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We revisit the contribution of axial-vector mesons to the hyperfine splitting of muonic hydrogen. We
focus our attention on the doubly-virtual asymptotic behavior of the relevant form factors of axial-vector
mesons, together with their coupling to nucleons based on resonance saturation and short-distance
constraints. Among others, we find significant differences with respect to previous studies, including an
opposite sign and a ∼50% effect of the doubly-virtual high-energy behavior.
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I. INTRODUCTION

The electromagnetic interactions of axial-vector mesons
have attracted much attention recently. In particular, in the
context of the hadronic light-by-light (HLbL) contribution
to the anomalous magnetic moment of the muon [1–11],
but also concerning their contribution to the hyperfine
structure (HFS) of muonic hydrogen [12,13].
In the present study, we revise different aspects of their

role in the HFS, briefly discussing axial-vector meson
decays into lþl− that enter the HFS calculation. On the
one hand, we analyze the role of the high-energy behavior.
This was missing in previous pioneering studies of the HFS
[12,13], but has been found to play an important role in the
context of the HLbL [4–6]. We find that the impact is by no
means negligible, representing a 50% effect. On the other
hand, we use short-distance constraints connecting the
Compton scattering tensor and the axial form factor of
the nucleon. This allows us to unambiguously fix the sign
of the HFS contribution and to better understand potential
off-shell effects [12,13]. Overall, we obtain a value with an
opposite sign with respect to previous estimates that,
together with the non-negligible impact of the high-energy
behavior, represents the main result of this work.
Additionally, a discussion concerning the uncertainties
on the relevant coupling constants and off-shell effects
complements this paper.

The article is organized as follows: in Sec. I, we discuss
the amplitude for A → lþl− decays, a necessary ingredient
in our calculation. Building on the former, Sec. II outlines
the contribution to the HFS on a general basis. The
particular models are outlined in Sec. III based on reso-
nance saturation. The final results and conclusions, includ-
ing the impact on the Zemach radius are given in Sec. IV.
Further information, including the form factor description,
is relegated to the Appendixes.

II. A → l+l− DECAYS

The axial-vector meson decays to a lepton pair play a
central role in computing their contribution to the HFS, to
be discussed in the section below. Furthermore, they can
provide important information regarding A → γ�γ� transi-
tions [9,14] (see also the comments at the end of this
section). We outline next the evaluation of the relevant
matrix element appearing in these decays, which in
comparison to existing results will provide an additional
(intermediate) cross-check of our evaluation.
The aforementioned process occurs through the electro-

magnetic interactions and involves the A → γ�γ� transition,
which can be expressed on the basis of Lorentz invariance
and CP symmetry as [3]1
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1We use ϵ0123 ¼ þ1. The interested reader is referred to
Ref. [3] for relations to other bases. Comparing to the basis in
[12], A4 − Ā3 ¼ B2, Ā4 − A3 ¼ B̄2, 2CS ¼ A3 þ Ā3,
2CA ¼ A3 − Ā3, as well as F

ð0Þ
AVγ�γ� ðq21; q22Þ ¼ −B2Sðq21; q22Þ. Also,

comparing to the basis in [9,15], m2
AB2 ¼ −F 3, m2

AB̄2 ¼ F 2,
m2

ACA ¼ F 1. In addition, the form factors with well-defined
symmetry are related by 2m2

AB2S ¼ F s, −2m2
AB2a ¼ F a2 ,

m2
ACA ¼ F a1 .
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iMA→γ�γ� ¼ ie2fB2ðq21; q22Þiϵμαρβqβ1½qα2q2ν − gανq22� þ B2ðq22; q21Þiϵναρβqβ2½qα1q1μ − gαμq21�
þ iϵμναβqα1q

β
2½q̄12ρCAðq21; q22Þ þ q12ρCSðq21; q22Þ�gϵ�μðq1Þϵ�νðq2Þϵρðq12Þ

≡ ie2MAμνρϵ
�μðq1Þϵ�νðq2Þϵρðq12Þ; ð1Þ

where q12 ¼ q1 þ q2 ¼ q and q̄12 ¼ q1 − q2. Here, ϵ�μðq1Þ
and ϵ�νðq2Þ are the polarization vectors of the photons, while
ϵρðqÞ is the polarization vector of the axial-vector meson

with A ¼ a1; f
ð0Þ
1 . Importantly, the basis in Eq. (1) is free of

kinematic singularities, see also [15]. The form factors,
B2ðq21; q22Þ, CAðq21; q22Þ, and CSðq21; q22Þ, encode the strong
interaction dynamics. To guarantee Bose symmetry,
CAðq21; q22Þ must be antisymmetric and CSðq21; q22Þ must be
symmetric under q1 ↔ q2. The contribution from CS van-
ishes when the axial-vector meson is on shell and, in this
basis, can be omitted when considering high-energy con-
straints [6], which is not necessarily the case in other bases
(see also Refs. [9,15]). In the last expression,CA corresponds
to transverse photons (TT) andB2 is a combination ofTT and
LT polarization states (L standing for longitudinal).
The leading-order contribution to A → lþl− decays is

given by the diagram shown in Fig. 1(a), where the
corresponding amplitude can be expressed by means of
Eq. (1) as

iM¼−e4ερ
Z

d4k
ð2πÞ4

ūγν½ð=k−=pÞþml�γμv
q21q

2
2½ðk−pÞ2−m2

l�
Mμνρ

A ðq1;q2Þ;

