ϕ symmetry,
the even and odd particle sectors of the theory are
decoupled. In the “symmetric phase” of the theory (positive
bare mass-squared μ2) which we investigate here, the
solutions at weak positive values of λ have simple structure.
In the odd sector, the lowest solution is dominated by a
single boson carrying all the light-front momentum K. In
the even sector, the lowest solution is dominated by two
bosons each carrying K=2.
We do not invoke mass renormalization so that, with

increasing coupling, these two lowest states will each
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decrease toward zero mass. A separate value of the critical
coupling at fixed K is obtained when each of these mass
gaps vanishes. Mass gaps for higher states in each sector
can also vanish at fixed K but at successively larger values
of the critical coupling. In line with expectations, we find
that, as a function of increased coupling, the lowest state of
the odd sector vanishes before the lowest state of the even
sector at each value of K.
For the present work, we are interested in calculating a

set of critical couplings that produce corresponding vanish-
ing mass gaps over a range of computationally accessible
values of K. With these results, we then carry out
extrapolations of these critical couplings to their continuum
limits (K → ∞). We perform these calculations for the two
lowest states of the odd sector and the lowest state of the
even sector. We raise and answer the question, to within
numerical precision, whether these critical couplings are
the same or distinct in the continuum limit. We find that
they are the same and we compare our continuum limit
result for the critical coupling with results obtained with
other light-front methods [13,14].
As mentioned above, many interesting questions can be

addressed with detailed studies of the light-front wave
functions at the critical coupling and as a function of K. In
addition, one can examine the sensitivity to choice of
boundary conditions, for example, by performing corre-
sponding studies with APBC. We defer these and other
valuable topics to future research projects.

C. Methods of solving for the low-lying
spectroscopy at each K

Since the interacting theory is a function of a single
dimensionless variable λ

μ2
, we adopt μ2 ¼ 1 for conven-

ience. Thus, our results for functions of λ
μ2
are the same as

our results for functions of λ.
Results presented here were obtained using Cori, a

supercomputer at the National Energy Research Computing
Center (NERSC) [34], with the many fermion dynamics
(MFD) code adapted to bosons [17–19,35]. The Lanczos
diagonalizationmethod is used in a highly scalable algorithm

that allows us to proceed to high enough values of K for
smooth K → ∞ extrapolations.
In order to further assure the reliability of our results,

two additional and independent special-purpose
codes were written and employed in these calculations.
These two codes are called “lfphi4MH-00” [36] and
“LFHC_phi4_SJ” [37]. Both codes are MPI parallelized.
The code lfphi4MH-00 (LFHC_phi4_SJ) is written in C
(Fortran90) and employs the diagonalization package(s)
“DSYEV” from LAPACK [38] (“petsc” [39,40] and
“slepc” [41])).
While the low-lying eigenvalues provided by MFD were

obtained to about seven significant figures (single-precision
with 32-bit words), the eigenvalues from lfphi4MH-00 and
LFHC_phi4_SJ were obtained to 14 significant figures
(double precision or 64-bit accuracy). All three codes
produced the same eigenvalues to within their respective
precisions. The two new codes are not yet optimized to run
on supercomputers so their use is limited in the present
work. Our presented results are obtained from diagonaliza-
tions forK ≤ 42 in double-precision with lfphi4MH-00 and
LFHC_phi4_SJ while diagonalization results for K > 42
are obtained in single-precision with MFD.
We have performed calculations on meshes of values of

K for the even and the odd sectors as detailed below. For
each sector and each K we perform a set of calculations
over a small range in λ sufficient to determine the critical
coupling for the vanishing mass gap. In order to gain an
impression of the computational effort, we present the
dimensions of H in DLCQ with periodic boundary con-
ditions at representative values of K, both without and with
boson number truncation in Table I.
It is noteworthy that calculations near a vanishing mass

gap involve strong coupling and increased level density
(compared to weak coupling at the same K) near the lowest
state of the system. Both of these features induce the need
for considerable care in attaining and assuring the stability
of numerical precision. One can note, for example, that
thousands of Lanczos iterations are required for the larger
dimensional matrices solved for the lowest-lying solutions
in the present effort. AsK increases, the number of Lanczos

TABLE I. Representative matrix dimensions for scalar ϕ4 in DLCQ with periodic boundary conditions omitting the zero mode.
Numbers in parenthesis in column headings signify the maximum number of bosons allowed which results in a truncated basis.

Matrix Dimension

K Odd sector Even sector Odd sector (16) Even sector (16) Odd sector (8) Even sector (8)

16 113 118 113 118 87 99
32 4163 4186 3774 3891 1426 1893
48 73593 73680 54486 58054 9616 15083
64 870677 870953 488759 542632 41171 75092
80 7897846 7898630 3186613 3696386 133295 278203
88 22053415 22054694 7428056 8810476 222513 494131
96 59056128 59058176 16465206 19970504 356993 840816
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iterations increases for eigenvalues near the critical cou-
pling and the numerical precision begins to erode. Future
efforts will focus on improving the efficiency of the double-
precision codes in order to achieve greater accuracy at
higher K and to improve the results for the critical coupling
in the continuum limit.

III. NUMERICAL RESULTS, POLYNOMIAL FITS
AND EXTRAPOLATIONS

As mentioned above, we focus our attention on the
lowest two mass eigenstates of the odd sector and the
lowest mass eigenstate of the even sector. For these three
states we obtain the critical coupling where the eigenvalue
vanishes at each K. While details will be introduced and
discussed below, we present here a brief overview of our
main results. Figure 1, displays the critical couplings for the
vanishing mass gaps of these three low-lying states as
functions of 1=

ffiffiffiffi
K

p
. The symbols represent calculations

using DLCQ for each of the three states indicated in the
legend and the curves represent polynomial fits using these
calculated results according to procedures discussed below.
We obtain the continuum limit by taking our functional

fits to the limit K → ∞ as indicated by their intercepts with
the vertical axis in Fig. 1. The inset provides an enlarged
view of these functions as they approach the continuum
limit. We obtain a result of 22.64� 0.17 for the critical
coupling for these three states. Our result can be compared
with the critical coupling result of Ref. [13] ([14]) which is
26.39� 0.63 (23.12� 0.38). Hence, we are consistent
with the result of Ref. [14] within the respective quoted
uncertainties. Our result is presented as a vertical black
band on the vertical axis of the inset to Fig. 1 while those of
Ref. [13] and Ref. [14] appear as vertical purple and
vertical magenta bands respectively.

