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We study the sea quark contributions to the electromagnetic form factors of £ baryons with nonlocal
chiral effective theory. Both octet and decuplet intermediate states are included in the one loop calculation.
G%- and G‘Zﬁ could be priority observables for the examination of sea quark contributions to the baryon
structure because these quantities are much larger than the strange form factors of nucleons. It will be less
difficult for the lattice simulation to determine the sign of these pure sea quark contributions
unambiguously. In X°, the light sea quark form factors Gy, and Ggo are identical. Since the light sea
quark form factors in protons are different, it will be more meaningful to compare the lattice result of the

light sea quark form factors in X0 with that obtained from an effective field theory.
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I. INTRODUCTION

Electromagnetic form factors of nucleons are among the
most important observables of these building blocks of the
ordinary matter in the Universe. A lot of theoretical and
experimental efforts have been made for many years to get
the precise values of the form factors. The form-factor data
have triggered much activity in the determination of the
flavor separated form factors of the dressed up, down, and
strange quarks in the nucleon. It is well known that a
complete characterization of the baryon substructure must
go beyond three valence quarks. In particular, the strange
quark contribution to the nucleon electromagnetic form
factors is of special interest because it is purely from the sea
quark. The strange form factors of the proton G} and G},
have been obtained by a number of groups, such as
SAMPLE at Bates [1], A4 at Mainz [2,3], and GO [4,5]
and HAPPEX [6-9] at Jefferson Lab, etc. However, up to
now, the experiments are not able to determine the signs of
G, and G}, unambiguously although the global analyses do
tend to suggest that Gj, < 0 is favored [10,11].

Theoretically, strange form factors of nucleons were
investigated in various phenomenological models that give
different predictions [12-22]. They were also studied in
chiral perturbation theory (ChPT) or effective field theory
(EFT) [23-25]. Historically, most formulations of ChPT are
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based on the dimensional or the infrared regularization.
Though ChPT is a successful and systematic approach, for
the nucleon electromagnetic form factors, it is only valid for
0? < 0.1 GeV? [26]. When vector mesons are included,
the results are close to the experiments with Q7 less than
0.4 GeV? [27]. Because of the unknown low energy
constants appearing in the chiral Lagrangian, the capacity
to predict the strange form factors is much limited. In other
words, the strangeness vector current matrix elements that
one wants to predict are the same quantities one needs to
know in order to make such predictions. [23,25].

An alternative regularization method, namely the finite-
range regularization (FRR), has been proposed. Inspired by
quark models that account for the finite size of the nucleon
as the source of the pion cloud, effective field theory with
FRR has been widely applied to extrapolate the vector
meson masses, magnetic moments, magnetic form factors,
strange form factors, charge radii, first moments of GPDs,
and the nucleon spin, etc. [28-30]. With the regulators,
the loop integrals are convergent. One advantage of ChPT
with the FRR is that strange form factors can be predicted
with the assumption that there is no valence contribution
from the tree level. No low energy constants are needed to
cancel the loop divergence for predicting the strange form
factors [31,32].

In recent years, we proposed a nonlocal chiral effective
theory, which makes it possible to study the form factors at
relatively large Q? [33-35]. With the introduction of the
gauge links, the nonlocal Lagrangians are locally gauge
invariant. The nonlocal interaction generates both the
relativistic regulators, which make the loop integrals con-
vergent, and the Q2 dependence of form factors at tree level.
The obtained electromagnetic form factors and strange form
factors of nucleon are very close to both experimental data
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and lattice results [33,34]. This nonlocal EFT was further
applied to study the parton distribution functions [36,37].
For the sea quark form factors of proton, the light sea quark
contributions obtained in nonlocal EFT are quite different
from the lattice results, though the strange quark contribu-
tions are comparable with each other [38—40]. There is an
obvious flavor asymmetry of the u sea and d sea in nonlocal
EFT, while the light sea quark contributions are the same for
u and d in the lattice simulation.

