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In this work, we perform a nonlinear extension of the Uð1ÞY sector of the Standard Model leading to
novel quartic effective interactions between the neutral gauge bosons. We study the induced effects through
high-energy processes resulting in three photons, namely, Z-boson decay and electron-positron annihi-
lation. Available experimental data on these processes do not yield viable lower bounds on the mass
parameter

ffiffiffi
β

p
, but we estimate that the range

ffiffiffi
β

p ≲mZ could be reliably excluded with better statistics in
future e−eþ colliders. We also discuss neutral gauge-boson scatterings, contextualizing our findings with
recent results on anomalous quartic gauge couplings.
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I. INTRODUCTION

The idea of nonlinear electromagnetic responses of the
vacuum was first suggested by Halpern [1] and one year
later by Heisenberg [2], where he proposed that virtual
electron-positron pairs could be at the origin of photon-
photon collisions. Soon thereafter, actions with nonlinear
electrodynamics were introduced by Born and Infeld [3]
and also Euler and Heisenberg [4] in the 1930s to deal with
the classical problem of the infinite self-energy of a point
charge. These extensions, which have been also explored in
areas as diverse as black-hole physics and cosmology [5–
8], can display interesting features, such as vacuum
birefringence and dichroism [9–11]. For recent develop-
ments, see Refs. [12–14] and references therein.
Perhaps the most striking prediction of these models is

the occurrence of light-by-light scattering already at tree
level. This extremely rare process was recently observed by
the ATLAS and CMS collaborations in heavy-ion collisions
at the LHC [15–17]. The perspective to test effects of
nonlinear extensions of the Standard Model (SM) in high-
energy experiments—in lepton and hadron accelerators or
potentially in photon colliders—motivates us to search for
possible phenomenological consequences.

The nonlinear extension of traditional Maxwell electro-
dynamics modifies photon-photon interactions by intro-
ducing higher-order terms in the Lagrangian. Here, we are
interested in extending the whole hypercharge sector of the
electroweak gauge group, thus giving rise to other inter-
esting phenomena. In fact, besides reproducing the already
known nonlinear effects in standard electrodynamics (cor-
rected by a factor involving the Weinberg angle), this
extension induces anomalous quartic couplings between
the Z-boson and the photon. This in turn theoretically
allows for rare processes to take place already at tree level,
as for example the creation of a Z-boson pair from the
collision of two photons.
There is also a more recent motivation for considering

nonlinear models. Introduced by Dirac 90 years ago [18],
magnetic monopoles remain elusive, despite experimental
efforts. It was thought for a long time that it would be
impossible to obtain a monopole solution in the electro-
weak sector because of its gauge structure after symmetry
breaking, but this belief turned out to be wrong. An
electroweak monopole solution was obtained by Cho
and Maison [19], but the original solution predicted an
infinite mass that should be regularized to have physical
meaning and sustain any hope of being found experimen-
tally. A few years ago, some proposals of SM extensions
regularizing the monopole energy and giving a finite,
calculable mass were made [20–22]. A nonlinear extension
of the hypercharge sector could solve the infinite-energy
problem [23]; a more general extension of the Uð1ÞY sector
giving a finite-energy monopole solution was investigated
in Ref. [24]. Nowadays, there is hope to finally find a
monopole in dedicated experiments, such as MoEDAL at
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CERN [25], so it is imperative to understand the pheno-

menological implications of such an extension.
Nonlinear effects have not been observed at low ener-

gies. This means that the parameter controlling the non-
linearity of the fields is expected to be large in comparison
to other relevant energy scales. The parameters in nonlinear
theories may be constrained in different ways, e.g., via
hydrogen spectroscopy or interferometry [26,27]. A more
stringent bound is obtained using LHC data on light-by-
light scattering in heavy-ion collisions [28]. The lower
bound reported there is ∼100 GeV, but it could
reach ∼200 GeV under less restrictive assumptions. The
ATLAS data on gg → γγ can enhance this sensitivity by 1
order of magnitude in a Born-Infeld (BI) extension
of SM [29], reaching the TeV scale as in brane-inspired
models.
In this work, we analyze an extension of the hypercharge

sector of the SM. This gives rise to quartic effective
interactions between the neutral gauge bosons absent in
the SM at tree level. These novel operators contribute to
decay and scattering processes, and we explore existing
experimental data to place lower bounds on the nonlinear
parameter. We discuss recent results constraining anoma-
lous gauge couplings and briefly consider possible
improvements on these bounds in future experiments.
This paper is organized as follows. In Sec. II, we present

the theoretical setup of our model. In Sec. III, we discuss
options to constrain the expansion parameter β, in particular
through the decay Z → 3γ in Sec. III A and the scattering
e−eþ → 3γ in Sec. III B. In Sec. III C, we discuss neutral
gauge-boson scattering processes and contextualize our
discussion with recent results in anomalous quartic gauge
couplings. Finally, in Sec. IV, we present our closing
remarks. We use natural units (c ¼ ℏ ¼ 1) and the flat
Minkowski metric ημν ¼ diagðþ1;−1;−1;−1Þ throughout.

II. THEORETICAL SETUP

Let us briefly review the usual electroweak (EW)
Lagrangian to fix our notation. The bosonic part of the
EW sector is given by

LEW ¼ LGauge þ LHiggs; ð1Þ

where

LGauge ¼ −
1

4
Fa
μνFa

μν −
1

4
BμνBμν; ð2Þ

LHiggs ¼ jDμHj2 − λ

�
H†H −

m2

2λ

�
2

: ð3Þ

Here, we defined the covariant derivative as

Dμ ¼ ∂μ − igAa
μTa − ig0YBμ: ð4Þ

In the equations above, Aa
μ and Bμ are the gauge

fields associated with the gauge group SUð2ÞL ×Uð1ÞY,
Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν and Bμν ¼ ∂μBν − ∂νBμ

are the respective field strengths, and g and g0 are the
couplings. Here, Ta are the generators of SUð2ÞL satisfying
½Ta; Tb� ¼ iϵabcTc, and Y is the weak hypercharge.
The Higgs fieldH is a SUð2ÞL doublet with hypercharge

YðHÞ ¼ þ1=2. The scalar potential induces a nontrivial
vacuum expectation value given by jhHij2 ¼ v2=2 ¼
m2=2λ. Below this energy scale, the theory is cast into
the Higgs phase with three massive vector bosonsW�, Z, a
massive scalar h and a massless photon A (γ) in the
spectrum. The physical fields can be written using the
Weinberg angle θW : the neutral vector bosons are defined
by Zμ ¼ cos θWA3

μ − sin θWBμ and Aμ ¼ sin θWA3
μþ

cos θWBμ, whereas the charged vector fields are defined
by W�

μ ¼ ðA1
μ ∓ iA2

μÞ=
ffiffiffi
2

p
.

The masses of the vector bosons can be precisely
measured and are mW ¼ gv=2 ¼ 80.4 GeV and mZ ¼
mW= cos θW ¼ 91.2 GeV. The Weinberg angle can be
experimentally determined and satisfies sin2 θW ¼ 0.23.
After symmetry breaking, the kinetic part of the gauge
Lagrangian (omitting mass terms) reads

LKin
Gauge ¼ −

1

4
FμνFμν −

1

4
ZμνZμν −

1

2
Wþ

μνWμν−; ð5Þ

where the field-strength tensors are defined as usual.
We may now introduce the leptons through the following

Lagrangian,

LLeptons ¼ iL̄iγ
μDμLi þ il̄iRγ

μDμliR; ð6Þ

where Li denotes the lepton doublets Li ¼ ðνiLliLÞt with
νiL, liL, and liR representing the left-handed neutrinos,
the left-handed charged leptons, and the right-handed
lepton fields, respectively. Here, i is a flavor index to
distinguish between the three generations of leptons. The
hypercharge assignment adopted here is YðLiÞ ¼ −1=2 and
YðliRÞ ¼ −1. Taking Eq. (6) with Eq. (4), including the
gauge fields after symmetry breaking, we obtain the
interactions between matter and gauge fields. In what
follows, only two such interaction terms will be relevant,
namely,

Leeγ ¼ −el̄iγμliAμ; ð7Þ

LeeZ ¼ g
4 cos θW

l̄iγμð−1þ 4 sin2 θW þ γ5ÞliZμ: ð8Þ

Here, we propose the following general extension of the
weak hypercharge sector of the EW Lagrangian,

L ¼ −
1

4
BμνBμν → LY ¼ fðF ;GÞ; ð9Þ
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where we defined the Lorentz and gauge invariant objects

