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We study the weak mixing of photons and relativistic axionlike particles (axions) in plasmas with
background magnetic fields, B. We show that, to leading order in the axion-photon coupling, the
conversion probability, Pγ→a, is given by the one-dimensional power spectrum of the magnetic field
components perpendicular to the particle trajectory. Equivalently, we express Pγ→a as the Fourier transform
of the magnetic field autocorrelation function, and establish a dictionary between properties of the real-
space magnetic field and the energy-dependent conversion probability. For axions more massive than the
plasma frequency, (ma > ωpl), we use this formalism to analytically solve the problem of perturbative
axion-photon mixing in a general magnetic field. In the general case where ωpl=ma varies arbitrarily along
the trajectory, we show that a naive application of the standard formalism for “resonant” conversion can
give highly inaccurate results, and that a careful calculation generically gives nonresonant contributions at
least as large as the resonant contribution. Furthermore, we demonstrate how techniques based on the Fast
Fourier Transform provide a new, highly efficient numerical method for calculating axion-photon mixing.
We briefly discuss magnetic field modeling in galaxy clusters in the light of our results and argue, in
particular, that a recently proposed “regular” model used for studying axion-photon mixing (specifically
applied to the Perseus cluster) is inconsistent with observations. Our formalism suggests new methods to
search for imprints of axions, and will be important for spectrographs with percent level sensitivity, which
includes existing X-ray observations by Chandra as well as the upcoming Athena mission.
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I. INTRODUCTION

Determining the elementary particle content beyond the
established Standard Model is a central goal of contem-
porary high-energy physics. The QCD axion (cf. [1]) and
axionlike particles (axions) comprise a well-motivated class
of hypothetical particles that frequently appear in exten-
sions of the Standard Model, including effective theories
derived from string theory [2]. Both the QCD axion and
axions can be understood as pseudo-Nambu-Goldstone
bosons of broken, approximate symmetries, and the
QCD axion provides the leading candidate solution to
the strong CP-problem. In this paper we will simply use
“axions” to refer to the QCD axion and axionlike particles,
as our results apply equally to these particles.

Axions can naturally be very light, with feeble couplings
to matter and radiation, and provide an increasingly popular
candidate for explaining the nature of dark matter [3–5].
Characteristic of axions is their coupling to electromag-
netism through the Lagrangian term

Lint ¼
1

4
gaγaFμνF̃μν;

where gaγ denotes the axion-photon coupling and the axion,
a, is assumed to have a mass ma. This term induces a
mixing between the photon and the axion in backgrounds
with nonvanishing electromagnetic fields, opening the
possibility to interconvert axions and photons. Such inter-
conversion underpins the majority of the experimental and
observational efforts to search for axions (cf. [6–10]).
Particularly powerful are searches for axion-induced dis-
tortions in the spectra of luminous X-ray and gamma-ray
sources located in galaxy clusters [11–36]. State-of-the-
art analyses using high-quality data from the Chandra
X-ray Observatory have bounded axion-induced spectral
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distortions from the Active Galactic Nucleus (AGN) at the
center of the Perseus cluster to the few percent level,
leading to some of the strongest limits on the axion-photon
coupling to date (gaγ ≤ 7.9 × 10−13 GeV−1 for ma <
10−12 eV [19]).
The observational prospects are very good for even more

sensitive searches for axions using existing and planned
X-ray and gamma-ray telescopes, such as Athena [37] and
the Cerenkov Telescope Array [38]. However, such studies
will be limited by modeling uncertainties affecting the
axion-photon mixing. The conversion probability is in
general a complicated function of the mode energy, the
axion parameters ma and gaγ , as well as the plasma density
and magnetic field along the particle trajectory. The robust-
ness of the predictions to astrophysical modeling uncer-
tainties has been investigated by several groups over the
past decade [22,31,39–41], typically finding that limits on
gaγ can change by a factor of a few depending on the
magnetic field model employed. A recent, unusual con-
tribution to these studies is Ref. [41], which investigated the
robustness of certain gamma-ray constraints assuming—as
a limiting but ostensibly observationally consistent case—
that the cluster magnetic field in Perseus is highly regular,
finding much weaker limits than those of [24].1 Common to
all these studies is the reliance on very simple magnetic
field models to generate physical intuition (typically, a
constant magnetic field), and numerical simulations to
examine more involved models. This has left room for
some confusion as to what properties of the magnetic field
really drive the appearance of features in the conversion
probability, and how robust the predictions really are.
In this paper, we revisit the theory of axion-photon

conversion, and develop a powerful new method calculat-
ing and interpreting axion-photon mixing. Our results are
equally valid for applications in the laboratory and space,
but our main focus is on astrophysical applications involv-
ing conversion of high-energy photons into relativistic
axions. Our approach is inspired by—and will be particu-
larly useful for—the emerging subfield of precision X-ray
searches for axions [14–19,36], which presently constrain
the mixing probability to be no larger than a few percent.
For such weak mixing, the system is in the perturbative
regime, and the goal of this paper is to demonstrate the
significant conceptual, calculational and methodological
advances that can be gained using perturbation theory.
It is well-known that the classical, linearized axion-

photon system can be written as a Schrödinger-like
equation, with time replaced by the spatial coordinate,
say z, along the direction of propagation [42]. In quantum
mechanics, the asymptotic, perturbative transition ampli-
tude can be expressed as a Fourier transform of the
interaction Hamiltonian. In this paper, we show that a

similar, but more subtle, statement also holds for classical
axion-photon mixing.
In the simplest case, which is directly relevant for

gamma-ray searches, the mass of the axion is always larger
than the plasma frequency. We find that, to leading order
(LO) in gaγ , the axion-photon transition amplitude involv-
ing such massive axions is given by a sum of Fourier cosine
and sine transforms of the (relevant component of the)
magnetic field, B. The conversion probability is then given
by the power spectrum of B. We derive a version of the
Wiener-Khintchine theorem that shows that the conversion
probability is equal to the Fourier cosine transform of the
magnetic autocorrelation function. Strikingly, this means
that questions about the spectrum of oscillations induced by
axion-photon conversion map directly onto questions about
the real-space properties of the magnetic autocorrelation.
This constructively answers the questions of what proper-
ties of the magnetic field are reflected in the conversion
probability. We demonstrate how to apply this formalism in
a series of examples, ranging from the simple to the
general. In particular, we analytically calculate the con-
version probability and the magnetic autocorrelation func-
tion for a magnetic field expressed as a Fourier series. Since
any physically relevant magnetic field can be expressed in
such a way, this explicitly solves the problem of weak
axion-photon mixing, for sufficiently massive axions.
Somewhat more subtle is the case of massless axions. In

this case, the transition amplitude is no longer given by a
Fourier transform obtained by integrating over the spatial
coordinate z, as in the massive case. However, the ampli-
tude can be written as a Fourier transform obtained by
integrating over the variable

φðzÞ ¼ 1

2

Z
z

0

dz0ω2
plðz0Þ:

Again we find that the transition amplitude is given by
cosine and sine transforms, but this time of the function
G ¼ B=ω2

pl. The conversion probability is given by the
power spectrum of G, or equivalently by our version of
the Wiener-Khintchine theorem, as the cosine transform
of the autocorrelation function of G (in φ-space).
In general, there may be some regions where ma < ωpl,

and others wherema > ωpl. In this case, it is not possible to
express the transition amplitude as a single Fourier trans-
form. However, we find that the transition amplitude
reduces to a sum of “nonresonant” contributions that are
given by Fourier transforms of G (one for each region
where ma − ωpl has a definite sign), and a sum of
“resonant” contributions (from points where ma ¼ ωpl).
An often used method to analytically evaluate resonant

axion-photon mixing is the stationary phase approximation.
We show that, in the relativistic limit, the resonant
amplitude calculated from the stationary phase approxi-
mation is enhanced by a factor of ω=ma, which is very large

1We reexamine the astrophysical viability of this model in
Sec. VII.
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for light axions emerging from X-rays or gamma rays.
However, we also show that a naive application of the
stationary phase approximation to the resonant conversion
gives a result that is highly inaccurate. We address this issue
by deriving a modified form of the stationary phase approxi-
mation that is relevant for relativistic axion-photon conver-
sion: with this new formula, we see that in careful
calculations of the amplitude, the nonresonant contributions
are generically at least as large as the resonant contributions.
Fast Fourier Transforms (FFTs), and related methods,

have revolutionized digital signal processing by providing
highly effective ways to numerically evaluate the discrete
Fourier transform. We show that with our formalism, axion-
photon conversion can be evaluated using methods based
on FFTs. This drastically reduces the computational effort
in determining the effects of axion-photon mixing, and
allows for effective marginalization or Monte Carlo over
astrophysical magnetic fields and plasma densities. See
also [43] for a discussion of FFT techniques applied to
axion searches.
Since magnetic autocorrelations determine the predic-

tions of perturbative axion-photon conversion, it is impor-
tant to reexamine what is known about astrophysical
magnetic fields in the environments most promising for
axion searches. To this end, we discuss the expected
properties of magnetic fields in galaxy clusters. We review
the arguments for turbulence in the intracluster medium
(ICM), and the classes of models used in astrophysical
axion searches. In particular, we critically examine the
recently proposed “regular model” of [41], finding it at
odds with observations.
We suggest that future studies of the magnetic field

autocorrelation function in state-of-the-art magnetohydro-
dynamic simulations of the ICM will be very useful in
improving the sensitivity of axion searches. Moreover, our
formalism could lead to new methodologies for axion
searches, e.g. by generating the relevant mixing probabil-
ities directly from an observationally inferred class of
autocorrelation functions, without ever explicitly solving
the Schrödinger equation.
This paper is organized as follows: in Sec. II we review

the classical theory of axion-photon conversion, and how it
can be understood through nonrelativistic quantum
mechanics. We analytically develop the new formalism
in Secs. III–V, for the cases of a comparatively heavy axion
(Sec. III), a very light axion (Sec. IV), and the intermediate,
general case (Sec. V). We then test relevant aspects
numerically in Sec. VI, and discuss numerical implemen-
tations using discrete, Fourier-like transforms. In Sec. VII,
we discuss what is known about magnetic autocorrelations
in the relevant astrophysical environments, and we indicate
new possible directions for the methodology of axion
searches. We conclude in Sec. VIII.
The most important new results of this paper are (in no

particular order) (i) the relation between the nonresonant
conversion probability and the magnetic autocorrelation

function given by Eqs. (30), (79), and (115); (ii) accounting
carefully for both resonant and nonresonant contributions
when ωpl ¼ ma at one or more points along the trajectory,
cf. Sec. V B; (iii) the demonstration that one can use highly
efficient FFT methods to calculate the conversion proba-
bilities, cf. Sec. VI B; (iv) the identification of new,
promising methods that are made possible by the new
formalism, and which can open up new directions for axion
searches, cf. Sec. VII C.

II. CLASSICAL AXION-PHOTON CONVERSION
USING “QUANTUM” PERTURBATION THEORY

In this section, we begin by reviewing the axion-photon
mixing in magnetic fields following [42,44]. This leads to a
Schrödinger-like equation from which the transition ampli-
tudes can be calculated order-by-order in perturbation
theory [42], in direct analogy with time-dependent pertur-
bation theory in quantum mechanics. The axion-photon
interaction is described by the following Lagrangian:

L ¼ −
1

4
FμνFμν þ

1

2
ð∂μa∂μa −m2

aa2Þ −
gaγ
4

aFμνF̃μν; ð1Þ

where a is the axion field, Aμ is the photon field, Fμν is
the electromagnetic tensor, F̃μν ¼ 1

2
ϵμνλρFλρ. We have

neglected the effects of Faraday rotations and QED
birefringence at low energy.2 This equation of motion
are the Klein-Gordon equation for the axion field, and
an extension of Maxwell’s equations. The linearized
equations around a static background magnetic field B0

are given by

ð□þm2
aÞa ¼ −gaγ _A ·B0;

ð□þ ω2
plÞA ¼ gaγ _aB0; ð2Þ

where we included the plasma frequency ωpl. Most works
on axion-photon mixing (from [42] to the more recent
X-ray and gamma-ray studies, see e.g., [46]) further
simplify this system by assuming that all background
quantities only vary along the z-direction, which is taken
to be the axion or photon propagation direction.3 We
consider a right-moving plane wave in the z-direction,

2The Faraday effect is inversely proportional to the energy, and
completely negligible at X-ray energies or higher. Moreover, at
X-ray energies, the QED birefringence contribution would in a
typical galaxy cluster environments with μG magnetic fields and
plasma frequencies of the order of ωpl ∼ 10−12 eV lead to a
fractional correction to Δγ , that we define in (8), of order 10−16.
The QED contribution scales like E2B2, and is less suppressed,
and sometimes even non-negligible, in environments with strong
magnetic fields probed at very high energies (cf. [45] for a recent
example).

3For recent discussions of extensions to anisotropic plasmas,
see [44,47].
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and write the components of the background magnetic field
respectively as Bx and By. Equations (2) now become

ðω2 þ ∂2
z −m2

aÞa ¼ iωgaγðAxBx þ AyByÞ;
ðω2 þ ∂2

z − ω2
plÞAj ¼ −iωgaγaBj j ¼ x; y: ð3Þ

In the relativistic limit, the equations of motion can be
reduced to first order by appealing to the rotating
wave approximation: ω2 þ ∂2

z ¼ ðωþ i∂zÞðω − i∂zÞ≃
2ωðω − i∂zÞ.4 After a shift of the axion field a → −ia,
the equations of motion are

ðω − i∂zÞa ¼ m2
a

2ω
a −

gaγ
2

ðAxBx þ AyByÞ;

ðω − i∂zÞAj ¼
ω2
pl

2ω
Aj −

gaγBj

2
aj ¼ x; y: ð4Þ

These classical mixing equations are now of the form of the
Schrödinger equation, with time replaced by the spatial
coordinate z [42]:

i
d
dz

ΨðzÞ ¼ ðH0 þHIÞΨðzÞ: ð5Þ

Here the axion field and the components of the vector
potential are components of the “Schrödinger-picture state
vector”

ΨðzÞ ¼

0
B@

Ax

Ay

a

1
CA; ð6Þ

where we have suppressed the dependence on the
mode energy ω. The basis vectors are assumed to be
z-independent, but the coefficients of the state vector evolve
with z. The Hamiltonian is decomposed into free and
interaction parts

H0 ¼ ωI þ

0
B@

Δγ 0 0

0 Δγ 0

0 0 Δa

1
CA HI ¼

0
B@

0 0 Δx

0 0 Δy

Δx Δy 0

1
CA;

ð7Þ

and

Δa ¼ −
m2

a

2ω
;

Δγ ¼ −
ω2
pl

2ω
;

Δj ¼
gaγBj

2
; ð8Þ

where j ¼ x, y.5 The formal solution to the Schrödinger-
like equation is

ΨðzÞ ¼ Uðz; 0ÞΨð0Þ

where

Uðz; 0Þ ¼ Pze
i
R

z

0
dz0ðH0þHIÞ; ð9Þ

and where Pz denotes the path-ordering operator. The
z-evolution operator Uðz; 0Þ is implicitly energy depen-
dent. Numerical solutions can be found by discretizing the
z-direction into a sufficiently large number of “cells” so that
the Hamiltonian is approximately constant in each cell, and
the total evolution operator U is the product of the
evolution operators for all cells, appropriately ordered.
Such a numerical approach is very common in astrophysi-
cal searches for axions, but becomes computationally
costly when the mixing occurs over large distances with
nontrivially varying magnetic fields, when the energy
resolution needs to be finely sampled, and when a large
number of possible magnetic field configurations must be
considered.
However, the structure of Eq. (5) is suggestive of

different approach: perturbation theory in direct analogy
with time-dependent perturbation theory in quantum
mechanics. This is most conveniently studied in the
interaction picture, where the equations of motion are
given by

i
d
dz

Ψint ¼ HintΨint; ð10Þ

where Hint ¼ U†
0HIU0 and Ψint ¼ U†

0Ψ with the zeroth-
order evolution operator U0 ¼ exp ð−i R z0 dz0H0Þ. The gen-
eral solution can be expressed as an expansion in the
interaction Hamiltonian,

ΨintðzÞ ¼
X∞
n¼0

ð−iÞn
Z

z

0

dz10…

×
Z

zn−1

0

dz0nHintðz10Þ…Hintðz0nÞΨintð0Þ; ð11Þ

4An alternative method to arrive at the first-order equations is
to use the WKB approximation, which is applicable also in the
nonrelativistic case [44].

