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Using the helicity amplitudes formalism, we study deeply virtual exclusive electron photoproduction off
an unpolarized nucleon target, ep → e0p0γ, through a range of kinematics both in the fixed target setting
with initial electron energies of 6, 11, and 24 GeVand for an electron ion collider. We reformulate the cross
section bringing to the forefront the defining features of the ep → e0p0γ process, where the observables are
expressed as bilinear products of the independent helicity amplitudes which completely describe it in terms
of the electric, magnetic, and axial currents of the nucleon. These contributions are checked against the
Fourier harmonics-based formalism which has provided so far the underlying mathematical framework to
study deeply virtual Compton scattering (DVCS) and related experiments. Using theoretical model

calculations of the twist-two generalized parton distributions, H, E, eH, and eE, we uncover large
discrepancies between the harmonic series and our proposed framework. Most importantly, these numerical
differences appear in the intermediate Q2 range which represents a sweet spot for extracting generalized
parton distributions from data. We provide a framework that is ideal, on one side, to study and compare the
different conventions that can be used to describe the leading order contribution to DVCS in QCD, while on
the other it facilitates a quantitative extraction of physically meaningful information from experiment
through traceable and controllable approximations in the intermediate Q2 region.

DOI: 10.1103/PhysRevD.105.016015

I. INTRODUCTION

Deeply virtual Compton scattering (DVCS) is measured
through the exclusive process, ep → e0p0γ, where, in the
one photon exchange approximation, the virtual photon
four-momenta squared, Q2, provides a hard scale for the
process. Quantum chromodynamics (QCD) factorization
theorems allow us to single out the perturbative, short
distance reaction from the nonperturbative, long distance
matrix elements described in terms of generalized parton
distributions (GPDs) [1,2].1 GPDs encode new information
on the internal dynamics of the proton that will allow us,
through a combined analysis of experimental data and
lattice QCD results, to ultimately map out its 3D structure.
These distributions enter the observables embedded in
the Compton form factors (CFFs), which are convolutions
over the longitudinal momentum variable x with complex
QCD Wilson coefficient functions (see reviews in [6–8]).

At leading order, four quark chirality conserving GPDs
giving eight CFFs describe all possible quark (Pq) proton
(Pp) polarization configurations, PqPp¼UU;LL;UT;LT,
allowed by parity conservation, time reversal invariance,
and charge conjugation. The eight CFFs appear simulta-
neously in all of the deeply virtual exclusive scattering
experimental observables, independent of the specific
beam-target polarization configuration. This poses a chal-
lenge for the extraction of CFFs from experiments which
are affected by large theoretical uncertainties (see [8] for a
detailed list of experiments).
In Ref. [9], we introduced a new theoretical formulation

of the cross section for the ep → e0p0γ process in all
polarization configurations for the incoming electron and
proton target. The main goal of Ref. [9] was to provide a
formulation of the cross section in terms of CFFs that
allowed one to evaluate precisely the impact of order 1=Q
and higher power corrections of kinematic and dynamical
origins.
Focusing on the unpolarized target case, in this paper,

we illustrate how the complete calculation of the cross
section leads to a more direct interpretation in terms of the
electric, magnetic, and axial current contributions to
DVCS. In our approach, the Bethe-Heitler (BH)-DVCS
interference term of the ep → e0p0γ cross section exhibits a
structure analogous to the cross section for ep elastic
scattering (see, e.g., Refs. [10,11] and references therein),
preserving the structure of the nucleon charge, magnetic,
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1Detailed proofs of factorization for deeply virtual exclusive
processes can be found in [3–5].
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and axial current contributions to the cross section from the
underlying helicity amplitude configurations [12,13].
Previous studies, referring, in particular, to the widely

adopted formalism of Refs. [7,14–17] Belitsky-Kirchner-
Muller (BKM) are organized, instead, in terms of harmon-
ics of the azimuthal angle, ϕ, and in kinematic powers of
1=Q. On one side, the harmonics-based formalism presents
the appealing aspect of associating a dominant harmonic
for each observable, therefore providing a simplified
framework for experimental measurements. While this
approach was perhaps needed in the pioneering analyses
of the HERMES era [18], at present, with Jefferson Lab
@12 GeVand the future Electron Ion Collider (EIC) we are
now entering a precision era where information on the
physics content of the deeply virtual cross section, in
particular, its electroweak structure, can be studied. This
structure, in turn, bears important consequences for build-
ing a phenomenological framework to quantitatively study
the composition of angular momentum, mass, and other
mechanical properties of the proton in terms of quark and
gluon contributions.
Our new framework radically changes the extraction of

CFFs from data [19]. In Refs. [15,16], according to the
harmonics expansion, the magnetic contribution containing
the angular momentum related CFF combination (H þ E)
to the BH-DVCS interference term was deemed as power
suppressed and, therefore, not included in the leading order
formula. Following Ref. [19], we introduce linear fits of the
DVCS data that enable us to extract the magnetic con-
tribution for the first time, with a relatively small size error.
While our approach shares a common starting point with

the initial studies of the cross section performed in
Refs. [20–22], our results are in line with the recent study
in Refs. [23–25], broadly labeled as “finite t and target
mass corrections”, in that we recognize the importance of
kinematic contributions originating from the choice of
reference frames where the QCD hadronic tensor and
BH proton current are evaluated.
A further advantage of the new formalism is that it

provides compact expressions for the various kinematic
coefficients expressed in terms of invariant four-vector
products. From the practical point of view, we provide
simplified expressions that can be readily used in the
development of simulations and pseudodata, for both fixed
target and collider settings. A striking example is given by
the form of the BH unpolarized cross section which
reduces, in our case, to two lines of computation.2 The
DVCS contribution is organized in terms of structure
functions for the various polarization configurations for
the lepton beam and nucleon target, in line with the general
cross section formulations of Refs. [13,26].

The work presented in this paper is organized in the
following points:

(i) We discuss in detail the physics content of the
expressions derived in Ref. [9], including the origin
of the phase dependence and the polarization con-
figurations for both the twist-two and twist-three
contributions (Sec. II).

(ii) We perform a detailed numerical comparison with
the formalism of BKM for the unpolarized cross
section including the BH, DVCS, and BH-DVCS
interference terms. The comparison is valid up to
twist three, using the same model calculation of the
GPDs for both the present paper’s and the BKM
expressions. This ensures that the differences can be
ascribed entirely to the formalism, (Sec. III).

(iii) We cover a range of kinematic regions, from
Jefferson Lab @6 GeV and @12 GeV to a hypo-
thetical energy value of 24 GeV fixed target con-
figuration [27] to the EIcC [28] and EIC [29]. All
graphs are shown and discussed in Sec. III.

Finally, we write our conclusions and outlook in Sec. IV.

II. UNPOLARIZED SCATTERING
CROSS SECTION

The cross section for the deeply virtual photon electro-
production process, eðkÞ þ p → e0ðk0Þ þ p0 þ γ0ðq0Þ, on an
unpolarized proton, is derived from a coherent super-
position of the DVCS and BH amplitudes, where the
BH contribution arises when the final photon is emitted
from either the initial or final electron. It is therefore a
competing mechanism to the DVCS process evaluated at
low momentum transfer, −t ≪ Q2. One has

d5σ
dxBjdQ2djtjdϕ ¼ ΓjTj2 ¼ ΓjTBH þ TDVCSj2

¼ ΓðjTBHj2 þ jTDVCSj2 þ IÞ; ð1Þ

with the interference term, I , being defined as

I ¼ T�
BHTDVCS þ T�

DVCSTBH; ð2Þ

where Γ is the flux factor,

Γ ¼ α3

16π2ðs −M2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
xBj

; ð3Þ

where α is the electromagnetic fine structure constant.
We define the relativistic invariants, Q2 ¼ −ðk − k0Þ2,
t ¼ Δ2 ¼ ðp0 − pÞ2, xBj ¼ Q2=2ðpqÞ, with ν ¼ ðpqÞ=M,
s ¼ ðpþ kÞ2; ϕ is the angle between the lepton and hadron
planes and M the proton mass.