A. Lowest state of the odd sector

We now present details underlying the results displayed
in Fig. 1. For the lowest state of the odd sector, we fit a 5th-
degree polynomial in 1=

ffiffiffiffi
K

p
to the DLCQ results for the

coupling that provides a vanishing mass gap for the lowest
mass-squared eigenvalue at each K. We determined our
preferred functional form and variable by testing many
functional forms and variables.1 Our selected function and
variable provide robust extrapolations reasonably indepen-
dent of the range of DLCQ results included in the fit
(see Sec. IV).

To be more specific, we determine the function

f1ðzÞ ¼
X
j

Ajzj; ð12Þ

where z ¼ 1=
ffiffiffiffi
K

p
, the subscript “1” specifies the function

for the lowest state of the odd sector and j runs from
zero to 5. All fits presented in this work are performed by
minimizing the mean square deviation between the adopted
function and the DLCQ results. The coefficients of the fits
are tabulated in Table II. We will discuss the residuals of
our fits after we introduce the other fits.
In order to limit the role of finite K artifacts that play a

larger role at lower values of K, we selected our 52 DLCQ
results in the range 12 ≤ K ≤ 88 to determine the coef-
ficients in Eq. (12). This range reaches the maximum for
which we obtained DLCQ results for the lowest state of the
odd sector. In particular, we employed 31 data points with
unit increments over 12 ≤ K ≤ 42, 19 data points with
increments of two in K over 42 < K ≤ 80, and the points at

FIG. 1. Critical couplings λc=μ2 for vanishing mass gaps as a
function of 1=

ffiffiffiffi
K

p
obtained with DLCQ using periodic boundary

conditions. Solid (open) symbols represent DLCQ results for 3
states, according to the legend, that are used (not used) in the fits.
The smooth curves are results for f1 (blue), f2 (red) and f3
(green) resulting from procedures using polynomial fits as
discussed in the text. The extrapolated value is the intercept
on the vertical axis of 22.64� 0.17. The inset provides an
expanded view of the region approaching the continuum
limit. A vertical black bar represents our approximate
systematic uncertainty which dominates our overall uncertainty
(see text). The inset also presents, for comparison, a vertical
purple bar (magenta bar) on the vertical axis representing the
critical coupling result of Ref. [13] ([14]) which is
26.39� 0.63 (23.12� 0.38).

1For example, we tried various polynomial fits as functions of
1=K and 1=K3=2. We also tried exponential fits as well as fits in
the form A � KB þ C. We ultimately settled on a polynomial as a
function of 1=

ffiffiffiffi
K

p
.
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K ¼ 84 and K ¼ 88. The choice of mesh in K is arbitrary
but aimed to provide a significant number of points in the
range where available computational resources were suffi-
cient and a robust fit could be obtained. We display the
resulting fit as a solid blue line in Fig. 1. We compare
the resulting fit with 7 additional points in the range
5 ≤ K < 12 to illustrate that the fit function also performs
reasonably well in this range.
We examined the light-front wave functions for the

lowest state of the odd sector just below and just above
the critical couplings at each K. We found that they
remained dominantly single-boson in character. By pro-
ceeding further beyond the critical coupling we find states
with more complex character crossing this single-particle
dominated state to become the lowest-lying state. The
details of these transitions in the region beyond critical
coupling will be presented in a separate work [42].

B. Lowest state of the even sector

We anticipate that the results for the lowest state of the
even sector will likely follow a pattern related to results for
the lowest state in the odd sector since ϕ4 in 1þ 1
dimensions is known to have no even bound states [43].
Thus, we suppose that the mass of the lowest state of the
even sector at K, which is expected [11] and found to be
dominated by 2-boson configurations, will be close to twice
the mass of the lowest state in the odd sector at K=2, which
is dominated by the 1-boson configuration. We define f2ðzÞ
to be the function describing the vanishing mass gap of the
lowest state of the even sector and we introduce “R2=1” for
the ratio (“R”) of the mass of the lowest state of the even
sector (“2”) to the mass of the lowest state of the odd sector
(“1”). We formalize what we anticipate by suggesting that

R2=1ðzÞ ¼ f2ðzÞ=f1ð
ffiffiffi
2

p
zÞ ð13Þ

will produce a smooth function with reduced finite basis
artifacts. To examine this supposition, we plot the DLCQ

results for the ratio R2=1 in Fig. 2 as a function of z2 ¼ 1=K.
We explored different variables for the horizontal axis of
this plot and found that z2 ¼ 1=K produced results that we
could then fit with good precision by a 4th-degree poly-
nomial in 1=K while other variable choices required higher-
degree polynomials for fits of comparable quality. In other
words, we define the fit function for the ratio R2=1 through

R2=1ðzÞ ¼
X
j

Bjzj; ð14Þ

TABLE II. Coefficients of polynomial fits using functions described in the text. Coefficients of functions (f1, R2=1, R3=1) defined in
Eqs. (12), (14), (17) are obtained by least squares fits to DLCQ results over the ranges (12–88, 24–80, 36–90) with (52, 29, 19) points
respectively.