Therefore, to get a better understanding of the sea quark
properties, in this paper, we investigate the sea quark
contributions to the electromagnetic form factors of X
hyperons. For £t (X7), the d (u) quark contribution is
purely from the sea, which is the same as the s quark
contribution in nucleon. However, because the d (1) quark
contribution in X (£7) comes from the 7 meson loop, it is
much larger than the strange quark contribution in the
nucleon, concerning which the latter comes from the K
meson loop. It will be easier to get an unambiguous number
for the lattice simulations, in spite of the statistic errors. For
the experimentalists, it may also be possible to determine
the signs of the light sea quark contributions in X hyperons,
since the magnetic moments of £ and £~ have been
measured precisely for many years. The investigation of the
d () quark contribution to £t (£7) form factors will

|

definitely shed light on the signs of nucleon strange form
factors. As pointed in Ref. [22], the signs of the strange
form factors will indicate the possible configuration of
uudss components of the proton. It could inform us
whether the sea quark is in the baryon-meson configura-
tion, or in the diquark configuration.

The flavor asymmetries of light sea quark will be also
obvious in £* and X~ as those in proton. We hope further
lattice simulations could distinguish these sea quark asym-
metries. To make the comparison between lattice simu-
lation and nonlocal EFT meaningful, we calculate the light
sea quark contributions in X° as well, where the u sea and d
sea do have the same contributions. In this case, one can
make a direct comparison between these two calculations.
This paper is organized in the following way. The nonlocal
Lagrangian is introduced in Sec. II. Numerical results will
be discussed in Sec. III. Section IV is a short summary. The
loop expressions of sea quark contributions are presented in
the Appendix.

II. NONLOCAL EFFECTIVE LAGRANGIAN

The lowest order chiral Lagrangian involving baryons,
pseudoscalar mesons, and their interactions can be written
as [33,37,41,42]

f2

L = iTrB(y,P* — mg)B + T4 (iy"*D, — myy* )T +—Tr[D,U(D*U)']

4

_ _ c .
+ DTr(By,ys{A". B}) + FTr(By,ys|A". B]) + ?S“b”T,‘ffa (9" + 2r"7")BeeDyppa + Hoc., (1)

where D, F, and C are the coupling constants and z is
the off shell parameter. ¢ is the matrices of pseudoscalar
meson fields, B is the matrix of octet baryons, 7 is the fully
symmetric tensor for decuplet baryons, and A, represents
the photon field. In the meson sector, the chiral covariant
derivative is defined as D,U=09,U —ieA,[A,. U],
while in the octet baryon sector, Dﬂ 1s defined as
D,B = 0,B + [I',, B]. The pseudoscalar meson octet cou-
ples to the baryon field, via the vector and axial-vector
combinations, respectively,

1 1 i
Fﬂ = E (é’auzﬁ + élTaﬂz:) + E ieAﬂ(équ + é’/lqé" )’
. ) 1 ) .
A, :é(C&ﬂ —C@C) _EeAM(CAqu _Cuqé‘)’ (2)
where

2 =U=exp (?) f =93 MeV. (3)

[

In the decuplet sector, D, is defined as D,JT,‘jbC =
0,Teh 4+ (I, T,)*, with (T,,T,)*" = (T,)4Td +
(T,)5Tade + (T,)5Teb, where y** and y** are the anti-

symmetric matrices expressed as

1 1
=zl =i rley @)
In the above equations, to calculate the contributions to the
form factors from each quark with unit charge, the matrices
ﬂq are introduced as

100 000 000
w=looo|, mu=lo10|, 4=|000
000 000 001

The total form factors can be obtained by replacing 4, with
the charge matrix Q, = diag(2/3,-1/3,—1/3) expressed
as Q, =321, — 1 — 1A,

The octet, decuplet, and octet-decuplet transition oper-
ators for magnetic interactions are needed in the one loop
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calculations. The anomalous magnetic Lagrangian of octet
baryons is written as

Lot = ﬁ [e\Tr(Bo**{F},. B}) + ¢, Tr(Bo*[F},. B])
B

+ c3Tr(BG””B)Tr(]:,TD)], (5)

where

1
f;v = _Efyu(zﬁﬂqz: + é’/lch (6)

The above Lagrangian will contribute to the Pauli form
factor ng which is defined in Eq. (18). At the lowest
order, the contribution of quark ¢ with unit charge to the
octet magnetic moments, can be obtained. After expansion
of the above equations, it is found that, taking X hyperons
as an example,

szt
F2 =C3,

$,2T
F2 =C3.

(7)

zt d X"
Fg =c;tcytcs, F2 =c1—Ctcs,

- 43"
F3* =ci—cy+c3, F5™ =ci+cy+cs,

Comparing with the results of the constituent quark model,
where F 3’{’2+ =0, and F5* =0, we get

C3 = Cyp —Cq. (8)

The above relationship is consistent with that there is no
strange quark contribution in bare nucleon.