2Our results are consistent with a previous calculation for the
unpolarized BH cross section given in terms of Mandelstam
invariants Refs. [20–22].
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The amplitude for the DVCS process reads

TDVCS ¼ e3jμDVCS
egμν
q2

JνDVCS ð4Þ

where the lepton and hadron currents are, respectively,
given by

jμDVCS ¼ ūðk0; hÞγμuðk; hÞ; ð5aÞ

JνDVCS ¼ Wμνðp; p0ÞðεΛγ0
μ ðq0ÞÞ�; ð5bÞ

where Wμν is the DVCS hadronic tensor, and εΛγ0μðq0Þ is
the polarization vector of the outgoing photon, γ0. For BH
one has

TBH ¼ e3

Δ2
jμBHðJBHÞμ; ð6Þ

with

jμBH ¼ ðεΛγ0νðq0ÞÞ�Lh
μνðk; k0; q0Þ; ð7Þ

ðJBHÞμ ¼ Ūðp0;Λ0ÞΓμUðp;ΛÞ; ð8Þ

where Lh
μν is the tensor for electron scattering off the proton

with the emission of a final photon, and Γμ is the usual
current operator given in terms of the Dirac and Pauli form
factors, F1 and F2, as

Γμ ¼ ðF1 þ F2Þγμ −
ðpþ p0Þμ

2M
F2: ð9Þ

The DVCS amplitude involves the photon projection
operator, egμν, which is defined by the expansion [30,31]

egμν ¼ X
Λγ�

ð−1ÞΛγ� ðεΛγ�
μ Þ�εΛγ�

ν : ð10Þ

Inserting the expansion in Eq. (6), we obtain the following
invariant expression:

TDVCS ¼
e3

q2
ðjμDVCSε

Λγ� �
μ ÞðJνDVCSε

Λγ�
ν Þ; ð11Þ

where the photon polarization vector contracted with the
hadron current is evaluated in the hadron scattering plane,
and it is therefore rotated by a phase,

ε
Λ�
γ

μ ðhadronÞ ¼ e−iΛ
�
γϕε

Λ�
γ

μ ðleptonÞ: ð12Þ

This phase determines the ϕ dependence of the DVCS cross
section. The BH cross section has only kinematic ϕ
dependence through four-vector products of the type
ðkΔÞ; ðkq0Þ;…, where k lies in the lepton plane, and
Δ; q0…, lie in the hadron plane. The BH-DVCS interfer-
ence term has both a phase dependence from the DVCS
contribution and a kinematic dependence on the angle ϕ
through the BH contribution. All of these contributions
were calculated explicitly in Ref. [9] carefully separating
out the phase dependence from the kinematic one. The
phase dependence is not made explicit in the harmonic
expansion formalism of BKM, and we surmise that its
different (or lack of) treatment is at the origin of the
numerical discrepancies shown in this paper.
We focus on the cross sections for either an unpolarized

or a polarized electron scattering off an unpolarized
nucleon which are, respectively, given by

σUU ¼ σBHUU þ σDVCSUU þ σIUU; ð13Þ

σLU ¼ σDVCSLU þ σILU: ð14Þ

The detailed structures of the BH, DVCS, and BH-DVCS
interference contributions to the cross sections in Eqs. (13)
and (14) given in Ref. [9] in the Born approximation read

σBHUU ¼ ΓjTBHj2 ¼
Γ
t2
½ABHðF2

1 þ τF2
2Þ þ BBHτG2

M�; ð15Þ

σDVCSUU ¼ Γ
Q2ð1 − ϵÞ fFUU;T þ ϵFUU;L þ ϵ cos 2ϕFcos 2ϕ

UU þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðϵþ 1Þ

p
cosϕFcosϕ

UU g; ð16Þ

σDVCSLU ¼ Γ
Q2ð1 − ϵÞ ð2hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1 − ϵÞ

p
sinϕFsinϕ

LU ; ð17Þ

σIUU ¼ el
Γ

Q2jtj
�
AI
UUℜeðF1Hþ τF2EÞ þ BI

UUGMℜeðHþ EÞ þ CI
UUGMℜeeH þ

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
Q

FI ;tw3
UU

�
; ð18Þ

σILU ¼ el
Γ

Q2jtj
�
AI
LUℑmðF1Hþ τF2EÞ þ BI

LUGMℑmðHþ EÞ þ CI
LUGMℑmeH;þ

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
Q

FI ;tw3
LU

�
; ð19Þ
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where el is the lepton charge, y ¼ ðqpÞ=ðkpÞ,
τ ¼ −t=4M2, t0 is the minimum t value allowed by taking
the transverse four-momenta transfer ΔT ≥ 0, and ϵ, the
ratio of longitudinal to transverse virtual photon flux in
DVCS, is given by

ϵ≡ 1 − y − 1
4
y2γ2

1 − yþ 1
2
y2 þ 1

4
y2γ2

:

F1 and F2 are the Dirac and Pauli form factors; ABH and
BBH are kinematic coefficients expressed in terms of four-
vector products involving all the relevant four-momenta:
the initial and final electron momenta, k and k0, the final
photon momentum, q0, Δ, and the average proton momen-
tum P ¼ ðpþ p0Þ=2. In Eq. (15), we wrote their kinematic
dependence on the relevant kinematic variables fore the
process, y, xBj, t, Q2, and ϕ. Their detailed expressions are
given in Ref. [9]. The CFFs are defined, in the QCD
factorization framework, as convolutions of the GPDs for
each quark flavor, q, with the Wilson coefficients functions.
At leading order, we have for, F q ¼ ðHq; EqÞ andeF q ¼ ðeHq

eEqÞ, respectively,

F qðξ; tÞ ¼ CðCþFqÞ≡
Z

1

−1
dxCþðx; ξÞFqðx; ξ; tÞ; ð20Þ

eF qðξ; tÞ ¼ CðC−eFqÞ≡
Z

1

−1
dxC−ðx; ξÞeFqðx; ξ; tÞ; ð21Þ

with the leading order coefficients functions given by

C�ðx; ξÞ ¼ 1

x − ξ − iϵ
∓ 1

xþ ξ − iϵ
: ð22Þ

The GPDs observe crossing symmetry relations with
respect to x → −x, which allow us to introduce valence
(symmetric) and quark singlet (antisymmetric) distributions
(for a detailed discussion see Refs. [32,33]). In DVCS, the
proton GPD is written in terms of the quark GPDs as

H ¼
X
q

e2qHq; ð23Þ

with eq being the quark charge. The neutron GPD can be
obtained using isospin symmetry.
Although the full structure of the cross section was

already given in Ref. [9], to facilitate data analyses and
interpretations, we make the following observations:

(i) The BH cross section is cast in a form similar to ep
elastic scattering. However, due to the additional
photon radiated from the electron in either the initial
or final state, the virtual photon exchanged with
the target is aligned along Δ at an angle ϕ, and the
kinematic coefficients, ABH and BBH, multiplying
the form factors, acquire a complicated dependence

in ϕ [9]. A more physical interpretation of these
terms can also be obtained by writing the coeffi-
cients combination,

ϵBH ¼
�
1þ BBH

ABH
ð1þ τÞ

�
−1
; ð24Þ

measuring the exchanged virtual photon’s longi-
tudinal polarization relative to the transverse. Notice
that ϵBH ≠ ϵ.

(ii) The DVCS structure functions are bilinear functions
of the CFFs multiplied by kinematic coefficients
that are directly related to the helicity structure for
the process. We introduced a similar notation as in
Refs. [13,26] defining FUU;T , FUU;L, F

cosϕ
UU , Fcos 2ϕ

UU ,
and Fsinϕ

LU , where the first and second subscripts
define the polarization of the beam and target,
respectively, and the third subscript defines the
polarization of the virtual photon. The superscripts
refer to the azimuthal angular dependence associated
with each structure function. Notice the structure of
the multiplicative factors in each structure function:
FUU;T has no

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
=Q factor and is therefore the

dominant term at high Q2. Fcosϕ
UU , Fsinϕ

UU contain one
helicity flip factor ∝

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
=Q. Fcos 2ϕ

UU is a leading
twist contribution associated with a double helicity
flip, and it is both proportional to ðt0 − tÞ=M2 and
suppressed by a factor αS from the gluon coupling.
Finally, FUU;L, containing only twist-three GPDs, is
given by the product of two single-flip terms
yielding a multiplicative factor of ðt0 − tÞ=Q2.