5In the nonrelativistic version of these identities, the factors of
ω are replaced by the norm of the wave vector, which in general
depends on z.
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which equivalently corresponds to an expansion in the
coupling constant, gaγ. To linear order in perturbation
theory, the state in the interaction picture is given by

ΨintðzÞ ¼ Ψintð0Þ − i
Z

z

0

dz0HintΨintð0Þ: ð12Þ

In the original Schrödinger-picture basis, this corres-
ponds to

ΨðzÞ ¼
�
U0ðz;0Þ þ

Z
z

0

dz0U0ðz; z0ÞHIðz0ÞU0ðz0;0Þ
�
Ψð0Þ:

ð13Þ

The perturbative expansion can be expressed using
Feynman diagrams, where each order in HI corresponds
to an additional axion-photon mixing vertex, and where the
zeroth-order evolution operator U0 propagates the state
between the vertices.
We are interested in the transition amplitude of an initial

photon state emerging as an axion. This corresponds to the
initial condition Ψð0Þ ¼ ð1; 0; 0ÞT if the photon is linearly
x-polarized, and Ψð0Þ ¼ ð0; 1; 0ÞT if its y-polarized. With
j ¼ x, y the LO transition amplitude is then given by [42]

Aγj→a ¼ ð0; 0; 1Þ ·ΨðzÞ ¼ −i
Z

z

0

dz0Δjðz0Þei
R

z0
0

dz00ðΔa−ΔγÞ:

ð14Þ

The conversion probability is obtained by squaring this
transition amplitude: Pγj→a ¼ jAγj→aj2. This conversion
probability calculated from the (classical) Schrödinger-like
equation gives the ratio of the squared axion field to the
squared electric field, which also corresponds to the
observationally relevant flux ratio of axion and photons.
Next-to-leading-order (NLO) corrections appear at order

Oðg3aγÞ in the amplitude from the 3-vertex Feynman
diagram: “photon → axion → photon → axion”. The LO
conversion probability appear at Oðg2aγÞ, with higher-order
corrections appearing at Oðg4aγÞ. Thus, the perturbative
expansion is generically a good approximation when the
conversion probability is small, with fractional corrections
at the same order as the conversion probability (i.e., a 1%
perturbative conversion probability generically receives
corrections at the order of 0.01%, cf. Sec. VI D for a
detailed discussion).
The above equations lead to unitary time evolution, and

so neglects possible photon absorption. This is a good
approximation when the medium is optically thin over the
region at which axion-photon mixing occurs, which is the
case for many astrophysical applications of practical
relevance, cf. e.g., [16]. However, including photon absorp-
tion is straightforward and leads to a modified Schrödinger-
like equation that features a non-Hermitian Hamiltonian:

i
d
dz

ΨðzÞ ¼ ðH0 þHI − iDÞΨðzÞ;

where

DðzÞ ¼

0
B@

βðzÞ 0 0

0 βðzÞ 0

0 0 0

1
CA

encodes the damping. The real function β depends on the
absorption cross section and astrophysical parameters, such
as the free electron density. Since ½DðzÞ; H0ðz0Þ� ¼ 0, it is
straightforward to include damping as a zeroth-order
modification to the perturbative expansion: Eq. (10) in
the interaction picture still holds, but with the unitary
operatorU0 now replaced by the nonunitary transfer matrix

T0ðz2; z1Þ ¼ e
−i
R

z2
z1

dz0ðH0−iDÞ
;

so that ΨintðzÞ ¼ T−1
0 ðz; 0ÞΨð0Þ and Hint ¼ T−1

0 HIT0. This
way, photon absorption modifies the zeroth-order propa-
gator, and to linear order the Schrödinger-picture state is
given by:

ΨðzÞ ¼
�
T0ðz; 0Þ þ

Z
z

0

dz0T0ðz; z0ÞHIðz0ÞT0ðz0; 0Þ
�
Ψð0Þ:

ð15Þ

In the following, we will neglect photon absorption.
In this paper,wewill almost exclusively focusonpolarized

transition probabilities, involving a single component of the
magnetic field. However, many bright astrophysical sources
that are suitable for searches for axions are unpolarized. The
conversion probability for an unpolarized source of photons
isPγ→a ¼ 1

2
ðPγx→a þ Pγy→aÞ, and the survival fraction of the

unpolarized flux is

Pγ→γ ¼ 1 − Pγ→a ¼ 1 −
1

2
ðPγx→a þ Pγy→aÞ: ð16Þ

In the following, we will primarily consider the conversion
probability for a linearly polarized photon (with respect to a
fixed, Cartesian coordinate system), with the understanding
that the unpolarized probability can easily be obtained using
formula (16). For a discussion on polarized signals from
axion-photon conversion, see [48].
Finally, and for context, we note that solving the

Schrödinger-like equation for axion photon mixing is
equivalent to solving the von Neumann equation for the
corresponding density matrix, ρ, as is done in much of the
literature. The equation of motion of ρ is,

i
dρ
dz

¼ ½H0 þHI; ρ�;
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and the diagonal elements of ρ are interpreted as the square
of the wave functions of the two photon polarization and
the axion, respectively. The time evolution of the density
matrix is given by

ρðzÞ ¼ Uðz; 0Þρð0ÞU†ðz; 0Þ;

for the evolution operator of Eq. (9). Numerical solutions in
this formalism proceed equivalently to the Schrödinger
equation (i.e., by finding the z-evolution operator), and
there is no significant conceptual or calculational difference
between the two formalisms. In particular, photon absorp-
tion is accounted for in an identical manner in the two
formalisms, by replacing the unitary evolution operator by
a nonunitary transfer matrix, and the perturbative expansion
of U can be applies equally to the two formalisms. For this
reason, we will not discuss the density-matrix formulation
of this problem any further in this paper.

III. FOURIER TRANSFORM FORMALISM:
THE MASSIVE CASE

To leading order in the mixing, the amplitude for an
initial photon state, linearly polarized along the x-direction,
to transition into an axion is given by

Aγx→a ¼ −i
Z

z

0

dz0Δxðz0Þe−iΦðz0Þ; ð17Þ

where the phase is given by

Φðz0Þ ¼
Z

z0

0

dz00½Δγðz00Þ − Δa�; ð18Þ

with Δγ and Δa as in Eq. (8). The phase Φ may both
increase and decrease along the trajectory depending on the
relative sizes of Δγðz0Þ and Δa, cf. Fig. 1. The key property
of Φ that we use in this paper is that it can, in general, be
factorized into a generalized spatial integration variable of
Eq. (17) (say z0 in the simplest case) multiplied by an
independent, “conjugate” parameter (say 1=ω). In this
section, we focus on the simplest case when Δγ can be
neglected, and the links to Fourier analysis are most
apparent. We note that this factorization is more subtle
in the case of nonrelativistic axions, which obey a similar
Schrödinger-like equation but for which the factors of 1=ω
in (8) should be replaced by the inverse of a spatial wave
vector [44], which depends on the spatial coordinate. In this
paper, we focus on the simpler relativistic case.

A. The cosine and sine transforms for massive axions

We first consider relativistic axions with a mass larger
than the plasma frequency

ω2
pl ≪ m2

a ≪ ω2:

This is the relevant case for gamma-ray searches for axions
[41,49], and we will for brevity refer to it as the case of
“massive axions”.
In this case, we set Δγ ¼ 0 and note that Δa ¼

−m2
a=ð2ωÞ is independent of z. The transition amplitude

becomes

Aγx→a ¼ −i
Z

∞

0

dz0Δxðz0Þeiz0Δa : ð19Þ

Since we are interested in amplitudes evaluated far away
from the transition region, we have extended the integral
to infinity, assuming that Δx is only nonvanishing in a finite
region of space. This amplitude is now a half-sided Fourier
transform of Δx, with Δa being the conjugate “momen-
tum”. This suggests that we may use Fourier analysis to
analyze axion-photon mixing.
Functions defined on the real, positive line can be

expressed independently using either sines or cosines.
For sufficiently well-behaved functions that decay at
infinity,6 the relevant expansions are given by the
Fourier sine and cosine transforms:

F sðfÞ ¼ f̂sðηÞ ¼
Z

∞

0

dz sinðηzÞfðzÞ ð20Þ

F cðfÞ ¼ f̂cðηÞ ¼
Z

∞

0

dz cosðηzÞfðzÞ: ð21Þ

These transform have the convenient property of being, up
to a constant, their own inverses:

FIG. 1. A hypothetical plasma frequency along the photon/
axion trajectory. In Sec. III we discuss case I (blue) where
ma ≫ ωpl, and in Sec. IV we discuss case III (green) where
ma ≪ ωpl. Case II (red) is discussed in Sec. Vand corresponds to
the general case, which can involve stationary points of the phase
Φ, plotted in the bottom panel for the example mass of this case.

6In all cases of physical interest that we will consider, the
functions will be sufficiently well behaved for the transforms to
exist.
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fðzÞ ¼ 2

π

Z
∞

0

dηf̂cðηÞ cosðηzÞ ð22Þ

fðzÞ ¼ 2

π

Z
∞

0

dηf̂sðηÞ sinðηzÞ: ð23Þ

Moreover, the cosine and sine transforms are clearly real if
fðzÞ is real.
The transition amplitude is now straightforwardly

expressed through the cosine and sine transforms as:

iAγx→aðηÞ ¼
Z

∞

0

dz0Δxðz0Þe−iz0η ¼ F cðΔxÞ − iF sðΔxÞ

¼ gaγ
2

ðB̂cðηÞ − iB̂sðηÞÞ; ð24Þ

where we have dropped the spatial index on the magnetic
field, and where the conjugate Fourier variable is given by

η ¼ −Δa ¼ m2
a=ð2ωÞ; ð25Þ

which is positive semidefinite. So, in the massive case,
transition amplitudes are simple Fourier transforms of the
magnetic field profile. Since these transforms are real, the
conversion probability is conveniently given by

Pγx→aðηÞ ¼ jAγx→aj2 ¼ F sðΔxÞ2 þ F cðΔxÞ2

¼ g2aγ
4

ðB̂2
cðηÞ þ B̂2

sðηÞÞ; ð26Þ

without cross terms between the cosine and sine transforms.
This expression means that the oscillatory pattern that axions
induce on astrophysical spectra are directly given by the
power spectrum of the relevant magnetic fields. Moreover,
for a fixed energy and mass, only a single wavelength of the
magnetic field affects the conversion probability: the con-
version probability is localized in Fourier space.
The mathematical implications of Eq. (26) can be further

elucidated by relating the power spectra to the magnetic field
autocorrelation function. To do so, we derive the Wiener-
Khintchine theorem, as applied to the cosine transform. We
begin by noting that the self-convolution of the standard,
exponential Fourier transform implies the identities:

ðF sðΔxÞÞ2

¼ 1

2
F c

�Z
∞

0

dzΔxðzÞðΔxðzþ LÞ þ Δo
xðz − LÞÞ

�
;

ðF cðΔxÞÞ2

¼ 1

2
F c

�Z
∞

0

dzΔxðzÞðΔxðzþ LÞ þ Δe
xðz − LÞÞ

�
; ð27Þ

where Δo
x and Δe

x respectively denote the odd and even
extensions of Δx to negative values of the spatial coordinate.
We now use that

Z
∞

0

dzΔxðzÞðΔe
xðz − LÞ þ Δo

xðz − LÞÞ

¼ 2

Z
∞

L
dzΔxðzÞΔxðz − LÞ

¼ 2

Z
∞

0

dzΔxðzþ LÞΔxðzÞ; ð28Þ

and identify

cΔx
ðLÞ≡

Z
∞

0

dzΔxðzþ LÞΔxðzÞ; ð29Þ

as the autocorrelation function of Δx. We now have that

Pγx→aðηÞ ¼ 2F cðcΔx
ðLÞÞ ¼ g2aγ

2
F cðcBx

ðLÞÞ: ð30Þ

This compact equation is one of the main results of this
paper. It says that the form of axion-induced modulations in
high-energy spectra is encoded in the magnetic autocorre-
lation function, through a simple transform. Since the cosine
transform is its own inverse (up to a constant), the spectrum
of the probability as defined by the cosine transform, i.e.,
F cðPγx→aÞ, is directly given by the magnetic autocorrelation
at a given spatial length scale. This means that questions
about the spectrum of oscillations in the conversion prob-
ability map onto sharp questions about the real-space
properties of the magnetic field.
Through Eq. (30), we can translate established properties

of deterministic autocorrelation functions into general state-
ments about the perturbative conversion probability. For
example, the autocorrelation function peaks at zero: cBð0Þ >
cBðLÞ for L > 0, and decays at large L (at least when the
magnetic field is of physical origin, or when the Fourier
transform is applicable). This means that the zero mode of
Pγ→aðηÞ is always the largest Fourier (cosine) component,
and the conversion probability decays as η → ∞.
We close this section by commenting on two additional

new relations that follow from this formalism. First, we
note that Eq. (30) implies a new equation for extrema of
the conversion probability. We have that P0

γx→aðηÞ ¼ 0

whenever

F sðLcBx
ðLÞÞ ¼ 0: ð31Þ

This equation can be of phenomenological interest as the
distribution of extreme probability points is a measure of
how featured the probability curve is.
Second, we note a nontrivial equality for the integrated

conversion probability. Plancherel’s formulas imply the
identities:Z

∞

0

dzΔxðzÞ2 ¼
2

π

Z
∞

0

dηF cðΔxÞ2 ¼
2

π

Z
∞

0

dηF sðΔxÞ2:

ð32Þ
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It follows that the integrated probability over all wave-
lengths (η) equals the real-space integral over the squared
magnetic field:Z

∞

0

dηPγx→a ¼
gaγπ

2

Z
∞

0

dzB2
x: ð33Þ

B. Examples

We now apply the general formalism described in Sec. III
A to a series of examples. We find that all types of models
that have previously been considered in the literature on
axion-photon conversion (i.e., “cell models”, turbulent
models defined in Fourier space, and regular models defined
from Taylor expansions) can be solved analytically. Indeed,
since any magnetic field with a finite extent can be expressed
as a Fourier series for which we find the general solution in
Example 4, this analysis constructively solves the problem of
perturbative axion-photon mixing in the massive case. We
note that all figures presented in this section (and similar
figures in Secs. IV and V) correspond to analytic solutions
evaluated in the perturbative regime, so agree excellently
with the full solution.

1. Example 1: A single cell of constant B

The simplest example of axion-photon conversion cor-
responds to a constant magnetic field over a finite range.
We take B constant for 0 ≤ z ≤ zmax, while being zero
elsewhere. The real and imaginary parts of the transition
amplitude are given by

ReðAγx→aÞ ¼ F sðΔxÞ ¼
gaγB

2

Z
zmax

0

dz sinðηzÞ

¼ gaγB

2η
ð1 − cosðηzmaxÞÞ;

ImðAγx→aÞ ¼ −F cðΔxÞ ¼ −
gaγB

2

Z
zmax

0

dz cosðηzÞ

¼ −
gaγB

2η
sinðηzmaxÞ; ð34Þ

where η ¼ m2
a=2ω. Squaring the amplitude, the conversion

probability is

Pγ→a ¼
g2aγB2

η2
sin2
�
ηzmax

2

�
: ð35Þ

This result (of course) agrees with the standard single-
domain formula to leading order in gaγ

Pγ→a ¼
4Δ2

x

Δ2
osc

sin2
�
ΔoscL
2

�
≃
g2aγB2

η2
sin2
�
ηzmax

2

�
; ð36Þ

where Δosc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4Δ2

x

p
.

The alternate way to calculate the transition probability is
to compute the magnetic autocorrelation function, and then

take its cosine transform, cf. Eq. (30). The autocorrelation
function of a rectangular box is a simple, linear function:

cBðLÞ ¼
Z

∞

0

dzBxðzþ LÞBxðzÞ

¼ B2

Z
∞

0

dzW½0;zmax�ðzþ LÞW½0;zmax�ðzÞ

¼ B2ðzmax − LÞΘðzmax − LÞ: ð37Þ
Here, we have introduced the step functions

W½zmin;zmax�ðzÞ ¼
�

1 if zmin ≤ z ≤ zmax

0 otherwise;
ð38Þ

and

ΘðzÞ ¼ W½0;∞�ðzÞ ¼
�
1 if z ≥ 0

0 otherwise:
ð39Þ

The cosine transform of the magnetic autocorrelation is
then given by:

F cðcBðLÞÞ ¼
Z

∞

0

dL cosðLηÞcBðLÞ

¼ B2

Z
zmax

0

dL cosðLηÞðzmax − LÞ

¼ 2B2
sin2ðzmaxη=2Þ

η2
: ð40Þ

Equation (30) then reproduces the correct conversion
probability:

Pγ→a ¼
g2aγB2

η2
sin2
�
ηzmax

2

�
: ð41Þ

It is interesting to note how the conversion probability
changes with zmax: the larger the zmax, the more rapid the
probability oscillations in η-space. From Eq. (40) we can
infer that this is a general property following from the
relation between the conversion probability and the mag-
netic autocorrelation function: long-ranged autocorrela-
tions map to rapidly oscillating modes in Pγ→aðηÞ.

2. Example 2: General cell models

In an often considered class of “cellmodels”, themagnetic
field is taken to be constant within a series of domains along
the particle trajectory. In general cell models, themagnitudes
and directions of the magnetic field and the size of each cell
are treated as independent variables, that may e.g., be
generated through some specified probability distributions
(cf. e.g., [16,19,40,43,50]). The benefits of cell models are
that they are quick to generate and enable rather efficient
numerical evaluation of multiscale magnetic fields, which is
important when marginalizing over magnetic field realiza-
tions to understand the astrophysical variability of the axion
predictions. Due to their close resemblance with the constant
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domain model, cell models have also been used to gain intui-
tion about general properties of axion-photon conversion by
simply summing the probabilities from each cell (as opposed
to the amplitudes), neglecting the interference terms [43].
In this section, we determine the conversion probability

analytically in general cell models. This allows us to
address the questions of the importance of the interference
terms, and how the predictions from a a cell-model
magnetic field differs from a smoothed version.