The magnetic moment operators of decuplet and octet-
decuplet transition are expressed as

ieF? _ .
dec = — ﬁ T;t,abca/)/lF'p/1 Tﬂ,uhL (9)
and
ieﬂT .. _ "
[’trans = m Fﬂu(el]kiq,ilBjm}/M75 Ty’k[
B
+ €ijk/1q,1iTﬂwklmyVVSij) ) (10)
respectively.

The gauge invariant nonlocal Lagrangian can be
obtained using the method in [33,34,43]. For instance,
the local interaction between X hyperons and z meson can
be written as

Ly = _7F2+(x)7’”7520(x)(5,, +ieA,(x))a" (x). (11)

The corresponding nonlocal Lagrangian follows,

col =_f—F / d*yEt (x)p#ysE0(x)
X <0M+ie/d4aAﬂ(x—a)F(a))F(x—y)
X eXp [ie / "z, / d%A”(z—b)F(b)} (), (12)

where F(x—y) is the correlation function. From the
Lagrangian, one can see that the baryon fields are located
at x, while the meson and photon fields are displaced.
To make the Lagrangian locally gauge invariant, the gauge
link exp [ie [Ydz, [d*bA*(z—b)F(b)] is introduced.
Therefore, the photon could be emitted or annihilated from
either the minimal substitution term or the gauge link term.
The correlation functions are associated with each photon
field and meson field. With the correlation function, the
regulator and momentum dependence of form factors at tree
level can be generated automatically. In the numerical
calculation, the correlation function in momentum space is
chosen to be a dipole form.

The nonlocal baryon-photon interactions are obtained in
the same procedure. For example, the local interaction
between X7 and photon is written as

LI = —eB (B ()4,

12my () Z(x) " Fu(x).  (13)

The corresponding nonlocal Lagrangian is expressed as

Lo =—e / d*aZt (x) " Z(x) T A, (x — a)Fy(a)

+7(C] +63C2)e/d4ai+(x)

ma

X

()" Fulx = a)Fa(a), (14
z

where F|(a) and F,(a) are the correlation functions for the
nonlocal electric and magnetic interactions.

The momentum dependence of the form factors at tree
level can be easily obtained with the Fourier transformation
of the correlation function. As in our previous work
[33,34], the correlation function is chosen such that the
charge and magnetic form factors at tree level have the
same momentum dependence as the baryon-meson vertex,
ie., Gy"*(q) = psGz"*(q) = upF(q), where F(q) is the
Fourier transformation of the correlation function F(a).
Therefore, the corresponding functions F;(g) and F,(gq) of
>*, for example, are expressed as
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~ ot ~ 12m2—|—(3—|—c1—|—3cz)Q2
F=z =F b2
T (q) = F(q) St + 07 :

oyt 5 4(Cl + 302)7}1%

, (15)

where Q% = —¢? is the momentum transfer.
From Eq. (12), two kinds of £ — z-photon vertices can be
obtained. One is the normal coupling,

Lrom = —iejj / dyEF (x)riysZ0(x)
« / Bad,(x - a)F(a)F(x - y)a(y). (16)

This interaction is similar to the traditional local
Lagrangian except the correlation function. The other is
the additional interaction, obtained by the expansion of the
gauge link,

F _
£ = —ie . [ AT 00,
)7
X {F(x -y) / dz, / d*a A (z - a)F(a)ﬂJ’(y)] .
(17)
The additional interaction is crucial to guarantee the charge

conservation. With the nonlocal Lagrangian above, we can
calculate the electromagnetic form factors.

L -

»
»-

The contributions of individual quark flavor f (f = u,
d, s) to the Dirac and Pauli form factors of X hyperons are
defined as

= a0 + 2L Q) bulp). (19

where ¢ = p’ — p. The electromagnetic form factors are
defined as the combinations of the above form factors,

| | *
(07 = FIH(Q%) — 3 7 F(0Y).
G (0%) = FI™(0) + FL*(0?). (19)

According to the Lagrangians, the one-loop Feynman
diagrams that contribute to the X electromagnetic form
factors are shown in Fig. 1. The matrix element of Eq. (18)
can be evaluated. The 7 meson loops have the dominant
contributions, while the contributions from K meson loops
are much smaller due to the large K meson mass. The
contributions from 7 and #’ loops are even smaller, which
are neglected in our calculation. The inclusion of these
mesons does not affect the main conclusion below. For each
diagram in Fig. 1, there exist quenched and disconnected
diagrams. In order to obtain the sea quark contribution, we
need to find the coefficients for the disconnected diagrams.