(iii) The BH-DVCS interference contribution is ex-
pressed in terms of linear combinations of products
of CFFs elastic form factors, F1 and F2, with the
coefficients, AI

UU, B
I
UU, C

I
UU, which are functions of

ðQ2; xBj; t; y;ϕÞ [9]. Similar to the DVCS contribu-
tion, there is no obvious connection between the
various beam/target polarization configurations and
the GPDs contributing to the structure functions.
On the other hand, similar to the BH term, one can
single out the contributions,

F1Hþ τF2E; GMðHþ EÞ; GM
eH;

where the electric and magnetic properties of the
cross section are clearly separated out, and in
addition, one has the equivalent of an axial charge
term. The latter appears similarly to the parity
violating term in elastic scattering. It is, however,
parity conserving in DVCS-BH interference because
of the presence of the extra photon emitted at the
proton vertex.

For completeness, we list the expressions for both the
BH and BH-DVCS interference terms in Appendix B.
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A. Comparison with previous formulations

In exclusive unpolarized scattering processes from the
proton, it is expected that the magnetic contribution will
appear suppressed with respect to the electric one due to
the phase dependence of the spin flip amplitude describing
this term. Indeed, in Ref. [9], we found that this holds
specifically for DVCS, where the magnetic contribution to
σIUU appears multiplied by a smaller coefficient, BI

UU, than
the electric form factor. This contribution represents,
however, the most interesting term of the unpolarized cross
section; since it contains the combination of CFFs, Hþ E,
it brings us closer to getting a quantitative hold of angular
momentum [1]. A goal of this paper is to help galvanize the
efforts to extract information on this important quantity.
Notice, in fact, that, as shown in Sec. III, in our formalism,
the coefficient of the magnetic term, BI

UU, is larger than the
coefficient of the axial term, CI

UU, thus bringing this term
within current experimental grasp. In the BKM formalism,
on the contrary, the coefficient CI

UU is larger than BI
UU.

The analytic forms of the coefficients AI
UU, B

I
UU, and CI

UU,
evaluated using the BKM formalism, are also given in
Appendix C. Another difference is in the twist-three GPD
contributions, written in detail in the next section, which we
define along the lines of the GPD decomposition of the
correlation function of Ref. [34]. This allows us for the first
time to give a physical interpretation of the various twist-
three contributions in terms of orbital angular momentum
and spin orbit contributions.
The numerical evaluation of the differences with the

BKM formalism presented in Refs. [14–16] is presented in
Sec. III in various kinematic regimes.

B. Twist three

We discuss the structure of the BH-DVCS interference
term at twist three, in view of the fact that it contains GPDs
describing the longitudinal component of orbital angular
momentum, eE2T , the spin orbit term ð2eH0

2T þ E0
2TÞ [35,36],

and terms related to transverse angular momentum, H2T ,

FI ;tw3
UU ¼ Að3ÞI

UU ½F1ðℜeð2eH2T þ E2TÞ −ℜeð2eH0
2T þ E0

2TÞÞ þ F2ðℜeðH2T þ τeH2TÞ −ℜeðH0
2T þ τ eH0

2TÞÞ�
þ Bð3ÞI

UU GMðℜeeE2T −ℜeeE0
2TÞ

þ Cð3ÞI
UU GM½2ξðℜeH2T −ℜeH0

2TÞ − τðℜeðeE2T − ξE2TÞ −ℜeðeE0
2T − ξE0

2TÞÞ�: ð25Þ

For a polarized electron beam, we obtain a structure analogous to the unpolarized case, where the ℜe parts of the CFFs
are replaced with the ℑm parts, namely,

FI
LU ¼ Að3ÞI

LU ½F1ðℑmð2eH2T þ E2TÞ − ℑmð2eH0
2T þ E0

2TÞÞ þ F2ðℑmðH2T þ τ eH2TÞ − ℑmðH0
2T þ τ eH0

2TÞÞ�
þ Bð3ÞI

LU GMðℑmeE2T − ℑmeE0
2TÞ

þ Cð3ÞI
LU GM½2ξðℑmH2T − ℑmH0

2TÞ − τðℑmðeE2T − ξE2TÞ − ℑmðeE0
2T − ξE0

2TÞÞ�: ð26Þ

The coefficients, Að3ÞI
UU , Bð3ÞI

UU , Cð3ÞI
UU , and Að3ÞI

LU , Bð3ÞI
LU , Cð3ÞI

LU ,
are written in terms of four-vector products involving all
relevant variables, for the electron, k, k0, final photon, q0,
momentum transfer, Δ, and average proton momentum, P.
Similarly to the twist-two case, they can be expressed in
terms of the set of variables (Q2, xBj, t, y, ϕ). Their specific
expressions are given for the first time in Ref. [9].
A comparison with BKM cannot be performed due to
the inherently different structure of their dynamic twist-
three expressions. Note for the twist-three CFFs,
H2T; E2T…, we use the same notation as for the twist-
two case, by defining them through the convolution with
the leading order Wilson coefficient functions given in
Eq. (21). The possible role of an explicit qgq term is beyond
the scope of this paper.
The notation for the twist-three GPDs is illustrated in

Table I where we show, along with our notation, their
quark-proton polarization configuration, the corresponding

TABLE I. Twist-three GPDs and their helicity content. In the
first column, we show the GPDs notation for this paper. The
second column shows the quark and proton polarizations.
The third column shows the analogous configurations in the
TMD sector. Finally, the fourth column shows the corresponding
notation from Ref. [34]. The asterisk denotes naive T-odd twist-
three TMDs (we define τ ¼ to−t

4M2).

GPD PqPp TMD Ref. [34]

H⊥ UU f⊥ 2eH2T þ E2TeH⊥
L LL g⊥L 2eH0

2T þ E0
2T

H⊥
L UL f⊥ ð�Þ

L
eE2T − ξE2TeH⊥ LU g⊥ ð�Þ eE0
2T − ξE0

2T
E⊥ UT fð�ÞT H2T þ τeH2TeE⊥ LT g0T H0

2T þ τeH0
2T
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notation in the TMD sector, and the notation from Ref. [34]
(see also Table I in Ref. [9]). The notation follows the one
adopted for TMDs [37,38], namely,

(i) H and f correspond to the vector coupling in the
parametrization of the quark-proton correlation
function.

(ii) eH and g correspond to axial-vector coupling.
(iii) The ⊥ superscript indicates an unsaturated trans-

verse momentum index in the correlation function’s
coefficient [35].

(iv) The subscript LðTÞ involves the amplitude for a
longitudinally (transversely) polarized target.

C. Azimuthal angular dependence

The azimuthal angular, ϕ, dependence is a key feature of
the cross section, appearing with different capacities in the
description of the BH, DVCS, and BH-DVCS interference
contributions. In electron scattering exclusive reactions, the
cross section assumes a characteristic dependence on the
phase, ϕ, which originates from rotating the virtual photon

polarization vector, ε
Λ�
γ

μ , from the leptonic to the hadronic
plane (see, e.g., Refs. [31,39] and the detailed reiteration
for deeply virtual scattering in Refs. [12,13]). This depend-
ence allows us, in general, to single out the contributions
from the overlap of different transverse and longitudinal
amplitudes (e.g., σT; σTT; σLT…) describing different phys-
ics content.
In the specific case of exclusive photoproduction, we

distinguish between the BH and DVCS processes. In BH,
there are only two structure functions, i.e., the proton
elastic form factors; therefore, similar to elastic scattering,
we do not organize the cross section by writing out the
various virtual photon polarization components. The
dependence on ϕ is purely kinematic.
For the DVCS and BH-DVCS contributions, we set

the virtual photon for DVCS, q, along the z axis in the
laboratory frame, while the virtual photon, Δ, for the BH
process is along Δ, at an angle ϕ with respect to q.
As shown below, this mismatch results in a much more

complicated dependence of the polarization-vector prod-
ucts contributing to the cross section, generating substantial
t and target mass corrections [9].