F ¼ 1

4
BμνBμν and G ¼ 1

4
BμνB̃μν ð10Þ

with the dual field-strength tensor given by B̃μν ¼
1
2
ϵμνρσBρσ. This type of nonlinear extension was already

studied in the context of magnetic monopoles [24], where it
was shown that under certain conditions it allows a finite-
energy electroweak monopole solution.
The SM predictions are so far in excellent agreement

with experiment, and in order to recover the usual SM
results, we demand that our general extension fðF ;GÞ
reproduces the usual term − 1

4
BμνBμν in some appropriate

limit. Since we do not want to have a parity-violating term
in the photon sector after spontaneous symmetry breaking,
we impose the physically motivated assumption that
fðF ;GÞ depends on G only through G2.
Let us consider for instance a BI extension of the

hypercharge sector [3] given by

LBI
Y ¼ β2

2
641 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
F
β2

−
G2

2β4

�s 3
75; ð11Þ

where β is a parameter with dimension of mass squared.
This nonlinear extension has been extensively studied in
the context of electrodynamics, with applications in a range
of subjects, and has attracted a lot of interest in recent years
after the observation of light-by-light scattering at the LHC
[15–17]. Interestingly enough, the BI action can be derived
from string theory [30] and also appears in the dynamics of
D-branes [31].
Our goal is to study the phenomenological consequences

of the nonlinear extension in high-energy processes. To
accomplish this, we need to obtain the induced operators

written in terms of the physical fields after symmetry
breaking. The mass scale set by

ffiffiffi
β

p
is expected to be large

in comparison with the typical energies of the processes
considered, motivating us to perform a Taylor expansion of
Eq. (11) in powers of X ¼ F

β2
− G2

2β4
:

LY ¼ −F þ 1

2β2
½F 2 þ G2� þOð1=β4Þ: ð12Þ

Wewill only consider tree-level processes with at most four
gauge bosons in each vertex, so we can safely restrict
ourselves to leading nontrivial order. It is important to keep
in mind that this perturbative approach can only be trusted
as long as the energy of the process is lower than the mass
scale set by

ffiffiffi
β

p
, as this guarantees that the next terms in the

expansion provide increasingly negligible corrections to
the leading-order terms.
Furthermore, taking into consideration the recent interest

in different versions of nonlinear electrodynamics, we can
also consider other interesting extensions that would give
rise to the same physical effects in the approximation
considered here. In fact, using X defined above, we could as
well have considered here the extensions given by LLog

Y ¼
−β2 log ½1þ X� and LExp

Y ¼ β2½e−X − 1� giving us the
Uð1ÞY version of the logarithmic [9] and exponential
[10,11] nonlinear electrodynamics. The three extensions
agree up to leading nontrivial order, and we will restrict
ourselves to tree-level processes with at most four gauge
bosons interactions, so we may safely consider the β
parameters as being equal with a good approximation
and use Eq. (12) to describe their common effects.
The Lagrangian above is a function of the Uð1ÞY gauge

field, Bμ, but after symmetry breaking, we can write it in
terms of the physical fields, Aμ and Zμ, retrieving the usual
SM kinetic terms at zeroth order. At first order, we
have (sθ ≡ sin θW; cθ ≡ cos θW)

Lð1=β2Þ
Y ¼ 1

32β2
fs4θ½ðZZÞðZZÞ þ ðZZ̃ÞðZZ̃Þ� þ c4θ½ðFFÞðFFÞ þ ðFF̃ÞðFF̃Þ� þ 2s2θc

2
θ½ðFFÞðZZÞ þ ðFF̃ÞðZZ̃Þ�

þ 4s2θc
2
θ½ðZFÞðZFÞ þ ðZF̃ÞðZF̃Þ� − 4s3θcθ½ðZZÞðZFÞ þ ðZZ̃ÞðZF̃Þ� − 4sθc3θ½ðFFÞðFZÞ þ ðFF̃ÞðFZ̃Þ�g; ð13Þ

where we defined ðZZÞ≡ ZμνZμν with an analogous
definition for the dual versions. All non,-linearly induced
vertices above have the same momentum structure and very
similar Feynman rules; this traces back to the common
origin of such interactions.
In conclusion, we see that our nonlinear extension in the

hypercharge sector generates a series of dimension-8
effective operators generically suppressed by a factor
ðE=ΛÞ4, where E is a typical energy scale characteristic

of the process and Λ is the mass scale set by
ffiffiffi
β

p
. These

effective operators will introduce new vertices, allowing
processes that could only occur in the SM at loop level to
take place already at tree level. In the next section, we
explore this fact and consider different high-energy proc-
esses to obtain lower bounds on β whenever experimental
data are available. We also discuss the impact of our
nonlinear extension on scattering processes involving
neutral gauge bosons.
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III. EXPERIMENTAL LIMITS

In the section above, we have extracted quartic inter-
action vertices between the photon and Z-boson which are
completely absent from the SM, thus opening up interesting
possibilities to constrain the expansion parameter β. In the
following, we explore a few of them.

A. Z → 3γ

In the SM, there is no tree-level Zγγγ vertex, so the decay
process Z → 3γ proceeds exclusively via fermion and W-
boson loops [32,33]. The theoretical prediction for the
partial width is ΓðZ → 3γÞSM ¼ 1.4 eV [34], and given the
experimentally determined total width of the Z-boson
ΓZ
exp ¼ 2.49 GeV [35], the expected branching ratio is

BRðZ → 3γÞSM ¼ 5.4 × 10−10. The currently best upper
bound was obtained by the ATLAS Collaboration using pp
collisions at

ffiffiffi
s

p ¼ 8 TeV and reads [36]

BRðZ → 3γÞexp < 2.2 × 10−6; ð14Þ

representing a fivefold improvement on the previous
determination from LEP [37]. This process is clearly very
rare and could not yet be measured directly. It is thus an
ideal testing ground for new physics [38,39].
The SM prediction is compatible with the best current

experimental bound, but there is a vast gap between them.

The nonlinear extension can therefore be constrained by
comparing its prediction to the experimental bound;
cf. Eq. (14). The tree-level amplitude for a Z-boson
with 4-momentum p decaying into three photons with
4-momenta qk (k ¼ 1,2,3) is (cf. Fig. 1)

−iM ¼ ϵαðpÞVαβγδ
Z3γ ðβÞϵ�βðq1Þϵ�γðq2Þϵ�δðq3Þ; ð15Þ

where the vertex factor

Vαβγδ
Z3γ ðβÞ ¼ −i

sθc3θ
β2

fαβγδ ð16Þ

may be read from the last line of Eq. (13). The momentum-
dependent function fαβγδ is given by

−fαβγδ ¼ ½ðq1 · q2Þηβγ − qγ1q
β
2�½ðp · q3Þηαδ − pδqα3� þ ½ðq1 · q3Þηβδ − qδ1q

β
3�½ðp · q2Þηαγ − pγqα2�

þ ½ðq2 · q3Þηγδ − qδ2q
γ
3�½ðp · q1Þηαβ − pβqα1� þ ϵμβργϵνδκαpκq1μq2ρq3ν

þ ϵμβρδϵνγκαpκq1μq2νq3ρ þ ϵμγρδϵνβκαpκq1νq2μq3ρ: ð17Þ

Here, we have assumed that p flows into the vertex,
whereas the qk flow out of it. Incidentally, this momentum
structure is the same for all vertices in Eq. (13).
From this point on, we neglect the loop-level SM

amplitude so the tree-level result from Eq. (15) is essen-
tially the only contribution to the decay. The unpolarized
squared amplitude reads

hjMj2i ¼ 8s2θc
6
θ

3β4
Φðp; q1; q2; q3Þ; ð18Þ

with the momentum factor given by

Φðp; q1; q2; q3Þ ¼
1

2
ðp · q1Þ2ðq2 · q3Þ2 þ perm:; ð19Þ

where “perm.” indicates all permutations of the qk. In the
rest frame of the decaying Z-boson, pμ ¼ ðmZ; 0Þ, and the
outgoing photons have Ek ¼ jqkj. By applying the usual
dispersion relations and momentum conservation, we find

p · q3 ¼ mZE3 and q1 · q2 ¼
m2

Z

2
−mZE3; ð20Þ

with similar results for the other 4-momenta pairs.
Therefore, we can rewrite Φðp; q1; q2; q3Þ as

Φðp; q1; q2; q3Þ ¼
m4

Z

4

X
k¼1;2;3

E2
kðmZ − 2EkÞ2: ð21Þ

Notice that this expression is symmetric under the
change of final photons, a reasonable behavior since there
is no preferred photon in this decay. As the phase space
integral also enjoys this symmetry, we can simply use one
of the terms above to do the integration and multiply the
output by 3, since they will necessarily give the same result.
The partial width is defined as

dΓ ¼ 1

3!