The (x-component of the) magnetic field in a general cell
model can be defined as

BðzÞ ¼
X
i

BiW½zi;ziþ1�ðzÞ; ð42Þ

with the constant parameters Bi and where zi < ziþ1. The
real and imaginary parts of the transition amplitude are
given by

ReðAγx→aÞ ¼ F sðΔxÞ

¼
X
i

gaγBi

η
sin

�
η

2
ðziþ1 − ziÞ

�
sin

�
η

2
ðziþ1 þ ziÞ

�
;

ImðAγx→aÞ ¼ −F cðΔxÞ

¼ −
X
i

gaγBi

η
sin

�
η

2
ðziþ1 − ziÞ

�
cos

�
η

2
ðziþ1 þ ziÞ

�
: ð43Þ

To find the conversion probability, onemay of course sum the squares of the real and imaginary parts of the amplitude. However,
in this case, it is arguably simpler to directly compute the autocorrelation function and its cosine transform, as we now show.
The magnetic field autocorrelation function is given by,

cBðLÞ ¼
X
i;j

BiBj

Z
∞

0

dzW½zi;ziþ1�ðzþ LÞW½zj;zjþ1�ðzÞ

¼
X
i;j

BiBjθðziþ1 − L − zjÞθðzjþ1 − zi þ LÞ

× ½Minðzjþ1; ziþ1 − LÞ −Maxðzj; zi − LÞ�: ð44Þ

This equation means that in a general cell model, the magnetic autocorrelation function is a continuous and piece-wise
linear function of L, with discontinuities in its first derivative. This generalizes the well-known result that the
autocorrelation function of a steplike signal is a triangle function.
The conversion probability is given by the cosine transform of this function, according to Eq. (30). Explicitly, we obtain

F cðcBÞ ¼
X
i

B2
i
1 − cosðηdiÞ

η2
þ
X
i>j

BiBj

2
64θðdi − djÞ

0
B@F−

0
B@

ziþ1 − zjþ1

ziþ1 − zj
ziþ1 − zj

1
CAþ Fþ

0
B@

zi − zjþ1

zi − zj
zjþ1 − zi

1
CAþ djG

�
zi − zj

ziþ1 − zjþ1

�1CA

þ θðdj − diÞ

0
B@F−

0
B@

zi − zj
ziþ1 − zj
ziþ1 − zjÞ

1
CAþ Fþ

0
B@

zi − zjþ1

ziþ1 − zjþ1

zjþ1 − ziÞ

1
CAþ diG

�
ziþ1 − zjþ1

zi − zj

�1CA
3
75; ð45Þ

where di ¼ ziþ1 − zi is the cell length and

Fþ

0
B@

a

b

z

1
CA ¼

Z
b

a
dL cosðηLÞðzþ LÞ ¼ cosðbηÞ − cosðaηÞ þ ðzþ bÞη sinðbηÞ − ðzþ aÞη sinðaηÞ

η2
;

F−

0
B@

a

b

z

1
CA ¼

Z
b

a
dL cosðηLÞðz − LÞ ¼ cosðaηÞ − cosðbηÞ − ðz − aÞη sinðaηÞ − ðz − bÞη sinðbηÞ

η2
;

G

�
a

b

�
¼
Z

b

a
dL cosðηLÞ ¼ sinðbηÞ − sinðaηÞ

η
: ð46Þ
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The conversion probability is obtained as Pγx→a ¼
g2aγ
2
F cðcBÞ, and setting η ¼ m2

a=ð2ωÞ.
We identify the first term in Eq. (45) as an incoherent

sum of oscillatory transition probabilities from each cell.
For each term, the oscillation frequency in η-space is
simply set by the cell size, di.
All other terms are due to interference effects, and are

also given by simple oscillatory functions (possibly with
a prefactor of η). For the interference terms, the frequency
of oscillation in η-space is set by the separations between
domain boundaries, which need not be adjacent. Thus,
interference terms can contribute with a wide range of
oscillation frequencies to Pγx→aðηÞ, including rapid oscil-
lations. Moreover, unless there is a hierarchy of magnetic
field strengths, the interference terms are unsuppressed.
Figure 2 shows the effects of the interference terms in
Eq. (45) are particular apparent at low energies (large η),
where they generate the fast oscillations in the conversion
probability. The magnitude of this discrepancy depends
on the number of cells, and here we illustrate just one
simple example. However, we believe that an inclusion of
the interference effects may further improve interesting
analyses that have neglected them, such as [43].
In Fig. 3 we compare the results of Eq. (45) for a cell

model and the complete numerical solution for the same
field smoothed out on the ∼1 kpc scale. The correspond-
ing magnetic autocorrelation functions are qualitatively
similar, but the autocorrelation of the cell model is only
piece-wise linear, with clear discontinuities in its first
derivative. These jagged features of cBx

ðLÞ translate into
additional support at large η for Pγx→aðηÞ. This is visible
also in Fig. 3(d): at high energies (small η) the shape of the
conversion probabilities are similar, and mostly differ due

to the different magnetic field strengths of the cell model
and the smoothed field. At lower energies (large η), both the
conversion probabilities are oscillatory, but that of the cell
model is more “featured”, and decays more slowly. We
conclude that the differences between cell models and
smoothed versions of the magnetic field are mostly con-
fined to comparatively low energies. Observations that are
only sensitive to axions in the high-energy regionwhere the
conversion probability is the largest are likely to be rather
insensitive to the differences between cell models and
smoothed versions.

3. Example 3: Single mode oscillatory magnetic fields

Awell-known result of [42] is that an oscillating mag-
netic field can lead to an enhanced axion-photon con-
version probability, analogously to magnetic resonance in
quantum mechanics, where an oscillating magnetic field
provides the additional energy for rapid transition
between Zeeman split energy levels. For axion-photon
conversion, the basic observation is that an oscillating
magnetic field of the form

B ¼ B0ΘðR − zÞ cosðkzÞ; ð47Þ

leads to an amplitude involving the terms eiðηþkÞR and
eiðη−kÞR. For η ≈ k and ηR ≫ 1, these correspond, respec-
tively, to a rapidly and a slowly oscillating term.
Neglecting the former by appealing to the rotating phase
approximation, one finds a conversion probability of the
form [42]

Pγ→a ≈
ðgaγB0RÞ2

4

sin2ððη−kÞR
2

Þ
ðη − kÞ2R2

; ð48Þ

which peaks at η ¼ k. We will now discuss the
relation between our more general result of Eqs. (30)
and (48).
Assuming a magnetic field of the form of Eq. (47), the

real and imaginary parts of the transition amplitude are
given by

ReðAγx→aÞ ¼ F sðΔxÞ

¼ gaγB0R

4

�
sin2ξþ
ξþ

þ sin2ξ−
ξ−

�
;

ImðAγx→aÞ ¼ −F cðΔxÞ

¼ −
gaγB0R

4

�
sin ξþ cos ξþ

ξþ
þ sin ξ− cos ξ−

ξ−

�
;

ð49Þ

where ξ� ¼ ðη� kÞR=2 and η ¼ m2
a=2ω. The conversion

probability is calculated by squaring this amplitude

FIG. 2. Conversion probability for gaγ ¼ 10−11 GeV−1,
ma ¼ 5 × 10−9 eV, and ωpl negligible, including (black solid
line) or excluding (blue dot-dash line) the interference terms in
Eq. (45). The magnetic field model is a cell model of the type
described in Example 2 (Sec. III B 2); the specific model is
plotted with a solid line in the top left panel of Fig. 3.
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Pγ→a ¼
g2aγB2

0R
2

16

�
sin2ξþ
ξ2þ

þ sin2ξ−
ξ2−

þ 2 cosðξþ − ξ−Þ
sin ξþ sin ξ−

ξþξ−

�
: ð50Þ

Note that as R increases (keeping k fixed), the inter-
ference term becomes negligible and the probability
approaches Paγ ¼ g2aγB2

0Rδðk − ηÞ=16.
Alternatively, one can find the conversion probability by

computing the autocorrelation function,

cBðLÞ ¼
B2
0

2

�
ðR − LÞ cosðkLÞ þ sinðkðR − LÞÞ cosðkRÞ

k

�
;

ð51Þ
and taking its cosine transform.The first termofEq. (51) then
gives the first two terms of Eq. (50), including the “resonant”
term for ξ− → 0. This provides a new perspective on the

resonance: its characteristic sin2 ξ=ξ2 behavior emerges
when the autocorrelation function includes a cosine mode
with linearly changing amplitude ∼L cosðkLÞ

4. Example 4: General, “turbulent” magnetic fields

In astrophysical environments, the components of themag-
netic field inevitably involve more than one Fourier mode
which leads to interference effects that are absent in the single-
mode case. Indeed, “turbulent” magnetic fields are often
modeled as Gaussian random fields, by drawing the ampli-
tudes of a set ofmodes from some specified power spectrum.7

(a) (b)

(c) (d)

FIG. 3. The axion-photon conversion probability for gaγ ¼ 10−11 GeV−1, ma ¼ 5 × 10−9 eV, and ωpl negligible (bottom right) is
calculated for two magnetic field models: a cell model (Example 2, cf. Sec. III B 2) and a smoothed version of the same field (top left).
The sine and cosine transforms of these fields (top right) show significant differences of the resulting amplitudes. The autocorrelation
functions (bottom left) are qualitatively similar however, and the features of the conversion probability (bottom right) are in qualitative
agreement at high energies, but differ at low energies where the cell model produces larger amplitude oscillations (still small relative to
the maximum of Pγx→a). (a) Magnetic field profiles for a cell model (solid) and a smoothed version of the same profiles (dashed), (b) the
real, ReðAγx→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγx→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude Aγx→a for the cell model
(solid) and the smooth (dashed) magnetic fields, (c) magnetic field autocorrelation function for the cell model (solid) and the smooth
field (dashed), (d) conversion probability as function of the energy for the cell model (solid) and the smoothed field (dashed).

7To ensure that the resulting magnetic field is divergence free, it
is convenient to generate the Fourier components of the gauge
potential, rather than the magnetic field as we do in two numerical
examples in Sec. VI B. To make the link between the properties
of the magnetic field and the resulting conversion probability
apparent however, it is more convenient to work with the Fourier
components of the magnetic field directly, as we do in this section.
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We consider the most general magnetic field defined for 0 < z < R as expressed through its Fourier series

B ¼ ΘðR − zÞ
X
n

ðBc
n cosðknzÞ þ Bs

n sinðknzÞÞ: ð52Þ

The wave numbers are kn ¼ 2πn=R with n ¼ 0; 1;….
The real and imaginary parts of the amplitude for the n-th mode is simply obtained by direct integration, or equivalently

by taking the cosine and sine transforms as in (19):

ReðAγx→aÞ ¼ F sðΔxÞ ¼
gaγR

4

�
Bc
n

�
sin2ξþn
ξþn

þ sin2ξ−n
ξ−n

�
þ Bs

n

�
sin ξ−n cos ξ−n

ξ−n
−
sin ξþn cos ξþn

ξþn

��
;

ImðAγx→aÞ ¼ −F cðΔxÞ ¼ −
gaγR

4

�
Bc
n

�
sin ξþn cos ξþn

ξþn
þ sin ξ−n cos ξ−n

ξ−n

�
þ Bs

n

�
sin2ξþn
ξþn

−
sin2ξ−n
ξ−n

��
; ð53Þ

where ξ�n ¼ ðη� knÞR=2 and η ¼ m2
a=2ω. The conversion probability is then given by

Pγ→a ¼
g2aγR2

16

X
n

�
ðBþ

n Þ2
�
sin2ξþn
ðξþn Þ2

þ sin2ξ−n
ðξ−n Þ2

�
þ 2ðB−

n Þ2 cosðξþn − ξ−n Þ
sin ξþn sin ξ−n

ξþn ξ−n

þ 2
X
m<n

ðBc
nBc

m þ Bs
nBs

mÞ
�
sinðξþmÞ sinðξþn Þ

ξþmξþn
cosðξþm − ξþn Þ þ

sinðξ−mÞ sinðξ−n Þ
ξ−mξ

−
n

cosðξ−m − ξ−n Þ
�

þ 2
X
m<n

ðBc
nBc

m − Bs
nBs

mÞ
�
sinðξþmÞ sinðξ−n Þ

ξþmξ−n
cosðξþm − ξ−n Þ þ

sinðξ−mÞ sinðξþn Þ
ξ−mξ

þ
n

cosðξ−m − ξþn Þ
�

þ 4Bc
nBs

n
sinðξþn Þ sinðξ−n Þ

ξþn ξ−n
sinðξþn − ξ−n Þ

þ
X
m<n

ðBc
nBs

m þ Bc
mBs

nÞ
�
sin ξþn sin ξ−m sinðξþn − ξ−mÞ

ξþn ξ−m
−
sin ξ−n sin ξþm sinðξ−n − ξþmÞ

ξ−n ξ
þ
m

�

þ −
X
m<n

ðBc
nBs

m − Bc
mBs

nÞ
�
sin ξþn sin ξþm sinðξþn − ξþmÞ

ξþn ξþm
−
sin ξ−n sin ξ−m sinðξ−n − ξ−mÞ

ξ−n ξ
−
m

��
; ð54Þ

where ðB�
n Þ2 ¼ ðBc

nÞ2 � ðBs
nÞ2. The terms proportional to sin2ðξ�n Þ=ðξ�n Þ2, corresponds to an incoherent addition of

contributions of the form (48) and would be the only term present in a strict application of the rotating phase approximation.
The magnetic autocorrelation function of (52) has the general form

cBðLÞ ¼
X
n

½ðBc
nÞ2C1;nðLÞ þ ðBs

nÞ2C2;nðLÞ þ Bc
nBs

nðC3;nðLÞ þ C4;nðLÞÞ�

þ
X
m≠n

½Bc
nBc

mC1;nmðLÞ þ Bs
nBs

mC2;nmðLÞ þ Bc
nBs

mC3;nmðLÞ þ Bs
nBc

mC4;nmðLÞ�; ð55Þ

where the functions C are defined as

C1;nðLÞ ¼
Z

R−L

0

dz cosðknzÞ cosðknðzþ LÞÞ

¼ 2knðR − LÞ cosðknLÞ − sinðknLÞ − sinðknðL − 2RÞÞ
4kn

C2;nðLÞ ¼
Z

R−L

0

dz sinðknzÞ sinðknðzþ LÞÞ

¼ 2knðR − LÞ cosðknLÞ þ sinðknLÞ þ sinðknðL − 2RÞÞ
4kn
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C3;nðLÞ ¼
Z

R−L

0

dz sinðknzÞ cosðknðzþ LÞÞ

¼ 2knðL − RÞ sinðknLÞ − cosðknLÞ − cosðknðL − 2RÞÞ
4kn

C4;nðLÞ ¼
Z

R−L

0

dz cosðknzÞ sinðknðzþ LÞÞ

¼ 2knðR − LÞ sinðknLÞ þ cosðknLÞ − cosðknðL − 2RÞÞ
4kn

ð56Þ

and

C1;nmðLÞ ¼
Z

R−L

0

dz cosðknzÞ cosðkmðzþ LÞÞ

¼ kn cosðkmRÞ sinðknðL − RÞÞ þ km sinðkmRÞ cosðknðL − RÞÞ − km sinðkmLÞ
k2m − k2n

C2;nmðLÞ ¼
Z

R−L

0

dz sinðknzÞ sinðkmðzþ LÞÞ

¼ kn cosðknðL − RÞÞ sinðkmRÞ þ km cosðkmRÞ sinðknðL − RÞÞ − kn sinðkmLÞ
k2n − k2m

ð57Þ

C3;nmðLÞ ¼
Z

R−L

0

dz sinðknzÞ cosðkmðzþ LÞÞ

¼ km sinðknðL − RÞÞ sinðkmRÞ − kn cosðkmRÞ sinðknðL − RÞÞ þ kn cosðkmLÞ
k2n − k2m

C4;nmðLÞ ¼
Z

R−L

0

dz cosðknzÞ sinðkmðzþ LÞÞ

¼ kn sinðkmRÞ sinðknðL − RÞÞ − km cosðknðL − RÞÞ cosðkmRÞ þ km cosðkmLÞ
k2m − k2n

: ð58Þ

Equations (54) and (55) provide the most general
solution for relativistic axion-photon conversion of axions
withma ≫ ωpl, and Eqs. (55)–(58) provide the correspond-
ing cosine transforms. In Fig. 4, we show a simple, 7-mode
example of the magnetic field, and its solution. We have
tested our analytical solution against numerical simula-
tions, and found perfect agreement.