ð2Þ

with q1 ¼ k and q2 ¼ q − k. In the following, it will be
useful to express the most general amplitude for these
decays, that based on Lorentz invariance and CP symmetry
can be written as

iM ¼ iūðq − pÞ½A1ðq2Þγρ þ A2ðq2Þqρ�γ5vðpÞϵρðqÞ
≡ iMρ

A→l̄l
ϵρðqÞ: ð3Þ

Note that the A2 amplitude is a pure off-shell effect and, as
such, it does not contribute to the decay width, but we keep
it here as it will generally contribute to the Compton-
scattering tensor that appears in the HFS. Using the
projector techniques defined in Appendix A and introduc-
ing l ¼ pl− − plþ , we find for the Aiðq2Þ amplitudes

A1ðq2Þ ¼
α2

iπ2
1

l2q2

Z
d4k

CAðq21; q22ÞωA þ B2Sðq21; q22Þω2S þ B2Aðq21; q22Þω2A

q21q
2
2½ðk − pÞ2 −m2

l�
;

ω2S
2A
¼ �ðq21 � q22Þfl2ðq · q1Þðq · q2Þ − q2ðk · lÞ½q1 · q2 − q2�g − l2q2f2q21q220 g;

ωA ¼ ðq21 − q22Þf−q2ðk · lÞðq1 · q2Þ þ l2½k2q2 − ðk · qÞ2�g; ð4Þ

together with

A2ðq2Þ ¼ −
2ml

q2
A1ðq2Þ þ

α2

iπ2
4ml

q4

Z
d4k

k2q2 − ðk · qÞ2
k2ðq − kÞ2½ðk − pÞ2 −m2

l�
f−q2CSðq21; q22Þ

−ðq21 − q22Þ½CAðq21; q22Þ − B2Aðq21; q22Þ� − ðq21 þ q22ÞB2Sðq21; q22Þg: ð5Þ

(a) (b)

FIG. 1. The leading contribution to A → lþl− decays (a). The axial-vector meson contribution to the l−p → l−p amplitude relevant
to the HFS (b). The gray blob includes structure-dependent axial-photon-photon interactions.
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In the previous equations, we have used form factors
with well-defined symmetry following Refs. [3,6]:
B2ðq21; q22Þ ¼ B2Sðq21; q22Þ þ B2Aðq21; q22Þ and B2ðq22; q21Þ ¼
B2Sðq21; q22Þ − B2Aðq21; q22Þ.
Note that the current evaluation allows us to cross-check

our results for A1ðm2
AÞ against those in Refs. [9,14],

producing a nice agreement and reinforcing our results,
to be used below in the q2 → 0 limit for the HFS.
Finally, we would like to comment on an important

aspect. Namely, that A → eþe− decays are particularly
sensitive to the intermediate Vγ contributions (and thereby
to the timelike region), showing less sensitivity to high
energies or the spacelike regime. This is a consequence of
the Landau-Yang theorem and is opposite to πðηÞ → lþl−

decays [16], where the imaginary part is dominated by the
intermediate 2γ state. Due to this reason, and the fact that
several form factors appear (in contrast to the HFS where
the knowledge of B2S suffices), we refrain from discussing
this further. Still, we use different models for the B2S form
factor (see Appendix B) to illustrate our claim for the
f1ð1285Þ case. In particular, taking the unpolarized spin-

averaged squared matrix element M2 and the correspond-
ing partial decay width

M2¼4

3
q2β2ljA1ðq2Þj2; ΓA→ll¼

1

12π
MAβ

3
ljA1ðM2

AÞj2;
ðβ2l¼1−4m2

l=sÞ; ð6Þ

we find the results in Table I using the form factors
discussed in Appendix B. From the results therein, we
find that the form factors including an explicit vector meson
mass of mV ¼ 0.77 GeV (VMD, eVMDm, heVMD) dis-
play similar results, with mild corrections from their
different high-energy behavior. On the contrary, they differ
substantially from those employing an effective mass that
successfully describes the L3 data [17,18] in the (singly-
virtual) spacelike region, regardless of their high-energy
behavior. As we will show, this is the opposite for the HFS
that, as such, might not benefit substantially from a precise
knowledge of A → eþe− decays.

III. THE CONTRIBUTION TO THE HYPERFINE
STRUCTURE

Having computed the Mρ
A→l̄l

ðq2Þ amplitude in Eq. (3),
the contribution of axial-vector mesons to the HFS is
straightforward. In particular, the relevant amplitude of
the l−p → l−p process driven by axial-vector mesons,
Fig. 1(b), can be expressed as

iMlp¼ igANN ½ūðA1γ
μþA2qμÞγ5u�l

−gμνþqμqν
m2

A

q2−m2
A

½ūγνγ5u�N;

ð7Þ

where we have introduced the coupling of the axial-vector
mesons to the nucleons, gANN , via

La1NN ¼ −ga1NNðN̄γμγ
5σ⃗NÞa⃗μ1;

Lf1NN ¼ −gf1NNðN̄γμγ
5NÞfμ1: ð8Þ

Determining the couplings above will be an important part
of our study, that we postpone to Sec. III. Pursuing further
the nonrelativistic potential for the HFS, and making use of
the relation Mlp ¼ −2ml2mNṼNRðq2Þ, we obtain2