\ ! \ /
\ / \ /
A 4 N 4
~ e ~ -

‘,_>éic d
T >
\ ! \ !

\ / \ /
N s N ’

2 R

\ ! s N
\ / / \
N y
~ - ! \

FIG. 1.

/ \ I

One-loop Feynman diagrams for the hyperon electromagnetic form factors. The solid, double-solid, dashed, and wave lines are

for the octet baryons, decuplet baryons, pseudoscalar mesons, and photons, respectively. The rectangle and black dot represent magnetic

and additional interacting vertex.
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K (@) s ()
»+ ! =0 Vont ot ! YO0 A Vot

FIG. 2. Quark flow diagrams for K™ and z*. (a) is the
quenched diagram for K. (b) and (c) are the disconnected sea
diagrams for K™ and #™, respectively.

The coefficients for the quenched and disconnected
loop diagrams can be extracted separately as in
Ref. [44], using the quark flows of Fig. 2. The obtained
coefficients are the same as those extracted within the
graded symmetry formalism in quenched chiral perturba-
tion theory [45].

Here, as an example, we show how to separate the
quenched and sea contributions of strange quark to =" in
the intermediate Z° rainbow diagram. In Fig. 2, the quark-
flow diagrams and the corresponding Feynman diagrams
are plotted. The strange quark contribution of Fig. 2(a)
includes the quenched [Fig. 2(b)] and sea [Fig. 2(c)]
contributions, while the strange quark contribution of
Fig. 2(d) is only from the sea diagram Fig. 2(e). The
coefficient of Fig. 2(a) for the total contribution is
(D + F)?/2f2, which is the sum of the coefficients of
Figs. 2(b) and 2(c). Due to the SU(3) symmetry, the
coefficient of the sea contribution of Fig. 2(c) is the same
as that of Fig. 2(e), where the s-quark loop is replaced by
the d-quark loop. The coefficient of Fig. 2(e) can be
obtained by summing the coefficients for the intermediate
0 and A states, which is (D? + 3F?)/3f2. Therefore,
subtracting the coefficient of Fig. 2(c) from that of
Fig. 2(a), we can get the coefficient for the quenched
diagram Fig. 2(b), which is (D* + 6DF — 3F?)/6f2. With
the same method, all the quenched and sea contributions of
u, d, and s quarks can be obtained and the coefficients are
listed in Table 1.

With the obtained coefficients for the sea quark dia-
grams, the sea quark form factors of u, d, and s in X
hyperons can be evaluated by summing up all the con-
tributions in Fig. 1. The expressions for the intermediate
octet and decuplet baryons of each diagram are written in
the Appendix. In the next section, we will discuss the
numerical results.

TABLE 1. The coefficients of u, d, and s quark in X, for both
quenched and sea quark-flow diagrams.
Configurations X—-7z A-nx N-K 2-K

+ D> +6DF-3F?
z:u.quench - +T

+ 2 2
Zu.sea %

+ F2 D2 D—F)

Zd,sea F 7 ( > fz)
30 D>—18DF+9F 8D?—9(D+F)?

u,quench 3612 T 362
30 2D? D> 2D?

u,sea 977 6/2 0/

0 D*—18DF+9F? 8D*—9(D+F)?
z:d,quem:h 36 f2 T
30 2D? D~ 2p?

d,sea 9f2 6/2 912

+ D*+6DF-3F?
2sA,quench 6 f2

+ 2 2
25:,563 D ;}%F
30 _D2-18DF+9F> D24 18pF+9p>

's,quench 1817 sz

0 2
z“&,sea 4D

97

III. NUMERICAL RESULTS

The coupling constants between octet baryons and
mesons are determined by two parameters D and F. In
the numerical calculations, the parameters are chosen to be
D =0.76 and F =0.50 (g4 = D + F = 1.26) [46]. The
coupling constant C is chosen to be 1.0, which is the same
as in Refs. [33,34]. The off shell parameter z is —1 [47].
Besides, the physical masses are used for mesons and octet
and decuplet baryons. The covariant regulator is chosen to
be a dipole form [34,35]

FO = (20)

where m; is the meson mass for the baryon-meson
interaction, and it is zero for the hadron-photon interaction.
It was found that when A is around 0.9 GeV, the obtained
electromagnetic and strange form factors were very close to
the experimental data and lattice simulation. The low
energy constants ¢; and ¢, are determined by fitting the
experimental magnetic moments of octet baryons. They are
found to be 1.736 and 0.329, which give the minimal y* of
the octet magnetic moments.

