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An algorithm is developed for efficiently constructing the Lorentz covariant effective three-point vertices
of the decay of a particle into two daughter particles in which all the masses and spins of the three particles
can be arbitrary. The closely related one-to-one correspondence between the helicity formalism and the
covariant formulation is exploited for counting the number of independent terms and identifying the basic
covariant three-point vertices. Assembling the basic operators according to the developed algorithm
enables us to construct all the covariant three-point vertices systematically.
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I. INTRODUCTION

Despite the completion of the Standard Model (SM) [1]
of particle physics through the Higgs-boson discovery at
the Large Hadron Collider (LHC) [2], various unsolved
conceptual issues and unexplained experimental observa-
tions suggest the SM to be an effective theory of a more
fundamental theory. One powerful strategy for probing
new physics beyond the SM (BSM) is to keep our studies
as model-independent as possible and to search for new
particles by including spins higher than unity.
Various high-spin (composite) hadrons have been

discovered and investigated [3]. A gravitino appears as a
spin-3=2 supersymmetric partner of the massless spin-2
graviton in supergravity [4]. The gravitational-wave dis-
covery [5] indicates the existence of massless spin-2
gravitons at the quantum level. The massive spin-2 par-
ticles as the Kaluza-Klein (KK) excitations of the massless
graviton have been studied in extra-dimension models [6].
Recently, the scenario of high-spin dark matter (DM)
particles has been investigated intensively [7]. For study-
ing all these aspects, it is crucial to probe all the allowed
effective interactions of particles of any spin as well as low-
spin SM particles in a model-independent way.
In this work, we develop an efficient algorithm for

systematically constructing all the effective three-point
vertices consistent with Lorentz invariance and locality.
If necessary, other symmetry principles like local gauge
invariance or Bose/Fermi symmetries may be invoked.

Specifically, we consider the decay of a massive particle of
spin J and mass m into a massive particleM1 of spin s1 and
mass m1 and a massive antiparticle M̄2 of spin s2 and mass
m2, while commenting how the massless case with m1 ¼ 0
or m2 ¼ 0 can be accommodated straightforwardly. This
study is a natural generalization of two previous works
having dealt with the identical-spin particles of zero equal
mass [8] and nonzero equal mass [9].
In this development, we adopt the conventional description

of integer and half-integer wave tensors [10] and utilize the
closely related equivalence between the helicity formalism
in the Jacob-Wick (JW) convention [11] and the standard
covariant formulation. Their one-to-one correspondence
enables us to identify every basic building block for con-
structing the covariant three-point vertex corresponding to
every helicity combination explicitly. We note in passing that
another powerful procedure for constructing the general
three-point vertices is to use a spinor formalism [12].

II. CHARACTERIZATION IN THE
HELICITY FORMALISM

The helicity formalism [11] allows us to efficiently
describe the two-body decay of a particle X of spin J and
mass m into a particle M1 of spin s1 and mass m1 and an
antiparticle M̄2 of spin s2 and mass m2. For the sake of a
transparent analysis, we describe the two-body decay
X → M1M̄2 in the X rest frame (XRF)

Xðp; σÞ → M1ðk1; λ1Þ þ M̄2ðk2; λ2Þ; ð2:1Þ

with their momenta, fp; k1; k2g, and helicities, fσ; λ1; λ2g,
as depicted in the left side of Fig. 1.
In the JW convention [11], the helicity amplitude of the

decay X → M1M̄2 is decomposed as
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MX→M1M̄2

σ;λ1;λ2
ðθ;ϕÞ ¼ CJλ1;λ2d

J
σ;λ1−λ2ðθÞeiðσ−λ1þλ2Þϕ

with jλ1 − λ2j ≤ J; ð2:2Þ

in terms of the polar and azimuthal angles, θ and ϕ, defining
the M1 momentum direction in a fixed XRF coordinate
system (see the left side of Fig. 1), where the reduced helicity
amplitudes CJλ1;λ2 do not depend on the X helicity σ due to
rotational invariance and the polar-angle dependence is fully

encoded in the Wigner d function dJσ;λ1−λ1ðθÞ given in the
convention of Rose [13]. The helicity σ of the spin-J massive
particle X takes one of 2J þ 1 values between −J and J. On
the other hand, the helicities λ1;2 of the spin-s1;2 massive
particles, M1 and M̄2, can take one of 2s1;2 þ 1 values
between −s1;2 and s1;2, under the constraint jλ1 − λ2j ≤ J.
The number n½J; s1; s2� of independent reduced helicity
amplitudes are given by

n½J; s1; s2� ¼

8>><
>>:

ð2s1 þ 1Þð2s2 þ 1Þ for J ≥ s1 þ s2;

ð2s1 þ 1Þð2s2 þ 1Þ − ðs1 þ s2 − JÞðs1 þ s2 − J þ 1Þ for js1 − s2j ≤ J < s1 þ s2;

ðs1 þ s2 − js1 − s2j þ 1Þð2J þ 1Þ for J < js1 − s2j;
ð2:3Þ

that is valid for any allowed combinations of the spins J and
s1;2 if the particles, M1 and M̄2, are massive.
The master key to the algorithm for constructing the

general three-point vertices is to find every helicity-specific
operator generating a reduced helicity amplitude nonzero
only for each specific helicity combination of ½λ1; λ2�. In the
present work, we find all the helicity-specific operators for
the two-body decay X → M1M̄2 in the three cases, ðiiiÞ,
ðihhÞ, and ðhhiÞ, with the indices, i and h, indicating
whether the spins of X, M1 and M̄2 are integer or half-
integer, respectively. The helicity-specific operators for the
other processes such as those in the case ðhihÞ and for the

charge-conjugated processes can be obtained by converting
the derived ones according to simple symmetry arguments,
as described explicitly in Sec. V B.

III. BOSONIC AND FERMIONIC WAVE TENSORS

Generically, the decay amplitude of a particle X of spin J
and mass m into a particle M1 of spin s1 and mass m1 and
an antiparticle M̄2 of spin s2 and mass m2 can be written in
terms of the covariant three-point vertex tensor Γ (see the
right side of Fig. 1 for its diagrammatic description) as

MX→M1M̄2

σ;λ1;λ2
¼ ψ̄

α1���αn1
1 ðk1; λ1ÞΓμ1���μn

α1���αn1 ;β1���βn2 ðp; qÞψ
β1���βn2
2 ðk2; λ2Þψμ1���μnðp; σÞ; ð3:1Þ

FIG. 1. Left: kinematic configuration for the helicity amplitude MX→M1M̄2

σ;λ1;λ2
ðθ;ϕÞ of the two-body decay X → M1M̄2 of a massive

particle X into a particleM1 and an antiparticle M̄2 in the XRF. The polar and azimuthal angles, θ and ϕ, are defined with respect to an
appropriately chosen coordinate system in the XRF. Right: general XM1M̄2 covariant three-point vertex Γμ

α;βðp; qÞ for the decay of a
particle X of spin J and massm into a particleM1 of spin s1 and massm1 and an antiparticle M̄2 of spin s2 and massm2. The indices, μ, α
and β, stand for the sequences of μ ¼ μ1 � � � μn, α1 � � � αn1 and β1 � � � βn2 collectively with the non-negative integer n ¼ J or n ¼ J − 1=2
in the integer or half-integer spin J case and the non-negative integers n1;2 ¼ s1;2 or n1;2 ¼ s1;2 − 1=2 in the integer or half-integer spin
s1;2 case, respectively. The symmetric and antisymmetric momentum combinations, p ¼ k1 þ k2 and q ¼ k1 − k2, are introduced for the
sake of notation.
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with the non-negative integer n ¼ J or n ¼ J − 1=2 in the
integer or half-integer spin J case and the non-negative
integers n1;2 ¼ s1;2 or n1;2 ¼ s1;2 − 1=2 in the integer or
half-integer spin s1;2 case, respectively. Here, fp; k1; k2g
and fσ; k1; k2g are the momenta and helicities of the
particles X, M1, and M̄2. The momenta, p ¼ k1 þ k2
and q ¼ k1 − k2, are symmetric and antisymmetric under
the interchange of k1 ↔ k2.
We show the explicit expressions of the wave tensors of

an on-shell particle X of spin J, mass m, momentum p, and
helicity σ [10]. The wave tensors of the particles M1 and
M̄2 can be obtained by substituting s1;2, m1;2, k1;2, and λ1;2
for J, m, p, and σ from the expressions given in the
following.
The bosonic particle X of an integer spin J ¼ n with a

non-negative integer n is represented by a rank-n wave
tensor ϵμ1���μnðp; σÞ as

ψμ1���μnðp; σÞ ¼ ϵμ1���μnðp; σÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ σÞ!ðn − σÞ!