ṼNRðq2Þ ¼ gANN

�
A1ð−q2Þ
m2

A þ q2

�
ðσ̂l · σ̂NÞ þ

ðq · σ̂lÞðq · σ̂NÞ
m2

A

�

−
Ã2ð−q2Þ

m2
A

ðq · σ̂lÞðq · σ̂NÞ
�
; ð9Þ

where σ̂lðNÞ are Pauli matrices acting on the lepton
(nucleon) spinors and 2mlÃ2 ¼ A2. In the following,
we restrict ourselves to the leading-order contribution
in α. This justifies, in analogy with [12], neglecting the
terms proportional to ðq · σ̂lÞðq · σ̂NÞ, as well as taking
A1ð−q2Þ → A1ð0Þ; both effects being suppressed by
mlα=Λ (see Appendix C). Furthermore, this justifies
keeping the leading term in the spinors’ nonrelativistic
expansion [20]. Neglecting those terms, the expression
above corresponds to a nonrelativistic potential

ṼNRðq2Þ ≃ gANN
A1ð0Þ

m2
A þ q2

ðσ̂l · σ̂NÞ;

VNRðrÞ ¼
gANNA1ð0Þ

4πr
e−mArðσ̂l · σ̂NÞ: ð10Þ

This agrees with the recent study in Ref. [20] upon

identifying their coupling constants gð1ÞA → A1ð0Þ,
gð2ÞA → −gANN . The corresponding shifts for each level

TABLE I. Branching fraction for f1 → eþe− decays in units of
10−9 with the different form factors outlined in Appendix B (ideal
mixing case). In particular the first three columns correspond to
models incorporating a vector meson mass mV ¼ 0.77 GeV,
whereas the last three columns have effective masses around
1 GeV, illustrating the relevance of the intermediate Vγ state. For
reference, this branching ratio is < 9.4 × 10−9 at 90% confidence
level [19].

VMD eVMD heVMD DIP heDIP OPE

Beþe− 1.90ð9274Þ 1.55ð5038Þ 1.66ð4542Þ 2.87ð3.691.73Þ 2.73ð3.861.69Þ 2.67ð3.991.75Þ

2We use ūðp2; s2Þγ5uðp1; s1Þ→NRðp1 − p2Þ · ½ξ†s2σξs1 � and

ūðp2; s2Þγμγ5uðp1; s1Þ→NR2m½ξ†s2ð0; σÞξs1 �, where p1 − p2 → �q
for nucleons (leptons).
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can be obtained through ΔE ¼ hΨn;l;mjVNRðrÞjΨn;l;mi,
withΨn;l;m the hydrogen atom wave functions. In particular
for the HFS we are interested in, corresponding to the
energy difference EðnSF¼1

1=2 Þ − EðnSF¼0
1=2 Þ [20], it leads to

ΔEHFS
1 ¼ gANNA1ð0Þ

π

ðμαÞ3
m2

A

1

ð1þ 2μα
mA
Þ2 hσ̂l · σ̂NiðΔFÞ

¼ gANNA1ð0Þ
π

ðμαÞ3
m2

A

4

ð1þ 2μα
mA
Þ2 ; ð11Þ

ΔEHFS
2 ¼ gANNA1ð0Þ

16π

ðμαÞ3
m2

A

2þ ðμαmA
Þ2

ð1þ μα
mA
Þ4 hσ̂l · σ̂NiðΔFÞ

¼ gANNA1ð0Þ
4π

ðμαÞ3
m2

A

2þ ðμαmA
Þ2

ð1þ μα
mA
Þ4 ; ð12Þ

for n ¼ 1, 2, where μ is the reduced mass, and the factor of
4 in the right-hand side arises from the spin expectation
value. We note that A1ð0Þ can be expressed following the
notation in Ref. [12] as

A1ð0Þ ¼
4

3

�
α

π

�
2
Z

∞

0

dk2Llðk2ÞB2Sð−k2;−k2Þ; ð13Þ

with Llðk2Þ defined in Ref. [12] (see Eq. (14) therein).3 The
previous results show that only the B2S form factor
contributes to the HFS leading order in α, simplifying
the calculation as compared to A → eþe− decays.
Likewise, it is straightforward to check that the general
results in Ref. [12] amount to our Eqs. (11)(12) times a
factor of (−2). While we could not trace the factor of 2, the
relative sign appears comparing to their Eqs. (5) and (20).
Still, the sign depends on their photon momentum flow and
ϵ0123 convention, that are unclear. More importantly, the
final sign arising from Eqs. (11) to (13) will depend on the
relative sign for B2Sð0; 0Þ and gANN , that was fixed in
Ref. [12] on the basis of quark-loop models. In the
following section, we introduce our model to compute
the HFS, that unambiguously fixes the sign in a transparent
manner, finally confirming our opposite sign for the
numerical results. In any case, our agreement with
Refs. [9,14] regarding A1ðm2

AÞ, and Ref. [20] in deriving
the nonrelativistic potential, further reinforces our findings
[Eqs. (11) and (12)].