The sea quark contributions to the magnetic form factor
of £* baryon versus momentum transfer Q? are plotted in
Fig. 3. The solid, dashed, and dotted lines are for u, d, and s
quark with unit charge, respectively. The lines colored red,
green, and blue are for A =0.8, 0.9, and 1.0 GeV,
respectively. To obtain an impression on the order of
magnitude of the sea quark contributions, the total mag-
netic form factor of Xt calculated within the same
framework is also plotted at the corner. The total ps+ is
about 2.4, which is consistent with the experimental
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S
S P 25 — total
4 b
_osk/ /7 sea,u 2.0 ]
s 1.5
L/ ———- sea,d 1.0
¥
0.5
=08 e sea, s 1
L 0.0
. . 00 | 02 0.4 Q-6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0
Q*(GeV?)
FIG. 3. The sea quark contributions to the magnetic form

factors of £+ hyperon versus momentum transfer Q. The solid,
dashed, and dotted lines are for the contributions from u sea, d
sea, and s sea, respectively. The lines with color red, green, and
blue are for A = 0.8, 0.9, and 1.0 GeV, respectively. The small
figure at the corner is for the total magnetic form factor of .

value [48]. From the figure, one can see that all the
sea quark contributions to the magnetic form factors of
>+ are negative. When Q? = 0, the sea quark magnetic
moments =", p4=" and p** are —0.251 +0.025,
—0.676 +0.083, and —0.067 £ 0.022, respectively. They
remain negative, and their magnitudes decrease with the
increasing momentum transfer. Compared with the sea

T + .
quark contribution in the nucleon, G{,}Z is larger than the

corresponding GL’N. It is expected the light quark con-
tribution is much larger than the strange quark contribution,

as in the nucleon case. The magnitude of Gf,}2+ is the largest

one, and it is much larger than Gj{,;y. Similarly as in the
nucleon, the asymmetry of u sea and d sea is obvious. This
flavor asymmetry is not raised by the mass difference of u
and d quarks. It is because of the different numbers of
valence quarks u and d in . For example, in Fig. 1, there
is only 7™ loop that contributes to the form factor of the d
sea quark. No 7z~ diagram exists which contributes to the
form factor of u sea quark. It is interesting to see whether
this sea quark asymmetry could be obtained from lattice
simulation. Currently, lattice simulations have not shown
this asymmetry in proton, where the light quark form
factors are somewhat like the average of the u# and d
contributions. Since the difference between u sea and d sea
is very large, to make the direct comparison between EFT
calculation and lattice simulation meaningful, we will show
the light sea quark contributions to the form factors of X°
hyperon latter, where the sea contributions from u and d
quark are the same.

In the X" hyperon, there is no valence d quark. All the
contributions of the d quark is from the sea. This is
comparable with the strange quark contribution in nucleon.

The difference is that Gf,}2+ is generated from the 7 loop,
while G5V is from the K loop. As a result, Gj‘f,}y is much

—————— ———
0-101 Lo — total
sea,u 0.8
0.08f ———- sea,d 0.6 1
0.4
-------- sea, s 02 g
~ 0.06F -
3 ]
S 0.0
S S, 00 02 04 06 08 10
nw L 4
O 0.04f e T TTme—— g
e Bl P e —— ]
L e T TS —— e T TTee—al
v TS =~ __  TTmEmea
e
0.02f 54 T = —— 1
V2 ———
’
K
0.00
L L L L

0.0 0.2 0.4 0.6 0.8 1.0
0*(GeV?)

FIG. 4. Same as Fig. 3 but for the electric form factors.

larger than the strange magnetic form factor of the nucleon,
which makes it easy for lattice simulation to get an
unambiguous sign for this pure sea quark contribution.

If lattice confirms that sz:+ is negative, then it will suggest
the meson-loop scenario; i.e., the antiquark in the nucleon
should be in the state with orbital angular momentum
1 [22].

The sea quark contributions to the electric form factor of
" hyperon with the same choice of A, are plotted in Fig. 4.
The total electric form factor of £+ is plotted in the inset as
well. Because the contributions of quark and antiquark are
from the sea, their electric form factors are zero at Q% = 0.