1

2mZ
hjMj2idΠ3; ð22Þ

FIG. 1. Tree-level Feynman diagram for the decay Z → 3γ.
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where 1=3! is the symmetry factor due to the identical
photons in the final state. The three-body phase-space
function is

dΠ3 ¼
d3q1

ð2πÞ32E1

d3q2

ð2πÞ32E2

d3q3

ð2πÞ32E3

× ð2πÞ4δ4ðp − q1 − q2 − q3Þ: ð23Þ

We have then

dΓ ¼ K
E3ðmZ − 2E3Þ2

E1E2

d3q1d3q2d3q3

× δ4ðp − q1 − q2 − q3Þ; ð24Þ

where the constant K, already including the factor of 3, is

K ¼ s2θc
6
θm

3
Z

1536π5β4
: ð25Þ

The rest of the calculation follows a path similar to the
textbook calculation of muon decay [40]. The delta
function may be split into two factors enforcing energy
and 3-momentum conservation. The latter allows us to
write q2 → −ðq1 þ q3Þ and E2 → jq1 þ q3j. Let us take
the polar axis along q3, which is held fixed, so that

E2ðcosθÞ¼ jq1þq3j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1þE2

3þ2E1E3cosθ
q

: ð26Þ

We may then write d3q1 ¼ 2πE2
1djq1jd cos θ, and we have

dΓ ¼ 2πK
E1E3ðmZ − 2E3Þ2

jq1 þ q3j
d3q3dE1d cos θδ½gðcos θÞ�;

ð27Þ

where gðcos θÞ ¼ mZ − E1 − E2ðcos θÞ − E3.
Now, the delta function cannot be directly integrated, so

we need to change variables. This redefinition leads to

δ½gðcos θÞ� ¼ E2ðcos θÞ
E1E3

δðcos θ − cos θ0Þ; ð28Þ

where cos θ0 is such that gðcos θ0Þ ¼ 0. The delta function
now implies that both the maximum energy of any
individual photon and the minimum energy of any pair
of photons are mZ=2. Consequently, we have E1 and E3

limited to the ranges ðmZ
2
− E3;

mZ
2
Þ and ð0; mZ

2
Þ, respectively.

Performing the remaining integrations and dividing by the
Z-boson width, we find that the branching ratio is given by

BRðZ → 3γÞY ¼ s2θc
6
θ

184320π3ΓZ
exp

m9
Z

β4

¼ 6.7 × 10−7
�
mZffiffiffi
β

p
�

8

: ð29Þ

We are finally able to place an experimental bound on β.
The branching ratio predicted by the SM is extremely small
(∼10−10), way below current experimental sensitivities. If
the expression above fully saturates the experimental upper
limit, i.e., BRðZ → 3γÞY ≃ BRðZ → 3γÞexp; cf. Eq. (14),
we find that

ffiffiffi
β

p ≳ 80 GeV; ð30Þ

which is slightly lower than the bound reported in Ref. [28].
In Ref. [41], the authors adopt the result of Eq. (30) above
on the BI parameter to make estimates on the redshift and to
discuss birefringence and dichroism in connection with a
class of p-extended BI-type actions in the presence of an
external uniform magnetic field.
Here, we must add an important remark. The energy

scale of a decay process is set by the mass of the decaying
particle, here given by mZ ¼ 91.2 GeV. Therefore, the
bound obtained above must be taken with a grain of salt
since it represents a mass scale lower than the energy of the
process, challenging the basic assumption behind our
effective-theory approach. Nonetheless, it is worth noticing
that this restriction is a matter of experimental limitation:
the best bound on the Z-decay into three photons is still
orders of magnitude away from the SM prediction, so we
may confidently expect that future experiments will yield
much more stringent bounds on it, therefore significantly
improving on the result above.
The lower bound in Eq. (30) is clearly limited by the

experimental sensitivity. If the current experimental upper
bound on the branching ratio [cf. Eq. (14) [would be improved
by a factor of ∼3—a smaller improvement than the one from
ATLAS [36] relative to LEP [37]—we would be able to
exclude the region

ffiffiffi
β

p ≲mZ. Future lepton colliders, e.g., ILC
[42–45] and FCC-ee [46,47], whose main goal is precision
Higgs physics, could operate at the Z-pole and produce a vast
sample of Z-bosons; the ILC and the FCC-ee could produce,
respectively, 102 and 105 times more Z-bosons than LEP. It is
therefore possible, with much better statistics and improved
detector capabilities, to improve the upper limit on
BRðZ → 3γÞ enough to constrain

ffiffiffi
β

p
at or above mZ.

In Fig. 2, we plot the lower bound on
ffiffiffi
β

p
as a function of

the future improvement of the experimental sensitivity,
BRðZ → 3γÞexp, relative to the currently best one [36]. The
situation discussed in the paragraph above is illustrated by
the area shaded in red; an improvement of at least ∼3would
lead to viable bounds. The unfortunately weak dependence
of the expansion parameter on the experimental sensitivity
is made explicit by the slope of the curve, meaning that
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only large improvements in sensitivity would lead to
noticeable improvements in the lower bound on our non-
linear extension.
As a final remark, we note that the discussion above relies

on the fact that, so far (and in the foreseeable future), only
upper limits on the processZ → 3γ could be placed. The SM
prediction is 4 orders of magnitude below the currently best
upper bound, sowemay also speculate about possible limits
on the expansion parameter in case the SM expectation is
eventually confirmed. In this scenario, there is no tension
between the SM and experiment, so we may assume that the
nonstandard result is responsible for a small correction
of the SM prediction, being hidden under the (relative)
experimental uncertainty, i.e., BRYðβÞ=BRSM ≲ δexp.
Conservatively assuming δexp ∼ 10% would allow us to
improve the lower bound to

ffiffiffi
β

p ≳ 295 GeV. For even better
precisions of 1% and 0.1%, we find

ffiffiffi
β

p ≳ 395 GeV andffiffiffi
β

p ≳ 530 GeV, respectively.

B. e − e+ → 3γ

Hadron colliders have played a central role in the
establishment of the SM as our best theory of elementary
particles and their interactions; great examples are the
discoveries of the W- and Z-bosons, as well as of the
Higgs scalar. However, lepton colliders, such as LEP, were
crucial in subsequent precision measurements, helping to
probe not only tree-level predictions but also radiative
corrections [48]. The next development is to achieve even
higher precision in measurements of electroweak param-
eters, in particular those related to the Higgs and gauge
bosons [49].
Lepton colliders represent optimal tools to this end, and

next-generation machines have been proposed, such as ILC
[42–45], FCC-ee [46,47], CEPC [50], and CLIC [51].

These are designed to study the SM in great detail, but
searching for deviations from the SM that could hint at new
physics is an equally important goal. In this context, the
process e−eþ → 3γ offers an interesting option to test
modifications of the gauge couplings, in particular those
involving photons and Z-bosons. From Eq. (13), we see
that our nonlinear extension induces precisely such anoma-
lous couplings that could give rise to new contributions for
processes with three photons in the final state. We note that
the SM contribution is very well described by QED with
negligible electroweak corrections.
The Feynman diagrams contributing to e−eþ → 3γ at

tree level are shown in Fig. 3. The QED contribution is
given by

−iMQED¼ ie3v̄ðp2Þ
�
γρ

=p1−=q1−=q2
ðp1−q1−q2Þ2

γν

×
=p1−=q1

ðp1−q1Þ2
γμ
�
uðp1Þϵ�μðq1Þϵ�νðq2Þϵ�ρðq3Þ; ð31Þ

which must be added to the other five amplitudes obtained
from this one by permutation of the external photons. We
are considering high-energy scatterings, so the electron
mass may be safely neglected. The nonlinearly induced
photon- and Z-mediated amplitudes are given by

−iMγ ¼
−e

ðp1 þ p2Þ2
v̄ðp2Þγμuðp1Þ

× Vμνβρ
4γ ðβÞϵ�νðq1Þϵ�βðq2Þϵ�ρðq3Þ; ð32Þ

−iMZ ¼ gZ
ðp1 þ p2Þ2 −m2

Z þ imZΓZ

× v̄ðp2Þγμðcv − caγ5Þuðp1Þ
× Vμνβρ

Z3γ ðβÞϵ�νðq1Þϵ�βðq2Þϵ�ρðq3Þ; ð33Þ

where gZ ¼ e=4sθcθ, cv ¼ −1þ 4s2θ and ca ¼ −1. The Z-
width is ΓZ ¼ 2.49 GeV. The Zγγγ vertex was defined in
Eq. (16), and the four-photon vertex is analogous:

Vαβγδ
4γ ðβÞ ¼ i

c4θ
β2

fαβγδ: ð34Þ

The function fαβγδ is given by Eq. (17) with the appropriate
relabeling of the 4-momenta.

FIG. 3. The lowest-order Feynman diagrams contributing to the
scattering e−ðp1Þeþðp2Þ → γðq1Þγðq2Þγðq3Þ.