IV. MODEL RESULTS

In order to obtain a numerical estimate for the HFS,
determining the gANN couplings is almost as important as
fixing the sign of B2Sð0; 0ÞgANN . In the following, we use

short-distance constraints, that allow to relate the nucleon
Compton scattering tensor to the nucleon axial form factors
in a transparent manner. This allows us to fix the sign and,
eventually, obtain the desired couplings within a resonance
saturation scheme. In particular, the relevant short-distance
constraint follows from the operator product expansion
(OPE) of two vector currents in the limit where
q21 ∼ q22 ∼ q̂2 ≫ fq212;Λ2

QCDg, where we have introduced
q̂≡ ðq1 − q2Þ=2 and q12 ¼ q1 þ q2. This reads [6,21]

Z
d4xd4yeiðq1·xþq2·yÞTfjμðxÞjνðyÞg

¼ −2
q̂2

ϵμναq̂
Z

d4zeiq12·zj5αðzÞ þO
�Λ2

QCD

q̂2

�
; ð14Þ

with jμ5 ¼ q̄γμγ5Q2q, ϵμνρqi ≡ ϵμνραqiα, and ϵ0123 ¼ 1. Note
that since the typical momentum in the atomic system is of
OðmlαÞ, this is indeed the relevant limit in this calculation
when the loop momentum in Fig. 1(b) is large. Regarding
the axial-vector meson form factor, this implies [3,6,9,15]

lim
q̂2→∞

q̂4B2Sðq̂2; q̂2Þ ¼
X
a

trðQ2λaÞmAFa
A; ð15Þ

where we have introduced the axial decay constant
h0jq̄γμγ5 λa

2
qjAi ¼ Fa

AmA. This fixes sgnB2Sð0; 0Þ ¼
sgnFAmA provided the form factor does not change sign
in the spacelike region (which is the case here and in
Ref. [12]), thus reducing the problem of determining the
sign for Fa

AmAgANN. The latter combination appears indeed
in the axial form factors of the proton (a ¼ 3, 8, 0),

hpðk0Þjq̄γμγ5λaqjpðkÞi

¼ ūðk0Þ
�
γμGa

Aðq2Þ þ
qμ
2mN

Ga
Pðq2Þ

�
γ5uðkÞ; ð16Þ

when adopting a resonance saturation scheme. In particular,
one finds [22]

Ga
Aðq2Þ ¼

X
A

2Fa
AmAgANN

m2
A − q2

; ð17Þ

where the sum goes over the (infinite number of) axial-
vector meson resonances. As we shall show, this ultimately
allows us to fix sgngANNmAFa

A in terms ofGa
Að0Þ, for which

the sign is well known. Ultimately, the previous modeling
guarantees fulfilling the corresponding OPE constraint for
the Compton scattering tensor

lim
q̂2≫fq2

12
;Λ2

QCDg

Z
d4x eiq1·xhpðk0ÞjTfjμðxÞjνð0ÞgjpðkÞi

¼ −2
q̂2

ϵμναq̂hpðk0Þjj5αð0ÞjpðkÞi; ð18Þ
3We further note that, for the dipole (DIP) parametrization

employed in Ref. [12], A1ð0Þ ¼ 4
3
ðαπÞ2B2Sð0; 0ÞIðmlÞ, with IðmlÞ

defined in the Eq. (27) from Ref. [12].
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provided Eq. (15) is satisfied. In the following, we discuss
the results obtained when truncating the sum in Eq. (17)
with either one or two resonances.

A. One-resonance saturation

First, we start truncating the sum in Eq. (17) with the
lightest resonance. Then, the value of the coupling con-
stants can be determined in terms of Ga

Að0Þ as follows

G3
Að0Þ ¼ g3A ¼ 2ga1NN

FA

ma1

; ð19Þ

G8
Að0Þ¼

g8Affiffiffi
3

p ¼2FA

�
gf1NN

mf1

cosðϕ−ϕ0Þþ
gf0

1
NN

mf0
1

sinðϕ−ϕ0Þ
�
;

ð20Þ

G0
Að0Þ ¼

ffiffiffi
2

3

r
g0A ¼ 2FA

�
−
gf1NN

mf1

sinðϕ − ϕ0Þ

þ gf0
1
NN

mf0
1

cosðϕ − ϕ0Þ
�
; ð21Þ

with ϕ the f1 − f01 mixing angle in the flavor basis and
ϕ0 ¼ arctan

ffiffiffi
2

p
(cf. Appendix B).4 This implies (we adopt

a positive FA),

ga1NN ¼ 5.6ð1.1Þ; gf1NN ¼ 2.01ð0.17Þ;
gf0

1
NN ¼ −0.33ð0.08Þ; ðϕ ¼ 0Þ; ð22Þ

ga1NN ¼ 5.6ð1.1Þ; gf1NN ¼ 1.93ð0.16Þ;
gf0

1
NN ¼ 0.71ð21Þ; ðϕL3 ¼ 26.7ð5.0Þ°Þ; ð23Þ

where we used g3A ¼ 1.2730ð13Þ [24], g8A ¼ 0.530ð18Þ,
g0A ¼ 0.392ð24Þ [25], FA ¼ 140ð10Þ MeV [6,26,27], and
the PDG [28] masses with an additional uncertainty
accounting for the half-width rule [29]. The errors obtained
for ga1NN; gf1NN; gf0