ð2nÞ!

s

×
X1

fτg¼−1

δτ1þ���þτn;σ

Yn
i¼1

ϵμiðp; τiÞffiffiffi
2

p jτij ; ð3:2Þ

with the convention fτg ¼ τ1;…; τn, which satisfies the
on-shell condition ðp2 −m2Þϵμ1���μnðp; σÞ ¼ 0 for any hel-
icity value of σ taking an integer value between −n and n.
The bosonic wave tensor (3.2) satisfies

εαβμiμjϵ
μ1���μi���μj���μnðp; σÞ ¼ 0;

gμiμjϵ
μ1���μi���μj���μnðp; σÞ ¼ 0;

pμiϵ
μ1���μi���μnðp; σÞ ¼ 0; ð3:3Þ

as it is totally symmetric, traceless, and divergence-free in
the four-vector indices. If the mass m ¼ 0, the wave tensor
has only two maximal-magnitude helicities σ ¼ �n ¼ �J
and its form is given simply by a direct product of n spin-1
wave vectors, each of which carries the same helicity of�1.
On the other hand, the fermionic particle X of a half-

integer spin J ¼ nþ 1=2 with a noninteger value n is
represented in terms of the spin-1=2 u and v Dirac spinors
of a particle and an antiparticle. The fermionic particle and
antiparticle wave spinors are given by [10]

ψμðp;σÞ ¼ uμ1���μnðp;σÞ

¼
X

τ¼�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ 2τσ

2J

r
ϵμ1���μnðp;σ− τÞuðp;τÞ; ð3:4Þ

ψμðp;σÞ ¼ vμ1���μnðp;σÞ

¼
X

τ¼�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ 2τσ

2J

r
ϵ�μ1���μnðp;σ− τÞvðp;σÞ; ð3:5Þ

where the spin-1=2 spinors satisfy their own on-shell con-
ditions ð=p −mÞuðp;� 1

2
Þ ¼ 0 and ð=pþmÞvðp;� 1

2
Þ ¼ 0.

We note that the massive wave spinors are totally symmetric,
traceless, and divergence-free in the four-vector indices, as
well. In the helicity amplitude (3.1), the fermionic M1 wave
spinor is given by ψ̄α

1ðk1; λ1Þ ¼ ψα†
1 ðk1; λ1Þγ0. If the mass

m ¼ 0, the X wave spinor has two maximal-magnitude
helicities �J and its form is given simply by a product of
a u or v spinor and n spin-1 wave vectors with n ¼ J − 1=2.
For a kinematic description of the decay X → M1M̄2 in

the XRF, we introduce three unit vectors expressed in terms
of the polar and azimuthal angles, θ and ϕ as

n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ;
θ̂ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ;
ϕ̂ ¼ ð− sinϕ; cosϕ; 0Þ; ð3:6Þ

being mutually orthonormal, i.e., n̂ · θ̂ ¼ θ̂ · ϕ̂ ¼ ϕ̂ · n̂ ¼ 0

and n̂ · n̂ ¼ θ̂ · θ̂ ¼ ϕ̂ · ϕ̂ ¼ 1. In addition, we express the
four-momentum sum p ¼ k1 þ k2 and the four-momentum
difference q ¼ k1 − k2 as

p ¼ mp̂ and q ¼ mðω2
1 − ω2

2Þp̂þmκk̂; ð3:7Þ

in terms of two dimensionless rescaled masses ω1;2 ¼
m1;2=m and the kinematic factor κ ¼ ηþη− with

η� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω1 � ω2Þ2

p
. Here, the two orthonormal dimen-

sionless four vectors p̂ and k̂ are given by

p̂ ¼ ð1; 0⃗Þ and k̂ ¼ ð0; n̂Þ; ð3:8Þ

in the XRF. These normalized momenta p̂ and k̂, along
with a few rescaled mass-dependent kinematic factors, can
be exploited for expressing all the reduced helicity ampli-
tudes in the XRF.
We adopt the JW convention [11] for deriving the spin-1

vectors and spin-1=2 spinors in the XRF. The spin-1 wave
vectors for the particle X with momentum p and two
particles,M1 and M̄2, whose momenta k1;2 ¼ ðp� qÞ=2 ¼
mðe1;2;�κn̂Þ=2 with e1;2 ¼ 1� ðω2

1 − ω2
2Þ, are given in the

XRF by

ϵðp;�1Þ¼ 1ffiffiffi
2

p ð0;∓1;−i;0Þ; ϵðp;0Þ¼ð0;0;0;1Þ; ð3:9Þ
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ϵ1ðk1;�1Þ ¼ 1ffiffiffi
2

p e�iϕð0;∓ θ̂ − iϕ̂Þ;