The additional diagrams are important to get G];’Z(O) =0.
They are generated from the additional interaction, which
guarantees the local gauge invariance. All the electric form
factors of sea quark increase first, and then decrease with
the increasing Q®. Again, there is a large sea quark
asymmetry between Gg’y and G%’w. G%‘2+ is more than

twice bigger than Gg‘y. When Q? is around 0.3 GeV, G‘lé’2+
is about 0.038 £ 0.008. Compared with the strange electric

form factor, GdE’2+ is about 10 times larger. Therefore, for

both electric and magnetic form factors, G%y and G%,f:+
are good physical observables for lattice simulation. The
hyperon form factors would not only shed light on the
structure of hyperons, but also provide information on
nucleon. Since the contributions of u, d, and s quark with

unit charge in X~ are the same as d, u, and s quark

contributions in X", we will not show the results for GQ(Y;\:I).

Now, we discuss the sea quark contributions to the form
factors of £°. As we have pointed out, in nucleon or =+,
there is a large asymmetry between u sea and d sea.
However, in X, the sea quark contributions from u and d
are the same if we ignore the mass difference between
them. We can make a direct comparison of the light sea
quark form factors between lattice simulation and EFT. The
total and sea quark contributions to the magnetic form
factor of X% hyperon versus momentum transfer Q> are
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S
ns 02 07
© 0.6 — total
1 0.5
sea, 0.4 ]
-0.3 0.3 T
........ sea, s 0.2 ]
0.1
0.0 E
-04r ) ) 00 02 04 06 08 107
0.0 0.2 0.4 0.6 0.8 1.0
Q*(GeV?)
FIG. 5. The sea quark contributions to the magnetic form

factors of £° hyperon versus momentum transfer Q2. The solid
and dashed lines are for the contributions from light sea and s sea,
respectively. The lines with color red, green, and blue are for
A =0.8,0.9, and 1.0 GeV, respectively. The inset is for the total
magnetic form factor of X°.

plotted in Fig. 5. From the figure one can see that the sea
quark form factors are negative and the shape of the

momentum dependence of G{fﬂ is close to G{,}y. The
sea contribution from strange quark in X° has a similar
magnitude as that in the nucleon and X7 For the light quark
contribution, the magnitude of Gf(,,zo is slightly bigger than
G%*" and much smaller than G&*". At Q2 =0 with
central-valued A, ¥ = —0.310, and p*=' = —0.031.
The total and sea quark contributions to the electric form
factors of X0 baryon are plotted in Fig. 6. As for the
magnetic case, in X, Gj‘g’zo = G%’ZG = ngn, and GZLZO lies
between G and G%¥ . When 02 = 0.3 GeV2, G5~ ~
0.019 with central-valued A. For the sea quarks with unit
charge, their electric form factors are all positive, no matter
the total charge of the baryon is 1, —1, or 0. Here, the sea
quark form factors from the quark pair are obtained from
the meson loop. In the baryon-meson scenario, the baryon

0.000 — total
0.04F sea, 1 -o002 ]

~0.004
........ sea, s -0.006

0.03[ -0.008 T

0.0 0.2 0.4 0.6 0.8 1.

0.01

0.00 ="

0.0 0.2 0.4 0.6 0.8 1.0
0*(GeV?)

FIG. 6. Same as Fig. 5 but for the electric form factors.

is surrounded by the meson where the charge of antiquark
is —1. The positive electric form factors of sea quark are
consistent with this meson loop scenario.

With the calculated form factors, the contribution to the
radii can be obtained as

dGuy (k)
sz Q2=07

<r1214(E)> =6 (21)

where the magnetic form factors are not divided by the
corresponding magnetic moments. Since all the sea quark
form factors increase with the increasing Q® at low
momentum transfer, the radii are all negative. The magnetic
and charge radii of d seain T is larger than those of u sea,
and both of them are more than 10 times larger than the
strange radii.