1
NN are dominated by ma1, FA, and g

8;0
A ,

respectively. Our results are similar to [12], with a slight

departure in the fð0Þ1 cases—partly related to their use of the
OZI rule (that in our scheme would require g8A ¼ g0A). At
this point, it is worth emphasizing that the ad hoc 1=e off-
shell factor introduced in Ref. [12] spoils the appropriate
normalization for the axial form factors precisely at the
q2 → 0 point and should be avoided. Further discussions
on this point are included in the following section.
Having estimated the axial couplings, we move on to our

results for A1ð0Þ. Taking the models from Appendix B, we

obtain the values in Table II. There, we find that models
failing to incorporate the doubly-virtual high-energy Q2

scaling (eVMD, DIP) underestimate the value for A1ð0Þ—
even if correctly reproducing the singly-virtual L3 data.
This is the case for the form factor in Ref. [12], that
corresponds to our DIP column. This implies that in the
present calculation one should employ only those form
factors describing L3 data and incorporating the high-
energy behavior (heVMD, heDIP, OPE). Among them, the
OPE model represents our preferred choice since: (i) it
reproduces L3 data [17,18]; (ii) it is the only one that fulfills
the pQCD scaling for a large virtual photon regardless the
second photon virtuality; (iii) for two virtual photons, it
fulfills the OPE, Eq. (15) (see further details in
Appendix B). As such, we take it as the central value,
incorporating the difference with respect to heVMD and
heDIP models as an additional uncertainty. Having deter-
mined the value for A1ð0Þ, we estimate the contribution of
the lowest-lying axial-vector mesons to the HFS, that are
collected in Table 3. In the following section, we extend the
model by including an additional multiplet of axial-vector
mesons. While this induces further model dependence
concerning the transition form factors, it is known that
at least two resonances are required to have a satisfactory
description of the axial form factors of the nucleon. As
such, it will serve as an estimate of our systematic
uncertainties and to discuss off-shell effects.

B. Two-resonance saturation

The one-resonance saturation employed in the previous
section to describe the axial form factors of the nucleon and
to estimate the gANN couplings does not provide a sat-
isfactory description of the axial form factor of the nucleon,
that is better parametrized by a dipole form either in
electroproduction [30] or lattice QCD data [31–36]. This
can be partly understood on the basis of the high-energy
behavior of the axial form factor, limQ2→∞Ga

Að−Q2Þ ∼
α2sð−Q2ÞQ−4 [37–39], that requires the presence of at least
two resonances to recover a Q−4 behavior [22]. This
suggests the necessity to go beyond the one resonance
saturation scheme, while this comes at the cost of non-
negligible modeling of the poorly known heavy axial-
vector meson resonances, including their masses and form
factors. In order to estimate the masses of the heavier
multiplets, we use the Regge trajectory from Ref. [29];

TABLE II. The results for A1ð0Þ=½α2B2Sð0; 0Þ� for l ¼ μ. For
simplicity, we take ideal mixing in VMD models, implying that
mV ¼ 0.77 GeV ≃mρ;ω for a1, f1 and mV ¼ mϕ for the f01.

VMD eVMD DIP heVMD heDIP OPE

f1ð1285Þ 1.68ð2725Þ 1.21ð4731Þ 0.99ð1715Þ 1.34ð3414Þ 1.33ð4833Þ 1.53ð2524Þ
a1ð1260Þ 1.68ð2725Þ 1.03ð6528Þ 0.91ð2018Þ 1.17ð5116Þ 1.14ð5331Þ 1.41ð3128Þ
f1ð1420Þ 2.99ð3533Þ 0.78ð1413Þ 0.78ð1513Þ 0.96ð1211Þ 0.96ð3323Þ 1.20ð2221Þ

4In the basis from Refs. [17,18], the relation is ϕ ¼ θA þ ϕ0 −
π=2 which, for the mixing angle given there using γγ� → fð0Þ1
reaction, results in ϕ ¼ 26.7ð2Þ°. Recent studies [23] suggest a
range for the mixing angle ϕ ∈ ð−7; 23Þ°.
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m2
a1ðnÞ ¼ m2

a1 þ nμ23, m2

fð0Þ
1
ðnÞ ¼ m2

fð0Þ
1

þ nμ20, with μ23=0 ¼
1.36=1.19 GeV2. Imposing the normalization and the
Q−4 behavior of the axial form factors, we obtain the
following coupling constants using ideal mixing

ga1NN ¼11.8; gf1NN ¼4.78; gf0
1
NN ¼−0.90; ð24Þ

ga1ð1ÞNN ¼−8.6; gf1ð1ÞNN ¼−3.64; gf0
1
ð1ÞNN ¼ 0.71:

ð25Þ

The next part concerns the description of the B2S form
factor of the heavy resonances. Lacking any experimental
data, we resort to a Regge-like model from Ref. [6]

BAn
2Sðq21; q22Þ ¼

BAn
2Sð0; 0ÞðM2

a þ nΛ2Þ2
½q21 þ q22 − ðM2

a þ nΛ2Þ�2 ;