Functions represented by Polynomials

j f1ð1=
ffiffiffiffi
K

p Þ R2=1ð1=
ffiffiffiffi
K

p Þ R3=1ð1=
ffiffiffiffi
K

p Þ
0 2.263806133Eþ 1 1.000266817 1.000463053
1 9.991051426Eþ 1 � � � � � �
2 −1.748897600Eþ 2 −7.877324010E-1 7.039552300E-2
3 5.409501766Eþ 2 � � � � � �
4 −5.119313071Eþ 2 1.569234605Eþ 1 7.035735124Eþ 1
5 7.891188565Eþ 2 � � � � � �
6 � � � −1.332622505Eþ 2 −7.658799638Eþ 2
7 � � � � � � � � �
8 � � � 8.179742782Eþ 2 9.511647022Eþ 3

FIG. 2. Ratio of critical coupling for the vanishing mass gaps of
the lowest state at K of the even sector and the lowest state of the
odd sector at K=2 versus 1=K. Symbols represent the results from
DLCQ and the smooth curve is a fourth degree polynomial in
z2 ¼ 1=K fit to the 29 results represented by the solid symbols.
The coefficients of the fit Bj [see Eq. (14)] are presented in
Table II. The vertical dashed line signifies the boundary between
regions where finite basis artifacts are strong (to the right for
lower K) yet tending to cancel in this ratio as observed by the
smooth behavior over all K presented.
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where j runs from zero to 8 in increments of 2. For
consistency in the treatment of finite K artifacts, the lower
limit in K for the even sector DLCQ data is chosen so as to
correspond with the chosen lower limitK ¼ 12 used for the
DLCQ data adopted for the fit for f1. Therefore, the DLCQ
data for the lowest state of the even sector included in the fit
are the 29 points ranging over 24 ≤ K ≤ 80 with incre-
ments of 2 (solid symbols in Fig. 2). The best fit produces
the smooth curve in Fig. 2 and the residuals for this fit are
presented below in Fig. 6.
We tabulate the coefficients Bj of the fit in Eq. (14) in

Table II. Note that the coefficient B0 ≈ 1.000267 provides
the ratio of our extrapolations for f2 to f1 in the continuum
limit. The difference of B0 from unity fits within our overall
uncertainty for the critical coupling in the continuum limit
(see below).
Based on the polynomial fits for R2=1ðzÞ and f1ðzÞ, we

can obtain f2ðzÞ using Eq. (13):

f2ðzÞ ¼ R2=1ðzÞf1ð
ffiffiffi
2

p
zÞ: ð15Þ

We present the curve for f2ðzÞ from this approach in Fig. 1
along with the DLCQ results for the lowest state of the even
sector. We note that, in order to facilitate comparisons, the
results in Fig. 1 are presented as functions of z ¼ 1=

ffiffiffiffi
K

p
.

Since the DLCQ data for the ratio R2=1 (including the
data excluded from the fit and represented as open symbols
in Fig. 2) appear to be a smooth function of 1=K, we can
conclude that finite basis artifacts appear to be reasonably
canceled when forming this ratio. This cancellation facil-
itates a good fit with a 4th-degree polynomial over the
range in z2 ¼ 1=K that covers 24 ≤ K ≤ 80. Furthermore,
the resulting fit reasonably describes the DLCQ results
below K ¼ 24 that are not included in the fit. For ease of
visualization, the K ¼ 24 boundary is represented by a
vertical dashed line in Fig. 2. We note that this K ¼ 24
boundary occurs near the point of inflection in R2=1 but we
do not find this inflection point to be physically significant.
We test the finite basis artifact cancellations further

by comparing the fit displayed in Fig. 2 with a fit that
includes all the points presented in the Fig. 2. Such an
expanded fit goes smoothly through all the points
and is nearly indistinguishable from the curve in Fig. 2
for the region above K ¼ 24 (to the left of the vertical
dashed line). For comparison, the K → ∞ point changes
from ≈1.0002668 (B0 in Table II) to ≈1.0000843 when all
points in Fig. 2 are included in the fit.
The results shown in Fig. 2 are predominantly below

unity but approach unity in the continuum limit. This
indicates that, using our connection between the lowest
state of the even sector and the lowest state of the odd
sector, the effect of finite K is to produce a bound state in
the lowest state of the even sector at the critical coupling for
its vanishing mass gap. Thus, at finite K, the lowest even
state, when massless, cannot decay to two of the lowest

massless states at K=2 of the odd sector. We checked the
light-front wave functions for the lowest solution of the
even sector near critical coupling at each K and confirmed
that they are overwhelmingly dominated by the 2-boson
configuration.
It is important to note that our results in Fig. 2 do indicate

that degeneracy of the even and odd sector, a condition for
spontaneous symmetry breaking, occurs in the continuum
limit at the vanishing mass gaps of both sectors—i.e., the
ratio of critical couplings approaches unity as K → ∞. In
the continuum limit a mix of lowest state solutions from the
even and odd sector becomes a solution. In addition, as we
see in Sec. III C additional degeneracies will occur and will
lead to solutions with well-mixed particle content.