1. Phase dependence of pure DVCS contribution

The polarization vectors for the virtual photon of
momentum q along the negative z axis in the laboratory
frame are defined as

εΛγ�¼�1 ≡ 1ffiffiffi
2

p ð0;∓1; i; 0Þ; ð27Þ

εΛγ�¼0 ≡ 1

Q
ðjq⃗j; 0; 0; q0Þ ¼

1

γ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
; 0; 0; 1

�
: ð28Þ

Notice that the DVCS helicity amplitudes are evaluated in
the center of mass (c.m.) frame of the final photon-hadron
system, which defines the hadron plane at an angle ϕ with
respect to the lepton plane [9]. The cross section is
evaluated by transforming to the lepton plane rotating
the polarization vectors defining the helicty amplitude,

f
Λ�
γΛ0

γ

ΛΛ0 , by −ϕ about the z axis. Another way to express this
is that the lepton produces a definite helicity virtual photon
which we take along the z axis in the lepton plane; however,
the virtual photon’s interaction with the target occurs in the
hadron plane which is rotated through an azimuthal angle
ϕ. The phase dependence of the DVCS contribution to the
cross section is a consequence of such a rotation about the
axis where the virtual photon lies [30,31]. The ϕ rotation
about the z axis changes the phase of the transverse
components and leaves the longitudinal polarization vector
unchanged as

εΛγ�¼�1 →
e−iΛγ�ϕffiffiffi

2
p ð0;∓1; i; 0Þ: ð29Þ

The ejected (real) photon polarization vectors read

εΛ
0
γ¼�1 ≡ 1ffiffiffi

2
p ð0;∓ cos θ cosϕþ i sinϕ;

∓ cos θ sinϕþ i cosϕ;� sin θÞ: ð30Þ

εΛ
0
γ , in principle, also undergoes a phase rotation; however,

this phase rotation does not contribute to the cross section
due to the completeness relation obtained summing over
the physical (on-shell) states [40],X

Λ0
γ

ðεΛ0
γ

μ ðq0ÞÞ�εΛ0
γ

ν ðq0Þ ¼ −gμν: ð31Þ

2. Phase dependence of BH-DVCS interference term

The same treatment described above is applied to the
BH-DVCS interference term. Here, the different polar-
izations allow us to distinguish the twist-two and twist-
three terms as

twist 2 →
X

Λ�
γ¼�1

ðεΛ�
γ

μ Þ�εΛ�
γ

ν ¼ cosϕgTμν − sinϕεTμν; ð32Þ

twist 3 → ðεΛ�
γ¼0

μ Þ�εΛ�
γ¼0

ν ¼ gLμν; ð33Þ

where the components of gLμν are gL00 ¼ 1þ ν2=Q2,

gL03 ¼ gL30 ¼ ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
=Q2, and gL33 ¼ ν2=Q2.

In addition to the phase dependence, differently from the
pure DVCS term where the azimuthal angular dependence
resides entirely in the phase factors, the BH-DVCS con-
tribution contains a ϕ dependence of kinematic origin. The
kinematic ϕ dependence arises from the orientation of the
Δ vector which lies at an angle ϕ in the hadronic plane and
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generates a ϕ dependence through factors of four-vector
products ðkΔÞ in the coefficients of the structure functions
similar to the BH case. As a result, we single out an overall
multiplicative cosϕ term in the twist-two contribution
to σIUU and a sinϕ term in the twist-two contribution
to σILU, which originate from the phase dependence arising
from the helicity amplitudes of the hadronic current.
The coefficients contain also the kinematic ϕ dependence
as explained above. A similar situation is found at twist
three where the phase dependence cancels out since for
the virtual photon e−iΛγ�ϕ is 1 as a consequence of its
longitudinal polarization; thus, the ϕ dependence is entirely
of kinematic origin.
This result seems at variance with the representation

given in the original harmonics expansion of approach
Refs. [15,16]. However, one should notice that in these
papers the distinction between the ϕ dependence from
the phase of the polarization vectors and the ϕ dependence
from the kinematics is not evident. This point of departure of
the two formalisms is important as also addressed in
Refs. [23–25], where the question of t and target mass
corrections resulting from the different choices of the ori-
entationofΔ hasbeen also studied. Inparticular, it is important
to establish a pathway in the decomposition of subleading
twist terms which in our case clearly result from the ϕ
dependence from the “phase” of the hadronic current. This
ensures thatwhat enters intoour twist-three cross section terms
are directly due to twist-three GPDs and not to kinematically
suppressed terms. These issues seem to have prevented so far a
clean extraction of information from data [41].

III. NUMERICAL RESULTS

In this section, we present numerical evaluations of the
BH, DVCS, and BH-DVCS interference terms evaluated in
Ref. [9], emphasizing the feature of our new formalism as
compared to previous approaches discussed in Sec. II.
We compare results obtained both in the helicity ampli-

tudes and in the BKM formulations [15,16], for various
observables entering the unpolarized cross section at
kinematic settings ranging from recent measurements at
Jefferson Lab [42,43] to a 24 GeV fixed target scenario [27]
and the EIC [28,29]. Since the goal of this paper is to
highlight the new features of the framework for exclusive
electoproduction as compared to BKM, we restrain from
discussing issues involving fits to the cross section, the
extraction of the CFFs from experimental data, and the
modeling of GPDs based on DVCS data. These topics will
be discussed in upcoming publications.
We start from showing in Fig. 1 what is perhaps the

biggest consequence of our new framework for deeply
virtual exclusive scattering on an unpolarized proton:
the dependence on the scale, Q2, of the dominant con-
tribution to the BH-DVCS interference matrix element,
ℜeðF1Hþ τF2EÞ. The extraction of this quantity in our
formalism is consistent with a slow Q2 dependence as

predicted by the perturbative QCD evolution equations for
GPDs [5,32,44]. In the BKM formalism, on the contrary,
oscillations appear which could indicate spurious Q2

dependence resulting from the approximations taken in
the cross section coefficients.
Notice that, although BKM use the harmonics based

formulation where, in particular, the σIUU cross section is
not organized in terms of AI

UU, B
I
UU, C

I
UU, one can retrieve

equivalent expressions by rearranging the various harmon-
ics contributions. These expressions are displayed in

FIG. 1. The CFFs combination, F1ðtÞℜeHþ τF2ðtÞℜeE, cor-
responding to the first term in Eq. (18), plotted vs Q2. This
quantity was extracted from data [42] using the formalism
presented in this paper and in Ref. [9] (blue circles) and using
the formalism of Ref. [16] (orange squares). The curves in the
figure illustrate the effect of perturbative QCD evolution, calcu-
lated using the GPD parametrization in Refs. [45,46].
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Appendix C. We note that even by doing so, the analytic
comparison between the two formulations represents a
formidable task due to the inherent complications arising
from the different choices of variables for the lengthy
coefficients.

(i) In Fig. 2, we present the cross section σUU, Eq. (13),
with the separate contributions, σBHUU, (15), σ

DVCS
UU ,

(16), and σIUU, (18), calculated in the Virginia (VA)
framework. We consider three different settings in
the laboratory system with electron beam energies:
ðkeÞo ¼ ϵ1 ¼ 5.75, 11.5, 24 GeV, and correspond-
ingly increasing Q2 values. The experimental data

FIG. 2. The cross section σUU, Eq. (13) for the kinematic bins
from Ref. [43] with initial electron energy ϵ1 ¼ 5.75 GeV,
Q2 ¼ 1.8 GeV2, t ¼ −0.172 GeV2, xBj ¼ 0.34 (top panel)
[42]; ϵ1 ¼ 11.5 GeV, Q2 ¼ 4.5 GeV2, t ¼ −0.29 GeV2, xBj ¼
0.37 (second panel); and for projected values of a fixed target
experiment at ϵ1 ¼ 24 GeV (third panel). The curves correspond
to the contributions from σUU Eq. (13), σBHUU , (15), σ

DVCS
UU , (16),

and σIUU, (18), calculated in the laboratory system.

