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Using properties of Goldstino, we show that in generic grand unified theories with gravity-mediated
supersymmetry breaking the μ-problem is nonexistent. What happens is that supersymmetry breaking
universally induces the shifts of the heavy fields that generate μ and Bμ terms. In the leading order, these are
given by the mass of gravitino and are insensitive to the scale of grand unification. The mechanism works
regardless whether doublet-triplet splitting is achieved via fine-tuning or not. Moreover, we illustrate this
general phenomenon on explicit examples of theories that achieve doublet-triplet splitting dynamically.
These include the theories with Higgs doublet as a pseudo-Goldstone boson, as well as the approach based
on spontaneous decoupling of the light color triplet from quarks and leptons.
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I. INTRODUCTION

The hierarchy problem in supersymmetry (SUSY) comes
in form of two puzzles. The first one is the origin of
supersymmetry breaking. The second one goes under the
name of the μ-problem. The question is what sets—at the
same scale—the following three unrelated mass parame-
ters: the supersymmetric mass of the Higgs doublet super-
fields in the superpotential

W ¼ μHH̄; ð1Þ
and the two types of the soft SUSY-breaking mass terms in
the scalar potential

m2
softðjHj2 þ jH̄j2Þ þ BμHH̄ þ c:c:: ð2Þ

Here and thereafter, we shall denote the superfields and their
scalar components by the same symbols. At each occasion,
the meaning of the notation will be clear from the context.
In the present paper we shall assume that supersymmetry

breaking is due to standard gravity-mediated scenario
[1–3]. In this framework, SUSY is spontaneously broken
by some hidden sector superfield(s) X with no couplings to
the Standard Model superfields in the superpotential. The
supersymmetry breaking is communicated to the Standard
Model fields via the supergravity couplings. These are

suppressed by the powers of the Planck mass, MP. In the
observable sector, this mediation results in effective soft
SUSY-breaking terms set by the scale of the gravitino
mass m3=2.
It has been pointed out by Giudice and Masiero [4] that

this framework offers a natural solution to the μ-problem.
Namely, both μ and Bμ terms can be generated provided
one postulates certain nonminimal couplings between the
Higgs doublet and the hidden sector superfields in the
Kähler function.
The goal of the present paper is to point out a distinct

generic reason for the absence of the μ-problem, which
does not require an assumption of a nonminimal Kähler
function. Namely, we wish to show that the μ-problem
generically gets nullified once the StandardModel becomes
embedded in a grand unified theory (GUT) with a scale M
much higher than m3=2. With no further efforts, such
theories generically deliver

μ ∼m3=2 and Bμ ∼m2
3=2: ð3Þ

The dynamical mechanism behind this effect is the shift of
the heavy fields—with masses and vacuum expectation
values (VEVs) given by the scale M—induced by SUSY
breaking. This shift then delivers the μ term (3), which in
grand unification is protected solely by SUSY.
The underlying reason for the scaling (3) is that in the

limit MP → ∞ the Goldstino must reside entirely within
the hidden sector superfield X. This is true, even if m3=2 is
kept finite, so that the fermion and boson masses in the
observable sector stay split. The bottom line is that the
grand unified Higgs sector generates (3) irrespectively of
how large the scale M is. In particular, (3) remains valid in
the limit M → ∞.
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Note, our results are generically applicable to any
extension of the supersymmetric Standard Model with
the scale M ≫ m3=2, provided below M the μ term is
not forbidden by any conserved quantum number. An
interesting thing about grand unification is that this con-
dition is universally enforced by the phenomenon of the
doublet-triplet splitting.
The essence of the problem is that in any GUT the

Standard Model Higgs doublets H; H̄ acquire the color-
triplet partners T; T̄ that reside within the same irreducible
representation of the grand unified group. Because of this,
the color triplets can mediate an unacceptably fast proton
decay, unless some measures are taken. This difficulty goes
under the name of the doublet-triplet splitting problem.
Now the point is that, usually, the same mechanism that
renders the color triplet harmless, below the GUT scale
leaves no protective symmetries—other than supersym-
metry (and possibly R symmetry)—for the μ term. As a
result, the μ term of the form (3) is generated after SUSY
breaking due to the shifts of the VEVs of the heavy fields.
For the above reason, we shall mostly be motivated by

grand unification but the readers can apply the present
mechanism to their favored high scale extensions of the
SUSY Standard Model.
The traditional approach to doublet-triplet splitting

problem is to split masses of doublets and triplets at the
GUT scale. That is, upon Higgsing the grand unified group,
the color triplets gain the masses of order the GUT scaleM,
whereas the doublets remain massless. The underlying
reason for such mass splitting is model dependent. Some
examples shall be discussed below.
In an alternative, less traditional, approach [5], no mass

splitting takes place. That is, the entire multiplet that houses
doublets and triplets remains massless at the supersym-
metric level and gains a small mass after. So, up to higher
order corrections, the color-triplet partner remains as light
as the Higgs doublet. However, their couplings with quarks
and leptons become so strongly split that the color triplet is
rendered effectively decoupled. Therefore, in this scenario,
the proton decay is suppressed because the spontaneous
breaking of GUT symmetry dynamically uncouples the
Higgs doublet’s color-triplet partner from quarks and
leptons (see later).
One way or another, in GUTs, the existence of massless

Higgs doublets in unbroken SUSY theory becomes inter-
twined with the doublet-triplet splitting problem. The
results of the present paper are largely insensitive to a
concrete mechanism that solves this problem. As long as
the theory delivers a pair of massless Higgs doublets in
supersymmetric limit, the generation of μ and Bμ of the
form (3) is generic.
In fact, this way of generating μ has been incorporated in

the past within particular scenarios, most notably, within
the pseudo-Goldstone approach to the doublet-triplet split-
ting problem [6,7] (see also [8–15]). In these scenarios, in