C. First excited state of the odd sector

Returning to the odd sector, we consider the critical
coupling for the vanishing mass gap of the first excited state
as a function of z which we define as f3ðzÞ. Here we
encountered more severe computational challenges owing
to the higher density of states near the vanishing mass gap
for this state. We sought and found an effective shortcut
which is further detailed below in Sec. IV B. In brief, we
found that for K ¼ 75 the results with a 16-boson trunca-
tion were indistinguishable, within numerical uncertainties,
from results without truncation where up to 75 bosons were
included. To conserve computational resources, we there-
fore retained the 16-boson truncation for DLCQ results at
K ≥ 75. Examples of the savings in terms of matrix
dimension are presented in Table I.
Since we anticipate and find that this state is dominated

by 3-boson configurations, we extend the logic used above
to now consider the ratio of the vanishing mass gap for this
state to the vanishing mass gap for the lowest state of the
odd sector. Hence, we define this ratio as

R3=1ðzÞ ¼ f3ðzÞ=f1ð
ffiffiffi
3

p
zÞ: ð16Þ

We plot the DLCQ results for this ratio in Fig. 3 as a
function of z2 ¼ 1=K. Again, this choice of variable
produces a sequence of results that is well described by
a 4th-degree polynomial

R3=1ðzÞ ¼
X
j

Cjzj; ð17Þ

where j runs from zero to 8 in increments of 2 with the
resulting smooth curve displayed in Fig. 3. Our fit includes
19 DLCQ points over the range 36 ≤ K ≤ 90 in increments
of 3 displayed as solid symbols in Fig. 3. Note that we
attain K ¼ 90 for the first excited state of the odd sector
owing to the boson number truncation discussed above.
The choice of the lower limit in K for this state follows a
similar line of reasoning for consistent treatment of finite K
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artifacts that we invoked for the lowest state of the even
sector in Sec. III B.
We tabulate the coefficients Cj of the fit in Eq. (17) in

Table II. Note that the coefficient C0 ≈ 1.000463 provides
the ratio of our extrapolations for f3 to f1 in the continuum
limit. The difference of C0 from unity also fits within our
overall uncertainty for the critical coupling in the con-
tinuum limit (see Sec. IV).
We now offer an observation about finite basis artifacts

analogous to our previous observation concerning R2=1 in
Fig. 2. That is, it is interesting to note that finite basis
artifacts appear again to be well-suppressed in the ratio R3=1

since the 4th-degree polynomial represents DLCQ results
accurately over a range in z2 ¼ 1=K that extends well
below the K ¼ 36 boundary in Fig. 3 that separates the
results employed in the fit (solid symbols) from those
excluded (open symbols).
We are now in a position to obtain f3ðzÞ, based on our

pair of polynomial fits

f3ðzÞ ¼ R3=1ðzÞf1ð
ffiffiffi
3

p
zÞ: ð18Þ

We present the curve for f3ðzÞ from this approach in Fig. 1
along with the DLCQ results for the first excited state of the
odd sector.
Following our exploration of the finite basis artifact

cancellations for R2=1 we compare the fit displayed in Fig. 3

for R3=1 with a fit that includes all the points presented in
the Fig. 3. Such an expanded fit goes smoothly through all
the points and is nearly indistinguishable from the curve in
Fig. 3 for the entire range of 1=K displayed. For compari-
son, the K → ∞ point changes from ≈1.0004631 (B0 in
Table II) to ≈1.0015136 when all points in Fig. 3 are
included in the fit.
Unlike the ratio R2=1, the ratio R3=1 remains everywhere

above unity at finite K while approaching unity smoothly
and monotonically as K → ∞. This indicates that the first
excited state of the odd sector at finiteK, when approaching
a vanishing mass, is able to decay to three separated
interacting bosons each carrying K=3 units of the longi-
tudinal momentum of the parent state. Unity in the
asymptote of R3=1 signals degeneracy of the 3-boson
dominated state with the 1-boson dominated state at a
vanishing mass gap for both in the continuum limit.
Up to this point, as summarized in Fig. 1, the DLCQ

results indicate the anticipated degeneracy of the even and
odd sectors and the lowest and first excited states of the odd
sector in the continuum limit K → ∞ all with a vanishing
mass gap. These simultaneous transitions are found to
occur with a critical coupling of 22.64� 0.17. Our quoted
uncertainty is an estimated systematic uncertainty which is
expected to dominate our overall uncertainty as discussed
in Sec. IV C. For comparison, the corresponding critical
coupling result of Ref. [13] ([14]) is 26.39� 0.63
(23.12� 0.38). Hence, taking the respective quoted uncer-
tainties into account, we are consistent with the results of
Ref. [14] as depicted in the inset to Fig. 1.

IV. RESIDUALS AND UNCERTAINTY
QUANTIFICATION

There are a number of sources of uncertainties in our
implementation of DLCQ. An abbreviated list includes:
(1) Hamiltonian mass eigenvalue calculations
(2) Interpolation for the vanishing mass gap
(3) Selection of functions and variables for fitting

critical couplings as a function of K.
(4) Role of residual finite K artifacts
Readers less interested in the details of the uncertainty

analysis may wish to either scan Sec. IV C which details the
largest source of our uncertainty or skip this section
entirely.

A. Uncertainties in eigenvalues

We have mentioned above that we have developed,
tested and employed three independent codes. Two of
these codes, “lfphi4MH-00” [36] and “lfphi4SJ-00” [37],
are special purpose codes that have produced our mass
eigenvalues in double-precision (64-bit accuracy) for
K ≤ 42. They have been benchmarked with each other
to verify their eigenvalues agree within double-precision.

FIG. 3. Ratio of critical coupling for the vanishing mass gaps of
the first excited state at K of the odd sector to the lowest state of
the odd sector at K=3 versus 1=K. Symbols represent the results
from DLCQ and the smooth curve is a fourth degree polynomial
in z2 ¼ 1=K fit to the 19 results represented by the solid symbols.
The coefficients of the fit Cj [see Eq. (17)] are presented in
Table II. The vertical dashed line signifies the boundary between
regions where finite basis artifacts are strong (to the right for
lower K) yet tending to cancel in this ratio as observed by the
smooth behavior over all K presented.
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A third code (MFD) [17–19,35] is a Fortran77/Fortran90
code which is MPI parallelized. This code, which has been
enabled to solve boson systems, employs the Lanczos
algorithm to obtain the lowest mass-squared eigenvalues
in single-precision (32-bit accuracy). We note that MFD
employs double-precision for key components of the
Lanczos iteration process in order to maintain overall
single-precision accuracy. Benchmarking the three codes
for the region K ≤ 42 where all three run successfully,
confirms MFD produces results with single-precision
accuracy. MFD alone is employed to obtain our results
in the range K > 42.
In the region where the mass gap vanishes, the mass-

squared eigenvalues are typically less than unity. In this
region we find that MFD’s lowest eigenvalue has an
uncertainty of about unity in the fifth decimal place.
Support for the assertion of MFD’s accuracy at larger
values of K, which most strongly influences our extrap-
olations, will be seen below in our presentation of detailed
results at K ¼ 75 in Sec. IV B.