FIG. 2. Projection for the lower bound on
ffiffiffi
β

p
as a function of

the improvement factor of the experimental sensitivity relative to
the currently best one; cf. Eq. (14) [36]. Incidentally, Eq. (29)
reaches the order of magnitude of the SM prediction withffiffiffi
β

p
∼ 220 GeV. The region shaded in red is such thatffiffiffi

β
p

< mZ, where our predictions are not accurate.
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The total tree-level amplitude for the process, M, is
M ¼ MQED þMγ þMZ, and the total unpolarized cross
section is given by

dσ ¼ 1

3!

1

2E2
cm

hjMj2idΠ3; ð35Þ

where 1=3! is the symmetry factor due to the identical
photons in the final state and the phase-space factor is the
same as in Eq. (23). The squared amplitude is essentially
the sum of three contributions: a pure QED part, an
interference term between QED and the nonlinear ampli-
tudes, and a purely nonlinear term. The contribution from
pure QED is discussed in the Appendix A.
Let us first discuss the interference term, hjMj2QED–Yi.

The unpolarized squared amplitude is quoted in detail in
Appendix B. To simplify matters, we may express all
energies and 3-momenta in units of the c.m. energy, Ecm, so
that we can write it as

hjMj2QED–Yi ¼ XQED–Ye4c2θ
E2
cm

β2
Aðpi; qjÞ; ð36Þ

with Aðpi; qjÞ representing a function of the now dimen-
sionless energies and 3-momenta that the reader may obtain
from Eq. (B1). The prefactor XQED–Y is given by
(x ¼ m2

Z=E
2
cm and y ¼ Γ2

Z=m
2
zÞ

XQED–Y ¼ 3 − ð3þ 4c2θÞxþ 4c2θx
2ð1þ yÞ

ð1 − xÞ2 þ yx2
: ð37Þ

From the phase-space volume, we get another factor of
E2
cm that cancels the one present in the denominator of

Eq. (35), so that, putting all the numerical factors together,
we finally obtain

σðe−eþ → 3γÞQED–Y ¼ XQED–Y
α2c2θ
384π3

s
β2

IQED–Y ð38Þ

with s ¼ E2
cm, e2 ¼ 4πα and

IQED–Y¼
Z

Aðpi;qjÞ
d3q1

E1

d3q2

E2

d3q3

E3

δ4ðΣpi−ΣqjÞ: ð39Þ

Note that the quantities in Eq. (39) are all expressed in units
of

ffiffiffi
s

p ¼ Ecm, being therefore dimensionless.
Equation (39) cannot be easily evaluated analytically due to

the complexity of the integrand, sowe solve it numerically via
standard Monte Carlo methods. The Dirac delta enforcing 4-
momentum conservation severely constrains the phase-space
volume available to the outgoing photons. In fact, their
individual energies are bound to be at most 0.5, and the
sum of any pair of energies must be larger than this value,
allowing us to limit the range of the sampled 3-momentum
components to the interval ½−0.5; 0.5�. In what follows, we
use data from e−eþ collisions at LEP resulting in two or three

photons, and the cross sections quoted were obtained under
the experimental conditions of the detector. That means that
wehave to impose similar cuts to our theoretical cross sections
if we want to compare them to LEP data.
Particularly important are the angular and energy cuts

imposed [52,53]. Since the forward-backward direction
along the beam is inaccessible, the range in polar angles is
limited to 16° ≤ θγ ≤ 164°, i.e., the detectable photons
must satisfy j cos θγj ≤ 0.96 to be contained in the electro-
magnetic calorimeter. Furthermore, the individual photons
must have an energy Eγ > 5 GeV. Even though Eq. (39) is
written in terms of dimensionless quantities, the aforemen-
tioned lower threshold on the detectable energy of the
single photons introduces an energy dependence, as the cut
is expressed as Eγ > 5=

ffiffiffi
s

p
. The values of the integral

evaluated at selected energy values are quoted in Table I.
For the sake of concreteness, the interference cross section
at

ffiffiffi
s

p ¼ 207 GeV is

σQED–Yð
ffiffiffi
s

p ¼ 207 GeVÞ ≃ 0.88

�
250 GeVffiffiffi

β
p

�
4

fb: ð40Þ

We now move on to the purely nonlinear contribution,
hjMj2Yi, which is expected to be subdominant relative to
the interference term discussed above. The unpolarized
squared amplitude is stated in Eq. (B5), and after express-
ing the 4-momenta in units of Ecm, we have

hjMj2Yi ¼ XYe2c4θ
E6
cm

β4
Bðpi; qjÞ; ð41Þ

with Bðpi; qjÞ representing a dimensionless function in
analogy with Aðpi; qjÞ. The prefactor is

XY ¼ 5 − 12c2θxþ 8c4θx
2ð1þ yÞ

ð1 − xÞ2 þ yx2
: ð42Þ

Equation (41) may be integrated analytically,1 but here
we adopted the same Monte Carlo setup employed in the
calculation of the interference term. The cross section is
then given by

TABLE I. Values of the numerical integrals appearing in
Eqs. (38), (43), and (A7). The first two energy values are relevant
in the context of existing LEP data [52,53], whereas the last two
are important for future e−eþ colliders, such as the ILC [42–
45,54]. The following cuts were applied: Eγ > 5 GeV and
j cos θγj < 0.96 [52,53].ffiffiffi
s

p
(GeV) 91.2 207 250 350

IQED 27006 37976 41796 45854
IQED–Y 19.45 20.02 20.13 20.24
IY 0.138 0.139 0.139 0.139

1The result without detector cuts is σY ¼ XY
αc4θ

368640π2
s3

β4
.
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σðe−eþ → 3γÞY ¼ XY
αc4θ

6144π4
s3

β4
IY; ð43Þ

where IY is defined analogously to IQED–Y; cf. Eq. (39).
Specializing to

ffiffiffi
s

p ¼ 207 GeV and using the numerical
value of the integral including detector cuts from Table I,
we have

σYð
ffiffiffi
s

p ¼ 207 GeVÞ ≃ 0.01

�
250 GeVffiffiffi

β
p

�
8

fb: ð44Þ

In the discussion above, we have obtained the total cross
sections involving the novel neutral vertices originating in
Eq. (13). The fact that only quartic vertices are produced
implies that e−eþ → 2γ does not receive corrections, at
least at tree level, but e−eþ → 3γ does. From dimensional
analysis alone, we expect the number of events with two
photons to be roughly 2 orders of magnitude times larger
than with three photons, thus making dedicated searches for
three-photon events harder. Therefore, more commonly,
experiments look for multiphoton processes, and the best
available data to our knowledge were collected at LEP
where the c.m. energy of the e−eþ pair was scanned
passing by the Z-pole and reaching more than 200 GeV.
The L3 Collaboration analyzed LEP data of events

resulting in multiphoton final states [52,53]. Since electro-
weak corrections are heavily suppressed, these measure-
ments provide a clean test of QED, whose predictions were
successfully confirmed. The calculations of the QED
expectation were performed following Ref. [55], where
contributions up toOðα3Þ are considered, i.e., the tree-level
cross sections for two and three final photons plus radiative
corrections. Here, however, we are working with an
effective theory, and we limit our analysis to tree level
and refrain from employing their results.
The tree-level cross section for e−eþ → 2γ is well

known; cf. Eq. (A2). No closed form for the tree-level
cross section for e−eþ → 3γ in the CM could be found, so
we calculated the squared amplitude analytically and
performed the phase-space integration numerically includ-
ing the appropriate detector cuts; cf. Eq (A8). Let us
consider concrete data to try to constrain

ffiffiffi
β

p
. Since we are

dealing with an effective theory whose effects grow with
energy, we will ignore data at the Z-pole [52] and focus on
the more promising high-energy results [53].
The L3 Collaboration analyzed e−eþ → γγðγÞ data in

detail and indicates cross-section measurements for final
states with two and three photons. The highest energy bin is
207 GeV (cf. Table 3 of Ref. [53]), and it quotes the
expected Oðα3Þ cross section as 9.9 pb, whereas our tree-
level result is 9.2 pb. Given that the difference includes
radiative contributions deliberately unaccounted for here
and possible effects from further selection criteria, we are
confident that our calculation delivers a meaningful result
for the QED prediction at tree level.

Now, given that QED accurately describes the exper-
imental data, we are only able to find lower bounds on

ffiffiffi
β

p
.