ϵ1ðk1; 0Þ ¼
1

2ω1

ðκ; e1n̂Þ; ð3:10Þ

ϵ2ðk2;�1Þ ¼ 1ffiffiffi
2

p e∓iϕð0;�θ̂ − iϕ̂Þ;

ϵ2ðk2; 0Þ ¼
1

2ω2

ð−κ; e2n̂Þ; ð3:11Þ

satisfying the relation ϵ2ðk2;�1Þ ¼ ϵ1ðk1;∓ 1Þ ¼
−ϵ�1ðk1;�1Þ ¼ −ϵ�2ðk2;∓ 1Þ. On the other hand, the
spin-1/2 u spinor of the particle fermion X is given in
the XRF by

uðp;� 1
2
Þ ¼ ffiffiffiffi

m
p �

ξ�ðẑÞ
ξ�ðẑÞ

�
with

ξþðẑÞ ¼
�
1

0

�
and ξ−ðẑÞ ¼

�
0

1

�
; ð3:12Þ

and the spin-1=2 u1 and v2 spinors of the particle and
antiparticle fermions M1 and M̄2 are given by

u1ðk1;� 1
2
Þ ¼

ffiffiffiffi
m
2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 ∓ κ

p
χ�ðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffi

e1 � κ
p

χ�ðn̂Þ

�
;

v2ðk2;� 1
2
Þ ¼

ffiffiffiffi
m
2

r � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � κ

p
χ�ðn̂Þ

∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 ∓ κ

p
χ�ðn̂Þ

�
; ð3:13Þ

where the 2-component spinors χ�ðn̂Þ are written in terms
of the angles, θ and ϕ, as

χþðn̂Þ ¼
"
cos θ

2

sin θ
2
eiϕ

#
and χ−ðn̂Þ ¼

"
−sin θ

2
e−iϕ

cos θ
2

#
; ð3:14Þ

being orthonormal, i.e., χ†aðn̂Þχbðn̂Þ ¼ δa;b, with a; b ¼ �
in the XRF.

IV. BASIC COVARIANT THREE-POINT
VERTICES

In this section, we find all the Lorentz-covariant basic
bosonic and fermionic three-point operators by deriving the
helicity-specific operators corresponding to the reduced
helicity amplitudes for the three spin combinations of
ðJ; s1; s2Þ ¼ ð1; 1; 1Þ, ð1; 1=2; 1=2Þ and ð1=2; 1=2; 1Þ
explicitly. The set of all these operators is the backbone
for constructing the covariant three-point vertices.

A. Bosonic vertex operators

First, we consider the 1 → 1þ 1 two-body decay of a
spin-1 particle X into two spin-1 massive vector bosons,M1

and M̄2. The number of independent terms including the

1 → 1þ 1 decay is n½1; 1; 1� ¼ 7, accounting for the seven
reduced helicity amplitudes, C10;0, C

1
0;�1, C

1
�1;0, and C1�1;�1,

in the XRF. After a little manipulation, we find the five
covariant three-point vertex operators

U0
αβk̂μ ¼ p̂1αp̂2βk̂μ ↔ C10;0 ¼ κ2; ð4:1Þ

U�
1αμp̂2β ¼

1

2
½g⊥αμ � ihαμp̂ k̂i�p̂2β ↔ C1�1;0 ¼ κ; ð4:2Þ

U�
2βμp̂1α ¼

1

2
½g⊥βμ ∓ ihβμp̂ k̂i�p̂1α ↔ C10;�1 ¼ −κ; ð4:3Þ

and the two covariant composite operators U� of the
contraction of the basic operators U�

1 and U�
2 satisfying

U�
αβk̂μ ≡ gμ1μ2U1αμ1U2βμ2 k̂μ

¼ 1

2
½g⊥αβ � ihαβp̂ k̂i�k̂μ ↔ C1�1;�1 ¼ −1; ð4:4Þ

expressed with two rescaled momenta p̂1;2 ¼ 2ω1;2p̂
vanishing for m1;2 ¼ 0, the orthogonal tensor g⊥μν ¼
gμν − p̂μp̂ν þ k̂μk̂ν and hμνp̂ k̂i ¼ εμνρσp̂ρk̂σ defined in
terms of the totally antisymmetric Levi-Civita tensor
with the convention ε0123 ¼ þ1. Each of the seven
covariant three-point vertices generates solely its corre-
sponding reduced helicity amplitude, as shown in
Eqs. (4.1), (4.2), (4.3), and (4.4).
In order to clarify the essential role of each of the bosonic

basic operators, let us introduce an integer-helicity lattice
space consisting of ð2s1 þ 1Þ × ð2s2 þ 1Þ in order for each
point ½λ1; λ2� to stand for its corresponding reduced helicity
amplitude CJλ1;λ2 existing only when jλ1 − λ2j ≤ J and
jλ1;2j ≤ s1;2. We can deduce that the one-step horizontal
and vertical transitions are dictated by the basic operators,
U�

1 and U�
2 , from the point ½λ1; λ2� to the point ½λ1 � 1; λ2�

and the point ½λ1; λ2 � 1� in the helicity-lattice space,
respectively, as shown in the left panel of Fig. 2. The
transitions by the basic operators, U�

1 and U�
2 , enable us to

deduce that the one-step diagonal transitions are dictated by
the composite operators U� from the point ½λ1; λ2� to the
point ½λ1 � 1; λ2 � 1�. On the other hand, the three oper-
ators, k̂, and p̂1;2, forming the operator U0 and multiplied
by the basic and composite operators generate no transition,
that is to say, the helicity point remains intact by the three
momentum operators, solely changing the number of μ, α
and β four-vector indices. Properly combining the six
bosonic raising and lowering operators, U�

1 , U�
2 , and

U�, along with the three rescaled momentum operators,
k̂ and p̂1;2, enables us to reach every integer-helicity lattice
point. To summarize, for any given integer J and integer
s1;2, we can weave the covariant three-point vertex cor-
responding to every integer-helicity combination of ½λ1; λ2�
efficiently and systematically. The explicit form of every
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covariant three-point vertex consisting of the basic and
composite operators with the rescaled momentum operators
for the integer J and s1;2 is to be presented in Sec. V.

B. Fermionic vertex operators

First, we consider the decay of a spin-1 particle X into a
spin-1=2 particle M1 and a spin-1=2 antiparticle M̄2. The
number of independent terms involving the 1 → 1=2þ 1=2
two-body decay is n½1; 1=2; 1=2� ¼ 4, accounting for the
four reduced helicity amplitudes, C1�1=2;�1=2 and C

1
�1=2;∓1=2.

After a little manipulation, we find the following four
covariant three-point operators,

P�k̂μ ¼
1

2m
ðη− ∓ ηþγ5Þk̂μ ↔ C1�1=2;�1=2 ¼ −κ; ð4:5Þ

W�
μ ¼ 1

2
ffiffiffi
2

p
m
ðηþγþμ �η−γ−μ γ5Þ↔C1�1=2;∓1=2¼ κ; ð4:6Þ

with the abbreviated kinematic parameters η� and the
redefined gamma matrices γ�μ

η� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω1 � ω2Þ2

q
and

γ�μ ¼ γμ þ
ðω1 � ω2Þκ

1 − ðω1 � ω2Þ2
k̂μ; ð4:7Þ

satisfying the relation κ ¼ ηþη−. The corresponding reduced
helicity amplitudes enable us to identify the basic fermionic
operators, P� and W� with the normalized momentum k̂μ
responsible for the one-half raising and lowering diagonal
and antidiagonal transitions in the half-integer helicity lattice
space from the point (0, 0) to the points ð�1=2;�1=2Þ and
ð�1=2;∓ 1=2Þ, respectively, as shown in the middle panel
of Fig. 2.
Second, we consider the decay 1=2 → 1=2þ 1 of a spin-

1=2 particle fermion X into a spin-1=2 particle fermion M1

and a spin-1 antiparticle boson M̄2. The number of

independent terms involving the 1=2 → 1=2þ 1 two-body
decay is n½1=2; 1=2; 1� ¼ 4, accounting for the four reduced
helicity amplitudes, C1=2�1=2;0 and C1=2�1=2;�1. After a little
manipulation, we can find the following four covariant
three-point operators,

P�
1 p̂2β ¼

1

2m
ðη−1 ∓ ηþ1 γ5Þp̂2β ↔ C1=2�1=2;0 ¼ −κ2; ð4:8Þ

W�
1β¼

1

2
ffiffiffi
2

p
m
ðηþ1 γþ1β�η−1 γ

−
1βγ5Þ ↔ C1=2�1=2;�1¼−κ; ð4:9Þ

with the abbreviated kinematic parameters and the redefined
gamma matrices γ�1β

η�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ω1Þ2 − ω2

2

q
and

γ�1β ¼ γβ ∓ 2ð1� ω1Þ
ð1� ω1Þ2 − ω2

2

p̂β; ð4:10Þ

satisfying the relation κ ¼ ηþ1 η
−
1 . In this case, the two

fermionic operators, P�
1 and W�

1 with the re-scaled
momentum p̂2β, dictate the one-half step horizontal
transitions from the point (0, 0) to the points ð�1=2; 0Þ,
and the one-half step horizontal and one-step vertical
transitions from the point (0, 0) to the points ð�1=2;�1Þ,
respectively, as shown in the right panel of Fig. 2.
Properly combining all the fermionic and bosonic