B. Interpolation method and uncertainties

In order to obtain the critical coupling for a vanishing
mass gap at a specific value of K, we perform a sequence
of calculations at values of the coupling adjacent to the
vanishing mass gap. We perform these calculations over a
narrow range of coupling separately for each of our three
states since different values of the critical coupling will
emerge for each state at each value of K. This is evident
from taking any vertical line through the final results
presented in Fig. 1 and projecting the intercepts to the
vertical axis.
For K ≤ 42 we use “lfphi4MH-00” to search for the

value of the critical coupling to eight significant figures
producing a vanishing mass gap. For K > 42 we use MFD
to produce results on a mesh of values of the coupling that
span the vanishing mass gap and obtain the critical
coupling by interpolation as described below.
We choose the K ¼ 75 example to present our procedure

in more detail. In addition, we choose the most challenging
state to converge (requiring the largest number of Lanczos
iterations), the first excited state of the odd sector for this
detailed study. In fact, we already experienced Lanczos
convergence difficulties when attempting full calculations
for this first excited state in the odd sector at a value of the
coupling close to the critical coupling (see below). This led
us to consider implementing a boson number truncation at
16 bosons for DLCQ basis states in the range K > 75.
To be specific, the DLCQ eigenvalues for the full

calculation of the first excited state in the odd sector at
K ¼ 75 in Fig. 1 were obtained with 7500 Lanczos
iterations. Beyond 7500 Lanczos iterations we experienced
numerical difficulties for this first excited state. Note that
even more iterations would be needed at higher K to
achieve convergence. By contrast, 1600 Lanczos iterations

are sufficient to converge the lowest state with a full basis in
the odd sector at couplings near the vanishing mass gap
even atK ¼ 88, the highestK we achieved with a full basis.
We present the DLCQK ¼ 75 results for the first excited

state in the odd sector as solid symbols in Fig. 4 on an
evenly spaced mesh that spans the vanishing mass gap. We
chose 11 points about evenly distributed above and below
what we estimated as the critical coupling with increments
of 0.20. We present two cases in the figure: the full
calculation (solid blue squares) that keeps all boson
configurations up to and including the 75-boson configu-
ration and a calculation where only states with 16 or fewer
bosons were retained (solid red diamonds). The iterations
failed to converge the eigenvalue at λ ¼ 40.0 in the full
calculation. Otherwise, the eigenvalues from the two
calculations are indistinguishable by eye on this scale.
We then fit the results of each calculation with a second-

degree polynomial which we found suitable for extracting

FIG. 4. Calculated M2=μ2 eigenvalues (solid symbols) for the
first excited state in the odd sector for couplings that span the
vanishing mass gap atK ¼ 75. The solid blue squares correspond
to the full calculation while the solid red diamonds correspond to
results in a reduced space that omits configurations with more
than 15 bosons. Results are presented for increments of 0.2 in the
coupling except for one point in the full calculation at 40.0, just
above the critical coupling, where 7500 Lanczos iterations were
insufficient for producing a converged result. The thick blue line
(thin red line) corresponds to a second degree polynomial fit used
to interpolate for the vanishing mass gap. The open symbols
present 1000 times the difference between the corresponding
solid symbol and fit. The inset provides an expanded view of the
two quadratic fits as they cross the vanishing mass gap. As
expected, the coupling must be larger for the truncated calcu-
lation relative to the full calculation to produce a vanishing
mass gap.

CRITICAL COUPLING FOR TWO-DIMENSIONAL ϕ4 … PHYS. REV. D 105, 016020 (2022)

016020-9



the critical coupling by interpolation. Fig. 4 then presents
the residuals between each of the fits and the corresponding
calculated points as open symbols with the corresponding
shape and color. In order to render the displacement of the
residuals from zero more visible, we multiply the residuals
by a factor of 1000.
The residuals appear to be reasonably distributed about

zero which suggests the adequacy of our choice of a second
degree polynomial as the function for fits and interpola-
tions. Furthermore, as may be anticipated from the reduc-
tion in the Hamiltonian matrix size by more than a factor of
2 from 4,059,416 for the full calculation to 1,824,575 for
the matrix truncated to the limit of 16-boson configura-
tions, the residuals are noticeably reduced with that
truncation. The resulting rms deviation between calculation
and fit is 4.56x10−5 (5.61x10−6) for the full calculation
with 10 points (16-boson truncation with 11 points). The
resulting uncertainty in the critical λ at K ¼ 75 is obtained
by incorporating information from the slope of the quad-
ratic fit function. With this we arrive at an uncertainty in the
critical λ at K ¼ 75 of 1.57 × 10−4 (1.83 × 10−5) for the
full (16-boson truncation) calculation.
In order to examine the difference in the interpolated

critical coupling, we provide an inset to Fig. 4 with an
expanded scale. The inset shows the two fit functions
provide vanishing mass gaps that differ by about 0.00002 in
their critical couplings. As expected, a larger coupling is
needed with the truncated matrix to produce a vanishing
mass gap. This uncertainty is small compared to other
uncertainties that we will assess below.
Referring back to the discussion in Sec. IVA, we can

also use these deviations presented in Fig. 4 to infer an
eigenvalue uncertainty. That is, taking the deviations
between calculation and fits as a gauge, we estimate that
eigenvalues at the extrema in this figure, on average, are
accurate to about 4 (5) decimal places for the full
(truncated) calculation.
We conclude this discussion by noting that we explored

changing the range of the couplings spanning the vanishing
mass gap. We also explored increasing the number of points
calculated for the fitting and interpolation process. This led
us to estimate that our uncertainty in the deduced critical
coupling at each fixed K and for each of the three states
studied could conservatively be assigned a value of unity
(two units) in the sixth (fourth) decimal place for K ≤ 42
(K > 42). We note that, forK > 42 this error estimate is the
same as the systematic shift in the critical coupling shown
to arise from truncation to 16-boson configurations in
Fig. 4. Hence, at this stage of the uncertainty analysis,
our dominant uncertainty in deduced critical couplings is
less than five units in the fourth decimal place.