SUSY limit, the Higgs doublets are massless by Goldstone
theorem. They acquire the desired μ and Bμ terms after
SUSY breaking. We shall explain that this case represents a
particular manifestation of a generic shift scenario. For this,
we shall reduce the pseudo-Goldstone Higgs idea to its bare
essentials and interpret the generation of the μ term in (3)
as a consequence of the Goldstino argument. In fact, this
case is predictive due to the interplay of Goldstino and
Goldstone theorems. While the former gives (3), the latter
makes the relation more precise, demanding

Bμ ¼ 2μ2 ¼ 2m2
3=2: ð4Þ

This is because, by Goldstone theorem, at the tree level, the
mass matrix of the Higgs doublets must have one zero
eigenstate.
As a second example, we apply the shift mechanism to

the model of [5] in which the light color triplet is uncoupled
from quark and lepton superfields. As said, here in SUSY
limit the doublets and triplets are both massless. We shall
show that a generation of universal μ; Bμ terms of order (3)
for both components takes place after SUSY breaking.
Before we move on, some comments are in order.
First, the gravity mediation of SUSY breaking is

important for our arguments. The implementation of an
analogous shift mechanism in gauge mediation requires a
specific construction that has been done in [16].
Second, it is important that all the singlet superfields,

coupled to the Higgs doublets in the superpotential, have
large masses and that there are no sliding singlets [17]
among them. As it is well known [18], in gravity mediation,
such singlets destabilize the weak scale.1

Finally, it is well known that the LHC data is pointing
towards an increased hierarchy between the weak scale
and soft masses. Many proponents of low energy SUSY
(including us) find this alarming and rightfully so.
However, compared to cancellation of 28 orders of magni-
tude required for doublet-triplet splitting in nonsupersym-
metric GUTs, in our view, LHC data is not a sufficiently
strong demotivator against the low energy supersymmetry.
The “little hierarchy” is a valid issue that requires a separate
study if one wishes to avoid a “mild” fine-tuning of order
percent or so. In the present paper we shall only be
concerned with the question of leading order correlation
between μ and m3=2.

II. GOLDSTINO ARGUMENT

We shall now present a general argument. An impatient
reader may find it more useful to first go over a simple
explicit example discussed in the next chapter and then
come back to a general proof.

1This situation can change in gauge-mediated scenario with
low scale of SUSY breaking, see [19].
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In order to set the stage, consider a prototype super-
symmetric grand unified theory that at low energies
delivers a pair of massless Higgs doublet superfields, H,
H̄. These Higgs doublets are coupled in a superpotential to
a singlet superfield S with large VEV/mass. This superfield
impersonates the component(s) of the heavy Higgs super-
fields that break the grand unified symmetry group down to
the Standard Model, SUð3Þ × SUð2Þ ×Uð1Þ.
As it is customary, we assume that the primary source

of spontaneous breaking of supersymmetry is an FX term
of a (canonically normalized) hidden sector superfield X.
This sets the absolute scale of supersymmetry breaking as
M2

SUSY ¼ hFXi. In the absence of other fields, the fermionic
component ΨX of the superfield X is a Goldstino, which
becomes eaten up by gravitino. The resulting mass of
gravitino is

m2
3=2 ¼

jhWij2
M4

P
¼ jhFXij2

3M2
P

; ð5Þ

where hWi is the expectation value of the superpotential.
This order parameter breaks R symmetry. The second
equality in (5) is the condition for zero vacuum energy.
Now, it is assumed that the two sectors do not talk to each

other in the superpotential. The superpotential therefore has
the following generic form:

W ¼ WðSÞ þ ðM̃ þ gSÞHH̄ þWðXÞ; ð6Þ

where g is a coupling constant and M̃ is a mass parameter
of order M that also sets the scale in WðSÞ. The standard
couplings of the Higgs doublets to quark and lepton
superfields are not shown explicitly.
For the moment, we shall not specify the form of the

superpotential WðSÞ of the heavy superfield S. The only
assumption we make is that in globally supersymmetric
limit it has a SUSY-preserving vacuum in which the field S
receives a supersymmetric mass from the VEV(s) of the
heavy field(s) given by some high scale M, for example, a
grand unification scale, and that below this scale S carries
no conserved quantum number(s), with the possible
exception of R charge. However, the R invariance cannot
serve as an exact protective symmetry as it is broken
together with SUSY by the nonzero gravitino mass. At the
same time, throughout the discussion, we shall keep the
VEVs of the Higgs doublets H; H̄ zero. Obviously, in case
of a single field S, with the above assumption, its mass must
come from the self-coupling(s) in WðSÞ. We begin with
this case.
Thus, in the limit of global supersymmetry (MP → ∞,

all other scales finite), we would have

�∂W
∂S
�

¼ 0; for hSi≡ S0 ∼M;

such that∶
�∂2W
∂S2

�
∼M; ð7Þ

and

0 ≠
�∂W
∂X
�

¼ M2
SUSY: ð8Þ

The resulting μ term is represented by the S0-dependent
supersymmetric mass of the Higgs doublets,

μ ¼ M̃ þ gS0: ð9Þ

We shall assume that this μ term is zero. Obviously, having
a small or zero μ in SUSY limit is our starting point. If μ
is of order the GUT scale, the tiny shift shall make no
difference. But such a situation is also uninteresting from
doublet-triplet splitting perspective which is one of our
main motivations.
The underlying reason for this cancellation is unimpor-

tant. For example, it may take place due to a dynamical
reason, a group theoretic structure, or (in a least attractive
case) by fine-tuning. Some explicit examples of cancella-
tion mechanisms shall be discussed below.
We wish to show that, regardless the nature of the

cancellation mechanism, for finite m3=2, the VEV of the
heavy singlet S is shifted in such a way that the μ term of
order m3=2 is generated. We shall prove this using the
following Goldstino argument.
Consider the supergravity potential for S and X scalar

fields (for simplicity, we assume the minimal Kähler):