5. Example 5: Monomial magnetic fields

Sufficiently slowly varying fields are often conveniently
Taylor expanded to some finite order in z=R. In this
example, we consider the simplest case of a linear depend-
ence on the radius, and in Sec. III B 6 we determine the
conversion probability for a general polynomial.
The simplest monomial magnetic field is linear

BxðzÞ ¼ B0

z
R
ΘðR − zÞ; ð59Þ

and the transition amplitude is

ReðAγx→aÞ ¼ F sðΔxÞ

¼ gaγB0

2η2R
ðsinðηRÞ − ηR cosðηRÞÞ;

ImðAγx→aÞ ¼ −F cðΔxÞ

¼ gaγB0

2η2R
ð1 − cosðηRÞ − ηR sinðηRÞÞ; ð60Þ

and the conversion probability is

Pγx→a ¼
g2aγB2

0R
2

4

1

η4R4

× ½2þ η2R2 − 2 cosðηRÞ − 2ηR sinðηRÞ�: ð61Þ

6. Example 6: “Regular” magnetic fields

In this section, we consider a broad class of magnetic
fields that can be modeled by finite-order polynomials
within a finite radius, i.e., as
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BxðzÞ ¼ B0b

�
z
R

�
ΘðR − zÞ; ð62Þ

where bðzÞ can be expressed as a polynomial in z=R.
The purpose of this section is to provide an algorithmic
prescription for finding the conversion probability of such
models analytically, using our Fourier analysis approach.
As an example, we also calculate the conversion probability
explicitly in the regular magnetic field model proposed in
[41] (however, see our discussion about the astrophysical
consistency of this model in Sec. VII B).
The transition amplitude involves the sine and cosine

transforms of bðzRÞΘðR − zÞ. It is convenient to define
u ¼ z=R and write bðuÞ ¼Pnmax

n¼0 bnu
n. The cosine and sine

transforms then involve terms like

Z
1

0

duun cosðη̃uÞ and
Z

1

0

duun sinðη̃uÞ; ð63Þ

where η̃ ¼ ηR. These integrals respectively, and rather
formally, evaluate to instances of the regular and general-
ized hypergeometric functions. For our purposes, it will

simpler to evaluate them by repeated integration by parts,
i.e., by using

Z
1

0

duun cosðη̃uÞ ¼ 1

η̃
sinðη̃Þ − n

η̃

Z
1

0

duun−1 sinðη̃uÞ ð64Þ
Z

1

0

duun sinðη̃uÞ ¼ −
1

η̃
cosðη̃Þ þ n

η̃

Z
1

0

duun−1 cosðη̃uÞ:

ð65Þ
The resulting amplitude then has a simple form

Aγ→aðη̃Þ ¼
gaγB0R

2
½ðs0ðη̃Þ þ s1ðη̃Þ sinðη̃Þ þ s2ðη̃Þ cosðη̃ÞÞ

þ −iðc0ðη̃Þ þ c1ðη̃Þ sinðη̃Þ þ c2ðη̃Þ cosðη̃ÞÞ�;
ð66Þ

where si and ci denote the polynomials obtained from the
sine and cosine transforms, respectively.8 The conversion

(a) (b)

(c) (d)

FIG. 4. The axion-photon conversion probability for gaγ ¼ 10−11 GeV−1, ma ¼ 5 × 10−9 eV, and ωpl negligible (bottom right)
calculated for the magnetic field model in Eq. (52) for 7 modes (top left), cf. Sec. III B 4 (Example 4). The real and imaginary parts of the
amplitude are shown in the top right panel and the autocorrelation function in the bottom left panel. (a) Magnetic field prole, (b) the real,
ReðAγx→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγx→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude Aγx→a, (c) magnetic field
autocorrelation function, (d) conversion probability as function of the axion energy.

8For η̃ < 1, one may alternatively Taylor expand the integrand
in η̃u, which is numerically preferable for small values of η̃.
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probability is simply foundby squaring and summing the real
and imaginary parts of the amplitude, as given by Eq. (66).
Alternatively, the conversion probability can be found by

first evaluating the magnetic field autocorrelation function.
Writing l ¼ L=R, we have that

cBðlÞ ¼ B2
0R
Z

1−l

0

dubðuÞbðuþ lÞ

¼ B2
0R
X
n;m

bnbm

Z
1−l

0

duunðuþ lÞm: ð67Þ

Each integral in this double sum can be expressed using
incomplete Euler beta-functions, or alternatively, by
expanding the factors of ðuþ lÞm and doing the integral
term-by-term. The latter puts cB in polynomial form:

cBðlÞ ¼ B2
0RΘð1 − lÞ

X2nmaxþ1

n¼0

cnln: ð68Þ

From the autocorrelation function, the conversion prob-
ability can be found by taking the cosine transform. For a

correlation function of the form (68), this involves hyper-
geometric functions; however, we again use repeated
applications of Eq. (64) to simplify the expression and
determine its general form. We find that

Pγ→a ¼
g2aγB2

0R
2

4
ðp0ðη̃Þ þ p1ðη̃Þ cosðη̃Þ þ p2ðη̃Þ sinðη̃ÞÞ;

ð69Þ

where the piðη̃Þ are polynomials. The shape of the con-
version probability is then determined by these polyno-
mials and the low-frequency oscillations from sinðη̃Þ and
cosðη̃Þ, which typically results in a slow-varying conversion
probability.
We now consider a particular example of axion-photon

conversion in slowly varying magnetic fields. Recently,
Ref. [41] adapted a model of the magnetic field in a radio
bubble from [51] as a model of the cluster magnetic field in
the Perseus cluster, suggesting that it provides a limiting
case of observationally viable magnetic fields. We will

(a) (b)

(c) (d)

FIG. 5. The conversion probability (bottom right) for the regular magnetic field (top left) discussed in [41,51] and Sec. III B 6
(Example 6). The solid and dashed curves respectively correspond to the ϕ and θ components of the regular magnetic field, cf. Eqs. (72)
and (71). See however Sec. VII B for a discussion of the interpretation of these results. (a) Components of the magnetic field as a
function of u ¼ z=R, (b) the real, ReðAγ→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγ→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude
Aγ→a for the two eld components, (c) magnetic field autocorrelation function as a function of l ¼ L=R, (d) conversion probability as a
function of energy for gaγ ¼ 10−13 Gev−1; ma ¼ 5 × 10−9 eV, and R ¼ 93 kpc.
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return to the astrophysical issues of this nonstandard, and
somewhat controversial, generalization in Sec. VII. Here,
we simply show that the methods of this paper can be used
to find the perturbative conversion probability of this model
analytically.
The magnetic field model of [51] was found as a solution

to the Grad-Shafranov equation in equilibrium magneto-
hydrodynamics (MHD). In spherical coordinates, the
explicit form of the components of the magnetic field
for r ≤ R were determined to

Br ¼
2 cos θ
r2

fðrÞ ð70Þ

Bθ ¼ −
sin θ
r

f0ðrÞ ð71Þ

Bϕ ¼ A sin θ
r

fðrÞ; ð72Þ

where A solves a transcendental equation and is approx-
imately given by A ¼ 5.76. The function fðrÞ is given by

fðrÞ ¼ c1

�
A cosðαuÞ − sinðAuÞ

u
− u2ðA cos α − sinAÞ

�
:

ð73Þ
Here u ¼ r=R ≤ 1 is the rescaled radial coordinate, and c1
is a normalization factor that sets the overall magnitude of
the magnetic field. The parameter values adopted in
Ref. [41] in applying this model to the entire Perseus
cluster were θ ¼ π=4, c1 ¼ −0.060 μG, and R ¼ 93 kpc.
Since the magnetic field is slowly varying in u, this system
is easily solved to high accuracy by approximating the
components of B by finite-order Taylor expansions. The
main results are summarized in Fig. 5.
The two paths to the conversion probability are illus-

trated in Fig. 5: by taking the cosine and sine transforms of
the magnetic field components as in Eq. (24), we obtain the
transition amplitudes for linearly polarized photons con-
verting into axions, as plotted in Fig. 5(b). Taking the
squared norm of the amplitudes give the polarized con-
version probabilities, plotted in Fig. 5(d). Alternatively, we
directly calculate the magnetic autocorrelation function as
shown in Fig. 5(c). The cosine transform of these auto-
correlation functions again give the conversion probability.
This example magnetic field model is inconsistent with

observations of the Perseus cluster, as we explain in
Sec. VII B. However, it is still interesting to interpret it
through the Fourier formalism. We have seen that long-
ranged magnetic autocorrelations translate into support for
rapid-oscillation modes in Pγ→aðηÞ, however, this does not
automatically translate into oscillations of the full function
Pγ→aðηÞ at those frequencies; Fourier analysis decomposes
any function into its oscillatory components, but of course,
this does not mean all functions are oscillatory. The bumpy
features of the conversion probabilities of Fig. 5(d) indicate

the broadly preferred scales of the autocorrelation func-
tion, cBðLÞ. Heuristically, we expect that featured or
oscillatory autocorrelation functions at large L correspond
to a featured and oscillatory conversion probability at high
frequencies.

IV. THE FOURIER TRANSFORM FORMALISM:
THE MASSLESS CASE

The assumption of m2
a ≫ ω2

pl used in the preceding
section simplifies the phase-factor of the transition ampli-

tude to Φðz0Þ ¼ m2
az0
2ω ¼ ηz0. The linear appearance of the

integration variable z0 makes the connection to Fourier
transforms evident. When the plasma frequency cannot be
neglected, the analysis is more subtle. In this section, we
focus on the next-simplest case of massless axions. We will
see that in this case, a change of variable again makes the
simple Fourier formulas applicable, although at a slightly
modified form.

A. The transition amplitude and the
conversion probability

In this section, we set ma ¼ 0 and consider ω2
plðzÞ ≠ 0.

The transition amplitude is again given by

Aγx→a ¼ −i
Z

∞

0

dz0Δxðz0Þe−iΦðz0Þ; ð74Þ

but now the phase factor reads

Φðz0Þ ¼ −
1

2ω

Z
z0

0

dz00ω2
plðz00Þ ¼ −λφ; ð75Þ

where we have defined λ ¼ 1=ω and

φðz0Þ ¼ 1

2

Z
z0

0

dz00ω2
plðz00Þ: ð76Þ

Since ω2
pl is positive definite, φ is monotonically increasing

with z0, has the range 0 ≤ φ ≤ ∞, and is a well-defined
coordinate, replacing z0. The measure transforms as dz0 ¼
dφ=ω2

pl and the full amplitude can again be expressed using
Fourier cosine and sine transforms:

Aγx→a ¼ −i
Z

∞

0

dφ
2Δx

ω2
pl

eiλφ ¼ ĜsðλÞ − iĜcðλÞ; ð77Þ

where Ĝ denotes the transform of the function

GðφÞ ¼ 2Δx

ω2
pl

¼ gaγBx

ω2
pl

: ð78Þ

We emphasize that Bx and ωpl in this equation are functions
of φ, as defined by (76). Since the Ĝ are real, the conversion
probability is simply given by
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Pγx→aðλÞ ¼ Ĝ2
s þ Ĝ2

c; ð79Þ

which is the power spectrum of GðφÞ. Our derivation of
the Wiener-Khintchine theorem leading to Eq. (30) now
implies that

Pγx→aðλÞ ¼ Ĝ2
sðλÞ þ Ĝ2

cðλÞ ¼ 2F cðcGðψÞÞ; ð80Þ

where cGðψÞ denotes the autocorrelation of G in φ-space,
i.e.,

cGðψÞ ¼
Z

∞

0

dφGðφþ ψÞGðφÞ: ð81Þ

In sum, also in the massless case there are two possible
routes to calculate the conversion probability: either by
calculating the cosine and sine transforms of G, then taking
the sum of squares, or by computing the autocorrelation
function of G and taking its cosine transform. A novel
feature of the massless case is that, for the purpose of axion-
photon conversion, distances aremore naturallymeasured in
terms of the phase φ instead of the spatial coordinate z.
Moreover, the Fourier cosine and sine transforms are taken
of the function G, which includes a factor of 1=ω2

pl. The
appearance of this factor is mathematically intuitive: when
ω2
pl is large, the phase in Eq. (74) varies quickly and the

integral tends to wash out. For smaller values of ω2
pl, the

oscillations are slower and it is easier to build up a
nonvanishing amplitude. When changing integration vari-
able from z to φ, the phase Φ grows at a constant rate, by
definition. The impact of ω2

pl on the transition amplitude is
instead captured by the explicit factor of 1=ω2

pl inGðφÞ. This
factor makes the impact of the plasma frequency on the
transition probability apparent. In particular, this form of the
amplitude suggests that fluctuations in the electron density
along the direction of propagation can be an important
source of axion-photon oscillations. We expect to return to
this phenomenon in future work.

B. Examples

We have seen that axion-photon transitions for massless
axions proceed similarly to the case of massive axions
[cf. e.g., Eqs. (26) and (30) – Eqs. (79) and (80)]. The
examples worked out for massive axions in Sec. III B
applies with small modifications to massless axions if the

plasma frequency is constant. More generally however, one
needs to account for the nontrivial coordinate change from
z0 to φ, as we here illustrate by an example.

1. Example 7: Massless axion in an oscillating
magnetic field

Consider an axion with ma ¼ 0 in an environment
where the electron density decreases like ne ∼

ffiffiffiffiffiffiffiffi
R=z

p
.

The squared plasma frequency is then given by

ω2
plðzÞ ¼ ω2

plðRÞ
ffiffiffiffi
R
z

r
; ð82Þ

where ω2
plðRÞ ¼ 4πe2

me
neðRÞ. From Eq. (76), we have that

φðzÞ ¼ 1

2

Z
z

0

dz0ω2
plðz0Þ

¼ 1

2
ω2
plðRÞR

Z
z=R

0

du
1ffiffiffi
u

p

¼ ω2
plðRÞR

�
z
R

�
1=2

: ð83Þ

For this simple form of the electron density, we can invert
this expression to find zðφÞ explicitly:

z
R
¼ φ̃2; ð84Þ

where we have defined the dimensionless variable
φ̃ ¼ φ=ðω2

plðRÞRÞ.
We consider a damped, oscillatory magnetic field of the

form

BxðzÞ ¼ BRΘðR − zÞ neðzÞ
neðRÞ

cosðkzÞ: ð85Þ

The explicit damping factor mimics a common para-
metrization for galaxy cluster magnetic fields (cf. e.g.,
[52]), but is here mainly motivated by convenience: since
neðzÞ=neðRÞ ¼ ω2

plðzÞ=ω2
plðRÞ, the function G becomes

Gðφ̃Þ ¼ gaγBR

ωplðRÞ2
Θð1 − φ̃2Þ cosðk̃φ̃2Þ; ð86Þ

where k̃ ¼ kR.
The real part of the transition amplitude is given by

ReðAγx→aÞ ¼ F sðGÞ ¼
Z

∞

0

dφGðφÞ sinðλφÞ ¼ gaγBRR
Z

1

0

dφ̃ cosðk̃φ̃2Þ sinðηφ̃Þ

¼ gaγBRR

ffiffiffiffiffi
π

8k̃

r ��
C

�
2k̃ − ηffiffiffiffiffiffiffiffi
2πk̃

p
�
þ 2C

�
ηffiffiffiffiffiffiffiffi
2πk̃

p
�
− C

�
2k̃þ ηffiffiffiffiffiffiffiffi
2πk̃

p
��

sin

�
η2

4k̃

�

þ
�
−S
�
2k̃ − ηffiffiffiffiffiffiffiffi
2πk̃

p
�
− 2S

�
ηffiffiffiffiffiffiffiffi
2πk̃

p
�
þ S

�
2k̃þ ηffiffiffiffiffiffiffiffi
2πk̃

p
��

cos

�
η2

4k̃

��
; ð87Þ
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where we have introduced η ¼ λω2
plðRÞR, and where C and S denote the corresponding Fresnel integrals. The imaginary

part of the amplitude is given by

ImðAγx→aÞ ¼ −F cðGÞ ¼ −
Z

∞

0

dφGðφÞ cosðλφÞ ¼ −gaγBRR
Z

1

0

dφ̃ cosðk̃φ̃2Þ cosðηφ̃Þ

¼ −gaγBRR

ffiffiffiffiffi
π

8k̃

r ��
C
�
2k̃ − ηffiffiffiffiffiffiffiffi
2πk̃

p
�
þ C

�
2k̃þ ηffiffiffiffiffiffiffiffi
2πk̃

p
��

cos
�
η2

4k̃

�
þ
�
S
�
2k̃ − ηffiffiffiffiffiffiffiffi
2πk̃

p
�
þ S
�
2k̃þ ηffiffiffiffiffiffiffiffi
2πk̃

p
��

sin
�
η2

4k̃

��
: ð88Þ

The transition probability is, as usual, obtained from the sum of squares of Eqs. (87) and (88). The autocorrelation function
of GðφÞ is readily found to be

cGðψ̃Þ ¼
g2aγB2

RR

ωplðRÞ2
Z

1−ψ̃2

0

dφ̃ cosðk̃φ̃2Þ cosðk̃ðφ̃þ ψ̃Þ2Þ

¼ g2aγB2
R

ωplðRÞ4
"

1

4k̃ ψ̃

�
sinðk̃ ψ̃ ψ̃2Þ − sinðk̃ψ̃2Þ

�
þ 1

4

ffiffiffi
π

k̃

r ( 
C

 ffiffiffĩ
k
π

s
ψ̃2

!
− C

 ffiffiffĩ
k
π

s
ψ̃

!!
cos

�
k̃ψ̃2

2

�

þ
 
S

 ffiffiffĩ
k
π

s
ψ̃

!
− S

 ffiffiffĩ
k
π

s
ψ̃2

!!
sin

�
k̃ψ̃2

2

�)#
; ð89Þ

where ψ̃2 ¼ 2þ ψ̃ − 2ψ̃2. Using Eq. (80) and that the
cosine transform is its own inverse, cf. Eq. (22), we note
that this expression gives the spectrum of oscillations of
Pγx→a, as understood through the cosine transform. This
spectrum would be nontrivial to obtain explicitly from
directly transforming the conversion probability, and sim-
ilarly, in this case it is challenging to analytically take the
cosine transform of the autocorrelation function to obtain
the conversion probability. The relevant quantities of this
example are illustrated in Fig. 6.