FIG. 3. The cross section σUU in a collider setting kinematics
for an EIC with initial electron energy ϵe ¼ 5 GeV, initial
proton energy ϵp ¼ 41 GeV, and kinematic bin xBj ¼ 0.01,
t ¼ −0.18 GeV2, and Q2 ¼ 5 GeV2 of the US-based EIC
[29] (top), and initial electron energy ϵe ¼ 3.5 GeV, initial
proton energy ϵp ¼ 20 GeV, and kinematic bin xBj ¼ 0.021,
t ¼ −0.094 GeV2, and Q2 ¼ 2.17 GeV2 of the China-based EIC
[28] (bottom).
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are from Ref. [43] (top panel) and Ref. [42] (middle
panel). The 24 GeV setting [27] is becoming an
exciting possibility that will allow further explorations

of GPDs and the 3D structure of the nucleon in a wide
kinematic range. In particular, the access to larger
Q2 values in the valence region will allow us to
settle many issues related to power corrections
and the onset of QCD factorization. The theo-
retical predictions for DVCS and the DVCS-BH
interference were calculated at leading twist using
GPDs from the spectator model in [45–47],
summarized in Sec. III A. We underline that these
are predictions, not fits, where the model param-
eters were fixed using constraints from experi-
ments other than DVCS. The latter include a
recent nucleon form factor and parton distribution
function (PDF) measurements. These curves show
a realistic picture of the relative sizes of the
various contributions. The BH term is known to
high precision, since its calculation is based on
QED, the only unknowns being the nucleon form
factors at low four-momenta transfer, t, where
their uncertainty is small. The uncertainty band in
the figure refers to the error from the fit
in [45,47].

(ii) The various contributions to the unpolarized cross
section are shown in Fig. 3 for collider configura-
tions at the EIC typical kinematic setting (upper
panel) [29] and at EIcC kinematics (lower
panel) [28].

(iii) In Fig. 4, we compare three cross section for-
mulations: the present framework (VA), the for-
mulations of Ref. [15] (BKM’01), and Ref. [16]
(BKM’10), respectively. It should be noticed that
the quantity plotted, σUU, is the sum of BH,
DVCS, and BH-DVCS interference contributions.
All three calculations use the same BH cross
section. The DVCS and DVCS-BH interference
terms use the same CFFs values displayed in
Table II, but they differ in the analytic form of the
coefficients from the three different formulations.
One can see sensible discrepancies between the
VA and BKM calculations. It should be noticed
that the differences are suppressed; i.e., they

FIG. 4. Total unpolarized cross section with VA theory CFFs:
(top) ϵ1 ¼ 5.7 GeV, Q2 ¼ 1.8 GeV2, xBj ¼ 0.34,
t ¼ −0.17 GeV2; (bottom) ϵ1 ¼ 10.6 GeV Q2 ¼ 4.5 GeV2,
xBj ¼ 0.37, t ¼ −0.26 GeV2.

TABLE II. Value of Compton form factors using Virginia Reggeized spectator model and global extraction from KM 15 [48] and KM
10a [49].

CFF xBj −t ðGeV2Þ Q2 ðGeV2Þ Re H Re E Re eH Re eE Im H Im E Im eH Im eE
VA 0.34 0.17 1.82 −0.897 −0.541 0.244 2.207 4.842 1.806 1.131 5.383
VA 0.37 0.26 4.55 −0.884 −0.424 0.312 2.900 3.702 1.298 0.911 3.915
KM15 0.34 0.17 1.82 −2.254 2.212 1.399 141.362 3.506 � � � 1.565 � � �
KM15 0.37 0.26 4.55 −2.143 1.990 1.098 87.385 2.793 � � � 1.371 � � �
KM10a 0.34 0.17 1.82 −1.513 1.583 � � � 40.863 3.783 � � � � � � � � �
KM10a 0.37 0.26 4.55 −1.574 1.518 � � � 22.146 3.147 � � � � � � � � �
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FIG. 5. Comparison of the interference plus DVCS contributions to the cross section, σIUU þ σDVCSUU , calculated using the frameworks
from the VA and BKM groups, respectively. Left panels: same notation and kinematic bins as in Fig. 2. Right panels: comparison
between the formalism of Ref. [9], VA’19, the same formulation including the higher order gauge fixing coefficients given in
Appendix C, VA’21, and BKM’10.
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appear smaller in value owing to the fact that the
cross section is dominated by the BH contribution
which is the same in both the VA and BKM
formulations. The differences will, however, af-
fect the extraction of the CFFs.

(iv) To better describe the size of the difference
between the two formalisms, we compare the σIUU þ
σUUDVCS terms in Fig. 5. One can see clear discrep-
ancies between the two frameworks that do not seem
to decrease with increasing electron energy. Notice
that the VA formalism has different features of the ϕ
modulations characterizing the cross section at
central values of ϕ.

This feature shows up clearly in the lhs panels.
On the rhs, the effect of the extra terms originating
from gauge invariance preserving coefficients is

displayed. The impact of these terms tends to disappear
with larger Q2. It should be stressed that none of the
curves shown in the figure correspond to a fit of the
DVCS data in that the values of the CFFs are theoretical
predictions.

(i) The t dependence of the DVCS contribution, σDVCSUU ,
is presented in Fig. 6, for the kinematic bin,
ϵ1 ¼ 5.75 GeV, Q2 ¼ 1.8 GeV2, xBj ¼ 0.34 (other
kinematics display a similar trend). One can see that
for this term the improved calculation of Ref. [16]
brings the VA and BKM evaluations closer.

(ii) To interpret the origin of the BKM-VA discrep-
ancies, in Figs. 7 and 8 we juxtapose calcula-
tions using the VA formalism (left panels) to the
BKM formalism (right panels). Figure 7 shows
the same quantity, σDVCSUU þ σIUU, as in Fig. 5 dis-
playing the contributions to the latter from the three
terms, AI

UUðF1Hþ τF2EÞ, BI
UU ∝ GMðHþ E), and

CI
UU ∝ GM

eH (Eq. (18). From the figure, one can see
that the term proportional toAI

UU dominates the cross
section. What is striking is the different weights that
the AI

UU, B
I
UU, and CI

UU terms carry, respectively,
in the VA and BKM frameworks. The differences
with the VA formalism are particularly striking for
the axial term,CI

UU, which is both smaller in size and
has a complex ϕmodulations for the VA case. These
differences persist in the kinematic range of Jeffer-
son Lab @ 12 GeV Ref. [42] (not shown in the
figure). While the AI

UU term dominates the VA cross
section, the contribution from CI

UU is important
in the BKM case, especially with increasing
energy. The uncertainty bands in the figure represent
the theoretical error evaluated using the model
in Ref. [45].

(iii) In Fig. 9, we compare in detail the coefficients,
AI
UU, BI

UU, and CI
UU for the BKM and VA for-

mulations. In order to understand whether the
discrepancies are due to terms proportional to
M2=Q2, t=Q2, we studied the behavior of the

FIG. 6. Comparison of the unpolarized cross section, σDVCSUU ,
Eq. (16), obtained in the VA and BKM frameworks, respectively.
σDVCSUU is plotted vs −t using the CFFs from the Reggeized
diquark model. The error band represents a theoretical error from
the Reggeized diquark model fit.
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FIG. 7. BH-DVCS interference contribution to the cross section σIUU , Eq. (18) in the VA (left) and BKM (right) formalism. The initial
electron energy is ϵ1 ¼ 5.75 GeV from Ref. [43] (top panels), ϵ1 ¼ 10.5 GeV Ref. [42] (middle panels), and for a projected value of a
fixed target experiment at ϵ1 ¼ 24 GeV (bottom panels). The curves correspond to the calculation at twist two using the Reggeized
diquark model [45] for the electric current which appears in the cross section multiplied by AUU, the magnetic term with coefficient BUU ,
and the axial term, CUU.
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coefficients vs t and Q2. The results shown in Fig. 9
represent the percentage deviations of the BKM’01
and BKM’10 coefficients from the VA ones, AUU
(top), BUU (middle), and CUU (bottom), evaluated at
ϕ ¼ 0 (left panel) and ϕ ¼ 180 degrees (right
panel). On the lhs, we plot the percentage deviations
as a function of −t, at Q2 ¼ 1.8 GeV2; on the rhs,
they are plotted vs Q2 at −t ¼ 0.17 GeV2. Notice
that the differences among the approaches tend to
subside at small t and in the large Q2 limit. Our
findings substantiate the hypothesis that the treat-
ment of t-dependent and target mass corrections is
important, although no systematic effect can be
singled out.

(iv) We also evaluated the impact of the coefficients
of the twist-three contributions These are pre-
sented in Fig. 10. Our estimate shows that twist-
three terms are small, of the same size of the
BI
UU, B

I
UU, C

I
UU terms (see Figs. 7 and 8).