In fact, we may constrain it by demanding that the effects of
the nonlinear extension hide under the relative experimental
uncertainty

σQED–Y þ σY
σQED

≲ δexp; ð45Þ

with σQED being the tree-level expectation from QED. The
cross sections for final states with two and three photons
are, respectively, σ2γQED, Eq. (A2), and σ3γQED, Eq (A8). For
the sake of concreteness, we focus on the highest energy
bin quoted in Table 3 from Ref. [53],

ffiffiffi
s

p ¼ 207 GeV, for
which the relative uncertainty of the measured cross section
is δexp ¼ 0.34=10.16 ≃ 0.034. Plugging this and σ2γQED þ
σ3γQED ¼ 9.2 pb into Eq. (45), we obtain

ffiffiffi
β

p ≳ 73 GeV.
The absolute number of e−eþ → 3γ events is also

reported in Ref. [53] for different energies, albeit without
the respective experimental uncertainties. Focusing again
on

ffiffiffi
s

p ¼ 207 GeV, the expected tree-level cross section for
pure QED is 0.29 pb. At this energy, 29 three-photon
events were observed, so we may conservatively assume
that the uncertainty is ∼

ffiffiffiffiffi
29

p
≃ 5.4 events. Taking into

account the effective integrated luminosity, 87.8 pb−1, this
is equivalent to 0.06 pb, so that the relative uncertainty is
δexp ¼ 0.06=0.29 ≃ 0.21. With σQED ¼ σ3γQED ¼ 0.29 pb,
Eq. (45) gives

ffiffiffi
β

p ≳ 97 GeV.
The bounds found above suffer from the same limitation

as the one from the analysis of Z-decay:
ffiffiffi
β

p
<

ffiffiffi
s

p
. This is,

however, not surprising, since the experimental uncertain-
ties are orders of magnitude larger than the typical values
expected from Eqs. (40) and (44). We are thus confronted
with the fact that the currently available data on e−eþ →
γγðγÞ do not yield viable bounds on

ffiffiffi
β

p
.

Despite being experimentally more challenging, meas-
uring e−eþ → 3γ has the largest potential, as only the
process directly affected by the nonlinear effects is exam-
ined. We conclude, therefore, that a sensible lower limit onffiffiffi
β

p
could be placed if future e−eþ colliders would include

measuring this process in their research programs. Let us
take the ILC as an example, which targets a total integrated
luminosity of 14 ab−1 over its full operation time [54].
For the sake of clarity, let us focus on the initial stage
with

ffiffiffi
s

p ¼ 250 GeV, where an integrated luminosity of
∼500 fb−1 is planned to be attained in the first five years.
Assuming similar detector cuts as at LEP and a (pessi-
mistic) 1% effective luminosity,2 ∼5 fb−1, pure QED
predicts 1073 three-photon events, whereas the nonlinear
terms would contribute with three extra events forffiffiffi
β

p ¼ 300 GeV; i.e., the level of precision required would

2For comparison, the analysis of e−eþ → γγðγÞ at LEP in the
energy range 192–209 GeV contained 0.43 fb−1 of data, roughly
ten times less.
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be 3=1073 ∼ 0.3%. A similar precision would be required
at

ffiffiffi
s

p ¼ 350 GeV with
ffiffiffi
β

p ¼ 400 GeV.

C. Pure gauge-boson scatterings

The electroweak sector of the SM is based on the non-
Abelian gauge group SUð2ÞL ×Uð1ÞY. This is manifest
in the form of the covariant derivative; cf. Eq. (4) and the
nonlinear transformation properties of the gauge
bosons. Particularly relevant is the presence of triple
and quartic self-interaction couplings in the gauge sector.
As a matter of fact, in a pure Yang-Mills theory, the quartic
coupling is related to the triple one, even at the quantum
level, as a consequence of gauge symmetry—this is a
trademark feature of a non-Abelian gauge theory. Given
that the structure of the gauge self-couplings in the
electroweak sector is completely specified by construc-
tion, any deviations from this would suggest the presence
of new physics.
Measurements of the gauge self-couplings are therefore

especially interesting from both theoretical and experimen-
tal points of view. Particularly important are high-energy
scattering processes involving the Z-boson and the photon,
which could give a clear signal indicating SM extensions
modifying the hypercharge sector like the one proposed
here. With this in mind, we consider some of the possible
scattering processes proceeding via the quartic couplings
from Eq. (13) already at tree level, instead of loop level as
predicted by the SM.
As mentioned in Sec. III B, e−eþ colliders offer clean

conditions for precision tests of the SM. More interestingly,
there are currently proposals of machines that can be
adapted to work as linear photon colliders. Important
sources of photons at a linear lepton collider include
bremsstrahlung [56] and Compton laser backscattering
[57] (there is also beamstrahlung [58]). At LEP or LHC
bremsstrahlung is the dominating form of radiation pro-
duction, whereas at TESLA [59], ILC [42,60], or CLIC
[51,61,62], Compton backscattering of electrons in intense
lasers would be used to produce γγ or eγ collisions. In this
scenario, the photons created may carry a substantial
amount of the electron energy [63].
Given that future linear e−eþ machines envision in their

prospects the possibility of an extension to include photon
colliders at relatively low cost, let us focus on γγ collisions
producing exclusively vector bosons Vi ¼ γ; Z;W�. In this
context, measuring, e.g., the process γγ → WþW− in a
photon collider is an attractive option due to its large
(∼80 pb) cross section [64,65]. The nonlinear realization
of the hypercharge sector proposed in this work, however,
does not affect charged gauge bosons, so we shall
focus on γγ fusion leading to neutral gauge bosons as final
products: γγ → γZ, γγ → ZZ, and γγ → γγ. It is noteworthy
that, within the SM framework, these processes receive only
loop-level contributions, but here they will be induced at tree
level by the effective operators present in Eq. (13).

For the sake of concreteness, in the following, we
compute the nonlinear contribution to the unpolarized cross
section of the process γγ → γZ at tree level. Though we
consider this particular process inmore detail, all othersmay
be analyzed by similar means. FromEq. (13), we see that the
relevant vertex factor isVαβγδ

Z3γ , cf. Eqs. (16) and (17), butwith
the substitutions: p → p1, q1 → −p2, q2 → q1, and q3 →
q2 appropriate for a 2-to-2 scattering.
The tree-level amplitude for this process is then

−iM ¼ ϵαðp1Þϵβðp2ÞVαβγδ
Z3γ ðβÞϵ�γðq1Þϵ�δðq2Þ ð46Þ

with the momenta attributions given in Fig. 4. Here, we are
assuming that the unpolarized photons are on shell and
monochromatic.3 After summing and averaging over polar-
izations, the unpolarized squared amplitude becomes

hjMj2i ¼ c6θs
2
θ

8β4
½m4

Zðs2 þ t2 þ u2Þ

−2m2
Zðs3 þ t3 þ u3Þ þ s4 þ t4 þ u4�; ð47Þ

where the Mandelstam variables, expressed in terms of the
c.m. energy Ecm of the incoming photons and the scattering
angle θ, are

s ¼ E2
cm; ð48aÞ

t ¼ −
1

2
ðE2

cm −m2
ZÞð1 − cos θÞ; ð48bÞ

u ¼ −
1

2
ðE2

cm −m2
ZÞð1þ cos θÞ: ð48cÞ

Setting x ¼ m2
Z=s, the unpolarized differential cross

section for the scattering γγ → γZ reads

dσ
dΩ

¼ c6θs
2
θ

4096π2
s3

β4
ð1 − xÞ3½ð6 − 2x2Þ cos2 θ

þð1 − xÞ2 cos4 θ þ 9þ 2xþ x2�; ð49Þ

FIG. 4. The lowest-order Feynman diagram contributing to the
scattering γðp1Þγðp2Þ → γðq1ÞZðq2Þ.

3This is a simplified scenario, and a more detailed analysis
would follow the strategy from Ref. [28], for example.
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which can be integrated to yield

σðγγ→ γZÞY ¼
s2θc

6
θ

1920π

�
s3

β4

�
ð1−xÞ3ð21þ3xþx2Þ: ð50Þ

This result is shown in blue in Fig. 5 for
ffiffiffi
β

p ¼ 250 GeV. If
the nonlinear hypercharge sector is indeed realized in
nature, the expression above would provide the only
tree-level contribution to the cross section, since this
process cannot take place in the SM at this order. In fact,
the first SM contribution is generated via fermion and
W-boson loops with a cross section of ∼3 × 10−4 fb shortly
above threshold and peaking at ∼110 fb at ∼750 GeV [66].
Another process of interest in a photon collider is

γγ → ZZ, which, similar to γγ → WþW−, may be used
to study the gauge structure of the SM as well as Higgs
physics. As already mentioned, this process has no tree-
level contribution in the SM—the first nontrival amplitude
arises through fermion and W-boson loops with a cross
section of ∼20 fb immediately after threshold and roughly
saturating at ∼300 fb for c.m. energies ≳800 GeV
[59,67,68]. In our nonlinear extension, the first nonzero
contribution is at tree level, and the calculation of the
(differential) cross section follows a rationale similar to the
one leading to Eq. (50). The result is listed in Table II and
shown in black in Fig. 5.
Finally, let us briefly comment on γγ → γγ, light-by-light