V. THE FOURIER TRANSFORM FORMALISM:
THE GENERAL CASE

In general, the axion/photon trajectory may pass through
dense regions with ωpl > ma as well as dilute regions with
ωpl < ma. The phase Φ will then increase in some regions
and decrease in others, which prohibits a one-to-one, global
change of coordinate from z0 to Φ. Moreover, at points of
stationary phase, dΦ=dz ¼ 0, the photon and axion are mass
degenerate, and can interconvert resonantly. The full ampli-
tude is then the sum of resonant and nonresonant contribu-
tions, and in Secs. VA–VC we discuss how to carefully
calculate these contributions in the perturbative formalism.
Our approach is to split the integration domain into

subregions in which the phase Φ is monotonic, either
increasing or decreasing, or approximately stationary.
Points of stationary phase will produce a “resonant”
contribution to the amplitude that depends only on the
local environment around that point. For each region in
which Φ is monotonic, we can identify a suitable coor-
dinate extension and express the contribution to the
amplitude as a Fourier transform. The total amplitude is
simply given by the sum over all resonant and nonresonant

contributions. Figure 1 shows a particular example of the
general case (there denoted “Case II”): the plasma fre-
quency crosses the axion mass at three points, resulting in
four contributions to the nonresonant amplitude (labelled
by 1 through 4) and three resonant contributions.
Our notation for the general case is as follows: we

factorize the phase into the (dimensionful) “coordinate” φ
and its Fourier conjugate λ ¼ 1=ω as

Φðz0Þ ¼
Z

z0

0

dz00½Δγðz00Þ − Δaðz00Þ�

≈ −
1

ω

Z
z0

0

dz00
1

2
½ω2

pl −m2
a� ¼ −λφðz0Þ: ð90Þ

We denote the points of stationary phase by z�i (for
i ¼ 1;…; N), so that φ0ðz�i Þ ¼ 0. We also define a small
interval around each stationary point as zli < z�i < zui . As we
discuss in Sec. VA, these intervals should be chosen to be
small enough so that φ is well approximated by a leading-
order Taylor expansion around z�i . For ease of notation, we
also define zu0 ¼ 0 and zlNþ1 ¼ z. In this notation andwithout
loss of generality, the full amplitude is given by

iAγx→aðz; λÞ ¼
Z

z

0

dz0Δxðz0Þeiλφðz0Þ

¼ iAres
γx→a þ iAnon−res

γx→a ; ð91Þ

where

iAres
γx→a ¼

XN
i¼1

Z
zui

zli

dz0Δxðz0Þeiλφðz0Þ; ð92Þ
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iAnon−res
γx→a ¼

XNþ1

i¼1

Z
zli

zui−1

dz0Δxðz0Þeiλφðz0Þ: ð93Þ

Equation (92) picks up the “resonant” amplitudes from
stationary points, while Eq. (93) collects the nonresonant
integrals. We will now discuss these contributions in turn.

A. Resonant contributions: Standard stationary phase
approximation and ω=ma enhancement

In this section we provide context for the general
discussion on resonant conversion in Sec. V B, and point
out the subtleties relating to the use of the stationary phase
approximation when evaluating resonant amplitudes, that
can lead to large inaccuracies at sufficiently high energies.
The resonance condition, ma ¼ ωplðz�Þ, implies that the

eigenvalues of H0 are degenerate at the resonance point,
and the splitting of the eigenvalues of the total Hamiltonian
is only due to the off-diagonal interaction HI . This
corresponds to an “avoided level crossing” and under
certain assumptions, transitions occurring at avoided level
crossings can be solved nonperturbatively in gaγ . In our
notation, if one assumes that m2

a − ω2
plðzÞ varies linearly

with z − z�, that the magnetic field is constant, and that the
boundaries of integration can be taken to z → �∞, then the
conversion probability is described by the Landau-Zener
formula [53,54]:

PLZ
γx→a ¼ 1 − e−2πγ; ð94Þ

where γ ¼ Δ2
xðz�Þ=jΔ0

γðz�Þj. When γ ≫ 1, the conversion
probability is nonperturbatively large and referred to as
“adiabatic”. In the opposite, “nonadiabatic” regime, γ ≪ 1
and the exponential can be approximated order-by-order
in γ, with the linear-order probability given by:

PLZ
γx→a ≈ 2πγ ¼ 2πΔ2

x

jΔ0
γj

: ð95Þ

This expression is equivalent to what one obtains by
applying the stationary phase approximation to a perturba-
tive solution of the Schrödinger-like equation, as we
now show.
The premise of the method of stationary phase is that

integrals of rapidly oscillating functions, such as (91), tend
to cancel, and so the dominant contribution is expected
from where the phase is approximately constant. Suppose
that the amplitude Ares

γx→a has a point of stationary phase at
z�, so thatΦ0ðz�Þ ¼ λφ0ðz�Þ ¼ 0. In the limit of λ → ∞, the
amplitude is dominated by the resonant contribution, which
can be evaluated by Taylor expanding φðzÞ to second order
and treating the nonexponential part of the integrand as
constant:

iAres
γx→a ¼

Z
z

0

dz0Δxðz0Þeiλφðz0Þ

≈ Δxðz�Þ
Z

∞

−∞
dz0eiλðφðz�Þþ1

2
φ00ðz�Þðz−z�Þ2Þ

¼ Δxðz�ÞLresðz�Þeiðλφðz�Þ−π
4
signðφ00ðz�ÞÞÞ; ð96Þ

where

Lresðz�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

λjφ00ðz�Þj

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jΔ0
γðz�Þj

s
: ð97Þ

Using the explicit expressions for the matrix elements in
(8), we can write the resonant conversion lengths as

Lres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω

ωplω
0
pl

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

ω0
pl

ω

ma

s
¼ L

ffiffiffiffiffiffi
ω

ma

r
; ð98Þ

where in the last step we have defined the energy-
independent conversion length

L ¼
ffiffiffiffiffiffiffiffiffi
2π

jω0
plj

s
;

and set ωplðz�Þ ¼ ma. The conversion probability is
given by

Pres
γx→a ¼ ðLresΔxÞ2 ¼

2πΔ2
x

jΔ0
γj

¼ P0

ω

ma
;

for P0 ¼
g2aγB2

4

2π

ω0
pl
; ð99Þ

with all quantities evaluated at the point of stationary phase.
Clearly, Pres

γx→a ¼ 2πγ ≈ PLZ
γx→a, so that the probability

obtained from the perturbative amplitude identical to the
Landau-Zener probability in the nonadiabatic limit,
cf. Eq. (95). This is unsurprising, since these expressions
are derived under the same assumptions, although taken in
different order.
An important aspect of Eq. (99) is that the conversion

length is energy-dependent, and can grow large for highly
relativistic axions. As we will now discuss, this signals the
breakdown of the stationary phase method at sufficiently
high energies, and makes Eq. (99) inaccurate. In this
section, we propose an approximate, simple formula that
regulates the probability at high energies, and in Sec. V B,
we instead carefully rederive the amplitude and find an
analytic formula that is accurate, but more complicated.
The factor of ω=ma in Eq. (99) comes from the square-

root dependence of the resonance length on the energy, or
equivalently the 1=

ffiffiffi
λ

p
in Eq. (97). The stationary phase

approximation is expected to be accurate for λ → ∞, but in
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the relativistic case, we are interested in small maλ, where
Eq. (96) is no longer guaranteed to be applicable. Indeed,
the first step of Eq. (96) approximates the nonexponential
part of the integrand, in our case ΔxðzÞ, as a constant over
distances large compared to Lres. This is reasonable if Lres
is sufficiently small, but less so if the resonance length
extends over astronomical distances, as is the case when
ω=ma is sufficiently large. When the magnetic field varies
significantly over the resonance length, the amplitude may
partially cancel and the stationary phase approximation
becomes inaccurate.
A better approximation of the resonant amplitude for

relativistic axion-photon conversion can be obtained by
replacing Lres by a regulated resonance length, Lreg. This
corresponds to assuming that contributions to the amplitude
further away than a distance of Lmax=2 from the resonance
point cancels:

Lreg ¼
(
L

ffiffiffiffiffi
ω
ma

q
if ω < ωmax

Lmax if ω ≥ ωmax;
ð100Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmax=ma

p ¼ Lmax=L. This expression involves
the free parameter Lmax, which can be approximated
by the length scale associated with variations in the
nonexponential part of the integrand, in our case:
Lmax ¼ Δxðz�Þ=jΔ0

xðz�Þj. We expect Eq. (100) to be accu-
rate for ω ≪ ωmax. For ω ≥ ωmax, using Lreg instead of Lres

in Eq. (99) for the conversion probability should lead to an
improved estimate, though a more detailed calculation is
required for accuracy. Moreover, we expect this simple
regularization to be more accurate than simply discarding
contributions where Lres becomes large compared to other
physical scales of the problem, as done in e.g., [55,56].
Two conceptual points emerge from this analysis. First,

with all else the same, resonant axion-photon conversion of
relativistic axions is more relevant in environments with
slowly varying magnetic fields. That is, the resonance
length is not only dependent on the plasma frequency as
in the standard analysis, but also the magnetic field
properties. Second, the spectral shape of the resonant
amplitude is in all cases very simple: it increases withffiffiffiffi
ω

p
up to a maximal energy that is determined by the

spatial variation of the magnetic field, after which it is
expected to plateau.
To contextualize these results, we close this section

with a brief review of previous work on relativistic axion-
photon conversion in astrophysical environments, focus-
sing on the extent to which resonant conversion has been
accounted for.
Reference [57] discussed resonant production of axions

in cosmological magnetic fields, considering primarily the
Cosmic Microwave Background (CMB) as the source. In
the adiabatic limit considered in [57], the full expression of
(94) need to be used to find the conversion probability, so

that the linear dependence of L2
res on the mode energy

[cf. Eq. (99)] appears in the exponential. The issue of the
validity of the Landau-Zener approximation when account-
ing for the spatial variation of primordial, cosmic magnetic
fields was not discussed in [57]. This work was later
updated in [55], which used the stringent limits on CMB
spectral distortions from COBE/FIRAS to constrain reso-
nant axion-photon conversion, now pressed into the non-
adiabatic limit. The enhancement of the resonance length
with

ffiffiffiffiffiffiffiffiffiffiffiffi
ω=ma

p
appears in [55], but contributions where Lres

was larger than the estimated coherence scale of the
magnetic field were simply discarded.
At gamma-ray energies, Ref. [58] provided an overview

of astrophysical environments that could lead to substantial
conversion probabilities, considering in particular adia-
batic, resonant mixing. More recently, Ref. [59] discussed
the mixing of relativistic axions from magnetars with hard
X-rays, and considered also the resonant case. These
references did not explicitly discuss the dependence of
Lres on the mode energy.
Axion-photon conversion at X-ray energies in galaxy

clusters can be highly efficient, and has been studied by
several groups at X-ray and gamma-ray energies. For axion
masses that fall in the range between the minimal and
maximal plasma frequencies in the cluster, the conversion
amplitudewill include one or more resonant contributions, in
addition to nonresonant contributions. The relevant
mass range has been studied in X-ray searches for axions
[13–19,36] (but not gamma-ray searches, which have
focused on the higher-mass region where nonresonant
conversion can induce large irregularities). However, many
studies have neglected the resonant contribution, either
explicitly or implicitly. In part, this is an immediate
consequence of the reliance on cell models, or comparatively
coarsely sampled Gaussian Random Field (GRF) models,
for which the mixing equations have been solved numeri-
cally. In such models, the resonance condition is typically
not satisfied in any patch, and the resonant contribution is
effectively omitted. If by chance the resonance condition is
nearly satisfied in a patch, but the cell length is large
compared to Lres, the resonant conversion probability is
overestimated, cf. [36] for a recent discussion. This issue has
been briefly discussed in [16] using the single-domain
formula, where it was argued that unless the coherence
length of the magnetic field grows very large near the
resonance point, the resonant contribution is negligible. Our
discussion below will make this argument much more
precise, but will confirm the general conclusion.
Finally, a related issue appears when considering the

resonant conversion of nonrelativistic axions and photons.
The mixing is still governed by the Schrödinger-like
equation, but the resonance length is now enhanced by a
factor of ∼1= ffiffiffiffiffi

va
p

. The perturbative amplitude can be
evaluated using the standard stationary phase approximation,
cf. [56,60,61] in the case of dark matter conversion in
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neutron star magnetospheres. However, the standard sta-
tionary phase approximation again suffers analogous theo-
retical corrections, as recently discussed in [47].

B. Resonant contributions: General treatment

The standard treatment of the resonant amplitude
assumes that it suffices to make a quadratic Taylor
expansion of the phase, while extending the limits of
integration to �∞. This procedure is motivated by the
assumption that contributions from regions far away from
the resonance point cancel, and erases information about
nonresonant contributions. However, nonresonant axion-
photon conversion can be non-negligible or even dominate

resonant contributions, and a careful calculation requires
both types of contributions to be accounted for. We here
show how this can be done, and that the width of the finite
region attributed to the resonant contribution is arbitrary if
taken sufficiently small, and the nonresonant contributions
are always important for an accurate result.
To evaluate the resonant amplitude (92), we treat the

nonoscillatory part of the integrand as slowly varying (or
constant), and Taylor expand the phase λφðzÞ to second order
around z⋆. The integral runs from zl ¼ z� − Δz to
zu ¼ z� þ Δz. However, tomake the build-upof the resonant
contribution more apparent, we replace the upper limit by an
intermediate z satisfying zl < z ≤ zu. We then have that

iAres
γx→a ¼ Δxðz�Þeiλφðz�Þ

Z
z

z�−Δz
dz0eiλ

φ00ðz�Þ
2

ðz−z�Þ2

¼ 1

2
Δxðz�ÞLresðz�Þeiðλφðz�Þ−π

4
signðφ00ðz�ÞÞÞ

�
Err

�
e−iπ=4

ffiffiffi
π

p z − z�

Lres

�
þ Err

�
e−iπ=4

ffiffiffi
π

p Δz
Lres

��

⟶
z→zu

Δxðz�ÞLresðz�Þeiðλφðz�Þ−π
4
signðφ00ðz�ÞÞÞErr

�
e−iπ=4

ffiffiffi
π

p Δz
Lres

�
: ð101Þ

The error function grows linearly for small argument,
and performs damped oscillations as the argument
increases, and finally asymptotes to 1, consistently with
Eq. (96). So far, we have kept Δz arbitrary; however, we
expect that accurate results are obtained when Δz=L ≪ 1
so thatΔz=Lres ≪ 1 for all relevant energies, and the Taylor
expansion of the phase can be trusted. In this limit, the
resonant amplitude simplifies further:

iAres
γx→a ¼

2ieiλφðz�Þffiffiffi
π

p Δxðz�ÞΔz: ð102Þ

Note that Δz is assumed small but is still arbitrary, and
varying Δz shuffles around contributions to the amplitude
between the resonant and nonresonant parts. This implies
that the nonresonant contributions will generically always
be important: when insisting on takingΔz small enough for
the Taylor expansion of the phase to be a good approxi-
mation, the resonant contributions never dominate the
nonresonant contributions.