C. Selection of polynomials for fitting

We first consider the DLCQ results for f1ðzÞ shown in
Fig. 1 and represented by Eq. (12). The choice of variable

z ¼ 1=
ffiffiffiffi
K

p
emerged after attempts with z to a variable

power revealed that a robust low-degree polynomial fit
could be obtained with a polynomial in z itself. The
meaning of “robust” will become more apparent shortly.
Among several methods of partitioning our DLCQ

results for fitting and extrapolating, we present in
Table III an example of extrapolations to the continuum
limit (K → ∞ or z → 0) using a sequence of polynomial
degrees. In particular, we extrapolate the critical coupling
for the lowest eigenstate of the odd sector to the continuum
limit using a range of polynomial degrees (column labels)
and a set of cutoffs inK retained for the fit (“MaxK”). For a
third (fourth) degree polynomial, the extrapolation steadily
increases (decreases) with increasing Max K. The fifth
degree polynomial appears to approximately average the
third and fourth degree result at each value of Max K
including the highest Max K ¼ 88. The sixth degree fit
starts out on a plateau at lower values of Max K and then
falls toward the result of the fifth degree polynomial at Max
K ¼ 88. It is interesting to note that the average of the four
extrapolations at Max K ¼ 88 in Table III is 22.66950
which is within 0.03144 of the result of the fifth degree
polynomial. Owing to the stability of its extrapolation as a
function of MaxK, and to the desire to avoid overfitting our
limited data set, we adopt the fifth degree polynomial for
our overall choice and use it for further sensitivity studies.
Having fixed our attention on the initial indication of

reasonably stable extrapolations (i.e., stable with increasing
Max K) from the fifth degree polynomial, we continue to
test for a robust character by studying the extrapolation
for f1ðzÞ as a function of various upper and lower cutoffs
in the DLCQ results retained in the fit. We present results
for f1ðzÞ extrapolations employing various selections of
DLCQ data sets in Table IV. For the extrapolations
corresponding to listed values of Max K, the minimum
value of K ¼ 12. For the extrapolations corresponding to
listed values of Min K, the maximum value of K ¼ 88.

TABLE III. Extrapolations of λc for the lowest state of the odd
sector as a function of the degree of the polynomial adopted and
as a function of the Max K included in the data set. The overall
range is K ¼ 12–88 for a maximum of 52 DLCQ points. The
extrapolations of the 5th degree polynomial exhibit the least
sensitivity to the Max K over the range of Max K values
displayed in the table.

Extrapolations using Polynomials of Varying Degree

Max K 3rd 4th 5th 6th

64 22.43333 22.86767 22.59842 22.81205
68 22.45172 22.85482 22.61448 22.81022
72 22.46768 22.84330 22.62603 22.80189
76 22.48159 22.83222 22.63073 22.77323
80 22.49397 22.82240 22.63476 22.75340
84 22.50107 22.81590 22.63640 22.73715
88 22.50877 22.80870 22.63806 22.72247
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By sliding the upper cutoff down from Max K ¼ 88 we
find comparable extrapolations to those shown already in
Table III down as far as Max K ¼ 56 (38 points retained
in the fit). Less sensitivity is obtained by sliding Min K up
from 12 (all 52 points included in the fit) toward Min
K ¼ 36 (28 points retained in the fit). Going to the higher
values of Min K that are listed produces significantly larger
deviations in the extrapolations.
We estimate that the extrapolations using Max K ≥ 64

and Min K ≤ 36, i.e., those below the fourth row in
Table IV, indicate that the fifth degree polynomial is a
robust choice. The mean value of these 13 extrapolations
(using the entry on the bottom row just once) is 22.618 with
a maximum deviation ≈0.072. We will observe that this is
close to our final result.
Based on these studies we see that the systematic

uncertainties from the choice of the degree of the poly-
nomial (Table III) and to the choice of the range of data
included in the 5th degree polynomial fit (Table IV)
dominate our overall uncertainties compared to those
estimated above. To be conservative, we quote our critical
coupling and its associated uncertainty so as to encompass
the results in the last row of Table III as well as all those in
Table IV below the fourth row. This provides our final
result for the critical coupling: 22.64� 0.17. By electing
the single overall uncertainty to encompass these selected
results in Tables III and IV, we estimate that our smaller
uncertainties, discussed above, are well covered.