BAn
2Sð0; 0Þ ¼

BA0

2Sð0; 0ÞM4
amAn

ðM2
a þ nΛ2Þ2mA0

; ð26Þ

that was created to describe some features of the
hVVAi Green’s function. As this induces further model

dependence for the second multiplet (n ¼ 1), for which no
data is available, we will use our results in this section
to estimate systematic uncertainties in the one-
resonance saturation approach. Our results are given in
Table IV.
We find that the enhanced couplings for the lowest-lying

multiplet essentially double the HFS contribution with
respect to the previous section. Such enhancement is
partially canceled by the contribution of the second
multiplet, that reduces the final shift to a 60% effect.
Such variation could be taken as an off-shell effect, as it
induces additional q2 dependence besides the lowest-lying
multiplet. However, its complexity goes beyond the 1=e
factor in Ref. [12] and a precise estimate would demand a
better knowledge of the properties of the heavy axial-
vector mesons, including their gANN couplings and form
factors.
Given the large theoretical uncertainties in the results

derived, especially owing to the masses and form factors of
the second multiplet, we stick to our results in the previous
section and will assign the difference between the results in
this and the previous subsection as an additional systematic
uncertainty of our results. Overall, this points to a

TABLE III. Results for the HFS of muonic hydrogen. The central values for the gANN couplings are those from ideal mixing, Eq. (22).
The second column displays results from OPE column in Table II, including as an additional uncertainty the difference with other
models therein (see details in the text). The final two columns include uncertainties from A1ð0Þ, gANN , B2S, mA and an additional
uncertainty from the mixing within brackets (see details in the text).

A A1ð0Þ
α2BA

2S
BA
2Sð0; 0Þ ½GeV−2� ΔEHFS

A ð1SÞ [meV] ΔEHFS
A ð2SÞ [meV]

f1ð1285Þ 1.53ð25Þðþ00
−20 Þ 0.269(30) 0.011(2)(1)(1)(0)[0] 0.0014ðþ2

−3 Þð1Þð2Þð0Þ½0�
a1ð1260Þ 1.41ð30Þðþ00

−27 Þ 0.245(63) 0.029ðþ6
−8 Þð6Þð7Þð2Þ½0� 0.0036ðþ8

−10Þð7Þð9Þð2Þ½0�
f1ð1420Þ 1.20ð22Þðþ00

−24 Þ 0.197(30) −0.001ð0Þð0Þð0Þð0Þ½þ3
−0 � −0.0001ð0Þð0Þð0Þð0Þ½þ3

−0 �
TOTAL 0.039ðþ12

−13 Þ½þ3
−0 � 0.0049ðþ14

−16 Þ½þ3
−0 �

TABLE IV. The contributions from the ground and first excited states contribution to the HFS (errors not included, see details in the
text). The results compare to those in Table 3. The first resonance contribution is enhanced with respect to Table 3 as a result of the gANN
coupling, whereas the first excited states partially damp this effect.

A
A1ð0Þ
α2BA

2S gANN BA
2Sð0; 0Þ ½GeV−2� ΔEHFS

A ð1SÞ [meV] ΔEHFS
A ð2SÞ [meV]

f1ð1285Þ 1.53 4.78 0.269 0.0269 0.0034
f1ð1stexcitationÞ 3.05 −3.64 0.093 −0.0082 −0.0010
Subtotal 0.0187 0.0024

a1ð1260Þ 1.41 11.8 0.245 0.0605 0.0076
a1ð1stexcitationÞ 2.93 −8.6 0.082 −0.0162 −0.0020
Subtotal 0.0443 0.0056

f1ð1420Þ 1.20 −0.90 0.197 −0.0024 −0.0003
f01ð1stexcitationÞ 2.72 0.71 0.051 0.0007 0.0001
Subtotal −0.0017 −0.0002
Total 0.0613 0.0078
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substantially larger contribution from the first multiplet and
a partial reduction from heavier states.

V. RESULTS AND CONCLUSIONS

As our final result for the HFS, we take as our central
value the result obtained with the one resonance saturation,
incorporating as an additional systematic uncertainty the
difference with respect to the two-resonance saturation
approach. This gives

ΔEHFS
A ð1SÞ ¼ 0.039ðþ12

−13Þðþ3
−0Þðþ22

−00Þ meV;

ΔEHFS
A ð2SÞ ¼ 0.0049ðþ14

−16Þðþ3
−0Þðþ29

−00Þ meV: ð27Þ

Compared to Ref. [12], we find an opposite sign (and a
factor of 2 difference) in the calculation. Our results for the
A → lþl− amplitude and the nonrelativistic expansion are
in good agreement with existing studies which further
reinforces our findings. Besides, we find an important role
(a 50% effect roughly) of the doubly-virtual high-energy
behavior of the transition form factor that was one of our
main goals in this study—such effects should be included
in future calculations of ΔEHFS

A .
In addition, to fix the relevant signs of the form factors

and coupling constants, we made use of the OPE. This
provides a connection among the Compton scattering
tensor and the axial form factors of the nucleon, that
unambiguously defines the relevant signs when using a
resonance saturation scheme. For the simplest scenario, that
incorporates the lowest-lying resonance, we find similar
couplings to those in Ref. [12], while substantial effects are
found when two resonances are included. These are
required to achieve a reasonable description of the axial
form factors of the nucleon and points to a larger con-
tribution of the lowest-lying multiplet together with a mild
effect from the next one. The latter could be considered as
an off-shell effect and discourages the use of ad hoc
suppression factors as in [12]. The difference between
the two scenarios is accounted for as an additional
systematic uncertainty and points to the necessity of a
better understanding of the nucleon to axial-vector meson
couplings in order to improve in precision.
Finally, we address the impact of this effect on the