C. Nonresonant contribution

We now turn to the nonresonant amplitudes of Eq. (93).
The terms are of the form

Ii ¼
Z

zli

zui−1

dz0Δxðz0Þeiλφðz0Þ; ð103Þ

and φ is either monotonically increasing or decreasing in
the entire interval ½zui−1; zli �. To interpret this integral as a

Fourier transform, we would like change integration
variable from z0 to φ, and extend the range of φ to �∞.
A suitable extension, φiðz0Þ, of φ can be defined by

having φi coincide with φ for z ∈ ½zui−1; zli �, and extend
linearly outside this range:

φiðzui−1Þ ¼ φðzui−1Þ; ð104Þ

φ0
iðz0Þ ¼

8>><
>>:

φ0ðzui−1Þ for z0 ≤ zui−1
φ0ðz0Þ for zui−1 ≤ z0 ≤ zli
φ0ðzli Þ for z0 ≥ zli :

ð105Þ

With this definition, φi is continuous and has a continuous
first derivative, and an unbounded range for z0 ∈ ð−∞;∞Þ.
Clearly, this is a one-to-one map from z0 to φi, which
provides the change of coordinates that we seek. We
furthermore denote the even extension of Δxðz0Þ by
Δe

Bðz0Þ, defined for z0 ∈ ð−∞;∞Þ. Equation (103) can
now be written as

Ii ¼
Z

zli

zui−1

dz0Δxðz0Þeiλφðz0Þ

¼
Z

∞

−∞
dz0W½zui−1;zli �ðz0ÞΔe

Bðz0Þeiλφiðz0Þ: ð106Þ

Using dφi ¼ φ0
idz

0, this may be written as

IiðλÞ ¼
Z

∞

−∞
dφiW½φmin;φmax�ðφiÞ

ΔB;iðφiÞ
jφ0

ij
eiλφi ; ð107Þ
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where for a monotonically increasing phase we have
φmin ¼ φðzui Þ and φmax ¼ φðzliþ1Þ, and for a decreasing
phase we have φmin ¼ φðzliþ1Þ and φmax ¼ φðzui Þ. We’ve
slightly abused the notation to write Δe

Bðz0Þ ¼
Δe

Bðz0ðφiÞÞ ¼ ΔB;iðφiÞ. Equation (107) shows that IiðλÞ
is, up to a factor of 2π, an inverse Fourier transform of the
function GiðφiÞ, defined as

GiðφiÞ ¼ W½φmin;φmax�ðφiÞfiðφiÞ; for fiðφiÞ ¼
ΔB;iðφiÞ
jφ0

iðφiÞj
:

ð108Þ

Given that φi is now merely a coordinate, we can relabel it
by ϕ, dropping the i, and write the total amplitude from (93)
concisely as

iAnon−res
γx→a ¼

XNþ1

i¼1

Z
zli

zui−1

dz0Δxðz0Þeiλφðz0Þ

¼
Z

∞

−∞
dϕGðϕÞeiλϕ ¼ 2πĜ−1ðλÞ ¼ Ĝð−λÞ;

ð109Þ

where

GðϕÞ ¼
XNþ1

i¼1

GiðϕÞ ¼
XNþ1

i¼1

W½φi
min;φ

i
max�ðϕÞfiðϕÞ: ð110Þ

In Eq. (109), the circumflex denotes the ordinary, complex
Fourier transform, for which we use the convention:

F ðGÞ ¼ ĜðλÞ ¼
Z þ∞

−∞
dϕGðϕÞ expð−iλϕÞ: ð111Þ

F−1ðGÞ ¼ Ĝ−1ðλÞ ¼ 1

2π

Z þ∞

−∞
dϕGðϕÞ expðiλϕÞ: ð112Þ

Wenote that the transformofEq. (109) iswell defined for any
real λ, but only positive values have the physical interpre-
tation as inverse energies: λ ¼ 1=ω. Furthermore, this
equation makes it evident that the nonresonant amplitude
in general can be understood as (an inverse) Fourier trans-
form of G, when expressed as a function of the wavelength.
Clearly, questions about the oscillations in the amplitude,

and more specifically its spectrum, map directly to ques-
tions of the real-space properties of G. The spectrum of the
amplitude is given by its Fourier transform:

F ðiAnon−res
γx→a Þ ¼ 2πi

Z
∞

−∞
dλAnon−res

γx→a ðλÞe−iψλ ¼ 2πGðψÞ:

ð113Þ

The coordinate ψ has dual interpretations: it is the fre-
quency of probability-oscillations in wavelength-space,

and it is the phase corresponding to a set of positions
along the trajectory. The map to position space is one-to-
many and given by ϕ → φi → z0. Thus, the Fourier trans-
formed amplitude reads off, and sums, the values ofΔx=jφ0j
at up to N þ 1 locations along the line of sight. Clearly, if ψ
falls outside the range of all window functions inG, there is
no transition amplitude.
The total conversion probability from the nonresonant

contributions is given by the power spectrum of G

Pnon−res
γx→a ðλÞ¼ jĜð−λÞj2 ¼

XNþ1

i¼1

PiðλÞþ2
XNþ1

i<j¼1

PijðλÞ; ð114Þ

where in the last line we have defined the individual
probabilities from each regions, Pi ¼ jĜij2, and the inter-
ference terms, Pij ¼ ReðĜiĜ

�
jÞ. The Wiener-Khintchine

theorem can again be applied to express the conversion
probability as the Fourier transform of the autocorrelation
function of G:

Pnon−res
γx→a ðλÞ ¼ jĜð−λÞj2 ¼ ĉ−1G ðλÞ; ð115Þ

where

cGðψÞ ¼
Z

∞

−∞
dϕGðϕÞGðϕþ ψÞ: ð116Þ

Note that cG is an even function of its argument.

D. Examples

Fully solvable analytical examples are more sparse in the
general case than in the simpler cases of very massive or
massless axions. Here, we provide one example in which
both the resonant and nonresonant contributions can be
calculated exactly (to this order in perturbation theory), and
which illustrates the application of the Fourier formalism in
the general case.

1. Example 8: Resonant and nonresonant
contributions

We consider a model which is simple enough that some
of the approximations of the stationary phase method
actually hold exactly, and the resulting amplitude can be
calculated in three ways: as a purely resonant contribution;
as an arbitrary mix of resonant and nonresonant contribu-
tions; or as a purely nonresonant contribution. We assume
the following plasma frequency profile:

ω2
pl ¼ m2

a
z
z�

¼ m2
au; ð117Þ

leading to a resonance ma ¼ ωpl for u ¼ z=z� ¼ 1. The
resonance point is assumed to lie within a region with a
constant magnetic field of magnitude B0, which extends up
to umax > 1. The (dimensionful) phase coordinate is then
given by
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φðzÞ ¼ 1

2

Z
z

0

dz0ðω2
plðz0Þ −m2

aÞ ¼ jφ�j½ðu − 1Þ2 − 1�;

ð118Þ

whereφ� ¼ − z�m2
a

4
. Clearly, this phase is a quadratic function

of the spatial coordinate around the resonance point.
We first evaluate the amplitude by using our version of

the stationary phase approximation, as derived in Sec. V B.
The resonance length is given by

Lres ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
πω

ω0
plma

s
¼ z�

ffiffiffiffiffiffiffiffiffiffi
π

jφ�jλ
r

¼ z�
ffiffiffiffiffiffi
π

Φ�

r
; ð119Þ

where we in the last term have introduced the full phase at
the resonance point:Φ� ¼ −λφ�. The resonant contribution
from some small region ½z� − Δz; z� þ Δz� is now (exactly)
given by

iAres ¼
gaγB0z�

2

ffiffiffiffiffiffi
iπ
Φ�

s
e−iΦ�Err

� ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p Δz
z�

�
: ð120Þ

In this simple example where the magnetic field is constant
and the phase quadratic in z, we can also calculate the full
amplitude (i.e., over ½0; zmax�) as a resonant amplitude by
using Eq. (101):

iA ¼ gaγB0z�

2

ffiffiffiffiffiffi
iπ
Φ�

s
e−iΦ�

1

2

�
Err

� ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p zmax − z�

z�

�
þ Errð

ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p
Þ
�
: ð121Þ

(a) (b)

(c) (d)

FIG. 6. Conversion probability of photons and massless axions (Example 7, cf. IV B 1) with a magnetic field given by Eq. (85) and a
plasma frequency given by (82). Here gaγ ¼ 10−11 GeV−1, B ¼ 1 μG, R ¼ 50 kpc, k̃ ¼ 33π=2, and neðRÞ ¼ 10−3 cm−3. (a) G ¼
gaγBx=ω2

pl as a function of φ̃ ¼ φ=ðω2
plðRÞRÞ, (b) ReðAγx→aÞ ¼ F sðGÞ (black), and ImðAγx→aÞ ¼ −F cðGÞ (orange) as functions of

η ¼ λω2
plðRÞR, (c) the autocorrelation function cGð ~ψ Þ where ψ̃ ¼ ψ=ðω2

plðRÞRÞ, (d) conversion probability as a function of energy.
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In this example, the standard treatment of the stationary
phase approximation, which neglects the Error functions
and uses Eq. (96), is a good approximation when Φ� ≫ 1,
but not otherwise.
The transition amplitude can also be computed using the

Fourier techniques developed in Sec. V C. The first step is
then to change coordinate from z to φ. Inverting Eq. (118),
gives two branches:

u�ðφÞ ¼ ½1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ̃

p
�; ð122Þ

where we have introduced the notation φ̃ ¼ φ=jφ�j.
Following the procedure outlined in Sec. V C, we divide
the integration domain in u into three regions: ½0; 1 − δ�,
½1 − δ; 1þ δ�, and ½1þ δ; umax�. The first and last of these
can be evaluated with Fourier techniques as nonresonant
amplitudes, and the middle contribution is a resonant
amplitude that evaluates as in Eq. (120). In the first region
φ drops from 0 to −jφ�j þ δφ (while u ¼ u−), and in the
third region the phase increases from −jφ�j þ δφ to some

φfin ¼ φðumaxÞ (while u ¼ uþ). To account for the change
of measure, we need dφ=dz:

dφ�
dz

¼ 2
jφ�j
z�

ðu� − 1Þ ¼ �2
jφ�j
z�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ̃

p
: ð123Þ

The function fiðφiÞ ¼ Δx=jφ0
ij are in this simple case

identical between the two regions:

fðφ̃Þ ¼ gaγB0z�

4jφ�j
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ φ̃
p : ð124Þ

The full function GðϕÞ is then given by

GðϕÞ ¼ gaγB0z�

4jφ�j
W½−1þδφ̃;0�ðϕ̃Þ þW½−1þδφ̃;φ̃fin�ðϕ̃Þffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϕ̃
p : ð125Þ

The nonresonant amplitude is now given by the inverse
Fourier transform of G, and the result can be expressed
using Fresenel’s C and S integrals, incomplete Euler
gamma functions, or, as we do here, error functions:

(a) (b)

(c) (d)

FIG. 7. The axion-photon conversion probability (lower right) for gaγ ¼ 10−11 GeV−1, ma ¼ 0.15 neV, ωpl;0 ¼ 0.5 neV, and z� ¼
10 kpc is calculated for a constant magnetic field B ¼ 1 μG (upper left), as discussed in Sec. V D 1 (Example 8). (a) G as a function of
the dimensionless phase φ̃ ¼ φ=jφ�j. The resonance point is at φ̃ ¼ −1, (b) ReðAγx→aÞ ¼ F sðGÞ (black), and ImðAγx→aÞ ¼ −F cðGÞ
(orange), (c) autocorrelation function of G, (d) conversion probability as a function of energy.
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iAnon−res
γx→a ¼ gaγB0z�

2

ffiffiffiffiffiffi
iπ
Φ�

s
e−iΦ�

1

2

�
Err

� ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p zmax − z�

z�

�
þ Errð

ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p
Þ − 2Err

� ffiffiffiffiffiffiffiffiffiffiffi
−iΦ�

p Δz
z�

��
: ð126Þ

To get the full amplitude, we add the resonant contri-
bution from (120) to this equation, which simply cancels
the last term of Eq. (126), giving a total amplitude that
agree with the resonant only calculation of Eq. (121).
Finally, by taking Δz → 0 so that there is no resonant

contribution, the last term of Eq. (126) goes to zero, and the
nonresonant amplitude reproduces the full result of
Eq. (120). We conclude that all three ways of calculating
the amplitude are in exact agreement, and the conversion
probability,

Pγ→a ¼ jAnon−res
γ→a þAres

γ→aj2;

is independent of the split between resonant and
nonresonant.
The conversion probability can also be calculated

directly from the autocorrelation function of the func-
tion GðϕÞ, taking Δz ¼ 0. The autocorrelation function is
given by

cGðψ̃Þ ¼
g2aγB2

0ðz�Þ2
8jϕ�j2

"
sinh−1

 ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ̃

ψ̃

s !
þ sinh−1

 ffiffiffiffi
1

ψ̃

s !

þ 2sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffi

2 − ψ̃

ψ̃

s !#
; ð127Þ

for 0 ≤ ψ̃ ≤ 1, and

cGðψ̃Þ ¼
g2aγB2

0ðz�Þ2
4jϕ�j2

sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffi

2 − ψ̃

ψ̃

s !
; ð128Þ

for 1 < ψ̃ ≤ 2. Since the autocorrelation function is an even
function defined over the entire real line, this completely
defines cG.
In Fig. 7, we show the function Gðϕ̃Þ, the real and

imaginary parts of the transition amplitude, the autocorre-
lation function cG, as well as the resulting conversion
probability. A notable feature is the discontinuity inGðϕÞ at
ϕ ¼ 0 where G goes from having support from two
functions (G1 þG2) to just a single nonvanishing function
(G2). This is also reflected as a kink in the autocorrelation
function of G at ψ ¼ �1. In Fig. 8, we show how the
conversion probability builds up with distance across the
resonance point.

VI. NUMERICAL TESTS OF THE FORMALISM

Expressing axion-photon mixing as Fourier transforms
makes it possible to leverage the highly effective numerical
techniques of the FFT to determine the predictions. In this
section, we show how FFT techniques can be applied to
complex examples with massive (ma ≫ ωp) and massless
(ma ≪ ωp) axions.

9 We use these numerical examples to
test the applicability of the Fourier formalism, and compare
it to the traditional method of solving the Schrödinger-like
equation directly. We find that the Fourier-based techniques
are much faster than direct simulations (as expected), and
that, in our examples, the perturbative expansion holds very
well over a wide range of interesting energies and for
couplings up to about an order of magnitude larger than the
current observational limit. This suggests that numerical
Fourier methods are superior to traditional methods when
searching for axions using high quality data.

A. The discrete cosine and sine transforms

In Secs. III–V, we presented a series of examples where
the relevant Fourier transforms can be computed analyti-
cally. In more complex models for the magnetic field and
the plasma density, this may not be possible, and we can
instead make use of the discrete cosine and discrete sine
transforms (DCT and DST, respectively) [62]. The DCT
and DST can be computed quickly using a modified FFT,
and implementations of these algorithms are available as
standard in numerical libraries such as scipy [63,64] or the

FIG. 8. Conversion probability at ω ¼ 10 keV as a function of
z for the example of Sec. V D 1. The blue dotted line marks the
resonance point (z� ¼ 10 kpc) where ma ¼ ωpl and the blue
shaded region marks the resonance length at this energy:
Lres ¼ 0.3 kpc.

9Similar techniques should also be straightforwardly appli-
cable to the general case described in Sec. V.
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GNU scientific library [65]. We here focus on the DCT, but
equivalent equations can be written for the DST. There are
four different types of the DCT [66], and here we use the
“type-I” definition which simply corresponds to discretiz-
ing the cosine transform over a finite range, as we now
discuss.
The DCT can be obtained by replacing the continuous

coordinate (z or φ) by an evenly sampled list of points:
zn ¼ nΔz for n ¼ 0;…; N, so that zmax ¼ NΔz. The
conjugate variable (η or λ) is also discretized with ηm ¼
mπ=zmax where m ¼ 0;…; N. Note that the product
znηm ¼ nmπ=N. The DCT of type I is given by:

f̂m ¼ 1

2
ðf0 þ ð−1ÞmfNÞ þ

XN−1

n¼1

fn cos

�
πnm
N

�
; ð129Þ

which can be understood as the midpoint Riemann sum
(divided by Δz) of the continuous cosine transform.
Clearly, the resolution of the conjugate variable is Δη ¼
π=zmax and the maximal value is ηN ¼ π=Δz. In the context
of axion-photon oscillations, obtaining sufficient energy
resolution and coverage of the conversion probability,

requires sampling with high enough spatial resolution
and out to sufficiently large values of zmax. From the
examples we have considered, a modestly large value of
N ¼ 105 gives extremely good resolution in the X-ray
band. The value zmax is naturally no smaller than the region
over which the magnetic field is nonvanishing, but it can be
made arbitrarily large by “zero-padding”, i.e., appending
the set of fn with zero-valued data points.

B. Numerical implementations applied
to the Perseus cluster

For our numerical tests, we consider classes of models
that have previously been used to study photon-axion
conversion in astrophysical settings, adopting magnetic
field profiles and density laws appropriate to the Perseus
cluster. We first consider two examples with massive axions
(ma ≫ ωpl): a general cell model, and a turbulent, diver-
gence-free model based on Gaussian random fields. As
shown in Sec. III, any such massive model can be solved
analytically to leading order in perturbation theory, so here
we compare the results of the discrete Fourier transform
with direct numerical simulations of the Schrödinger-like

(a) (b)

(c) (d)

FIG. 9. Numerical cell-model example of Sec. VI B 1 for massive axion-photon conversion, with parameter values as in Fig. 4.
(a) Magnetic field, (b) the real, ReðAγx→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγx→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude
Aγx→a as calculated from discrete transforms, (c) magnetic field autocorrelation function, (d) conversion probability as calculated from
the DCT of cBx, (red solid) compared to a numerical solution of the Schrödinger-like equation (black dashed).
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equation. We then consider an example with a massless
axion and a “beta-model” plasma density, which illustrates
how the discrete Fourier transform can be applied to the
phase variable φ.
In all three examples in this section, we adopt gaγ ¼

10−13 GeV−1 and use a domain size of 500 kpc. The DCT is
calculated using 2 × 104 and 105 samples in the massive
and massless case, respectively. We will focus on the
gamma-ray regime in the massive ALP case and the
X-rays in the massless ALP case, but we stress that
the formalism can be applied to a much broader class of
problems, and over any energy regime.

1. Cell model, massive axions

We first consider massive axions (ma ≫ ωpl) in a general
cell model, cf. Sec. III B 2 for the analytical solution. These
types of models are commonly used to model photon-axion
conversion in complex astrophysical environments, such as
galaxy clusters. Specifically, we consider a realization of
the stochastic “Model B” of [19], where cells of random
size L are generated according to a power-law probability
distribution pðLÞ ∝ L−1.2 between 3.5 and 10 kpc, and the
magnetic field direction in each cell is random and
isotropic. Such magnetic domains are assumed to extend
to 500 kpc from the center. The total magnetic field strength
of each cell is assumed to decline with radius as

BðzÞ ¼ 7.5 μG

�
hðzÞ

hð25 kpcÞ
�
0.5
; ð130Þ

where the function hðzÞ is given by a double-β law of the
form

hðzÞ ¼ 3.9 × 10−2

½1þ ðz=80 kpcÞ2�1.8 þ
4.05 × 10−3

½1þ ðz=280 kpcÞ2�0.87 :

ð131Þ

In [19], hðzÞ corresponds to the electron density, a form
originally given by [67], but, in this test, we explicitly set
ne ¼ 0 everywhere so as to ensure the massive axion case.
This cell-based model is a slightly altered version of the
model used by [68], and is based on very long baseline
array (VLBA) observations of NGC 1275, the central AGN
in the Perseus cluster.
The magnetic field profile is shown in Fig. 9, together

with the associated DCT and DST (giving the real and
imaginary parts of the amplitude), the magnetic autocorre-
lation function, and the resulting conversion probability.
The probability curve obtained from squaring the ampli-
tude or taking the DCT of the magnetic autocorrelation
function agrees well with the numerical solution from the
Schrödinger-like equation, but is significantly quicker to
compute.