(LbL) scattering. In Maxwell’s linear electromagnetism,
this process is forbidden, but in the 1930s, Heisenberg and
Halpern [1,2] realized that quantum effects could induce it.
In the 1950s, a full calculation was presented [69], and the
cross section was found to be ∼10−34 pb for visible light
[70,71]. Only recently, it was proposed that this elusive
process could be observed at the LHC in Pb-Pb collisions
[72]—in fact, strong evidence for it has been reported by
the ATLAS [15] and CMS collaborations [16], being

further confirmed by ATLAS [17]. The results are com-
patible with the SM prediction. As with the other photon-
fusion processes previously discussed, LbL scattering takes
place only at loop level in the SM. Our nonlinear extension,
on the other hand, allows for it to proceed already at tree
level and with a potentially large cross section; cf. Fig. 5.
The quartic vertices in Eq. (13) allow for a few more tree-

level scattering processes involving exclusively neutral
gauge bosons than we have explicitly mentioned above.
For the sake of completeness, the differential cross sections
for these processes are given in Appendix C, and the
respective total cross sections, without any angular cuts,
can be written in a systematic way as

σ ¼ N

�
s3

β4

�
κðxÞFðxÞ ð51Þ

with x ¼ m2
Z=s. Here, N is a numerical factor, κðxÞ is a

kinematic and phase-space factor, and further energy-
dependent contributions are contained in FðxÞ. These
results are summarized in Table II and shown in Fig. 5
for a reference value of

ffiffiffi
β

p ¼ 250 GeV. The basic features
are immediately salient: besides LbL scattering, all cross
sections sharply rise after the respective thresholds and
grow with increasing c.m. energy, as expected from the
effective character of our hypercharge extension.
It is important at this point to contextualize our findings

with recent results on anomalous quartic gauge couplings
(aQGC). In fact, it is interesting to discuss experimental
bounds and projected sensitivities on aQGC, as these may
be translated into constraints on the parameter β from
different, but complementary, perspectives, ranging from
past LHC runs to future lepton colliders. Particularly
relevant is the discussion of recent results related to the
anomalous vertices γγγZ and γγγγ.
Anomalous quartic gauge couplings can be investigated

with high precision at the LHC through pp → pXp
processes, where X can be, for instance, γγ or γZ. In
particular, it is interesting to focus on photon-induced
processes in pp collisions since these processes are very

FIG. 5. Unpolarized total cross sections for selected processes
(no angular cuts applied; evaluated in the c.m.); cf. Table II. Here,
we set

ffiffiffi
β

p ¼ 250 GeV for definiteness, but the scaling for other
values can be easily performed via Eq. (51).

TABLE II. Total cross sections for processes involving only
quartic couplings of neutral gauge bosons; cf. Eq. (51) with
x ¼ m2

Z=s. These results are shown in Fig. 5 for
ffiffiffi
β

p ¼ 250 GeV.

Process N κðxÞ FðxÞ

γγ → γγ
7c8θ

1280π 1 1

γγ → γZ
s2θc

6
θ

1920π ð1 − xÞ3 21þ 3xþ x2

γγ → ZZ
s4θc

4
θ

1280π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
7 − 26xþ 27x2

γZ → γγ
s2θc

6
θ

5760π (1 − x) 21þ 3xþ x2

γZ → γZ
s4θc

4
θ

2880π ð1 − xÞ4 21þ 6xþ 16x2 þ 6x3 þ 6x4

γZ → ZZ
s6θc

2
θ

5760π ð1 − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
21 − 75xþ 98x2 − 20x3 þ 6x4
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sensitive to aQGC and therefore new physics beyond the
SM (e.g., extended Higgs sectors or extra dimensions).
For instance, the γγγZ interaction appears in the SM

through fermion and W-boson loops. This anomalous
vertex induces the rare decay Z → γγγ, contributes to
eþe− → γγγ and allows also for the γγ → γZ scattering.
New physics appearing at a mass scale Λ, much heavier
than the experimentally accessible energies E, can have its
effects described via a low-energy effective field theory.
The anomalous γγγZ interaction could then be parame-
trized by dimension-8 operators such as

Lð1Þ
Z3γ ¼ ζFμνFμνFρσZρσ þ ζ̃FμνF̃μνFρσZ̃ρσ: ð52Þ

This is an effective description, and we recover our model
by making ζ ¼ ζ̃ ¼ − 1

8β2
sθc3θ.

Baldenegro et al. studied in great detail the γZ produc-
tion with intact protons in the forward region at the
LHC using proton tagging [73]. In this way, a sensitivity
of ζ < 2 × 10−13 GeV−4 could be established for the
anomalous quartic gauge coupling γγγZ at an integrated
luminosity of 300 fb−1. This improves the result obtained
through the Z → γγγ measurement by about 3 orders of
magnitude. This improvement in the anomalous coupling
sensitivity would, in turn, translate into an improvement on
the sensitivity of

ffiffiffi
β

p
, putting it at the order of a few

hundred GeV.
Recently, Inan and Kisselev studied very carefully the

γγ → γZ scattering of photons produced by Compton
backscattering at the CLIC and estimated the sensitivity
to the anomalous quartic coupling γγγZ [74]. They used the
following parametrization:

Lð2Þ
Z3γ ¼ g1FρμFαν∂ρFμνZα þ g2FρμFν

μ∂ρFανZα: ð53Þ

We can relate these coefficients with the previous ones
through g1 ¼ 8ðζ̃ − ζÞ and g2 ¼ 8ζ̃. The authors consid-
ered both polarized and unpolarized eþe− colisions at 1.5
and 3 TeV, obtaining exclusion limits on the aQGCs and
comparing their results with the previous bounds obtained
from γZ production at the LHC. The best bounds found by
the authors for the couplings g1;2 were approximately 4.4 ×
10−14 GeV−4 and 5.1 × 10−15 GeV−4 for the eþe− energies
1.5 and 3 TeV, respectively. They conclude that the
sensitivities on the anomalous couplings obtained at
CLIC are roughly 1 to 2 orders of magnitude stronger
than the limits that can be obtained at the LHC. Such an
improvement would be enough to put the sensitivity on our
nonlinear parameter

ffiffiffi
β

p
at the TeV scale.

Let us now move on to the anomalous coupling γγγγ. We
can describe the nonlinear effects on LbL scattering by
means of the following effective Lagrangian:

Lð1Þ
4γ ¼ ζ1FμνFμνFρσFρσ þ ζ2FμνFνρFρσFσμ: ð54Þ

This can be related to our description if we write it in a
different, but equivalent, basis given by

Lð2Þ
4γ ¼ ξFμνFμνFρσFρσ þ ξ̃FμνF̃μνFρσF̃ρσ; ð55Þ

where the relation between the above parameters is given
by ξ ¼ ζ1 þ 1

2
ζ2 and ξ̃ ¼ 1

4
ζ2. We can recover our model if

we take the particular combination ξ ¼ ξ̃ ¼ c4θ
32

1
β2
.

Fichet et al. analyzed the sensitivities to the anomalous
coupling γγγγ at the LHC through diphoton production
with intact outgoing protons [75,76]. The reported
limits at 14 TeV with an integrated luminosity of L ¼
300 fb−1 on jζ1j and jζ2j were 1.5 × 10−14 GeV−4 and
3.0 × 10−14 GeV−4, respectively. For the High-Luminosity
LHC (HL-LHC), the sensitivities obtained were a factor of
2 stronger. These results are strong and can put the
sensitivity on our

ffiffiffi
β

p
at the TeV scale.