(v) Finally, in Figs. 11 and 12, we present our results
for the polarized beam cross section, σLU,
Eq. (14). In Fig. 11, we show the comparison
with BKM’01 and BKM’10. Notice that with the
VA formalism one can see that the twist-two
CFFs do not describe quantitatively the cross
section at Q2 ¼ 1.8 GeV2, while the agreement
improves increasing Q2 to 4.5 GeV2. Figure 12
displays the different contributions from the AI

LU,
BI
LU, and CI

LU terms, Eq. (19). Notice, in this
case, the smallness of the axial contribu-
tion, ∝ GMℑmeH.

A. GPD Model

To compare the VA and BKM cross section frame-
works, we used the parametrization from Refs. [33,45,46]
which is based on the Reggeized diquark model. In
the DGLAP region, x > ξ, the parametric form for
Fq ¼ Hq; Eq; eHq; eEq, at the initial scale Q2

o ≈ 0.1 GeV2,
reads

FIG. 8. Comparison of the kinematic coefficients, AUU (top),
BUU (middle), and CUU (bottom) at the kinematic point
Q2 ¼ 1.82 GeV2, xBj ¼ 0.34, t ¼ −0.17 GeV2, ϵ1 ¼ 5.75 GeV.
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FIG. 9. Coefficients AI
UU (top panels), BI

UU (middle panels), and CI
UU (bottom panels). On the lhs, the coefficients are compared to the

formulation from Ref. [15] (BKM’01) and Ref. [16] (BKM’10), plotted vs −t at two different values of ϕ for the kinematic setting:
ϵ1 ¼ 5.7 GeV, xBj ¼ 0.34, Q2 ¼ 1.8 GeV2. On the rhs, we show the percentage deviations between the BKM’01 and BKM’10

calculations and the formalism presented in this paper plotted vs Q2, for ϵ1 ¼ 10.591 GeV, xBj ¼ 0.34, −t ¼ 0.17 GeV2.
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Fqðx; ξ; tÞ ¼ N qx½αqþα0qð1−xÞpq t�Fdiqðx; ξ; tÞ; q ¼ u; d;

ð34Þ

where Fdiq is obtained from a diquark calculation with mass
parameters, mq (quark mass), MΛ (dipole cut-off mass),
Mq

X (spectator diquark mass), and ∝ x½αqþα0qð1−xÞpq t�

accounts for the Regge behavior at low x. In the
Efremov-Radyushkin-Brodsky-Lepage (ERBL) region,
−ξ < x < ξ, we use a simple parametric form constrained
by parity conservation and charge conjugation. The param-
eters for the twist-two GPDs are constrained from exper-
imental data on the nucleon elastic form factors and
PDFs, using

(i) the GPD normalization conditions,Z
1

−1
Hqðx; ξ; t;Q2Þdx ¼ Fq

1ðtÞ;Z
1

−1
Eqðx; ξ; t;Q2Þdx ¼ Fq

2ðtÞ;Z
1

−1
eHqðx; ξ; t;Q2Þdx ¼ Gq

AðtÞ;Z
1

−1
eEqðx; ξ; t;Q2Þdx ¼ Gq

PðtÞ; ð35Þ

where we used the flavor separated data on the
elastic nucleon form factors, Fq

1 and F
q
2 [50], and the

FIG. 10. Ratio of the kinematic coefficient of the twist-three
term, Að3ÞI

UU , in Eq. (25), over the twist-two coefficient BUU in
Eq. (18), plotted vs ϕ for ϵ1 ¼ 5.75 GeV, Q2 ¼ 1.820 GeV2,
xBj ¼ 0.34 and t ¼ −0.17 GeV2. For comparison, we also plot
the ratio of the kinematically subdominant twist-two coefficient,
CUU over BUU.

FIG. 11. Total LU cross section with VA theory CFFs at
kinematic bins: Q2¼1.82GeV2, xBj ¼ 0.34, t ¼ −0.17 GeV2,
ϵ1¼5.75GeV (top);Q2¼4.55GeV2, xBj¼0.37, t¼−0.26GeV2,
ϵ1 ¼ 10.591 GeV (middle); Q2 ¼ 4.55 GeV2, xBj ¼ 0.37,
t ¼ −0.26 GeV2, ϵ1 ¼ 24 GeV (bottom).
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nucleon axial [51] and pseudoscalar [52] form factor
parametrizations,

(ii) the forward limit conditions,

Hqðx; 0; 0;Q2Þ ¼ qðx;Q2Þ; eHqðx; 0; 0;Q2Þ
¼ Δqðx;Q2Þ; ð36Þ

with the unpolarized PDF, qðxÞ, and the helicity
distribution, ΔqðxÞ, being evaluated using current
nucleon PDFs parametrizations (details are in
Refs. [53,54]). To compare with data, the GPDs
are perturbatively evolved at leading order to the
scale, of the data, Q2 [4,5,32,44].

In Table II, we present the values of the CFFs, H, E, eH,eE, calculated at xBj ¼ 0.34, 0.37, −t ¼ 0.17, 0.26 GeV2,
and Q2 ¼ 1.8, 4.5 GeV2, compared with the values from
the analyses in Refs. [48,49]. The imaginary and real
components ofH and E from the VA model are also shown
in Fig. 13 in a similar kinematic range. The uncertainty
bands in the figure represent the theoretical error of the
parametrization [45].
In Fig. 14, we show the potential impact of the new

formalism on extracting the values of the CFFs from
experiment. On the rhs, we show σIUU þ σDVCSUU using
the CFFs extracted from the fit in Ref. [49] using the
BKM formalism. On the lhs, we show the same quantity
evaluated using the same CFFs from Ref. [49], but with
the VA formalism. The fact that the data on the lhs
can no longer be fitted quantifies once more the
discrepancies between the two frameworks. Notice, in
particular, that the value of the KM15 ℜeeE contributing

FIG. 12. Total LU cross section with VA theory CFFs at the
same kinematic bins as Fig. 11. The different contributions from
the ALU , BLU , and CLU terms are shown.

FIG. 13. VA Compton form factors H and E calculated in the
Reggeized diquark model, Eq. (34).
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FIG. 14. Sum of contributions σIUU þ σDVCSUU using CFF values from Kumericki et al. [49] in two different formalisms for the cross
section: VA formalism (left) and BKM10 formalism (right).
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to σDVCSUU makes this term three times larger than our
value. (All values of the form factors used in the plots
are displayed in Table II.) Figure 15 shows a similar
trend for σLU.

IV. CONCLUSIONS AND OUTLOOK

In order to extract information on the QCD matrix
elements of deeply virtual exclusive electron scattering
processes, one needs to first understand the detailed
structure of the cross section. In deeply virtual exclusive
photoproduction, in particular, tracking analytically the
dependence in the highQ2 limit on the invariants xBj and t,
as well as on the angle ϕ between the lepton and hadron
planes, has constituted a challenge which has been ham-
pering, so far, a clean extraction of the various contributions
to the cross section.
In our study of unpolarized scattering, differently from

previous approaches, we argue that by organizing the cross
section for the ep → e0p0γ scattering process according to
its electromagnetic structure allows us to clearly separate
the contributions of the various twist-two CFFs as well as
the twist-three components.
Furthermore the cross section is described in terms of

manageable and streamlined structures for the BH and
DVCS contributions up to twist three. In particular, the
DVCS-BH interference term is described by

(i) an electric contribution, ðF1 − τF2ÞðH − τEÞ,
(ii) a magnetic contribution, ðF1 þ F2ÞðHþ EÞ con-

taining the combination of GPDs necessary to
extract angular momentum,

(iii) an axial contribution, ðF1 þ F2ÞeH.
The latter is reminiscent of the GMGA contribution in
elastic scattering, but it is now allowed without violating
parity conservation because of the extra degree of freedom
provided by the outgoing photon with momentum q0 ≠ q.
The kinematic coefficients are lengthy but straightfor-

ward to calculate functions of ϕ evaluated to all orders in
1=Q. In addition to a kinematic ϕ dependence, we explain
how the virtual photon phase ϕ dependence originates in a
clearly distinguishable way. This distinction is important to
for disentangling terms of different twist both in DVCS and
in related processes including, e.g., timelike Compton
scattering.
The reorganization of the cross section also uncovers

substantial discrepancies with the harmonics decomposi-
tion of BKM.We find several discrepancies in both the pure
DVCS and DVCS-BH interference terms, while the BH
contribution turns out to be numerically equivalent. These
discrepancies are important and can affect considerably the

FIG. 15. Total LU cross section with Kumericki CFFs at kine-
matic bin. Left: Q2¼1.82GeV2, xBj¼0.34, t¼−0.17GeV2,
ϵ ¼ 5.75 GeV. Right: Q2 ¼ 4.55 GeV2, xBj ¼ 0.37, t ¼
−0.26 GeV2, ϵ ¼ 10.591 GeV. Our prediction for a 24 GeV
beam energy.
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extraction of CFFs from data, and consequently, any
conclusion on the behavior of angular momentum, pres-
sure, or shear forces inside the proton. We tracked the
differences between the BKM and VA formalism numeri-
cally, as a function of the various kinematic variables
involved. We conclude that while the differences tend to be
reduced at highQ2 for some of the observables, this is not a
general rule.
What is the inherent reason behind such discrepancies?