2. Gaussian random field, massive axions

Next, we consider the mixing of photons and massive
axions in a divergence-free Gaussian random field (GRF)
model. The magnetic field profile is generated using a
variation of the method of Tribble [69], which has been
used in various guises in the astrophysical and axion
literature [39,70,71]. Briefly, the field is generated by
drawing random Fourier components of the vector poten-
tial, from which the real-space A is obtained through the
inverse Fourier transform. The vector potential is then
rescaled to account for the decrease of the field strength
with radius: specifically we use the scaling of “Model B”
from [19], as in the previous subsection. Finally, a
divergence-free field magnetic field is generated from
the curl of the rescaled vector potential. To generate the
field, we have to specify the power spectrum; we assume a
Kolmogorov power spectrum such that EðkÞ ∝ k−5=3,
where EðkÞ is the energy contained in the interval ðk; kþ
dkÞ with wave number k. We use minimum and maximum
scale lengths 3.5 kpc and 30 kpc, respectively, and the
field is sampled at 1.75 kpc intervals for the solution of the
Schrödinger-like equation. As in the previous section, we
set ne ¼ 0 as we are considering the massive axion
regime.
In Fig. 10, we show Bx of a specific realization of the

magnetic field, the real and imaginary parts of the ampli-
tude (obtained from the DCT and DST), the magnetic
autocorrelation function, and the resulting conversion
probability. The GRF has significantly more small-scale
structure in the magnetic field than the previously studied
cell-model, due to the presence of a large range of Fourier
components. This leads to finer structure in the DCT/DST,
and the conversion probability. The conversion probability
curve calculated from the DCTof cBx

agrees very well with
the result from the numerical solution of the equation of
motion.

3. Gaussian random field with β-law density,
massless axions

We now consider the case of massless axions. A non-
trivial aspect of the evaluation of the amplitude is the
change of coordinates z → φ, which depends on the plasma
density. In this example, we consider the famous class of
electron densities described by “β-models”:

neðrÞ ¼ n0

�
1þ

�
r
rc

�
2
�
−3
2
β

: ð132Þ

Here n0 denotes the electron density at the origin, and rc
and β are positive constants. β-models and their variants are
ubiquitously used as simple approximations of the gas
density in galaxy clusters [72,73].
We consider a source of photons located at the center of

the cluster, and calculate φ from Eq. (76) as:
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φðzÞ ¼ 2πe2

me

Z
z

0

dz0neðz0Þ ¼
2πe2

me
n0rc

Z
z=rc

0

duð1þu2Þ−3
2
β;

ð133Þ

where we have made a change of integration variable from z
to u ¼ z=rc. The integral evaluates to the “ordinary”, or
Gaussian, hypergeometric function:

φðzÞ ¼ rcωplð0Þ2φ̃; where

φ̃ ¼ z
2rc

2F1

�
1

2
;
3β

2
;
3

2
;−
�
z
rc

�
2
�
: ð134Þ

The inverse function, zðφÞ, is readily obtained numerically
from this expression, cf. Fig. 11. Four our specific example,
we take β ¼ 1, n0 ¼ 0.05 cm−3, rc ¼ 125 kpc and a total
domain size of 4rc ¼ 500 kpc, a choice which gives
densities and scale lengths comparable to those in typical
cool-core clusters.
We assume that the magnetic field is the GRF-example

of Sec. VI B 2. The function GðφÞ is plotted in Fig. 12(a),
and should be compared to the magnetic field of Fig. 10(a):
in contrast to the magnetic field that decays with radius,

GðφÞ keeps a rather constant magnitude of oscillations over
a large potion of its range, and then increases for large
values of φ. This reflects how the transition probability is
more sensitive to the magnetic field in (real-space) regions
where the phase Φ varies more slowly, i.e., where the
plasma density is suppressed.

FIG. 11. The spatial coordinate z=rc as a function of φ for a
β-law density profile, evaluated up to an assumed cluster radius of
R ¼ 4rc for β ¼ 0.5 (blue), β ¼ 0.7 (orange), and β ¼ 1 (green).

(a) (b)

(c) (d)

FIG. 10. Numerical GRF example of Sec. VI B 2 for massive axions; parameter values as in Fig. 4. (a) Magnetic field profile, (b) the
real, ReðAγx→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγx→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude Aγx→a as calculated from
discrete transforms, (c) magnetic field autocorrelation function, (d) conversion probability as calculated from the DCTof cBx, (red solid)
compared to a numerical solution the Schrödinger-like equation (black dashed).
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The real and imaginary parts of the transition amplitude
are plotted in Fig. 12(b), and the magnetic autocorrelation
function, cGðψÞ, is shown in Fig. 12(c). The conversion
probability is shown in Fig. 12(d), again compared to a
numerical solution of the Schrödinger-like equation. Once
more, the agreement is extremely good.

C. Performance improvement

To compare the numerical efficiency of the traditional
Schrödinger approach to our new, numerical Fourier
approach, we consider the following problem. Suppose
that we would like to calculate the conversion probability
for Nm axion masses and Ng axion-photon couplings in the
perturbative regime. We will for simplicity consider mas-
sive axions in this example, and assume that the back-
ground magnetic field and autocorrelation function are
known. Suppose further that to obtain sufficient energy
resolution over the specified range, the calculation should
include at least Nω beam energies, and that axion-photon
trajectory needs to be sampled with at least Nz domains for
numerical accuracy. We first consider the computational

time required in the traditional approach, before comparing
with that of the Fourier approach.
To solve this problem in the traditional approach requires

calculating the z-evolution operator through matrix multi-
plication of the Nz operators for the uniform domains. This
has to be done for each mass, energy and mode energy, so if
the calculation time for a single uniform domain is Δt1,
then the total time to solve this problem is given by

Δtsle ¼ NgNmNωNzΔt1: ð135Þ

By contrast, in the perturbative approach, gaγ is an
overall prefactor which trivially rescales the probability
(at negligible computational cost), so the discrete Fourier
transform can be performed at a fixed coupling. Similarly
the mass only appears inside η ¼ m2

a=ð2ωÞ, so that the
probability can be calculated for a fixed mass, and then
reinterpreted for other masses (again at negligible numeri-
cal cost). Moreover, a single discrete Fourier transform
samples all spatial points and generates the probability at all
mode energies. The number of points that the discrete

(a) (b)

(c) (d)

FIG. 12. Numerical GRF example of Sec. VI B 3 for essentially massless axions. Parameters are: gaγ ¼ 10−13 GeV−1,
ma ¼ 10−13 eV, β ¼ 1, n0 ¼ 0.05 cm−3, rc ¼ 125 kpc and total domain size 4rc ¼ 500 kpc. (a) The function GðφÞ ¼ gaγ Bx=ω2

pl,
(b) the real, ReðAγx→aÞ ¼ F sðΔxÞ (black), and imaginary, ImðAγx→aÞ ¼ −F cðΔxÞ (orange), parts of the amplitude Aγx→a as calculated
from discrete transforms, (c) autocorrelation function of G, (d) conversion probability as a function of energy, calculated from the DCT
of cGðψÞ, (red solid) compared to a numerical solution of the Schrödinger-like equation (black dashed).
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Fourier transform runs over, N, must then satisfy both N ≥
Nz and N ≥ Nω. If N ≥ Nω > Nz, taking the Fourier
transform requires “zero-padding” as described above. If
N ≥ Nz > Nω, the Fourier transform tends to give a higher
energy resolution than the minimal requirement. Given the
usual scaling in the DCT algorithm of OðN log2NÞ [63],
we expect the total calculation time to scale as

Δtdct ∼ N log2NΔt2; ð136Þ

where Δt2 is now a single multiplication in the DCT
algorithm, and Δt2 ≪ Δt1.
The fractional numerical gain can in this example be

estimated as

speed‐up ¼ Δtsle
Δtdct

¼ NgNmNωNz

N log2N
Δt1
Δt2

: ð137Þ

This performance improvement is model-dependent but
appreciable for all relevant values of the parameters, and
tends to be maximized when Nz ≈ Nω, so that the Fourier
approach does not lead to “superfluously” high spatial or
energy sampling.
We now consider a concrete example where we

numerically compare the actual computational time. We
take Nm ¼ Ng ¼ 1, and set gaγ ¼ 10−13 GeV−1 and
ma ¼ 5 × 10−9 eV. For the magnetic field, we consider
the model of GRF model described in Sec. VI B 2. To
illustrate the dependence onNz, we “truncate” the magnetic
field at the maximal radius NzΔz with Δz ¼ 1.75 kpc and
vary Nz from 1 to 501 at intervals of 20. Thus, the
parameter Nz in this case parametrizes the size of the
magnetized region. To ensure sufficient energy resolution
in the band 1–100 GeV, we take Nω ¼ 1104. This requires
the number of discrete Fourier transform samples to beN ¼
4096 for the chosen value of the mass. We note that this
example is rather conservative since Nω ≫ Nz, and the
Fourier approach samples the spatial profile more densely
than the minimal requirement.
The speed-up factor is shown in Fig. 13 as a function of

Nz. The speed improvement is linear in Nz, becauseΔtsle ∝
Nz and Δtdct is constant for constant N and Nω. The speed-
up factor quickly exceeds 100 even for modest numbers of
cells, and this particular test provides quite a conservative
estimate of the performance improvement. For broader
energy ranges, the speed-up is even more significant since
more solutions to the Schrödinger-like equation must be
calculated (the factor Nω=N increases). The speed-up is
further increased by several orders of magnitude when Nm
and Ng are taken to be sufficiently large to ensure a dense
sampling of the axion parameter space.
Overall, our results show that the Fourier formalism is

significantly quicker—often by orders of magnitude—for
models with more than a few cells, and therefore also for

the types of magnetic field models commonly used for
astrophysical ALP searches.

D. Perturbativity

A central aspect of our analysis in this paper is
perturbation theory, where we have consider the leading-
order contributions to the conversion probability (i.e., A ∼
gaγ and Pγ→a ∼ gaγ2). As discussed in Sec. II, parametri-
cally, the perturbative expansion should be good when
conversion probabilities are small or moderately small,
which includes a large fraction of all cases of phenom-
enological interest. In this section, we elaborate on this
general argument through two examples: the simplest case
of a constant magnetic field, and a complex example with a
turbulent magnetic field. In both cases, we seek to identify
the breakdown of the perturbative expansion when the
mixing grows large.
First, we consider the single domain of uniform B and

length zmax discussed in Sec. III B 1. This is one of a very
small set of examples in which both the full and the
perturbative conversion probabilities can be calculated
analytically. The ratio between the leading-order and full
conversion probabilities is:

PLO
γ→a

Pfull
γ→a

¼
�
1þ 4

Δ2
x

η2

� sin2
�

ηzmax
2

�

sin2
�

ηzmax
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 Δ2

x
η2

q � : ð138Þ

The perturbative expansion in gaγB can be interpreted as an
approximation using 4Δ2

x=η2 ≪ 1. Clearly, when ηzmax is
sufficiently small to allow for a Taylor expansion of the
sines,

PLO
γ→a=Pfull

γ→a ¼ 1þO

 
ηzmax

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Δ2
x

η2

s !3

: ð139Þ

FIG. 13. The speed-up factor for the test described in Sec. VI C
using the same GRF model as in Sec. VI B 2 truncated in each
case at a maximum radius of zmax ¼ NzΔz, with Δz ¼ 1.75 kpc.
Here Nm ¼ Ng ¼ 1.
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An interesting special case is when 4Δ2
x=η2 ≪ 1 but ηzmax is

sufficiently large that Δ2
xzmax=η≳ π. In this case, the oscil-

lations of the conversion probability are very fast, and the LO
approximation is out-of-phase with the exact result. This
discrepancy is not always observable however as detector
resolution or Doppler broadening limits the detectability of
high frequency oscillations, and the cycle averaged predic-
tions at LO agree with that of the full model.
In Fig. 14(a) we show a comparison of the first-order,

Fourier-like formula, which can be calculated from the
cosine and sine transforms, to the full formula accurate to
all orders. The calculation is conducted for a beam energy
of 10 keV, with ma ¼ 10−11 eV, zmax ¼ 10 kpc, and
B ¼ 10 μG. We show the conversion probabilities as a
function of gaγBxzmax, together with the absolute fractional
error. The relative error is at the few % level or lower until
the conversion probability exceeds ∼0.01; beyond this
point errors can be significant and approach unity or
higher—moreover the probability exceeds 1 at very
large gaγ .
Second, we consider a more complex cell model with

many domains, taking the example show in Fig. 9(a) for
concreteness (but now calculated using ma ¼ 10−11 eV).
Here, we compare the result obtained from a numerical
solution of the Schrödinger-like equation to a numerical
DCT of the autocorrelation function of the field, cBx

ðLÞ.
The conversion probabilities are shown as a function of
energy for a few different values of gradually increasing
gaγ, in Fig. 14(b). Overall, the outcome is similar to the
single-cell case, with good agreement until the amplitude of
the conversion probability exceeds a few %, where second-
order effects start to imprint themselves on the curve. In
fact, the values of gaγ above which the first-order

predictions from the DCT deviate substantially from the
more detailed calculation are already ruled out in X-ray
searches using similar models [19]. The tests presented here
are specific and not exhaustive, so caution should be
exercised when applying our scheme to any situation
whether the conversion probability exceeds a few percent.

VII. ASTROPHYSICAL MODELING OF GALAXY
CLUSTERS FOR AXION-PHOTON CONVERSION

A. Magnetic fields in clusters

The formalism developed in this paper provides new
insights into the dependence of axion-photon conversion
probabilities on the structure of the magnetic field along the
particle trajectory. Given the special role that galaxy
clusters play in these studies, it is appropriate to review
our current understanding of the structure and strength of
the magnetic field in the ICM.
To state the current paradigm up-front—multiple lines of

evidence suggest that the ICM is a turbulent magnetized
plasma that is, almost everywhere, in approximate hydro-
static equilibrium in the gravitational potential of the
cluster’s dark matter halo. In the bulk of the ICM, the
magnetic pressure appears to be approximately 1% of
the thermal pressure and the magnetic field is tangled on
scales of a few-kpc, consistent with characteristic spatial
scales in the turbulent power spectrum. There is little
evidence for large-scale regular magnetic field structures in
the central regions of clusters. In the rest of this subsection,
we summarize in brief the key evidence underpinning this
paradigm.
Direct observational evidence for magnetic fields in the

ICM comes principally from radio observations [74].
Faraday rotation, i.e., the characteristic rotation of the

(a) (b)

FIG. 14. An illustration of the breakdown of the perturbative treatment (cf. Sec. VI D) for a single domain with uniform magnetic field
(left) and a cell-based model for the Perseus cluster (right). Both models usema ¼ 10−11 eV. Discrepancies are only significant once the
amplitude of the probability exceeds a few %. (a) Analytic calculation for a single domain of size zmax; calculations from Eq. (35),
accurate to leading order, are compared to the fully accurate analytic formula, as a function of the dimensionless quantity gαγ Bx zmax and
(b) numerical calculation using a cell-based model for the Perseus cluster. Conversion probabilities calculated from a DCT (dashed lines)
are compared to a full numerical solution to the Schrödinger-like equation of motion (translucent solid lines), as a function of gαγ for the
realization of Model B already discussed and shown in Fig. 9(c).
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polarization angle as a function of wavelength due to
propagation through a magnetized plasma, is clearly seen in
the radio band towards the radio-emitting lobes of AGN
embedded in the ICM. The corresponding Rotation
Measure (RM) provides a direct measure of the line-of-
sight magnetic field Bz integrated along the path from the
source to observer. For a given RM, the inferred typical
magnetic field strength depends upon the number of field
reversals along the path and hence the field coherence
length. In a number of clusters, the RM mapping across
large radio lobes reveals the typical coherence length of the
field to be a few kpc [75–77]. Adopting these in-plane
coherence lengths as being typical of the line-of-sight
structure allows typical field strengths to be estimated;
we find B ∼ 1–10 μG in the cores of cool-core clusters,
corresponding to a ratio of the thermal-to-magnetic pres-
sures of ∼100.
Independent support for this picture comes from obser-

vations of radio halos and minihalos in the cluster cores and
radio relics in cluster outskirts [78]. The radio emission
from these diffuse structures is synchrotron radiation from a
population of relativistic electrons gyrating in the magnetic
field of the ICM (with the relativistic population likely
arising from a central AGN for the central minihalos, and
shock acceleration for the radio relics). Measurements (or
upper limits) on the X-ray inverse Compton scattering of
the relativistic electron population can be combined with
measurements of the synchrotron emissivity to estimate
(or set a lower limit on) the magnetic field strength. An
example of such a study for the radio halo in the Perseus
cluster is provided by [79]; note that the reported detection
of the inverse Compton X-rays in this work was later
discovered to be due to an error in the Chandra mirror
calibration. Thus the reported measurements of the mag-
netic field strength in [79] should be taken as strict lower
bounds, implying B > 3 μG in the core of Perseus. The
polarization of these structures provides information about
the configuration of the magnetic field. Synchrotron
radiation in a highly ordered magnetic field can provide
extremely high levels of polarization (with polarization
fractions exceeding 50%). By contrast, the observed
polarization fractions of these structures is observed to
be significantly lower (< 10%), especially for the radio
minihalos in the cores of relaxed clusters [80]. This is
interpreted as the effect of magnetic field tangling on a
scale smaller than the resolution of the radio observations,
i.e., beam depolarization.
The kpc-scale tangling of the magnetic field implied by

the radio observations is intimately linked to turbulence in
the ICM plasma. Again, there are multiple lines of evidence
suggesting that the ICM in even relaxed clusters is turbulent
with typical velocity fluctuations δv ∼ 0.1–0.2cs, where cs
is the sound speed. The density fluctuations associated with
turbulence directly translates into fluctuations of the X-ray
surface brightness, and these have become a powerful tool

for constraining ICM turbulence. For example, [81] employ
the particularly high-quality Chandra X-ray Observatory
data for the Virgo and Perseus clusters, showing that both
have a turbulent ICM with a Kolmogorov-like spectrum of
fluctuations extending to scales well below 10 kpc. The
most direct detection of turbulence in the ICM of a cluster
came from measurements of the Doppler broadening of
X-ray emission lines by the Soft X-ray Spectrometer (SXS)
on the Hitomi observatory [82].10 The (1-d) velocity
dispersion across most of the core was found to be
100–150 km s−1 [83], to be compared with the sound
speed of cs ≈ 1000 km s−1 and in good agreement with
the findings of the surface brightness fluctuation analysis.
This suggests that the turbulent energy density is a few
percent of the thermal energy density, and so very similar to
the magnetic energy density.
From a fluid dynamics perspective, the existence of

MHD turbulence in the ICM is entirely expected. While the
microphysics of viscosity in ICM-like plasmas is still an
area of active work [84], it is clear that it is significantly
suppressed below the naïve textbook value [85], making
the ICM atmosphere a moderate-to-high Reynolds number
(Re) system. Dynamics in the ICM atmosphere is driven by
a variety of external processes including merging sub-
clusters which induces ICM sloshing [86], the orbiting
galaxies [87], and jet activity from the central AGN that
drives ICM shocks and inflates ICM cavities [88]. There are
also purely internal processes within the ICM that can drive
dynamics, including conduction-driven buoyancy instabil-
ities [89] and small-scale kinetic dynamos [90]. Turbulence
is a natural outcome of such driving in a high-Re
atmosphere.