IV. SUMMARY

The sea quark contributions to the electromagnetic form
factors of X hyperons are studied within the nonlocal chiral
effective theory. Both the octet and decuplet intermediate
states are included in our calculation. The correlation
functions in the nonlocal Lagrangian make the loop
integrals ultraviolet convergent. The gauge links guarantee
that the nonlocal Lagrangians are locally gauge invariant.
The expansion of the gauge links generates the additional
diagrams and, as a result, the electric form factors of sea
quarks are zero at Q? =0. The obtained sea quark
magnetic form factors of u, d and s are all negative, while
the electric form factors are all positive. They are consistent
with the scenario of baryon-meson configurations in
dressed baryons. When Q% =0, u4*" (u**") is much
larger than the strange magnetic form factor u*V. For
the charge form factors, Gé’y (G%£*") is also much larger
than G3". Since there is no valence quark contributions to
G*E" (G*¥) as G*N, G4T" (G"%") could be a better
physical observables for studying sea quark properties in
baryons, for lattice simulations or possible experimental
measurements. We also found there are large asymmetries
of light sea quark form factors in charged X hyperons. For
both magnetic and electric form factors, the contributions
of d sea are significantly larger than those of u sea. To make
the direct comparison of light sea quark form factors
between lattice simulation and EFT, we calculated the
sea quark contributions in 2°. In this case, G*~’ equals to
G%*. The calculations of the sea quark form factors in
hyperons, will not only shed light on the structure of
hyperons, but also provide important information on
nucleon structure. As a summary, we list the magnetic
moments and radii of sea quarks in X hyperons in Table II
The corresponding values for proton are also listed for
comparison.
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TABLE II. The magnetic moments (in units of the nucleon magneton y, ), magnetic and charge radii of sea quarks in X hyperons and
proton.

Baryon ﬂgea ﬂilea ”gea <r12\4>ge:1 <r12\/1>i[ea <r[2W>§Cél <ri'>gea <r%>§1€a (’%‘)éea
zt —0.25140.025 —0.676+0.083 —0.067+£0.022 —0.294+0.013 —0.811+0.029 —0.049+0.006 —0.041+0.003 —0.11940.007 —0.005+0.002
>0 —0.310+£0.035 —0.310+0.035 —0.0310.008 —0.394+0.015 —0.394+0.015 —0.02440.002 —0.06140.003 —0.061+0.003 —0.003£0.001
p —0.111+£0.005 —0.375+0.045 —0.037+0.011 —0.142+0.011 —0.418+0.018 —0.026+0.003 —0.036+0.002 —0.074+0.005 —0.004+0.001
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l—w (ZJ,_)_D_Z uAn+F_ ﬂ2ﬂ+(D F) I;lNK (A2)
ad 3f2 f2 2f
APPENDIX: LOOP EXPRESSIONS
v ony  DYH3F ok
In this appendix, we show the expressions of sea quark  I'as (ZF) = 3—le a (A3)
contributions in X hyperon for each diagram. The con-
tributions of Fig. 1(a) are written as where the integral IZ,BM is expressed as
|
g d* (61+k)~(k) —(2k+q)* 1
1" — (o) [ 5 -+ sy brsu(p). (A4
’ (2m)* Dy(k+q)  Dy(k)

Dy, (k) is defined as
Dy (k) = k* —m3, + ie.

mpg and m,, are the masses of the intermediate octet baryon B and meson M, respectively. The formulas for X0 are similar
but with different coefficients. The contributions of Fig. 1(b) are expressed as

D*((c; +3(ca —¢1) +3)0% + 12mk) + 6¢;DFQ? + 9F?((cy + 1)0? + 4m32) " 2,

W

rb.u(2+) 18f2(4m2 + Q2) (AS)
~ D((c; +3(cy—¢y) +3)DO? + 3¢, FQ? + 12Dm3) , an
F(ciDQ* 4+ 3F((c; + 1)0* 4+ 4m3)) 5.  (D—F)*((c; — ¢)0* 4 4m3, + 0?) #NK
5 5 I 5 5 L (A7)
3f*(4mz + Q%) 22 (4m3, + Q?)
(g = DUt 3ler =) #3074 12m2) +6¢DFQ” + 9F (e + 1)Q* +4m2) k. (AS)
S 972 (4mZ + Q%)
where the integral I4®" is written as
BM  —, nx d*k F(k)? 1 1

B =1 Fa) [ i it g =g b o) (A9)

Figure 1(c) is similar to Fig. 1(b), except the former is for the magnetic interaction. The contributions of this diagram are
written as

im2(3(62 — Cl)(D2 + 3F2) + CI(D + 3F)2) I'M'Zﬂ

Fa) = 9P (m + Q)