Inan and Kisselev examined the anomalous couplings
γγγγ in the polarized LbL scattering at CLIC [77]. Their
results at 1.5 TeV were comparable with the bound
obtained at HL-LHC stated above, but their results for
3 TeV were approximately 1 order of magnitude stronger,
improving further the sensitivity on

ffiffiffi
β

p
but still keeping it

at the TeV scale. A similar result could be found consid-
ering the best sensitivities on the anomalous couplings
obtained through γγ → ZZ in Ref. [78] and also through
Zγγ production in Ref. [79], both considering eþe−
collisions at 3 TeV at CLIC.
Finally, let us conclude this section by reporting the

latest experimental results on the anomalous couplings of
interest here. A more general effective description
including the nine independent dimension-8 operators
respecting the SUð2ÞL ×Uð1ÞY gauge symmetry as
well as charge conjugation and parity invariance can be
found in Ref. [80]. This effective description includes in
particular

L ⊃ FT;8BμνBμνBρσBρσ þ FT;9BμνBνρBρσBσμ: ð56Þ

To the best of our knowledge, the strongest experimental
bounds on these anomalous couplings are given by the very
recent CMS results reported in Refs. [81–84], considering
different measurements in proton-proton collisions at

ffiffiffi
s

p ¼
13 TeV performed at the LHC. In particular, the strongest
bounds on the anomalous couplings FT;8 and FT;9 are
reported in Ref. [84] and give jFT;8j < 4.7 × 10−13 GeV−4

and jFT;9j < 9.1 × 10−13 GeV−4. These coefficients are
translated into our model by taking FT;8 þ FT;9=2 ¼
1=32β2 and FT;9=4 ¼ 1=32β2. Therefore, these experimen-
tal results put the bound on

ffiffiffi
β

p
at the order of a few

hundred GeV.
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Very recently, a work appeared on the arXiv [85] in
which the authors search for exclusive two-photon pro-
duction via photon exchange in proton-proton collisions,
pp → pγγp, with intact protons using the CMS and
TOTEM detectors at a center-of-mass energy of 13 TeV
at the LHC. They report the following bounds on the
anomalous four-photon coupling parameters: jζ1j < 2.88 ×
10−13 GeV−4 and jζ2j < 6.02 × 10−13 GeV−4. This would
give us a limit on

ffiffiffi
β

p
around the same order of magnitude

as the result reported above.
The most recent and strong contribution to the subject

was recently given by Ellis et al. [86], constraining the
nonlinear scale of a BI extension of the SM to be ≳5 TeV
considering gg → γγ at the LHC. The authors estimate the
sensitivities at possible future pp colliders with

ffiffiffi
s

p ¼
100 TeV to be around ≳20 TeV.
Therefore, we conclude that the LHC results can give

very strong constraints on aQGC. These can be translated
as bounds on

ffiffiffi
β

p
typically at the order of a few hundred

GeV up to the TeV scale. Nevertheless, future colliders are
expected to be able to supersede these constraints, con-
sequently improving the sensitivity on

ffiffiffi
β

p
.

IV. CONCLUSIONS

Motivated by recent results in the physics of electroweak
monopoles, we investigated the consequences of a non-
linear extension in the weak hypercharge sector in high-
energy processes. The proposed extension is characterized
by a parameter

ffiffiffi
β

p
with dimension of mass, which may

be used to perform a Taylor expansion in X ¼ F
β2
− G2

2β4
;

cf. Eq. (12). After EW symmetry breaking, we obtain a
series of quartic, dimension-8 effective operators involving
the photon and Z-boson that are absent from the SM at tree
level; cf. Eq. (13).
In this context, we have analyzed a few interesting

processes, namely, Z-decay and electron-positron annihila-
tion, both resulting in three photons as final products, and Z-
boson production via photon fusion. The first and most
promising one, Z-decay, is a rare process occurring only at
loop level in the SM, but induced at tree level by nonlinear
effects. The expected impact of the nonlinear vertex on the
branching ratio is a factor ∼3 too small; cf. Eq. (29). This is
due to the still-loose experimental upper bound on the
branching ratio of Z-decay into three photons, which is 4
ordersofmagnitude larger than thevalue predicted by theSM.
Future e−eþ colliders, such as the ILC or FCC-ee, may

operate at the Z-resonance and produce a large amount of
Z-bosons—up to a factor 105 more than at LEP—thereby
dramatically increasing the statistics for measuring the
products of Z-decay. We are therefore confident that the
experimental upper limit on the branching ratio will be
significantly improved in the near future, thus enabling us
to set more stringent bounds on

ffiffiffi
β

p
, readily excluding the

range
ffiffiffi
β

p ≲mZ; cf. Fig. 2. We remark that, in a scenario

where experiment reaches the level of the SM prediction,
lower bounds ∼300 GeV could be set.
The second process analyzed was electron-positron

annihilation into three photons, also a relatively rare
process. It is well described by QED, and the nonlinear
extension provides small corrections also at tree level;
cf. Fig. 3. We have calculated the unpolarized cross
sections of pure QED, pure nonlinear and interference
effects at the c.m. Since there is no tension between the
predictions from QED and the experimental data, we have
used the (relative) experimental uncertainties from LEP
data for e−eþ → γγðγÞ and e−eþ → 3γ above the Z-pole to
derive lower bounds on

ffiffiffi
β

p
.

The process with two- and three-photon final states is
well measured, but the nonlinear effects, which contribute
only to e−eþ → 3γ, are shadowed by the much larger QED
contribution, e−eþ → 2γ. The data on exclusively three-
photon final states is not so complete, but a conservative
estimate delivers a somewhat better lower bound on

ffiffiffi
β

p
.

The nonlinear effects are much smaller than the available
precision, and it was not possible to obtain viable bounds
with the current experimental data, but we project that the
necessary improvements may be within the reach of the
next-generation lepton colliders.
Finally, we have also analyzed selected scattering

processes involving exclusively neutral gauge bosons.
The unpolarized tree-level cross sections may reach a
few hundred fb at

ffiffiffi
s

p ¼ 200 GeV for
ffiffiffi
β

p ¼ 250 GeV;
cf. Fig. 5. These processes are good candidates to detect
possible signatures from the nonlinear extension in future
experiments, given that they occur only at loop level in the
SM, but are induced at tree level via Eq. (13).
In this respect, we also reported recent results giving

constraints on anomalous quartic gauge couplings obtained
at the LHC considering neutral gauge-boson scatterings.
We used them to estimate the corresponding limits on

ffiffiffi
β

p
and found that typically they give us bounds of a few
hundred GeV. Furthermore, we analyzed the projections for
these anomalous couplings in future lepton colliders and
found that they improve the sensitivity on

ffiffiffi
β

p
, putting it at

the TeV scale.
Quite generally, we expect the nonlinear effects to be

heavily suppressed by
ffiffiffi
β

p
—it could reach TeV energies

depending on the underlying beyond-the-SM scenario. In
this work, we have tried to constrain

ffiffiffi
β

p
with high-energy

experiments, and we found that, in order to have any chance
to detect such effects, very precise measurements are
needed. A good example is the Z-decay in three photons,
for which the (minute) SM contribution is generated at loop
level, whereas the nonlinear effects contribute already at
tree level. This, together with the optimistic prospect of an
improved upper limit on the branching ratio, makes this
process a very promising way to search for the effects
outlined in this work.
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This can be contrasted to the situation of electron-
positron annihilation: the nonlinear effects are orders of
magnitude smaller than the SM results and thus very hard
to detect—much like finding a needle in a haystack. We can
see this by comparing the magnitudes of the cross sections
in Eqs. (40) and (44), ∼0.9 fb for

ffiffiffi
β

p ¼ 250 GeV, with the
size of the experimental uncertainties quoted in Ref. [53],
∼0.5 pb. Since the nonlinear contributions are much
smaller than the uncertainties involved, the only way to
make them comparable [à la Eq. (45)] is by having

ffiffiffi
β

p ≲ffiffiffi
s

p
to effectively enhance the nonlinear effects.

Moreover, we remark that the experimental bounds on
anomalous gauge couplings are being updated at a rela-
tively fast pace. Their precise measurement is an extremely
important task, since it provides a sensitive probe of new
physics. We hope that future colliders will shine a new light
on this issue, indicating the path to be followed on high-
energy physics.
To conclude our contribution, we remark that a more

general implementation of the nonlinear extension of the
electroweak sector is possible. Here, we have considered
the Uð1ÞY sector, but an analogous modification may be
performed in the SUð2ÞL sector. In this case, the already
analyzed neutral sector would receive small modifications,
but interesting nonlinear effects would also be induced in
the charged sector of the SM. This is the subject of another
work to appear soon.
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APPENDIX A: TREE-LEVEL QED RESULTS FOR
e− e + → γγðγÞ

In Sec. III B, we discussed the tree-level effects of the
nonlinear extension of the Uð1ÞY sector in the process
e−eþ → γγðγÞ. The experimental results from LEP
included cross sections with final states of two and three
photons subjected to detector cuts in energy and scattering
angle, namely, Eγ > 5 GeV and j cos θγj < 0.96 [52,53], so
it is important to understand the tree-level expectation from
QED to e−eþ → γγ and e−eþ → γγγ under these
conditions.
We start with the simplest case, e−eþ → γγ. Since there

are two identical particles in the final state and the reaction
takes place at the c.m., the two photons carry the same
energy as the colliding electron. Assuming monochromatic

beams with energies Oð100 GeVÞ, the outgoing photons
automatically satisfy the energy cut. The tree-level differ-
ential cross section is given by the well-known result

dσ2γQED
d cos θ

¼ 2πα2

s

�
1þ cos2 θ
1 − cos2 θ

�
: ðA1Þ

For two identical particles, the polar angle is confined to the
range 0 ≤ cos θγ ≤ 1 − ccut, and integrating Eq. (A1) in this
range, we find4