Our results might be compared, in principle, with the
studies in Refs. [23–25] which result in both t-dependent
and target mass corrections, albeit using the harmonics
decomposition. A common point of view is that the choice
of the leading twist decomposition of the DVCS hadronic
tensor is not unique. The consequences of this ambiguity
results in a different structure of power corrections.
Future work in this direction, including numerical

evaluations of twist-three three CFFs, as well as a straight-
forward extension of our framework to timelike Compton
scattering, will help us determine unambiguously the
internal dynamics and mechanical properties of the proton.
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APPENDIX A: CROSS SECTION PHASE
SPACE FACTORS

The cross section for BKM and in this paper (VA) are
written in terms of different kinematic variables as

ðVAÞ → dσ
dxdQ2dtdϕ

¼ ΓVAjTj2; ðA1Þ

ðBKMÞ → dσ
dxdydtdϕ

¼ ΓBKMjTj2; ðA2Þ

where

ΓVA ¼ 1

ðs −M2Þ2x ; ΓBKM ¼ xy
Q2

¼ 1

s −M2
;

ΓVA

ΓBKM
¼ Q2

ðs −M2Þ2x2y ¼ y
Q2

:

APPENDIX B: KINEMATIC VARIABLES IN
FIXED TARGET AND COLLIDER FRAMES

To describe the reaction

kþ p → k0 þ p0 þ q0;

one defines the lepton plane through the four-momenta
k and k0, with q ¼ k − k0, and the initial proton four-
momenta, p; the final photon momentum, q0, and the final
proton momentum, p0 define the hadron scattering plane.
The cross section, Eq. (1), depends on the variables ko

(initial electron energy), Q2, xBj ¼ Q2=2Mν), t, and ϕ.

1. Laboratory frame

In the lab, or proton rest frame, the initial electron is
aligned with the z axis, and the final electron is scattered in
the x--z plane with components

k≡ ðko; 0; 0; k3 ¼ −jk⃗j ≈ −koÞ;
p≡ ðM; 0; 0; 0Þ;

k0 ≡
�
k0o ¼ ko −

Q2

2MxBj
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02o − k023

q
; 0;

−Q2 þ 2k0oko
2k3

�
;

q ¼ k − k0 ≡
�
ν;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02o − k023

q
; 0;−ν

�
1þ γ2

2y

��
; ðB1Þ

where, disregarding the electron mass, ko ¼ jk⃗j ¼ ϵ1. The
cross section calculations are done with q aligned along the
z axis, i.e., rotating from the lab frame by the angle

α ¼ arctanðq1=q3Þ

in the x--z plane. The rotated four vectors in this frame are
denoted by, kR, k0R, qR.
The outgoing photon components are derived from the

relations

p0
o þ q0o ¼ M þ ν;

p0R
3 þ q0R3 ¼ qR3 ;

and using the definitions

t ¼ ðp − p0Þ2 ¼ 2M2 − 2ðpp0Þ;
t ¼ ðq0 − qÞ2 ¼ −Q2 − 2ðqq0Þ
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one obtains

q0R ≡ ðq0o; q0o sin θ cosϕ; q0o sin θ sinϕ; q0R3 ¼ q0o cos θÞ;

where

q0o ¼ νþ t
2M

; q0R3 ¼ −
tþQ2 þ 2qoq0o

2jq⃗Rj ;

θ ¼ arccosðq0R3 =q0oÞ:
From these vectors, one defines Δ ¼ q − q0 and p0 ¼
pþ Δ.

2. Collider frame

In the collider frame, with the initial proton moving
along the positive z axis, one has

k≡ ðko; 0; 0; k3 ¼ −jk⃗j ≈ −koÞ;

p≡ ðpo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3 þM2

q
; 0; 0; p3Þ;

k0 ≡
�
k0o;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02o − k023

q
; 0;

−Q2 þ 2k0oko
2k3

�
;

q ¼ k − k0;

with

k0o ¼ ko −

"
2eν − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieν2 − 4

�
1 −

�
p3

po

�
2
��eν2 − p3

po
Q2

�s #

×

	
2

�
1 −

�
p3

po

�

−1

≈ ko −
eν
2
þ poxBj;

eν ¼ Q2

2poxBj
:

The outgoing photon four-momenta components are
derived by first boosting to the c.m. frame with

β ¼ −
p3

po
; γ ¼ po

M
;

so that the components of the boosted virtual photon qB are

qBo ¼ γðqo þ βq3Þ;
qB1;2 ¼ q1;2;

qB3 ¼ γðq3 þ βqoÞ:

One now rotates qB to obtain a vector qR aligned with the z
axis using

α ¼ arctanðqB1 =qB3 Þ:

The outgoing photon has components

q0R ≡ ðq0o; q0o sin θ cosϕ; q0o sin θ sinϕ; q0R3 Þ;

where

q0o ¼ qBo þ t
2M

; q0R3 ¼ −
tþQ2 þ 2qBoq0o

2jq⃗Bj ;

θ ¼ arccosðq0R3 =q0oÞ:

Δ and p0 are reconstructed from these vectors.

APPENDIX C: KINEMATIC COEFFICIENTS FOR
BH and BH-DVCS INTERFERENCE TERMS

For convenience, we write the expressions of the
kinematic coefficients relevant for this paper. All coeffi-
cients were calculated in Ref. [9] in a covariant form using
four-vector products with notation, ðabÞ ¼ aobo − a⃗ · b⃗.
The relevant four-vector components for both the labora-
tory frame and the collider frame are given in Appendix B.
The BH coefficients in Eq. (15) read

ABH ¼ 8M2

tðkq0Þðk0q0Þ ½4τððkPÞ
2 þ ðk0PÞ2Þ − ðτ þ 1ÞððkΔÞ2 þ ðk0ΔÞ2Þ�; ðC1Þ

BBH ¼ 16M2

tðkq0Þðk0q0Þ ½ðkΔÞ
2 þ ðk0ΔÞ2�; ðC2Þ

where P ¼ ðpþ p0Þ=2, τ ¼ −t=4M2.
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The BH-DVCS interference cross section coefficients in Eq. (18) read

AI
UU ¼ 2ðPΣcosϕ

S Þ
¼ −8Dþ½ðk0PÞð2k2T − kT · q0T − 2ðkq0ÞÞ þ ðkPÞð2k0T · kT þ k0T · q0T þ 2ðk0q0ÞÞ − ðkT · PTÞð2ðkk0Þ þ ðk0q0ÞÞ
þ ðk0T · PTÞðkq0Þ� cosϕ − 8D−½ðPq0Þð2kT · k0T þ 2ðkk0ÞÞ − ðkT · PTÞðk0q0Þ − ðk0T · PTÞðkq0Þ
þ ðPT · q0TÞðkk0Þ� cosϕ; ðC3Þ