D. Residual finite K artifacts

Having obtained the functions representing the DLCQ
results, we turn our attention to discussing the residuals, the
differences between fit functions and DLCQ calculations
and ratios of DLCQ calculations. We present the residuals

for the functions f1, f2 and f3 in Fig. 5 scaled by the
indicated large factors for viewing on the same overall
scale. Here we observe the appearance of the finite basis
artifacts embodied in the function f1 as a smooth function
for K ≤ 42. These artifacts also play a role in the functions
f2 and f3 as represented by Eqs. (15) and (18).
In light of these relationships of f2 and f3 to f1, our

DLCQ results for f1 extend further toward the continuum
limit than our results for the other two functions. Hence, we
focus on the residuals for f1 with the understanding that
their narratives, with appropriate changes in their argu-
ments, relate strongly to the narrative for f1.
Viewing the residuals for f1 in Fig. 5 from low to highK,

one clearly observes the smooth function for K ≤ 42
transitions to a noisy distribution for K > 42. This is as
expected since this transition corresponds to the change-
over from the region of double-precision results to the
region of single-precision results with a resulting increase
in numerical uncertainties. We observe that the largest
deviation from zero of an f1 residual is about 8.5 × 10−5 on
a scale where λc is on the order of 30 indicating an inferred
fractional error of about 3 × 10−6. Furthermore, most of the
inferred fractional errors for f1 are a factor of 2 to 3 smaller

FIG. 5. Residuals, plotted as functions of X ¼ ðK;K=2; K=3Þ
for ðf1; f2; f3Þ respectively, between functions based on poly-
nomial fits and DLCQ mass-squared eigenvalues. That is, these
are the residuals of the results presented in Fig. 1. The residuals
are scaled, as indicated by the scaling factors in the legend, to
generate visible results on a single vertical scale. Filled (open)
symbols correspond to DLCQ results employed (not employed)
in the fits. Connecting straight line segments are included to help
guide the eye. The horizontal axis X is defined for each function
according to the points from f1 employed in its evaluation (see
text for details). The inset exhibits details of the residuals in the
lower-X region on an expanded scale.

TABLE IV. Extrapolations of λc to the continuum limit
(K → ∞) from 5th degree polynomial fits (f1 of Eq. (12) using
ranges of DLCQ results specified by the upper value (Max K) and
the lower value (Min K) of the range. The last row presents the
result when all 52 DLCQ results over the range 12 ≤ K ≤ 88 are
employed.

Extrapolations from 5th Degree Polynomial Fits

Max K λc Min K λc

48 22.49531 52 25.48713
52 22.53590 48 23.64028
56 22.56649 44 22.28556
60 22.58336 40 22.51619
64 22.59842 36 22.60208
68 22.61448 32 22.54641
72 22.62603 28 22.56581
76 22.63073 24 22.61545
80 22.63476 20 22.65623
84 22.63640 16 22.66967
88 22.63806 12 22.63806
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than this. These observations are reasonably consistent
with our assertion of single-precision accuracy in the
region K > 42.
Since DLCQ results for f1 with a rescaled argument are

employed in the determination of ratios of DLCQ results
used at the next stage of the fitting process, we take this
opportunity to present the residuals for f2 and f3 also in
Fig. 5. Here, we employ a variable x-axis scale that
corresponds to the argument of f1 employed for determin-
ing ratios that are then fit for purposes of extrapolations.
Considering the rescaled argument, we expect and find the
transition from smooth to noisy finite K artifacts for f2 (f3)
occurs atK=2 ¼ 21 (K=3 ¼ 14). For f3, however, the noise
appears much smaller than the corresponding noise for f2.
This is an indication that the numerical noise for the lowest
state and the first excited state in the odd sector are
correlated resulting in reduced f3 residuals extending to
the limits of our current calculations.
To be complete, we also present residuals for R2=1 and

R3=1 in Fig. 6 scaled by the large factors indicated in the
legend. We observe that the patterns of the larger residuals
for R2=1 and R3=1 follow the larger residuals for f2 and f3
respectively in Fig. 5. We can trace this approximate
repeating pattern back to the results shown for f1 in
Fig. 5. In particular, we observe that the residuals for f1

are about an order of magnitude smaller for K ≥ 42 than
those for f2 and f3 in their corresponding domains of
K ≥ 24 and K ≥ 36 respectively (note the scale factors in
the legends). Hence, the residuals for R2=1 and R3=1 are
dominated by the numerical deviations of calculated points
for f2 and f3 from their polynomial fits.

V. SUMMARY AND OUTLOOK

The main result of the present work is that DLCQ is
capable of producing the critical coupling for the vanishing
mass gap in two-dimensional ϕ4 theory, with accuracy
competitive with other methods. This is very important for
several reasons. The earlier work on this problem [11] was
done in an era when both DLCQ and supercomputing were
in their infancy. There were many lingering doubts about
the importance of zero longitudinal momentum modes and
the reliability of DLCQ which is conceptually simple and
employs a uniform grid in momentum space. When the
exactly zero longitudinal momentum mode is dropped in
this theory, a question is raised about the potential role it
could have played near the critical coupling which is
associated with the onset of boson condensation. Our
results show that working with periodic boundary condition
(PBC) and ignoring the zero mode appears to be a valuable
and reliable approach and produces results consistent
with an alternative light-cone approach that uses basis
functions that span the entire region of momentum fraction
from 0 to 1 in the continuum [14].
Nevertheless, a constrained longitudinal zero mode does

exist when PBCs are used. Hence, in spite of the excellent
agreement with another light front method which does not
employ DLCQ, one may still ask how its inclusion will
affect the present result for the critical coupling. As we
already mentioned in Sec. II, incorporating the zero mode
in DLCQ is a nontrivial problem and to the best of our
knowledge, this problem has not yet been solved in a
satisfactory manner. A proposal on how to address this
issue is presented, for example, in Ref. [44]. Further in-
depth investigations are needed to settle this issue
quantitatively.
Since the critical coupling in this theory is associated

with a second order phase transition from the symmetric
phase to the spontaneously broken symmetry phase, one
crucial issue is whether DLCQ can detect the clear signal of
spontaneous symmetry breaking (SSB). In the symmetric
phase the eigenstates of the Hamiltonian share the sym-
metry of the Hamiltonian which is invariant under ϕ → −ϕ.
But in the symmetry broken phase, while the Hamiltonian
retains the symmetry, one can find eigenstates that do not
share this symmetry. As we show here, DLCQ predicts, to
within numerical precision, the degeneracy of the lowest
state of the odd sector and the lowest state of the even sector
in the continuum limit at the vanishing mass gap—a key
feature of spontaneous symmetry breaking. By the linear
superposition of these two states, it now becomes possible