V ¼ eðjSj2þjXj2Þ=M2
PðjFSj2 þ jFXj2 − 3m2

3=2M
2
PÞ; ð10Þ

where

FS ≡ ∂W
∂S þm3=2S�; ð11Þ

FX ≡ ∂W
∂X þm3=2X�; ð12Þ

and m3=2 ≡W=M2
P should be understood as a function of

the scalar components.
Let us now consider various scaling regimes. First, we

take MP → ∞ while keeping the scale FX finite. From (5),
this means that m3=2 → 0, while the product m3=2MP is
kept finite. We wish to find out the scaling of FS in this
regime. At first glance, this depends on the behavior of the
scaleM. For example, if we takeM=MP → 0 (equivalently
m3=2M → 0), the vacuum of the S superfield reduces
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to a globally supersymmetric case (7), with hSi ¼ S0
and FS ¼ 0.
What happens if we keep M=MP finite (but, of course,

small)? Despite the fact that this implies m3=2M ¼ finite,
the supergravity FS term must vanish. This can be under-
stood from the following argument. Since m3=2 ¼ 0 and
MP ¼ ∞, gravitino is both massless and decoupled.
Therefore, the Goldstone fermion of spontaneously
broken supersymmetry must remain as a physical
massless fermion. By the super-Goldstone theorem,
Goldstino is given by the following combination of ΨS
and ΨX:

ΨGold ¼
hFSiΨS þ hFXiΨXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hFSi2 þ hFXi2
p : ð13Þ

This fermion must form a zero eigenstate of 2 × 2 fermion
mass matrix. The second eigenvalue is of order M and,
therefore, is infinite (recall that M=MP was kept finite).
Since the two sectors talk via supergravity, the mixing
angle that diagonalizes the mass matrix, must vanish for
m3=2 ¼ 0. From (13) it is clear that this mixing angle is
∼FS=FX. We therefore conclude that form3=2 ¼ 0, we have
FS ¼ 0, even if M is taken to be infinite. This indicates
that, for the finite values of these parameters, FS is
controlled by the gravitino mass and not by the GUT scale
M. In particular, for M ≫ m3=2 ≠ 0, the FS term must
behave as FS ∼m2

3=2.
Let us obtain the same result more explicitly.

Since FS depends only on the scales M and m3=2,
we can compute it in power series of an infinitesimal
parameter m3=2

M :

FS ¼ M2

�
c0 þ c1

m3=2

M
þ c2

m2
3=2

M2
þ � � �

�
: ð14Þ

Obviously, c0 ¼ 0, since, by assumption, WðSÞ does not
break SUSY in the global limit. The above Goldstino
argument suggests that c1 ¼ 0 as well. Let us check this
explicitly.
From (10) it is clear that for m3=2 → 0 and

m3=2M ¼ finite, the vacuum of the S superfield is deter-
mined by the condition

FS ¼
∂W
∂S þm3=2S� ¼ 0: ð15Þ

Notice that this condition does not reduce to a globally
supersymmetric condition (7). This is because S0 ∼M and,
therefore, the term m3=2S� cannot be ignored. Let us find
the solution to the condition (15) in the form of a small shift
around the globally supersymmetric value: S ¼ S0 þ δS.
Plugging this in (15), we obtain that the cancellation of the
leading terms demands

�∂2W
∂S2

�
S¼S0

δSþm3=2S�0 ¼ 0: ð16Þ

Since ð∂2W∂S2 ÞS¼S0
∼ S0 ∼M, we have

δS ∼m3=2: ð17Þ

Thus, we have shown that the shift of a field that gets the
supersymmetric mass from its large VEV, is of order m3=2.
We observe that this shift, in the leading order, is inde-
pendent of the scales M and MP.
This result implies that if the μ term (9) is zero in the

supersymmetric limit after SUSY breaking, then μ ∼m3=2

is generated.
The generalization of the above reasoning for arbitrary

number of heavy superfields Sj; j ¼ 1; 2;…, is straightfor-
ward. It is convenient to work in the eigenstate basis of the
global-SUSY mass matrix Mij ≡ ∂2W

∂Si∂Sj jSj¼S0j , where, as

previously, S0j denote the globally supersymmetric VEVs
of the superfields that satisfy ∂W

∂Sj ¼ 0. Such a basis always

exists since the matrix Mij is holomorphic and symmetric.
Equation (16) then becomes

MjjδSj þm3=2S�0j ¼ 0: ð18Þ

Notice, this is a leading order relation that ignores unim-
portant contributions of order m2

3=2. Now, since by our
starting assumption,Mjj ∼M for all js and S0j ∼M at least
for some js, the corresponding shifts are δSj ∼m3=2.

III. SIMPLE EXAMPLE

We can illustrate the action of the above general
mechanism for an explicit form of the superpotential:

WðSÞ ¼ M
2
S2 þ λ

3
S3; ð19Þ

where M is a high scale and λ is a coupling constant
of order one. In the global SUSY limit, the VEV of S is
given by

∂WðSÞ
∂S ¼ MSþ λS2 ¼ 0 → S0 ¼ −

M
λ
: ð20Þ

Of course, there is also a minimum with S0 ¼ 0, which
we shall disregard. In general, the existence of multiple
degenerate minima, among which only one is phenomeno-
logically acceptable, is generic in SUSY GUTs. We are not
concerned by explaining why our Universe ended up in the
right one. We wish to show that, once a minimum with the
right pattern of GUT symmetry breaking and the correct
doublet-triplet splitting is chosen, the shift of the μ term
after SUSY breaking follows. Since in the above example,
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S impersonates a GUT Higgs field, it is natural that we are
not interested in the minimum with zero S.
We wish to determine the shift δS triggered by the

gravity-mediated supersymmetry breaking. From the
Goldstino argument presented above, this shift can
be found from the condition (15), which in the present
case translates as