Zemach radius extraction by the CREMA Collaboration
[40,41], that measured the HFS of the 2S state, obtaining
ΔEexp

HFS ¼ 22.8089ð51Þ meV. Comparing this to the theo-
retical results for the HFS, ΔEth

HFS ¼ 22.9843ð30Þ−
0.1621ð10ÞrZ meV, see [42–45] and Table 3 from
Ref. [46], they obtained rZ ¼ 1.082ð37Þ fm [41].
Incorporating the missing contributions from the axial-
vector mesons to the theoretical estimate in Eq. (27)
together with the pseudoscalar contribution [47],
ΔEπ

HFS ¼ −ð0.09� 0.06Þ μeV, we obtain

rZ ¼ 1.112ð31Þexpð19Þthðþ20
−10Þaxials: ð28Þ

The value is in mild tension with other estimates,
rZ ¼ 1.086ð12Þ fm [48] and rZ ¼ 1.045ð4Þ fm [49], from
electron-proton scattering, rZ ¼ 1.045ð16Þ fm [50] and
rZ ¼ 1.037ð16Þ fm [51] from hydrogen spectroscopy,
and rZ ¼ 1.054ð3Þ fm [52] from electron-proton scattering
and eþe− annihilation. We summarize these results in
Fig. 2 where the green band corresponds to the average
for electron-proton scattering and hydrogen spectroscopy.
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APPENDIX A: PROJECTORS

The scalar functions A1;2ðq2Þ given in Eq. (3) can be
obtained by means of the following projection operators
½p1ð2Þ corresponds to the l−ðlþÞ momentum]

FIG. 2. The Zemach radius (rZ) from the references in the text
and this work. The green band represents the average from
Refs. [48–51].
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A1ðq2Þ ¼
−1

4ðq2 − 4m2
lÞ
Tr

�
ð=p2 −mlÞ

�
γρ þ

2ml

q2
qρ

�
γ5ð=p1 þmlÞMρ

A→l̄l

�
; ðA1Þ

A2ðq2Þ ¼
ml

2q2ðq2 − 4m2
lÞ
Tr

�
ð=p2 −mlÞ

�
γρ −

q2 − 6m2
l

mlq2
qρ

�
γ5ð=p1 þmlÞMρ

A→l̄l

�
ðA2Þ

¼ −
2ml

q2
A1ðq2Þ −

1

2q4
Tr½ðp2 −mlÞqργ5ðp1 þmlÞMρ

A→l̄l
�: ðA3Þ

APPENDIX B: FORM FACTORS

In this Appendix we describe the different models for the
B2Sðq21; q22Þ form factor used in the main text. Specifically,
we discuss different variants in order to study the relevance
of the asymptotic behavior. In particular, for the
doubly-virtual symmetric kinematics one has the result
in Eq. (15) (see also Ref. [15]), enforcing B2Sð−Q2;−Q2Þ∼
OðQ−4Þ for large Q2 values. In addition, in the singly-
virtual kinematic regime, it is also known from the light-
cone expansion that, for large Q2 values, B2Sð−Q2;−q2Þ∼
OðQ−4Þ, where q2 ≪ Q2 [9,15], that is also suggested by
L3 data [17,18].

The most simple form factor corresponds to the standard
VMD prescription

BVMD
2S ðq21; q22Þ ¼

B2Sð0; 0Þm4
V

ðq21 −m2
VÞðq22 −m2

VÞ
; ðB1Þ

that, however, fails to describe the singly- and doubly-
virtual asymptotic behavior, but is relevant to our
discussion regarding A → eþe− decays. A variant that
incorporates the appropriate high-energy behavior for
singly-virtual kinematics is an extended VMD (eVMD)
model with two resonances

BeVMD=DIP
2S ðq21; q22Þ ¼

B2Sð0; 0Þm4
VM

4

ðq21 −m2
VÞðq21 −M2Þðq22 −m2

VÞðq22 −M2Þ ; ðB2Þ

that still fails reproducing the OPE. A simplified variant of this model is the common dipole parametrization used in
[12,17,18], where mV ¼ M and that we denote as DIP. We can amend this in a VMD incorporating the high-energy
behavior (heVMD/heDIP) as follows

BheðVMD=DIPÞ
2S ðq21; q22Þ ¼

B2Sð0; 0Þm4
VM

4½1þ q21q
2
2Λ−4

OPE�
ðq21 −m2

VÞðq21 −M2Þðq22 −m2
VÞðq22 −M2Þ : ðB3Þ

Still, we note that such a form factor does not fulfill the
appropriate high-energy behavior for B2Sð−Q2;−q2Þ un-
less q2 ¼ 0. To better reproduce the high-energy behavior,
we introduce the following form factor from Ref. [6]
inspired in [53], that we label as OPE,

BOPE
2S ðq21; q22Þ ¼

B2Sð0; 0ÞΛ4
A

ðq21 þ q22 − Λ2
AÞ2

: ðB4Þ

It describes L3 Collaboration results provided ΛA is chosen
according to the dipole parameters in L3 [17,18] and its
doubly-virtual space-like behavior is in good agreement
with the holographic results in Ref. [4], representing our
preferred choice.