σ2γQED ¼ 2πα2

s

�
log

�
2 − ccut
ccut

�
þ ccut − 1

�
: ðA2Þ

For LEP at
ffiffiffi
s

p ¼ 207 GeV with ccut ¼ 0.04, we get 9.6 pb.
It is worth pointing out that the divergence in the forward-
backward direction leads to a significant reduction of the
total cross section even for small angular cuts.
Let us now move on to the more involved case of

e−eþ → γγγ. The typical amplitude is given in Eq. (31),
which must be added to other five similar contributions
with permutations of the photon 4-momenta. If we define
pij ¼ pi · qj and qij ¼ qi · qj, the squared and spin-aver-
aged amplitude can be written as

hjM3γj2i ¼ Q
�
p11

X3
n¼0

ðp1 · p2ÞnQn þ perm:

�
ðA3Þ

where “perm.” indicates that we must add the expression
with the photon labels reshuffled. The prefactor is

Q ¼ 2e6

ðp11Þðp12Þðp13Þðp21Þðp22Þðp23Þ
; ðA4Þ

and the terms in the sum are

Q0 ¼ p12½p13p21p22 þ p23ðp11p22 þ p23ðp22 − q12Þ
þ p21ðp22 þ q23ÞÞ� − p11p22p23q23; ðA5aÞ

Q1 ¼ p12½p13p21 − p21ðp22 − 4p23Þ þ p23ðp23 − q23Þ�
þ p22½p11ð−p22 þ p23 þ q23Þ
− p23q12 þ p22q13 þ p21p23�; ðA5bÞ

Q2 ¼ −2p12p21 − p22ð2p21 − q12 þ q13 þ q23Þ; ðA5cÞ

Q3 ¼ p21: ðA5dÞ

The final averaged squared amplitude can be symboli-
cally recast in the form

4In order to keep track of the forward-backward enhancement
in the ultrarelativistic limit, it is usually imposed that
ccut ¼ 2m2

e=s.
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hjM3γj2i ¼
e6

E2
cm

Cðpi; qjÞ; ðA6Þ

where we have expressed all dimensional parameters in
terms of the c.m. energy—in this way, Cðpi; qjÞ is
effectively dimensionless. Taking into account the phase-
space volume, cf. Eq. (23), the integral to be solved is

IQED ¼
Z

Cðpi; qjÞ
d3q1

E1

d3q2

E2

d3q3

E3

δ4ðΣpi − ΣqjÞ; ðA7Þ

but an analytical treatment is cumbersome, so we resort to
numerical methods, which also facilitate the application of
the detector cuts. The results of the Monte Carlo integral are
listed in Table I for a few interesting values of the c.m.
energy. The tree-level cross section for e−eþ → γγγ is
(e2 ¼ 4πα)

σ3γQED ¼ α3

48π2s
IQED ≃ 8 × 10−3 · IQED

�
200 GeVffiffiffi

s
p

�
2

fb:

ðA8Þ

Using
ffiffiffi
s

p ¼ 207 GeV as an example, we have 0.285 pb.

APPENDIX B: INTERFERENCE AND PURELY
NONLINEAR AMPLITUDES FOR e − e+ → 3γ

Here, we briefly present the results for the tree-level
amplitudes discussed in Sec. III B. The interference ampli-
tude between pure QED and the nonlinear contributions
may be written as

hjMQED–Yj2i ¼ H
�X3
n¼0

ðp1 · p2ÞnHn þ perm:

�
ðB1Þ

with

H ¼ c2θe
4

2β2p1 · p2ðp11p12p13p21p22p23Þ
Hnum

Hden
ðB2Þ

and

Hnum ¼ 2c2θm
2
ZðΓ2

Z þm2
ZÞ − ð4c2θ þ 3Þm2

Zðp1 · p2Þ
þ 6ðp1 · p2Þ2; ðB3aÞ

Hden¼m4
ZþΓ2

Zm
2
Z−4m2

Zðp1 ·p2Þþ4ðp1 ·p2Þ2: ðB3bÞ

The coefficients in Eq. (B1) are given by

H0 ¼ 2p22½ðp11Þ2½ðp13Þ3p21p22 þ p12ðp23Þ2ðp21q23 þ p22p23Þ − p12p13p23ðp12p21

þ p21ðq23 − 2p23Þ þ p22ðp23 − q13ÞÞ� − p11p12p13p21p23ðp21q23 þ p22p23Þ − ðp12Þ2ðp13Þ2ðp21Þ2p23�; ðB4aÞ

H1 ¼ −p22f2p12p13ðp21Þ2p22q13 þ ðp11Þ2p23½2ðp12Þ2ðp23 þ q13Þ
þ p12ðp13ðp21 þ p22Þ − 2p21q23Þ þ p13p21p22� þ p11p21½2ðp13Þ2p21p22 þ p12p13ð2ðp23q12 þ q13q23Þ
þ p21ðp23 − 2q23ÞÞ þ 2p12p23q13q23�g; ðB4bÞ

H2 ¼ p11p21½p13p22ð2p11q23 þ p23q12Þ þ p12p23ðp13q12 þ 2p21q23Þ�: ðB4cÞ

Finally, the purely nonlinear amplitude is given by

hjMYj2i ¼ J

"X3
n¼0

ðp1 · p2ÞnJn þ perm:

#
; ðB5Þ

where

J ¼ c4θe
2

2β4ðp1 · p2Þ2
J num

J den
; ðB6Þ

with

J num ¼ 2c4θm
2
ZðΓ2

Z þm2
ZÞ − 6c2θm

2
Zðp1 · p2Þ þ 5ðp1 · p2Þ2;

ðB7aÞ

J den ¼ m4
Z þ Γ2

Zm
2
Z − 4m2

Zðp1 · p2Þ þ 4ðp1 · p2Þ2: ðB7bÞ

The coefficients in Eq. (B5) are given by

J0 ¼ 3ðp11Þ2p22p23q23 − 6p11p12p22p23q13

þ 3p12p13ðp21Þ2q23; ðB8aÞ

J1 ¼ 3p11q23ðp21q23 − 2p22q13Þ
þ ðp11Þ2ðq23Þ2 þ ðp21Þ2ðq23Þ2; ðB8bÞ

J2 ¼ q12q13q23: ðB8cÞ
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APPENDIX C: DIFFERENTIAL CROSS SECTIONS FOR NEUTRAL GAUGE BOSON SCATTERINGS

In this Appendix, we report the unpolarized differential cross sections for the scattering of neutral gauge bosons in the
nonlinear extension considered in this work. In the following, we are using βZ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2
Z=E

2
cm

p
:

(i) γγ → γγ

dσ
dΩ

¼ E6
cmc8θð3þ cos2 θÞ2

4096π2β4
: ðC1Þ

(ii) γγ → γZ

dσ
dΩ

¼ c6θs
2
θðE2

cm −m2
ZÞ3

4096π2β4E4
cm

½ð6E4
cm − 2m4

ZÞ cos2 θþ9E4
cm þ ðE2

cm −m2
ZÞ2 cos4 θ þ 2E2

cmm2
Z þm4

Z�: ðC2Þ

(iii) γγ → ZZ

dσ
dΩ

¼ c4θs
4
θE

2
cmβZ

4096π2β4
½9E4

cm þ E4
cmβ

4
Z cos

4 θ þ 6E4
cmβ

2
Z cos

2 θ − 32E2
cmm2

Z þ 40m4
Z�: ðC3Þ

(iv) γZ → γγ

dσ
dΩ

¼ c6θs
2
θðE2

cm −m2
ZÞ

6144π2β4
½ð6E4

cm − 2m4
ZÞ cos2 θþ9E4

cm þ ðE2
cm −m2

ZÞ2 cos4 θ þ 2E2
cmm2

Z þm4
Z�: ðC4Þ

(v) γZ → γZ

dσ
dΩ

¼c4θs
4
θðE2

cm−m2
ZÞ4

49152π2β4E10
cm

½99E8
cmþ20E6

cmm2
Zþ74E4

cmm4
Zþ20E2

cmm6
ZþðE2

cm−m2
ZÞ4cos4θ−8m4

ZðE2
cm−m2

ZÞ2cos3θ

−8m4
Zð11E4

cmþ2E2
cmm2

Zþ7m4
ZÞcosθþ4ð7E8

cm−4E6
cmm2

Zþ4E4
cmm4

Z−4E2
cmm6

Zþ7m8
ZÞcos2θþ35m8

Z�: ðC5Þ

(vi) γZ → ZZ

dσ
dΩ

¼ c2θs
6
θβZðE2

cm −m2
ZÞ

6144π2β4E4
cm

½9E8
cm − 30E6

cmm2
Zþ45E4

cmm4
Z þ ðE4

cm − 5E2
cmm2

Z þ 4m4
ZÞ2 cos4 θ

þ2E4
cmβ

2
Zð3E4

cm þm4
ZÞ cos2 θ�: ðC6Þ
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