BI
UU ¼ ξðΔΣcosϕ

S Þ
¼ −4ξDþ½ðk0ΔÞð2k2T − kT · q0T − 2ðkq0ÞÞ þ ðkΔÞð2k0T · kT þ k0T · q0T þ 2ðk0q0ÞÞ − ðkT · ΔTÞð2ðkk0Þ þ ðk0q0ÞÞ
þ ðk0T · ΔTÞðkq0Þ� cosϕ − 4ξD−½ðΔq0Þð2kT · k0T þ 2ðkk0ÞÞ − ðkT · ΔTÞðk0q0Þ − ðk0T · ΔTÞðkq0Þ
þ ðq0T · ΔTÞðkk0Þ� cosϕ; ðC4Þ

CI
UU ¼ 1

2Pþ ϵμσνþ
�
PμΔν − PνΔμ þ

1

2
ΔμΔν

�
gσρðΣcosϕ

A Þρ

¼ 4
Dþ
Pþ ½−ðkT · PTÞðq0T · ΔTÞk0þ þ ðkT · ΔTÞðPT · q0TÞk0þ þ ðk0T · PTÞðq0T · ΔTÞkþ

− ðk0T · ΔTÞðPT · q0TÞkþ − 2ðkk0Þðk0T · PTÞΔþ − ðkq0Þðk0T · PTÞΔþ

þ ðk0q0ÞðkT · PTÞΔþ þ 2ðkk0Þðk0T · ΔTÞPþ þ ðkq0Þðk0T · ΔTÞPþ − ðk0q0ÞðkT · ΔTÞPþ� cosϕ

þ 4
D−

Pþ ½ðk0q0ÞðkT · PTÞΔþ − ðkk0Þðq0T · PTÞΔþ þ ðkq0Þðk0T · PTÞΔþ

− ðk0q0ÞðkT · ΔTÞPþ þ ðkk0Þðq0T · ΔTÞPþ − ðkq0Þðk0T · ΔTÞPþ� cosϕ; ðC5Þ

where ðΣcosϕ
S Þρ and ðΣcosϕ

A Þρ are linear combinations of the kinematic four vectors, kρ, k0ρ, q0ρ, describing the BH-DVCS
interference lepton tensor [9],

ðΣcosϕ
S Þρ ¼ fk0ρ½ð2kμkν − q0μkνÞgμνT þ 2ðkq0Þ�2Dþ þ kρ½ð2k0μkν þ q0μk0νÞgμνT − 2ðk0q0Þ�2Dþ

þ q0ρ½2kμk0νgμνT − 2ðkk0Þ�D− þ gρμT ½ð−2ðkk0Þ þ ðk0q0ÞÞkμ − ðkq0Þk0μ�2Dþ
þ gρμT ½ðkk0Þq0μ − ðk0q0Þkμ − ðkq0Þk0μ�2D−g cosϕ ðC6Þ

and

ðΣcosϕ
A Þρ ¼ fk0ρ½ð2kμkν − q0μkνÞϵμνT þ 2ðkq0Þ�2Dþ þ kρ½ð2k0μkν þ q0μk0νÞϵμνT − 2ðk0q0Þ�2Dþ

þ q0ρ½2kμk0νϵμνT − 2ðkk0Þ�D− þ ϵρμT ½ð−2ðkk0Þ þ ðk0q0ÞÞkμ − ðkq0Þk0μ�2Dþ
þ ϵρμT ½ðkk0Þq0μ − ðk0q0Þkμ − ðkq0Þk0μ�2D−g cosϕ: ðC7Þ

Dþ and D− are defined as

Dþ ¼ ðkq0Þ − ðkq0Þ
2ðk0q0Þðkq0Þ ; D− ¼ −

ðkq0Þ þ ðkq0Þ
2ðk0q0Þðkq0Þ : ðC8Þ

We also calculate leading terms that restore electromagnetic gauge invariance. We introduce these expressions below:

AI 0
UU ¼ AI

UU − 8D−½ðPk0ÞðkT · q0TÞ þ ðPkÞðk0T · q0TÞ − ðkk0ÞðPT · q0TÞ� cosϕ: ðC9Þ
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BI 0
UU ¼ BI

UU − 4ξD−½ðk0ΔÞðkT · q0TÞ þ ðkΔÞðk0T · q0TÞ − ðkk0Þðq0T · ΔTÞ� cosϕ
− 2

t
Pþ Dþ½k0þð2ðkT · kTÞ − ðkT · q0TÞ − 2ðkq0ÞÞ þ kþð2ðk0T · k0TÞ þ ðk0T · q0TÞ þ 2ðk0q0ÞÞ� cosϕ

− 2
t
Pþ D−½q0þð2ðkT · k0TÞ þ 2ðkk0ÞÞ þ k0þðkT · q0TÞ þ kþðk0T · q0TÞ� cosϕ: ðC10Þ

CI 0
UU ¼ CI

UU þ 4
D−

Pþ ½−2ðPT · q0TÞðkT · k0TÞΔþ þ ðPT · q0TÞðkT · ΔTÞk0þ þ ðPT · q0TÞðk0T · ΔTÞkþ

þ 2ðk0T · q0TÞðkT · PTÞΔþ − 2ðk0T · q0TÞðkT · ΔTÞPþ − ðq0T · ΔTÞðkT · PTÞk0þ − ðq0T · ΔTÞðPT · k0TÞkþ
þ 2ðq0T · ΔTÞðkT · k0TÞPþ − ðkk0ÞðPT · q0TÞΔþ þ ðkk0Þðq0T · ΔTÞPþ� cosϕ: ðC11Þ

The coefficients AI
UU, B

I
UU, and CI

UU can be reevalauted using the expressions in BKM [15],

AI
UU ¼ 1

xBjy3tP1ðϕÞP2ðϕÞ
	
−8

ð2 − yÞ3
1 − y

K2 − 8ð2 − yÞ t
Q2

ð1 − yÞð2 − xBjÞ − 8Kð2 − 2yþ y2Þ cosϕ


; ðC12Þ

BI
UU ¼ ξ2

xBjy3tP1ðϕÞP2ϕ

	
8ð2 − yÞ t

Q2
ð1 − yÞð2 − xBjÞ



; ðC13Þ

CI
UU ¼ ξ

xBjy3tP1ðϕÞP2ðϕÞ
	
8
ð2 − yÞ3
ð1 − yÞ K

2 þ 8Kð2 − yþ y2Þ cosϕ


; ðC14Þ

where

P1ðϕÞ ¼ −
1

yð1þ γ2Þ fJ þ 2K cosϕg; P2ðϕÞ ¼ 1þ t
Q2

þ 1

yð1þ γ2Þ fJ þ 2K cosϕg; ðC15Þ

K2 ¼ −
t
Q2

ð1 − xBjÞ
�
1 − y −

y2γ2

4

��
1 −

t0
t

�� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
þ 4xBjð1 − xBjÞ þ γ2

4ð1 − xBjÞ
t − t0
Q2

�
; ðC16Þ

J ¼
�
1 − y −

yγ2

2

��
1þ t

Q2

�
− ð1 − xBjÞð2 − yÞ t

Q2
; ðC17Þ

with y ¼ Q2=ðxBjðs −M2ÞÞ, γ2 ¼ 4M2x2Bj=Q
2, to ¼ −2ξM2=ð1 − ξ2Þ, ξ ¼ xBj=ð2 − xBjÞ.

The updated “BKM’10” expressions accounting for 1=Q2 power corrections are given in the following form [16]:

AI
UU ¼ 1

xBjy3tP1ðϕÞP2ðϕÞ
�X3

n¼0

Cunp
þþðnÞ cos ðnϕÞ

�
; ðC18Þ

BI
UU ¼ ξ

xBjy3tP1ðϕÞP2ðϕÞ
�X3

n¼0

Cunp;V
þþ ðnÞ cos ðnϕÞ

�
; ðC19Þ

CI
UU ¼ −ξ

xBjy3tP1ðϕÞP2ðϕÞ
�X3

n¼0

ðCunp;A
þþ0 ðnÞ þ Cunp

þþðnÞÞ cos ðnϕÞ
�
; ðC20Þ

where the expressions for Cunp
þþðnÞ, Cunp;V

þþ ðnÞ, and Cunp;A
þþ0 ðnÞ can be found in Ref. [16].

The coefficients for the longitudinally polarized electron beam, Eq. (19), are the same as for the unpolarized case:
AI
LU ¼ AI

UU, B
I
LU ¼ BI

UU, and CI
LU ¼ CI

UU.
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