For the normalization, we take the values for f1; f01 from
L3 [17,18] together with our estimate in [3,6] for the a1:
B2Sð0; 0Þ ¼ f0.269ð30Þ; 0.197ð30Þ; 0.245ð63Þg GeV−2 for
ff1; f01; a1g. Regarding the mass parameter, we take both,
for the OPE and (he)DIP variants, mV ¼ M ¼ ΛA ¼
f1.04ð8Þ; 0.926ð79Þ; 1.0ð1Þg GeV, see Refs. [3,6,17,18].
Concerning the eVMD and heVD models, we fix
the M parameter to reproduce the slope from the L3
Collaboration dipole in order to share the same low-energy

behavior, which is accomplished adopting M2 ¼ Λ2
Am

2
V

2m2
V−Λ

2
A
∼

2 GeV for mV ¼ 0.77 GeV. Finally, to ensure the OPE
behavior in Eq. (15) in he(VMD/DIP) models, we find for
ideal/L3 mixing

MIRANDA, ROIG, and SÁNCHEZ-PUERTAS PHYS. REV. D 105, 016017 (2022)

016017-8



Λf1;f01;a1
OPE =mVM ¼ f1.28ð4Þ=1.37ð5Þ; 1.58ð7Þ=1.26ð6Þ; 1.44ð10Þg GeV−1; ðB5Þ

respectively. In the equation above, we have employed the
following mixing scheme

�
f1
f01

�
¼

�
cos θ − sin θ

sin θ cos θ

��
f8

f0

�
; ðB6Þ

where θ is the mixing angle between the SUð3Þ singlet (f0)
and octet (f8) states. Also, it is possible to write the last
expression as

�
f1
f01

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
fNS

fS

�
; ðB7Þ

where ϕ is the mixing angle between the non-strange (fNS)
and strange (fS) states. θ and ϕ are related through θ ¼
ϕ − ϕ0 with ϕ0 ¼ arctan

ffiffiffi
2

p
and the ideal mixing angle

corresponds to ϕ ¼ 0. The angles above relate to the one
used by the L3 Collaboration [17,18] ðθA ¼ 62ð5Þ°Þ as θ ¼
θA − π

2
(ϕ ¼ θA þ ϕ0 − π

2
). In this study, and following

Ref. [3], we take as our preferred value ϕ ¼ 0, while we
will take into consideration the L3 mixing angle as an
additional uncertainty. Note also recent discussions con-
cerning the mixing angle in Refs. [23,54].

APPENDIX C: HIGHER-ORDER EFFECTS IN
THE NONRELATIVISTIC POTENTIAL

In this section we justify the suppression of the terms that
have been neglected in evaluating the nonrelativistic
potential in Eq. (9). In particular, we start by noticing
the suppression corresponding to the potential of the kind
ṼNRðq2Þ ¼ ðq · σ̂lÞðq · σ̂NÞ½m2

Aðm2
A þ q2Þ�−1, that in posi-

tion space reads

VNRðrÞ¼
1

3

δð3ÞðrÞ
m2

A
hσ̂l · σ̂Ni

−
1

3

e−mAr

4πr

�
S12

�
1þ 3

rmA
þ 3

ðrmAÞ2
�
þhσ̂l · σ̂Ni

�
;

⇒
1

3

�
δð3ÞðrÞ
m2

A
−
e−mAr

4πr

�
hσ̂l · σ̂Ni; ðC1Þ

where in the last line we have omitted S12 ¼
ð3r̂ir̂j − δijÞσ̂ilσ̂jN , that is a rank-2 symmetric tensor and
does not contribute to S-wave states. Accounting for this,
the result reduces to the combination of the δð3ÞðrÞ
contribution and the Yukawa part in Eq. (11) and (12).
Noting that jΨ1ð2Þ;0;0ð0Þj2 ¼ ðμαÞ3=½ð8Þπ�, the cancellation
of the Yukawa and δ terms in Eq. (C1) to leading order in
ðμα=mAÞ is clear, with the final result reading

ΔEHFS
1 ¼

�
4ðμαÞ4
3πm3

A

1þ ϵ

ð1þ 2ϵÞ2
�
hσ̂l · σ̂NiðF¼1−F¼0Þ; ðC2Þ

ΔEHFS
2 ¼

� ðμαÞ4
48πm3

A

8þ11ϵþ8ϵ2þ2ϵ3

ð1þϵÞ4
�
hσ̂l · σ̂NiðF¼1−F¼0Þ;

ðC3Þ

where ϵ ¼ μα=mA. With these results at hand, it is
straightforward to show the suppression from the A1ðq2Þ
dependence. Noting that A1ðq2Þ ¼ A1ð0Þ þ q2

π

R
dξ ImAðξÞ

ξ−q2 ,

the first term corresponds to our main result, whereas the

second one leads to a potential of the kind VðrÞ ¼
1
π

R
dξ ImAðξÞξ½e−

ffiffi
ξ

p
r

4πr − δð3ÞðrÞ
ξ � that, in parallel with

Eq. (C1), is α suppressed. Note in addition that the lower
threshold in the previous integral corresponds to the
intermediate Vγ state, so one expects the relevant scale
to be above mV .
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