operators with the three rescaled momentum operators
enables us to reach every half-integer helicity lattice point.
To recapitulate, for any given J and s1;2, we can weave the
covariant effective three-point vertex corresponding to
every helicity combination of ½λ1; λ2� efficiently and
systematically. The explicit form of the covariant three-
point vertex constructed by weaving the fermionic as well
as bosonic operators is to be presented in Sec. V.

FIG. 2. Diagrammatic description of the four basic bosonic U�
1 and U�

2 operators on the left-hand side, the four basic fermionic
P� and W� operators in the middle, and the four basic fermionic operators P�

1 and W�
1 on the right-hand side. Their expressions are

listed in Eqs. (4.2), (4.3), (4.5), (4.6), (4.8), and (4.9), respectively.
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V. WEAVING THE COVARIANT
THREE-POINT VERTICES

Along with the rescaled momenta, p̂1;2 and k̂, the four
basic and two composite bosonic operators, U�

1;2 and U�,
and the two sets of basic fermionic operators, fP�;W�g
and fP�

1 ;W
�
1 g, worked out in Sec. IV, enable us to

construct all the relevant covariant three-point vertices
explicitly. For this construction, it is crucial to take into
account the feature that bosonic and fermionic wave tensors
are totally symmetric, traceless and divergence-free in their
four-vector indices and the fermionic spinors satisfy

γαiu
α1���αi���αn1
1 ðk1; λ1Þ ¼ γβiv

β1���βi���βn2
2 ðk2; λ2Þ ¼ 0; ð5:1Þ

as well with the non-negative integer n1;2 ¼ s1;2 − 1=2,
so that every fermionic vertex involving γαi or γβj with
i ¼ 1;…; n1 and j ¼ 1;…; n2 can be effectively excluded.
The μ, α and β four-vector indices in any covariant three-
point vertex can be shuffled freely due to the totally
symmetric properties of the wave tensors, and any term
including pμi for i ¼ 1; � � � n can be excluded effectively due
to the divergence-free condition. Moreover, the same con-
dition allows us to replace k2αi and k1βj effectively by −pαi

and pβj for i ¼ 1;…; n1 and j ¼ 1;…; n2.
As many indices of different types are involved in

expressing a covariant three-point vertex especially for
high-spin particles, we introduce the following compact
square-bracket notations

½k̂�n → k̂μ1 � � � k̂μn ; ½p̂1�n → p̂1α1 � � � p̂1αn ; ½p̂2�n → p̂2β1 � � � p̂2βn ; ð5:2Þ
½U��n → U�

α1β1
� � �U�

αnβn
; ½U�

1 �n → U�
1α1μ1

� � �U�
1αnμn

; ½U�
2 �n → U�

2β1μ1
� � �U�

2βnμn
; ð5:3Þ

for a non-negative integer n. Obviously, the zeroth power
(n ¼ 0) of any operator or rescaled four momenta is set to
be1.Weemphasize oncemore that anypermutationof theα,β
and μ four-vector indices can be regarded to be equivalent as
eventually the vertex operators are to be coupled with the X
and M1;2 wave tensors totally symmetric in the four-vector
indices.

A. Bosonic and fermionic three-point vertices

The helicity lattice point with any specific values of λ1
and λ2 can be reached by the helicity-specific operators H
consisting of the three rescaled momentum operators, k̂ and
p̂1;2 and the helicity-specific transition operators T con-
structed with a product of basic operators as

½HJ;s1;s2
A½λ1;λ2�� ¼ ½k̂�J−jλ1−λ2j½p̂1�s1−jλ1j½p̂2�s2−jλ2j½T J;s1;s2

A½λ1;λ2��
with jλ1 − λ2j ≤ J ð5:4Þ

in an operator form where the index A ¼ iii, ihh,
and hhi indicates whether the spins of X and M1;2 are
integer (i) or half-integer (h), respectively. For mathemati-
cal consistency, the powers of the rescaled momentum
operators, p̂1;2 and k̂, should be non-negative and they play
a crucial role in determining the number of indepen-
dent terms.
The helicity-specific operators in Eq. (5.4) can be

applied even to the massless case with m1¼0 or m2 ¼ 0

simply by setting ½p̂1�s1−jλ1j or ½p̂2�s2−jλ2j to unity, because
only the maximal helicity values identical to the spin
in magnitude are allowed physically for a massless
particle.
First, in the iii case with an integer s1 and an integer s2

forcing the spin J to be an integer, the transition vertices
consisting of a sequence of the bosonic scalar and
vector operators, U� and U�

1;2, are classified by three
regions as

½T J;s1;s2
iii½λ1;λ2�� ¼

8>><
>>:

½U��jλ2j½U�
1 �jλ1−λ2j for λ1;2 ¼ �jλ1;2j and 0 < jλ2j ≤ jλ1j;

½U��jλ1j½U�
2 �jλ1−λ2j for λ1;2 ¼ �jλ1;2j and 0 < jλ1j < jλ2j;

½U�
1 �jλ1j½U∓

2 �jλ2j for λ1 ¼ �jλ1j and λ2 ¼∓ jλ2j;
ð5:5Þ

in an operator form.
Second, in the ihh case with a half-integer s1 and a half-integer s2 forcing the spin J to be an integer, the transition

vertices consisting of the fermionic operators P� and W� as well as the bosonic scalar and vector operators, U� and U�
1;2,

are classified as

½T J;s1;s2
ihh½λ1;λ2�� ¼

8>><
>>:

½P��½U��jλ2j−1=2½U�
1 �jλ1−λ2j for λ1;2 ¼ �jλ1;2j and jλ2j ≤ jλ1j;

½P��½U��jλ1j−1=2½U�
2 �jλ1−λ2j for λ1;2 ¼ �jλ1;2j and jλ1j < jλ2j;

½W��½U�
1 �jλ1j−1=2½U∓

2 �jλ2j−1=2 for λ1 ¼ �jλ1j and λ2 ¼∓ jλ2j;
ð5:6Þ

in an operator form.
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Third, in the hhi case with a half-integer s1 and an integer s2 forcing the spin J to be a half-integer, the transition vertices
consisting of the fermionic operators P�

1 andW�
1 as well as the bosonic scalar and vector operators,U� andU�

1;2, are given by

½T J;s1;s2
hhi½λ1;λ2�� ¼

8>><
>>:

½P�
1 �½U��jλ2j½U�

1 �jλ1−λ2j−1=2 for λ1;2 ¼ �jλ1;2j and 1 < jλ2j < jλ1j;
½W�

1 �½U��jλ1j−1=2½U�
2 �jλ1−λ2j−1=2 for λ1;2 ¼ �jλ1;2j and jλ1j < jλ2j;

½P�
1 �½U�

1 �jλ1j−1=2½U∓
2 �jλ2j for λ1 ¼ �jλ1j and λ2 ¼∓ jλ2j;

ð5:7Þ

in an operator form.
To conclude, the general form of any covariant three-point

vertex ΓAαβ;μ for any given J and s1;2 with A ¼ iii; ihh, and
hhi is a linear combination of all the allowed helicity-
specific three-point vertices. The succinct operator form of
the covariant three-point vertex is given by

½ΓA� ¼
Xs1

λ1¼−s1

Xs2
λ2¼−s2

cJ;s1;s2A½λ1;λ2�½H
J;s1;s2
A½λ1;λ2��

with A ¼ iii; ihh; hhi; ð5:8Þ

with the constraint jλ1 − λ2j ≤ J where the helicity-specific
coefficients, cJ;s1;s2A½λ1;λ2� with A ¼ iii; ihh, or hhi depend only

on the three masses, m and m1;2. The expression (5.8) along
with the helicity-specific covariant transition vertex operators
in Eqs. (5.5), (5.6), and (5.7) is the key result of the present
work. Although it is originally deduced from the comparison
with the helicity amplitudes in the XRF, the form is valid in
every reference frame because of its Lorentz-covariant form.