MSþ λS2 ≃ −m3=2S�: ð21Þ

This gives the shift δS ¼ − m3=2

λ . The explicit minimization
of the entire potential including the standard gravity-
mediated soft terms,

V ¼ jλSþMSj2 þm2
3=2jSj2

þ
�
m3=2A

λ

3
S3 þm3=2ðA − 1ÞM

2
S2 þ c:c:

�
; ð22Þ

fully confirms this result.
Now, we recall that in global supersymmetry limit the μ

term was assumed to be zero. That is, we have

μ ¼ M̃ þ gS0 ¼ M̃ −
g
λ
M ¼ 0: ð23Þ

Then, the shift of S, induced by the soft terms, generates a
nonzero μ term given by

μ ¼ gδS ¼ −
g
λ
m3=2: ð24Þ

To conclude this section, we have argued that the
generation of the μ term of order m3=2, due to the shift
of the VEV(s) of heavy field(s), is rather generic. This
phenomenon is independent of a precise mechanism that
sets μ ¼ 0 in the supersymmetric limit.

IV. DECOUPLING

The Goldstino argument indicates that it is in general
wrong to work with the low energy superpotentials
obtained by the substitution of the supersymmetric
VEVs of the heavy fields. Indeed, in the above example,
the observable sector described by the superpotential,

W ¼ M
2
S2 þ λ

3
S3 þ ðM̃ þ gSÞHH̄; ð25Þ

had a supersymmetric vacuum

S ¼ S0 ¼ −
M
λ
; H ¼ H̄ ¼ 0: ð26Þ

In this vacuum, the superfield S had a massM, whereas the
mass of the doublets (23) was fine-tuned to zero.
Now, since the mass of the superfield S is much higher

than the supersymmetry breaking scale, it may be tempting
to integrate S out while ignoring supersymmetry breaking.

This naïve approach would give an effective low energy
superpotential for the doublets H; H̄ with zero μ term plus
high-dimensional operators suppressed by the scale M.
Then, neglecting the high-dimensional operators, one
would arrive to a low energy theory with μ ¼ 0. Such a
description would completely miss the generation of the μ
term due to the shift of the heavy field S.
This may seem a bit confusing, since we expect that the

effects of the heavy fields must be suppressed by powers of
their massM. However, obviously, there is no conflict with
the principle of decoupling. What is happening in reality is
that, although the mass term of the heavy scalar S scales
as ∼M2, so does the tadpole generated by supersymmetry
breaking, which goes as ∼m3=2M2S. As a result, the shift
δS ∼m3=2 is finite even in the limit M → ∞. This effect
must be taken into account when integrating out the heavy
fields properly.

V. GUTS

A. Example with fine-tuning: SUð5Þ
The essence of how the dynamical generation of the

μ term is intertwined with doublet-triplet splitting can be
illustrated on a prototype GUT example of minimal SUð5Þ.
As it is well known, in this theory the Higgs doublets H; H̄
and their triplet partners T; T̄ are embedded in 5H; 5̄H
representations, respectively. The breaking of SUð5Þ sym-
metry down to the Standard Model group is achieved by the
24H Higgs representation. The superpotential of the Higgs
superfields is

W ¼ M
60

tr242H −
λ

90
tr243H þ M̃5̄H5H −

g
3
5̄H24H5H: ð27Þ

Note, it is the necessity of the doublet-triplet splitting
that excludes the possibility of setting M̃ and g small. This
eliminates any symmetry protection for the resulting μ term
that—after GUT symmetry breaking—is left solely at the
mercy of SUSY.
Substituting into (27) the only nonzero component

24H ¼ Sdiagð2; 2; 2;−3;−3Þ, the system effectively
reduces to the example (19) [and (25)] with an extra pair
of T; T̄ superfields,2

WðSÞ ¼ M
2
S2 þ λ

3
S3 þ ðM̃ þ gSÞH̄H þ

�
M̃ −

2

3
gS
�
T̄T:

ð28Þ

2As it is well known, in the above theory there are several other
minima, all exactly degenerate in the SUSY limit. For example,
there is a trivial minimum, 24H ¼ 0, the one with SUð4Þ × Uð1Þ
symmetry, 24H ∝ diagð1; 1; 1; 1;−4Þ, and even some minima in
which the Higgs doublets 5̄H; 5H have large VEVs. As already
mentioned, we are only interested in the one in which, in the
SUSY limit, the symmetry is broken to SUð3Þ × SUð2Þ × Uð1Þ.
We shall study the shift of the VEVs around this minimum.
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The supersymmetric VEV of S is given by (20) and the
doublet-triplet splitting is achieved by fine-tuning (23).
This fine-tuning gives the zero μ term for the doublets and
simultaneously generates a large supersymmetric mass
term for their color-triplet partners, μT ¼ 5g

3λM. This takes
care of the suppression of proton decay.
Now, as already explained, after SUSY breaking the μ

term of order m3=2 is generated due to the shift of the VEV
of the S superfield and is given by (24).3

One may argue that, in theory with fine-tuning, we are
not gaining much by inducing the required μ term after
SUSY breaking. After all, it is not clear why the fine-tuning
μ ¼ 0 is any more natural than a fine-tuning to order TeV.
One could try to dispute this by saying that for the
superpotential (27)—which knows nothing about the weak
scale—the scales M and zero are the two natural points.
However, we shall not do this. By default, such disputes

usually take one to nowhere due to the lack of the guiding
principle in theories with fine-tuning. This is why we are
more attracted to scenarios in which μ ¼ 0 in SUSY limit is
justified by the underlying structure of the GUT theory.
However, there is an important point that works regard-

less of fine-tuning: the value of μ in the low energy theory is
shifted by

δμ ∼m3=2; ð29Þ

with respect to its SUSY value. This exposes an intrinsic
sensitivity of the supersymmetric Standard Model towards
the GUT completion.
This concludes the example with fine-tuning. In what

follows, we shall illustrate the same effect on examples of
theories that, in unbroken supersymmetry, achieve the
vanishing μ dynamically.