B. Galaxy cluster magnetic field models
in axion searches

Having discussed the evidence that the ICM is a
turbulent magnetized plasma, here we briefly review the
specific magnetic field models that are used for axion-
photon conversion in galaxy clusters. These range from
simple cell-models to more sophisticated treatments of
turbulent fields. We critically discuss a recent proposal to
model galaxy cluster magnetic fields as regular [41] for the
purpose of axion-photon conversion, and point out that this
model is inconsistent with observations.

(i) General cell models. The most commonly used class
of magnetic field models for axion searches in
galaxy clusters is the general cell model, which
we discussed (and solved) in Sec. III B 2 for massive

10The Perseus cluster was the first science target for the X-ray
microcalorimeter on the newly launched Hitomi observatory in
Feb-2016. Shortly after taking these data, the satellite was
destroyed due to a command-and-control error, making Perseus
the only galaxy cluster to be observed by an X-ray micro-
calorimeter at the present time.
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axions. An attractive feature of this class of models
is its close link to the single-domain model
(cf. Sec. III B 1), which is commonly used to build
intuition around axion-photon mixing also in com-
plex environments. In a general cell model, the sizes
of the domains can be generated stochastically as in
Sec. VI B 1, which allows mimicking some proper-
ties of smooth, “multiscale”, turbulent magnetic
fields. Moreover, with a general cell-model, it is
easy (though not very fast) to numerically solve the
Schrödinger-like equation.
However, as an astrophysical model, cell models

are extremely simplified, and do not satisfy some of
the most basic properties of magnetic fields, such as
being continuous and divergence free. Indeed, the
nonvanishing divergence of cell models has been
argued to provide a route to rule them out observa-
tionally through its impact on Faraday rotation
measurements [77]. Furthermore, while qualitative
agreement has been found between the predictions
for axion-photon conversion in cell models and in
more sophisticated, turbulent models [39], there is
no clear dictionary between these models that would
allow an unambiguous translation of assumptions
and constraints. See also [31,40,91,92] for a dis-
cussion of variants of cell models.

(ii) Gaussian random field models. The second class of
magnetic field models commonly used for axion
searches are the “GRF” models that we described in
Sec. VI B 2. These are smooth and divergence free,
and since the power spectrum is used when gen-
erating the vector potential, it is easy to connect
these models to other theoretical and observational
studies of magnetic field structure. GRF models
have been used numerically for axion searches in
e.g., [22,24,39,46].
The magnetic fields generated from a GRF are

rather featureless and lack large-scale coherent
filamentary structures arising from intermittency
and cooling instabilities which may relate to cold
filaments that are often observed in galaxy cluster
cores. Thus, the GRF models are still too simple to
fully capture the complex structure of galaxy cluster
magnetic fields. Moreover, axion-photon conversion
in GRF models has not been well-understood
analytically (though our discussion in Sec. III B 4
addresses this issue for massive axions). Finally,
GRF models are slightly more involved to simulate
than cell models.

(iii) MHD models. Magnetohydrodynamic (MHD) dy-
namos transfer mechanical energy of the plasma into
magnetic energy, and is believed to amplify small
seed fields into galaxy cluster magnetic fields of
OðμGÞ strength. Cosmological MHD simulations
indicate that such magnetic fields are tangled, can
feature turbulence-induced non-Gaussian structures,

and extend over several decades in Fourier space
(cf. [93] for a review). To date, there has been no
study of axion-photon conversion in MHD magnetic
fields. We note that our formalism will be very
useful in developing an understanding of how axion-
photon conversion in MHD magnetic fields differs
from GRF models. In particular, coherent struc-
tures that are clearly evident in MHD simulations
are completely erased when the phases of the
(exponential) Fourier modes are randomized [94].
However, as we have discussed in this paper, axion-
photon mixing is only sensitive to the magnetic field
through the autocorrelation function, which is inde-
pendent of the phases. This suggests that magnetic
field models used for axion searches can be visibly
different from more realistic magnetic fields, but still
produce the same predictions.

(iv) The “regular model” of [41]. Outflows fromAGN at
the center of galaxy clusters provide an additional
source of energy and complexity to the ICM. In
particular, jets extending from AGNs can inflate
bubbles that rise through the ICM by buoyancy, and
can reach large radii before “pancaking” or dispers-
ing. Such bubbles, or cavities, are visible in high-
resolution images of galaxy clusters as regions with
suppressed X-ray emission, indicating that the ther-
mal ICM has been displaced from the cavity. For
example, in the Perseus cluster, a number of such
cavities have been identified in various directions
within 100 kpc from the central galaxy, NGC 1275
[79,95–98]. In particular, Ref. [79] used deep
Chandra observations to identify a high-abundance
ridge, or “shell”, around 93 kpc from the center of
the cluster (coincident with the edge of the radio
mini-halo), and interpreted this ridge as a relic of a
collapsed radio bubble.

Recently, Ref. [41] appealed to the evidence for
X-ray cavities to propose a galaxy cluster model
with slowly varying, “regular” fields in Perseus, and
then used this model to argue that the uncertainties
in gamma-ray and X-ray limits on axions had been
underestimated, possibly by several orders of mag-
nitude. Here, we critically reexamine the motivation
and consistency of the astrophysical model proposed
in [41] (see Sec. III B 6 for the analytic, perturbative
solution of axion-photon mixing in this magnetic
field model).

The central assumptions of the model of [41]
are that:

(1) The center of the Perseus cluster consists of an X-ray
cavity of radius 93 kpc.

(2) The cavity can be modeled using the analytical
solution of [51] (that we discussed in Sec. III B 6),
and the electron density is given by the deprojection
analysis of [67].
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However, both these assumptions are problematic:
(1) The Perseus cluster is the brightest cluster in theX-ray

sky. The azimuthally averaged surface brightness
peaks towards the center of the cluster [67], and so,
the central 93 kpc of Perseus is certainly not an X-ray
cavity. As mentioned above, observations by a num-
ber of groups have identified several localized cavity
regions, including the high-abundance ridge at 93 kpc
from the center [79], but these do not encapsulate the
cluster or even fall along the line of sight from earth to
the center of the cluster. Thus, the central assumption
of [41] is in stark conflict with observations.

(2) A key prediction of the analytical, axisymmetric
solution of [51]11 is that the gas pressure dips inside
the cavity, and attains its peak value at the center and
at the boundary. This prediction is incompatible with
the radially decreasing gas pressure found from
Chandra observations of Perseus in [99]. Moreover,
the cavity model of [51] assumes that the electron
density inside the cavity is smaller than the sur-
rounding ICM, while [41] implicitly assumes that it
is filled by the ICM when using the observational
electron density from [67].

We conclude that the regular magnetic field model of [41] is
incompatible with observations, which should be taken into
account when examining its consequences for axion-
photon mixing.
We note in closing that magnetic field modeling is cur-
rently the dominant systematic in studies of axion-photon
mixing, and further theoretical, numerical and observatio-
nal studies will be critical to further improving the
sensitivity to axions.

C. Outlook

In Secs. III–V, we discussed the mathematical and
conceptual consequences of the formalism that we have
developed, and in Sec. VI, we demonstrated how it allows
for drastic improvements of numerical simulations of
axion-photon mixing. In this short section, we briefly
outline how our formalism suggests entirely new analysis
methods for axion searches.
The current paradigm for studying axion-photon mixing

involves specifying the magnetic field and the plasma
density, which are then used to numerically solve the
modified Klein-Gordon and Maxwell equations to find the
conversion probability. In many astrophysical applications,
this process must be repeated many times as one scans over
the allowed magnetic field configurations. The key mes-
sage of this paper is that the perturbative axion-photon
conversion probability is given by the magnetic power
spectrum (in some cases rescaled by 1=ω2

pl), or equiva-
lently, as a Fourier-type transform of the corresponding

magnetic autocorrelation function. The autocorrelation
function contains less information than the magnetic field,
and visibly distinct magnetic fields can share the same
autocorrelation function. This suggests that scanning over
magnetic fields is redundant, and that more efficient
methods could be developed based directly on the auto-
correlation function. Here we consider three possibilities
along these lines.
First, when defining an ensemble of magnetic fields (e.g.,

using one of the classes discussed in Sec. VII B), one
implicitly defines an ensemble of magnetic autocorrelation
functions. This suggests that instead of generating magnetic
field profiles along the axion/photon trajectory, one may
directly generate the magnetic autocorrelation function. In
simple cases, the distribution of autocorrelation functions
may be known analytically. In more complex cases,
machine learning techniques based on Gaussian processes
are likely to be very suitable for learning the distribution. An
autocorrelation function generated in real space need only to
be Fourier transformed to yield the conversion probability.
In some cases, it may be possible to generate the Fourier
coefficients of the autocorrelation function directly, which
simply corresponds to writing down the conversion prob-
ability, without numerically solving the equations of
motion.
Second, whenever high quality radio observations of

extended radio halos are available, it may be possible to
dispense of explicit magnetic fieldmodeling all together, and
move directly from radio observations to predictions for the
axion-photon conversion probability at high energies. In the
case of Gaussian, isotropic magnetic turbulence, maps of
RMs of an extended radio background source can be used to
reconstruct the statistics of the magnetic autocorrelation
tensor, Mij ¼ hδBiðxÞδBjðxþ rÞi, and [76]:

Mij ¼ MNðrÞδij þ ðMLðrÞ −MNðrÞÞ
rirj
r2

þMHðrÞϵijkrk:
ð140Þ

HereML,MN , andMH respectively denote the longitudinal,
normal and helical components of the tensor. We note
however thatMH is irrelevant for both RMs or axion-photon
mixing. The remaining components, MN and ML, can be
reconstructed from the spatial distribution of the observed
RMs, and determine the statistics of axion-photon conver-
sion along any trajectory through the Faraday screen. In this
context, the conversion probabilities could be obtained as
Fourier transforms of autocorrelation functions generated
from the observationally inferred tensor Mij.
Third, photons “disappearing” into axions lead to dis-

tortions of astrophysical spectra. These distortions will
appear as oscillatory residuals in fits that don’t take axions
into account. Recently, Ref. [43] suggested that it may be
beneficial to search for these imprints by expressing them
as functions of their wavelength, and then performing a
Fourier transform to hopefully isolate the oscillatory

11Which strictly only applies to an unmagnetized ambient
environment beyond the cavity.
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features. Our formalism suggests that this procedure is a
map from the observational residuals to an approximation
of the magnetic autocorrelation function (up to corrections
due to noise and the fitting procedure). For unpolarized
fluxes, the relevant conversion probability is the super-
position of the polarized conversion probabilities,
cf. Eq. (16), and the relevant correlation function will be
the sum of two components of the autocorrelation tensor.
This method opens up the possibility of using mathemati-
cal, physical and observational properties of the autocor-
relation function to improve the sensitivity of axion
searches.

VIII. CONCLUSIONS

We have considered the mixing of relativistic axions and
photons to leading order in the coupling, gaγ , and asked
what properties of the magnetic field are reflected in the
observationally interesting conversion probability, Pγ→a.
Our conclusion is that Pγ→a is given by the magnetic power
spectrum, or equivalently, by the Fourier transform of the
magnetic autocorrelation function. This result has notable
conceptual, calculational, numerical, and methodological
consequences.
Conceptually, our formalism maps questions about the

oscillatory spectrum of the conversion probability into
questions about real-space magnetic correlations.
Moreover, the mature framework of Fourier analysis and
autocorrelation theory lead to new, interesting identities for
axion-photon conversion.
Calculationally, we have demonstrated in a series of

examples that large classes of magnetic fields models, that
have previously only been studied numerically, can be
solved analytically. This is particularly striking in the case
of axions more massive than the plasma frequency (which
is of direct relevance for gamma-ray searches for axions),
where one of our examples comprises the general solution
to axion-photon mixing in any magnetic field.
Numerically, the current paradigm for computing axion

photon mixing is to simulate the equations of motion for
each magnetic field realization. Our formalism allows one
to circumvent numerical simulation, and the techniques of
the Fast Fourier Transform can be leveraged to efficiently
determine the predictions of each model.
Methodologically, our formalism suggests new approaches

for generating the predictions of the model, tightening the
connection with radio observations of rotation measures, and
for analyzing observational data that may carry spectral
imprints from axions.
Moreover, in the light of our new formalism, we have

critically reviewed the types of magnetic field models used
in axion searches in the literature. We have argued that the
commonly used cell models qualitatively agree well with
more sophisticated, turbulent GRF models, though with
certain differences that can be explained by the zigzaggy
nature of the cell-model autocorrelation function. We have

also pointed out some inconsistencies in a recently pro-
posed regular model for the magnetic field in the Perseus
cluster.
The focus of this paper is the interconversion of photons

and relativistic axions, e.g., as those that may be produced
from high-energy astrophysical fluxes. Our formalism
extends straightforwardly to nonrelativistic axions, such
as axion dark matter, in the case of a constant plasma
density. The general problem of interconversion of dark
matter axions and photons is more subtle, and not discussed
in this paper. Similarly, we do not discuss the opposite
regime of extremely energetic particles in strong magnetic
fields, where the QED birefringence contribution cannot be
neglected.
Our results draw on the quantum mechanical analogy for

axion-photon mixing developed in [42], and in the context
of quantum mechanical perturbation theory, it is well-
known that the leading-order, infinite-time transition ampli-
tude is given by a Fourier transform of the interaction
Hamiltonian. To the best of our understanding, the equiv-
alent Wiener-Khintchine form in which the transition
probability is given by the Fourier transform of the
autocorrelation of the interaction Hamiltonian, is less
explored in the literature.
Finally, our approach is based on perturbation theory and

will be most useful when searching for spectral irregular-
ities that are sufficiently small. The precise breaking point
of perturbation theory depends on the magnetic field
model, but our analysis indicates that our approach could
consistently be used to search for axions with couplings of
about an order of magnitude larger than the current
observational limit, using currently available precision
X-ray data. Thus, our first-order formalism can already
be used for large portions of the parameter space considered
in axion searches. Moreover, our method is even more
relevant to future studies with the Athena mission [37] and
the gamma-ray CTA observatory [38].

ACKNOWLEDGMENTS

M. C. D. M. is supported by the European Research
Council under Grant No. 742104 and by the Swedish
Research Council (VR) under Grants No. 2018-03641 and
No. 2019-02337. C. R. thanks the UK Science and
Technology Facilities Council (STFC) for support under
the Consolidated Grant No. ST/S000623/1, as well as the
European Research Council for support under the European
Union’s Horizon 2020 research and innovation programme
(Grant No. 834203). J. H. M. acknowledges a Herchel
Smith Fellowship at Cambridge. The work of P. C. is
partially supported by the Italian Istituto Nazionale di
Fisica Nucleare (INFN) through the “Theoretical
Astroparticle Physics” project and by the research Grant
No. 2017W4HA7S “NAT-NET: Neutrino and Astroparticle
Theory Network” under the program PRIN 2017 funded by
the Italian Ministero dell’Università e della Ricerca (MUR).
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