B. Conversion to all the other helicity-specific vertices

So far, we have derived the explicit forms of the
helicity-specific operators only for the spin combinations,
ðiiiÞ, ðihhÞ, and ðhhiÞ in Sec. VA. However, the following
simple symmetry arguments enable us to obtain the
covariant three-point vertices for all the remaining spin
assignments.
Since any integer-spin wave tensor is given in the same

form regardless of whether the state is treated as a particle
or an antiparticle, it is unnecessary to consider the con-
version of the helicity-specific operators ½HJ;s1;s2

iii½λ1;λ2��. In
contrast, the helicity-specific operators ½H̄J;s1;s2

ihh½λ1;λ2�� for the
decay of a integer spin-J particle X into an antiparticle M̄1

and a particle M2 of half-integer spins s1;2 can be given in
an operator form by

½H̄J;s1;s2
ihh½λ1;λ2�� ¼ −½CHJ;s1;s2

ihh½λ1;λ2�C
−1�: ð5:9Þ

This relation is derived by converting the wave spinors ūα1
and vβ2 of M1 and M̄2 to vα1 and ūβ2 of M̄1 and M2 in the
existing helicity-specific amplitudes by the unitary charge-
conjugation C giving the relation v ¼ CūT . Similarly, the

helicity-specific operators ½H̄J;s1;s2
hhi½λ1;λ2�� for the decay of a

half-integer spin-J antiparticle X̄ into a half-integer spin-s1
antiparticle M̄1 and a integer spin-s2 particleM2 is obtained
by the relation

½H̄J;s1;s2
hhi½λ1;λ2�� ¼ −½CHJ;s1;s2

hhi½λ1;λ2�C
−1�; ð5:10Þ

in an operator form by converting the wave spinors ūα1 and
uμ to vα1 and v̄μ with the charge-conjugation C.
On the other hand, the helicity-specific operators for the

decay of a half-integer spin-J particle X of mass m and
helicity σ into an integer spin-s2 antiparticle M̄1 and a half-
integer spin-s1 particle M2 of masses m1;2 and helicities
λ2;1, respectively, are obtained simply by the relation

ðHJ;s2;s1
hih½λ2;λ1�Þ

μ1���μn
α1���αn2 ;β1���βn1 ðp; qÞ

¼ ðHJ;s1;s2
hhi½λ1;λ2�Þ

μ1���μn
β1���βn1 ;α1���αn2 ðp;−qÞ; ð5:11Þ

through the replacements of k1 ↔ k2, α1 � � �αn1 →
β1 � � � βn1 , and β1 � � � βn2 → α1 � � � αn2 .

C. Off-shell electromagnetic gauge-invariant vertices

Due to the electromagnetic (EM) gauge invariance, any
off-shell photon couples to a conserved current. Therefore,
in any timelike photon exchange process involving the
γ�M1M̄2 vertex, the off-shell photon can be treated as a
spin-1 particle of mass m ¼

ffiffiffiffiffi
p2

p
. Moreover, the covariant

three-point γ�M1M̄2 vertex can be cast into a manifestly
EM gauge-invariant form [14] as

Γμ
XEMα;β ¼ p2Γμ

α;β − ðp · Γα;βÞpμ; ð5:12Þ

satisfying the current conservation condition pμΓ
μ
XEMα;β ¼

p · ΓXEMα;β ¼ 0 automatically.
Similarly, in any process involving the Xγ�M̄2 vertex, the

off-shell photon γ� can be treated as a spin-1 particle of
massm1 ¼

ffiffiffiffiffi
k21

p
. Then, the covariant three-point vertex can

be cast into a manifestly EM gauge-invariant form as

Γμ
1EMα;β ¼ k21Γ

μ
α;β − kρ1k1αΓ

μ
ρ;β; ð5:13Þ
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satisfying the current conservation condition kα1Γ
μ
1EMα;β ¼ 0

automatically.

VI. CONCLUSIONS

We have developed an efficient algorithm for construct-
ing all the covariant effective three-point vertices for the
decay of a particle X of spin J and mass m into a particle
M1 and an antiparticle M̄2 with any spins and masses, s1;2
and m1;2. For this development, we have exploited the
closely related equivalence between the helicity formalism
and the covariant formulation for identifying the basic
operators and then for constructing all the covariant three-
point vertices.
We have presented all the helicity-specific covariant three-

point vertices in an operator form in Eqs. (5.5), (5.6), and
(5.7) explicitly in the iii, ihh, and hhi cases, respectively.
We have listed the conversion rules to all the other cases in
Eqs. (5.9), (5.10), and (5.11). In addition, we have shown
that the case with m1 ¼ 0 or m2 ¼ 0 can be accommodated

straightforwardly. Finally, we have described how to obtain
the EM gauge-invariant vertices involving a virtual photon in
the initial or final state.
The general algorithm for constructing the covariant

three-point vertices enables us to work out various theo-
retical and phenomenological aspects systematically and
efficiently, including the indirect and direct searches for
DM particles of any spin and the production of new
particles of any spin at high energy colliders. An interesting
issue to be pursued is whether the bosonic and fermionic
cases can be synthesized in a more compact way.
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