B. Example: Higgs as a pseudo-Goldstone

As the first example, we consider class of theories in
which the Higgs doublets H; H̄ are pseudo-Goldstone
bosons [6,7]. In these models, before supersymmetry
breaking, the μ term is dynamically adjusted to zero by
the Goldstone theorem.
The idea is that the Higgs part of the GUT superpotential

has large accidental global symmetry. This global sym-
metry is spontaneously broken at the GUT scale along
with the local one. This breaking results into a pair of
(pseudo-)Goldstone superfields with the quantum numbers
of H; H̄. Due to the global symmetry of the Higgs part of
the superpotential, in supersymmetric limit, these super-
fields are exactly massless. Correspondingly, before SUSY
breaking, μ ¼ 0. After the soft SUSY-breaking terms are
included, the μ ∼m3=2 is generated. In the minimal case
(with canonical Kähler metric), due to Goldstone theorem,

at the tree level, one combination of doubletsH; H̄ remains
massless even after supersymmetry breaking. This degree
of freedom acquires a nonzero mass and a VEV via
radiative corrections.
The above idea was realized in two main directions, [6]

and [7], where [7] represents a justification of [6] from a
more fundamental theory. We shall briefly discuss the key
aspects of the two approaches.
The first proposal was a model by Inoue, Kakuto and

Takano, and by Anselm and Johansen [6]. Both examples
were based on a minimal SUð5Þ GUT. As already dis-
cussed, the Higgs sector of this theory consists of an adjoint
24H-plet and a pair of 5H; 5̄H-plet chiral superfields. This
theory exhibits a textbook example of the doublet-triplet
splitting problem. The required mass splitting between the
color triplet and the weak doublet components of 5H; 5̄H is
achieved at the expense of a severe fine-tuning discussed in
the previous chapter.
The idea by the authors of [6] was that this fine-tuning

admits an interpretation in terms of the Goldstone theorem,
provided an additional gauge-singlet chiral superfield, 1H,
is added to the Higgs sector. In such a case, after careful
adjustment of the parameters, the Higgs part of the super-
potential becomes invariant under a global SUð6Þ symmetry
group. Under it, various SUð5Þ Higgs multiplets combine
into a single adjoint representation: 35H ¼ 24H þ 5Hþ
5̄H þ 1H. In such a case, the Higgsing of the gauge
SUð5Þ symmetry is accompanied by a spontaneous breaking
of the global SUð6Þ symmetry. The latter breaking results
into leftover pseudo-Goldstone multiplets H; H̄ with the
quantum numbers of the electroweak Higgs doublets. These
are the doublet components of 5H; 5̄H, respectively.
The potential criticism against this scenario is that a

severe fine-tuning among two large numbers is traded for
more severe fine-tunings among several large parameters.
In order to dissolve this criticism, one needs to justify the
demanded global SUð6Þ pseudosymmetry as an accidental
symmetry emerging from a more fundamental theory. This
was achieved in [7] by lifting (i.e., UV completing) the
theory into a GUT with a gauged SUð6Þ symmetry. The
accidental global symmetry then emerges as a low energy
remnant of this gauge symmetry. This happens in the
following way.
The minimal set of chiral superfields necessary for

Higgsing the SUð6Þ gauge symmetry down to the
Standard Model group, SUð3Þc × SUð2ÞL ×Uð1ÞY , con-
sists of an adjoint 35H-plet and a pair of 6̄H; 6H-plets. If the
cross coupling 6̄H35H6H is absent, the renormalizable
superpotential of the Higgs fields splits into two non-
interacting parts,

WH ¼ Wð35Þ þWð6H; 6̄HÞ: ð30Þ
Obviously, this superpotential has a global symmetry
SUð6Þ35H × SUð6Þ6H under independent SUð6Þ transfor-
mations of the two sectors. The subscripts indicate the
superfields on which the corresponding symmetries act.3Cf. [2], Eq. (15).
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Without entering into a discussion about naturalness, we
note that the global symmetry SUð6Þ35H × SUð6Þ6H can be
viewed as accidental. This is because it results from the
absence of a single cross-coupling, as opposed to fine-
tuned cancellations among several big numbers. In addi-
tion, there have been proposals of justifying the absence of
this cross-coupling from more fundamental theory, such as,
for example, a stringy anomalous Uð1Þ symmetry [14] or
locality in the extra space [15].
The Higgsing of the gauge symmetry down to Standard

Model group is triggered by the following VEVs:

h35Hi¼diagð1;1;1;1;−2;−2Þv35; h6Hi¼h6̄Hi¼

0
BBBBBBBB@

v6
0

0

0

0

0

1
CCCCCCCCA
;

ð31Þ

where the parameters v35 and v6 are of order on the
GUT scale.
Now, simultaneously with the Higgsing of the gauge

group, the global symmetries are spontaneously broken in
the following way:

SUð6Þ35H → SUð4Þ × SUð2Þ ×Uð1Þ; ð32aÞ

SUð6Þ6H → SUð5Þ: ð32bÞ

The straightforward count of the Goldstone bosons and the
diagonalization of the mass matrix shows that one pair of
chiral superfields, with the quantum numbers of electro-
weak doublets, is left out “uneaten” by the gauge fields and
remains exactly massless. These superfields are the two
linear combinations of the doublets H35; H̄35 and H6; H̄6̄

from the 35H and 6H; 6̄H fields, respectively:

H ¼ H35v6 − 3H6v35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v26 þ 9v235

q ; H̄ ¼ H̄35v6 − 3H̄6̄v35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v26 þ 9v235

q : ð33Þ

At the same time, all colored components of the Higgs
superfields acquire masses of order the GUT scale. Thus,
the doublet-triplet splitting is achieved as a result of the
Goldstone phenomenon. The two Higgs doublets (33) that
represent the Goldstone modes of the accidental global
symmetry are strictly massless in the limit of exact SUSY.
Correspondingly, the μ term vanishes in this limit.
The μ ¼ m3=2 is generated after supersymmetry break-

ing. In the previous analysis this was demonstrated by an
explicit minimization of the Higgs potential in the presence
of the soft SUSY-breaking terms. Our goal here is to view

the generation of the μ term in the pseudo-Goldstone model
as a manifestation of the universal shift mechanism dis-
cussed in the present paper. We shall therefore reduce the
Goldstone mechanism to its bare essentials.
The unified property of such models is that the Higgs

doublets H; H̄ are connected by a continuous global
(pseudo) symmetry to some GUT superfield(s) (N; N̄) with
large VEV(s). The latter fields Higgs the gauge GUT
symmetry and simultaneously break spontaneously the
continuous global symmetry that connects them with
H; H̄. For all practical purposes, we can effectively
characterize the above global degeneracy as a Uð3Þ global
symmetry in which the gauge SUð2ÞL ×Uð1ÞY electro-
weak symmetry enters as Uð2Þ subgroup. We must note
that this simplified formulation of the pseudo-Goldstone
mechanism was previously proposed in [16].
Naturally, under this Uð3Þ, the Uð2Þ doublets H; H̄ and

singletsN; N̄ form the triplet and antitriplet representations,
respectively:

3H ¼
�
H

N

�
; 3̄H ¼

�
H̄

N̄

�
:

The precise form of a Uð3Þ-invariant superpotential that
leads to the desired symmetry breaking, Uð3Þ → Uð2Þ, is
not important. For simplicity, we can choose it as

W ¼ λSð3H3̄H −M2Þ; ð34Þ

where S is a singlet superfield, λ is coupling constant andM
is a scale of symmetry breaking. For simplicity, we take all
parameters as real.
It is easy to check that the above superpotential gives a

globally supersymmetric vacuum in which the continuous
global symmetry is broken down to Standard Model Uð2Þ
by the following VEVs:

hNi ¼ hN̄i ¼ M:

At the same time, the VEVs of all other superfields are zero,
S ¼ H ¼ H̄ ¼ 0. Obviously, the μ term is also zero,
μ ¼ λS ¼ 0. This happens because the doublets H; H̄
represent the Goldstone bosons of spontaneously broken
global symmetry Uð3Þ → Uð2Þ.
After the soft SUSY-breaking terms are included, the

VEVs get shifted. These shifts induce nontrivial mass terms
in the Higgs sector and both the μ and Bμ terms are
generated.
In order to find them, we minimize the potential with soft

supersymmetry breaking terms included:

ABSENCE OF THE μ-PROBLEM IN GRAND UNIFICATION PHYS. REV. D 105, 016009 (2022)

016009-7



V ¼ jλðHH̄ þ NN̄ −M2Þj2
þ jλSj2ðjHj2 þ jH̄j2 þ jNj2 þ jN̄j2Þ
þm2

3=2ðjSj2 þ jHj2 þ jH̄j2 þ jNj2 þ jN̄j2Þ
þm3=2AλSðHH̄ þ NN̄Þ þm3=2ð2 − AÞλM2Sþ c:c::

ð35Þ

After a straightforward calculation, we obtain that, in the
leading order in expansion in small parameter m3=2

M , the
VEVs are given by

hNi ¼ hN̄i ¼ M þ m2
3=2

2λ2M
ðA − 2Þ;

hSi ¼ −
1

λ
m3=2: ð36Þ

Next we insert the above VEVs in the Lagrangian
relevant for the masses of H; H̄:

L ⊃ ðjλSj2 þm2
3=2ÞðjHj2 þ jH̄j2Þ

þ ððjλj2ðNN̄ −M2Þ� þ Am3=2λSÞHH̄ þ c:c:Þ
≡ ðμ2 þm2

3=2ÞðjHj2 þ jH̄j2Þ þ ðBμHH̄ þ c:c:Þ; ð37Þ

where

Bμ ¼ −2m2
3=2; μ ¼ −m3=2; ð38Þ

in accordance to (4).
Hence, the μ and Bμ terms are produced at the same scale

and the resulting mass matrix has the following form:

M̂2
H ¼ H

H̄�

H� H̄ 
2m2

3=2 −2m2
3=2

−2m2
3=2 2m2

3=2

!
: ð39Þ

Notice, due to the existence of a Goldstone mode at the tree
level, the mass matrix (39) has a zero eigenvalue. The latter
equality is specific to the pseudo-Goldstone approach.
However, the universal feature shared by other approaches
is that the gravity-mediated SUSY breaking generates Bμ

and μ at the scale set by m3=2, as given by (3).

C. Example: decoupled triplet

The last example in which we shall implement the
generation of the μ term by the shift mechanism is the
approach to doublet-triplet splitting problem developed in
[5]. In this picture the weak doublets (H; H̄) as well as their
color-triplet partners (T; T̄), are isolated from the VEVs that
break GUT symmetry down to the Standard Model. As a
result, all these superfields remain exactly massless in
supersymmetric theory. That is, no mass splitting among

the doublets and triplets takes place. Instead, the entire
GUT multiplet remains massless.
This may come as a surprise, since it is expected that

light color triplets T; T̄ mediate proton decay at an
unacceptable rate. However, in the scenario of [5] this
potential problem is avoided by decoupling the color
triplets T; T̄ from the quark and lepton superfields. Only
the doublets H; H̄ maintain the usual coupling to quarks
and leptons. To put it shortly, in this scenario the doublet-
triplet splitting gets transported from the mass terms into
the Yukawa couplings. As a result, the proton decay is
equally strongly suppressed both at d ¼ 6 and d ¼ 5
operator levels.
Let us, following [5], consider a realization of this idea in

a supersymmetric SOð10Þ theory in which the Higgs doublet
resides in 10H representation. The quarks and leptons are
placed in 16F spinor representation. The idea is that 10H
couples to matter fermions via an intermediate heavy 45H
Higgs that has a VEVon SOð6Þ × SUð2Þ ×Uð1Þ-invariant
component:

h45Hi ¼ M45diagð0; 0; 0; ϵ; ϵÞ; ϵ≡
�

0 1

−1 0

�
; ð40Þ

whereM45 is of order on the GUT scale. The coupling with
matter fermions is generated by the exchange of a pair of
heavy 144; 144-dimensional multiplets with the following
couplings in the superpotential:

WF ¼ g16γi144j45Hij þM144144j144j þ g010Hj144j16;

ð41Þ

where j ¼ 1; 2;…; 10 is the SOð10Þ tensor index, γj are
SOð10Þ gamma matrixes and spinor indexes are not shown
explicitly.M144 is a mass term of order the grand unification
scale and g, g0 are dimensionless coupling constants. The
integration out of the 144-dimensional multiplets results in
the following effective coupling in the superpotential,4

WF →
gg0

M144

10Hi45Hij16Fγj16F: ð42Þ

Taking into account the form (40) of the VEV of 45H, it is
clear that the electroweak doublet components H; H̄ of 10H
acquire the usual Yukawa couplings with the Standard
Model fermions, given by gg0M45

M144
. At the same time, their

color-triplet partners, T; T̄, decouple.

4For illustrative purposes, here we are only concerned with the
minimal structure of the theory. The generation of realistic
fermion masses, as usual, requires the enrichment of the hori-
zontal structure which can be incorporated without changing any
of our conclusions and shall not be attempted here.
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In this way, the burden of generating the huge masses for
the color triplets, while keeping their weak-doublet partners
massless, is avoided. The entire 10H multiplet can be kept
massless in supersymmetric limit. All one needs for
achieving this is to assume that solely the heavy fields
with zero VEVs interact directly with 10H-plet in the
superpotential.
Let such a superfield be S. At the same time, S is free to

(and in general will) interact with the Higgs multiplets that
participate in the breaking of SOð10Þ symmetry. Then,
according to our arguments, SUSY-breaking shall result in
the shift of the VEV S ∼m3=2 and in the subsequent
generation of the μ term.
An example of the superpotential that validates this

mechanism is

W ¼ Sðλ102H þ λ0N2 −M2Þ; ð43Þ

where N impersonates the heavy superfield(s) that Higgs
the SOð10Þ symmetry. M is a mass scale and λ and λ0 are
coupling constants. For definiteness, we take all parameters
to be real and positive.
Of course, for achieving the right symmetry breaking

pattern a lot more terms and a garden variety of represen-
tations are required. This is the standard “engineering”
problem in SOð10Þ GUT and is not specific to the present
discussion. Our goal here is not in a construction of a fully
functioning SOð10Þ theory but rather in pointing out an
universal shift mechanism for the μ term. We shall therefore
focus on (43). For a detailed analysis of the Higgs sector
leading to a desired symmetry breaking patterns, the reader
is referred to [20].
Now, in supersymmetric limit we have N ¼ M and

S ¼ 10H ¼ 0. Therefore, the μ term that is set by the
VEV of S is zero and the entire 10H-plet is massless.
It is straightforward to check that the soft supersymmetry
breaking generates the shift S ¼ − m3=2

2λ0 . Correspondingly,
the μ term generated as a result of this shift is
μ ¼ − λ

2λ0 m3=2.
Notice, the same μ term is generated for the color-triplet

partners T; T̄ since they share the 10H multiplet with the
Higgs doublets. Of course, the exact doublet-triplet mass
degeneracy shall be lifted by radiative and other higher
order corrections, but the color triplets shall remain light.
Because these particles are essentially decoupled from the
light fermions, they are extremely long lived. The existence
of the long-lived colored multiplets, with their masses
correlated with the Higgs doublets, is a prediction of the
decoupled triplet scenario [5].
This latest topic gives us an opportunity to observe

another crucial impact on the low energy physics from
the shift of the heavy VEVs. Namely, without such a shift,
the colored triplets T; T̄ would remain decoupled from the
Standard Model fermions. As a result, they would remain
stable. However, the SUSY-breaking shifts the VEVof the

heavy 45H-plet and generates the entries ∼m3=2 in three
empty 2 × 2 diagonal blocks of (40).5 This component of
the 45H VEV breaks the SOð6Þ symmetry down to
SUð3Þ × Uð1Þ. Simultaneously, via (42), this generates
the effective couplings of the color triplets T; T̄ to the
quark and lepton superfields. From (42) it is clear that the
resulting decay constant of each color triplet is by a factor
∼ m3=2

M45
smaller as compared to its doublet partner Higgs. For

m3=2 ∼ TeV andM45 ∼ 1016 GeV, the resulting decay time
of a color triplet into Standard Model particles is τ ∼ sec or
so. Such a long-lived colored state has potentially interest-
ing collider signatures [5,8,20–22].