FIG. 6. Residuals, plotted as functions of ðK=2; K=3Þ for
ðR2=1; R3=1Þ respectively, between polynomial fits and calculated
ratios of mass-squared eigenvalues. The residuals are scaled, as
indicated by the scaling factors in the legend. The ratio R2=1

(R3=1) is defined in the text by Eq. (13) [Eq. (16)] and displayed in
Fig. 2 (Fig. 3). Filled (open) symbols correspond to DLCQ results
employed (not employed) in the fits. Connecting straight line
segments are included to help guide the eye. The horizontal
axis X is defined for each function according to the points from f1
employed in its evaluation (see text for details).
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to construct an eigenstate of the Hamiltonian which does
not share the symmetry of the Hamiltonian—a clear
signature of SSB.
Spectrum degeneracy between odd and even sectors is a

feature of the entire SSB phase and hence is manifested also
for couplings above the critical coupling. However, the
critical point itself has other characteristic features. A
continuous spectrum is a key feature of the critical point.
Thus the spacing between eigenvalues should also vanish
[14]. In the critical region governed by strong interactions,
it becomes numerically more challenging to access the
masses of the excited states. But, using DLCQ, we are able
to establish the vanishing mass gap also between the lowest
two excitations in the odd sector in the continuum limit, a
result previously achieved by Ref. [14]. We also observe
that, away from the critical point, this degeneracy is lifted.
Our final result for the critical coupling is 22.64� 0.17

where the uncertainty arises overwhelmingly from our
systematic uncertainty. For comparison, the critical coupling
result of Ref. [13] ([14]) is 26.39� 0.63 (23.12� 0.38).
We note that the critical coupling of Ref. [13] employing

a polynomial basis, was obtained after a truncation in the
maximum of bosons allowed in the configurations retained
(7 for the odd and 8 for the even sectors respectively).
In addition they also implemented independent tuning of
resolutions in each Fock sector. We performed a set of
DLCQ calculations with an 8-boson truncation for f1 and
followed the same fitting and extrapolation procedures
presented above. With our 8-boson truncation we obtain a
critical coupling of 23.85� 0.17. Thus, it appears that the
difference in results for the critical coupling between
Ref. [13] and DLCQ is not due to an 8-boson truncation
in DLCQ alone.
There are many open questions which require further

investigation. We discuss a few salient examples.
The results presented in this work are made possible with

advances both in code development (software) and access
to state of the art supercomputers (hardware). By additional
investments in code development and by securing addi-
tional computational resources, can we further refine our
prediction for the critical coupling?
Can one demonstrate the vanishing of the wave function

renormalization constant at the critical point [45,46] in the
continuum limit? Can one compute the critical exponents?
They have the virtue that they are universal, independent of
the regularization and the renormalization schemes. On the
other hand except for the case of the mass gap, they are
notoriously difficult to calculate.
How would results change if we adopt antiperiodic

boundary conditions (APBC) where both the conceptual
and technical problems associated with the constrained zero
mode operator are absent? Unlike the SSB phase, in the
symmetric phase we expect the spectrum to be independent
of the boundary conditions as the continuum limit is
approached.

Can we reveal the detailed nature of the phase transition
by proceeding to stronger coupling with PBC? From our
finite but large K results we have observed that in the
symmetric phase there is no level mixing in the low-lying
spectrum. That is, invariant masses of the lowest two states
in the odd sector and of the lowest state in the even sector
go to zero at the critical coupling without crossing each
other. This is in agreement with the result of Ref. [14]. This
implies that for couplings less than the critical coupling, the
lowest state is predominantly a one-boson configuration
with its parton distribution exhibiting a peak at momentum
fraction x ¼ 1.
Our initial investigation beyond the critical coupling has

revealed multiple level crossings at stronger couplings. As
the coupling steadily increases, the dominant peak of the
parton distribution of the lowest excitation shifts to lower x
values indicating the dominance of multiparton configu-
rations. Thus further investigations beyond the critical
coupling could reveal the detailed map of how a condensate
of bosons steadily builds up. We plan to study this
phenomena in detail and extrapolate to the continuum if
possible, despite the numerical challenges one faces at
strong coupling. In other words, can we enhance the details
of kink formation with the higher resolution (higher K)
capabilities achievable with modern supercomputers?
Can we return to the broken phase, which we have

investigated previously with both the PBC and APBC,
extract the critical coupling with enhanced precision and
relate the critical couplings of the symmetric and the broken
phases? Theweak/strong duality of this theorywas discussed
long ago by S.-J. Chang [47] and is studied recently in the
equal-time Hamiltonian Fock space method in Ref. [23].
Can we make the connection with the results from equal-

time calculations more precise following the insights
provided by Refs. [13,31]? In this connection, a funda-
mental assumption is the equivalence between light front
and instant form field theories, which has been studied for a
long time. Of primary concern is the fate of vacuum [48,49]
and self-energy (tadpole) contributions. Here one analyzes
Feynman diagrams expressed in light-cone variables in
order to clarify the potential importance of the zero
longitudinal momentum mode. For more recent works
see Refs. [50–52]. Collins [53] has given a pedagogical
treatment of the subject where a cure is also provided for
circumventing the “zero mode” problem and for obtaining
correct results in perturbation theory. For an application of
this proposal within DLCQ see Ref. [54].
Coming back to the matching of results from the Instant

form and the Front form theories, the problem arises mainly
from the difference in mass corrections. This leads to a
difference in the effective dimensionless coupling λ=μ2.
How to resolve this issue nonperturbatively is presented in
Ref. [13]. A more ambitious program is presented in
Ref. [31]. These corrections are addressable within
DLCQ [55] which require additional calculations as
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defined in Ref. [31]. A detailed investigation of this
matching using DLCQ requires a separate future effort.
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