VI. COMPARISON WITH LOW-ENERGY
SOLUTIONS OF THE μ-PROBLEM

The goal of the present paper is to create awareness
of an intrinsic correlation. Namely, within the grand unified
framework, the μ-problem becomes entangled with the
doublet-triplet splitting problem in the way that the solution
of the latter at the GUT scale, generically, results into the
solution of the former at the scale μ ∼m3=2.
In this respect, it is useful to confront this situation

with the one encountered in the proposals in which the
μ-problem is solved by a protective symmetry broken at
low energies. The representatives of this class of solutions
are for example the Kim-Nilles solution [23] or more
recently suggested models [24,25] based on ZR

24 symmetry.
A more inclusive list of references can be found in the
review [26].
This class of theories is based on the assumption of a

protective symmetry which is spontaneously broken at low
energies. Such can be a discrete symmetry or a continuous
symmetry of Peccei-Quinn type. This approach can suc-
cessfully address the μ-problem in non-GUT extensions of
the standard model.
However, embedding of such symmetries within GUTs

faces a fundamental obstacle in form of the doublet-triplet
splitting. The caveat is that any protective external sym-
metry must be equally shared by the Higgs doublet and its
color-triplet partner. Due to this, any mechanism that splits
triplet and doublet masses, inevitably breaks the protective
symmetry at the GUT scale. Correspondingly, such a
symmetry alone cannot be used for suppressing the μ term.
This is an intrinsic difficulty for a straightforward embed-
ding of the approaches based on protective external
symmetries into GUTs.
In contrast, our focus is entirely on the correlation

between doublet-triplet splitting and the μ term in
GUTs. Here, the protective mechanism cannot rely on

5This can be easily checked by a straightforward explicit
computation for simple superpotentials for various choices of
SOð10Þ Higgs multiplets which in the global SUSY limits deliver
the VEV (40).
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an external symmetry but rather must be a part of the grand
unified setup, as they are in the examples considered. In this
sense, the mechanism that we are pointing out addresses a
fundamentally different side of the problem as compared to
the approaches based on protective low energy symmetries.
To that effect the two approaches are complementary.

VII. CONCLUSIONS

The purpose of the present paper is to provide evidence
that in a large class of grand unified theories the μ-problem
is nonexistent. What happens is the following. The doublet-
triplet splitting mechanism that in supersymmetric theory
delivers a pair of massless Higgs doublets after soft
supersymmetry breaking generates the required μ and Bμ

terms. This effect is independent of how the splitting was
achieved in the first place. For example, the splitting can be
arranged by a direct fine-tuning or via a more natural
dynamical mechanism. We gave some general arguments,
in particular based on Goldstino theorem, showing that the
shifts in VEVs of the heavy fields universally result in
generating the μ term of order m3=2.
After giving general arguments, we have shown how the

mechanismworks both in a fine-tuned scenario as well as in
two illustrative examples with dynamical solutions to the
doublet-triplet splitting problem.
In the first class of theories [6,7] the Standard Model

Higgs doublet is a pseudo-Goldstone boson. In this
scenario, the generation of the required μ and Bμ terms
from the shift of the heavy VEVs, can be understood from
the combination of Goldstone and Goldstino theorems. The
first theorem demands that the mass matrix of the Higgs
doublets has one exact zero eigenstate at the tree level. At
the same time the Goldstino argument presented here
requires that the entries are of order m2

3=2. An explicit
computation for the minimal Kähler confirms this and gives
the relation (4).
Our second example is based on the scenario of [5] in

which no mass splitting takes place between the Higgs
doublet and its color-triplet partner. Instead, in the super-
symmetric limit both components remain exactly massless.
The proton decay is nevertheless safely suppressed because
the color triplet is decoupled from quark and lepton super-
fields. In this scenario too, after supersymmetry breaking, the
universal μ term is generated both for the Higgs doublets and
their color-triplet partners. The theory therefore predicts the
existence of long-lived colored states with their masses
correlated with the masses of the Higgs doublets.
This scenario illustrates another important low energy

effect originating from the shift of the VEVs of the heavy
Higgses. Namely, this shift is the sole source for generating
the nonzero decay constant of the color-triplet partners
of the Higgs doublets. As a result, these color triplets
acquire the finite, albeit macroscopically long, lifetimes.
This makes them into the subjects of phenomenological
and cosmological interests.

Due to its generic nature, the presented shift mechanism is
expected to generate the μ term in other group-theoretic
solutionsof thedoublet-triplet splittingproblem. Inparticular,
we have explicitly checked this by constructing a
simple realization of the Dimopoulos-Wilczeck mechanism
[27]. The details will be given elsewhere. The similar
phenomenon is expected to work also for the missing partner
mechanism [28–30].
Also note that, although we are mostly focused here on

dynamic scenarios, the models that achieve doublet-triplet
splitting via an explicit fine-tuning [such as the minimal
SUð5Þ, considered above] should not be left out. An
interesting example is provided by a predictive SOð10Þ
theory of [31]. The universal shift mechanism for generat-
ing the μ term discussed in present paper shall be equally
operative in such scenarios.
The described phenomenon once again teaches us an

important lesson that the heavy fields must be integrated
out only after the effects of SUSY-breaking on their VEVs
are properly taken into account. In the opposite case, an
important impact on the low energy physics from the high
energy sector could be overlooked. What we observe is that
the μ term of the supersymmetric standard model is directly
sensitive to the SUSY-breaking-induced shifts of the heavy
VEVs. It is therefore meaningless to talk about the μ
problem, at the least, without knowing the details of UV
theory.
In grand unification, the Higgs doublets are unified with

color-triplet partners in the same multiplet and share
quantum numbers with them. Then, the mandatory doublet-
triplet splitting usually strips the μ term of all unbroken
quantum numbers that could potentially forbid its gener-
ation. As a result, the SUSY breaking generically induces
the μ term by the dynamical shift mechanism discussed in
this paper.
In the present paper we have focused on N ¼ 1 super-

gravity. We see no a priori reason for the shift mechanism
discussed here not to be operative in its UV completions,
such as string theory. However, such analysis is beyond the
scope of the present work.
Part of the content of this paper has been presented in the

lectures on supersymmetry delivered at NYU and were
shared with David Pirtskhalava. We thank him for dis-
cussions and involvement at the preliminary stage. We are
grateful to Goran Senjanovic for valuable discussions and
comments.
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