: (A10)
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2iDmy(ci (D 4+ 3F) + 3(cy —¢;)D) 2iFms(ci(D+3F) +3(cy, —c))F)

(=)= h I All
calx") 9f*(4m3 + 07) 3f%(4m} + Q%) (AL)

. _ _ 2

f (4mN +0 )

2imz —¢)(D?> +3F? D +3F)?) ,=
Fﬁf,s(ZJ’) — lm—(3<c2 cl)(2 +23 );_ cl( +3 ) )I;é,_K’ (A13)
9f*(4mz + Q%)
where 2™ s

WBM N d*k F(k)? 1 o 1
17" =u(p )F(Q)/(zﬂ)4 D (k) 75ﬁ, yT— lo qymk}’su(l?)' (A14)

Figures 1(d) and 1(e) are the Kroll-Ruderman diagrams. The contributions of these two diagrams are written as

D?> +3F% 5,

I_‘/:iwLB.u (2+) = 6f2 IZ’Jre ’ (AIS)
D2 A F2 By (D - F>2 NK
D a(Zh) = 32 e +FIZ+6 +27lel‘;+e , (A16)
D> +3F? =
FZ+e,s(Z+) = 37‘](‘2]5+6K7 (A17)
where
. d*k F(k)? 1 1

1“5 — q(phF / { Hys + phys— }u . A18
e = u(p')F(q) 27 Doy (K) kysﬂ_k_mgy ’s }’Ysﬁ_k_mBk}’s (p) (A18)

Figures 1(f) and 1(g) are the additional diagrams that are generated from the expansion of the gauge link. The contributions
of these two diagrams are expressed as

D? 4 3F?

Cheou®) =—¢2 i (A19)
D? F? D —F)?
I ,a(E5) = 3—f21?f5 +al v %Iﬁvf» (A20)
» . DX 43F o
f+g,s<2 ) - 3f2 If+g ’ (Azl)
where
15 = 5(p\F(q) / d% F(k) {(2" ~ D Pk - q) — FOWrs (A + o)
4o PO | ) Dy (k) \ 2kg - ¢2 1 B =K —mg s
2k + q)* - » 1
+W[F(k+ q) _F(k)](k+4)75mk75}”(P)' (A22)

Now we show the expressions of one loop integrals for decuplet intermediate states. The contributions for Fig. 1(h) can
be written as
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h,u 24f2 6f2 ’
C o C* LAk
(=T ="+ —1I A24
ha(Z7) = 272 + 62 (A24)
I (zh) = 0—21”~ K (A25)
h.s 12f2 ’
where the integral I’;’TM is expressed as
. d4qu+ka 2(k+q)*
I/];,TM _ M(p/)F(C])/ ( ) ( ) ( )
(2m)*  Dy(k)  Dy(q+k)
X ((k+q)” + z2(k +4)r°) —Sap(p — k) (=K = 2y’ K)u(p). (A26)
P—K—mr
my is the mass of the decuplet intermediate state and S,,(p) is expressed as
_ Yo¥p | PoPp | VoPp — ?’/)Pa
Sap(p> - gap + 3 =+ 3m% 3mT
The contributions for Fig. 1(i) are written as
FI:M(ZJ’_) _ CZ((CI + 326'2 +23)Q2 -f; 12m§x) I;Z Cz((cl + 326'2 +3)Q2 —2|— lszA) II;’AK, (A27)
: 72f*(4ms. + Q°) 18f*(4m3 + Q°)
Fﬂd(ZJr) :C ((C] +326‘2+3)Q2—|;12m2)1ﬂ2* C ((Cl +326'2+3)Q2-2|-12mA)IﬂAK (A28)
" 36f%(4msz. + Q°) 18f%(4m3 + Q)
C? 3¢, +3)0* + 12m2.) =
oz = Elet el )0 +lome ) pex, (A29)
"’ 36f*(4mz. + Q)
where the integral /% M s written as
y d*k F(k)?
I’.J’TM = ul(p’ F /— ke o
; u(p)F(q) (22)" Dy k)( + 2kr°)
1 1
XS (P = k)y P ——o Sy (p — k) (K + 27’ F)u(p). A30
g Sl P, (p = K Ju(p) (430)
The contributions for Fig. 1(j) are written as
; 2 e i 2
(=t = - ’(012+ 3022)(Z mg pEw _ l(Cl2 + 3;’2)0 VZA HAK (A31)
I 36f*(4ms. + Q) / 9f*(4m3z + Q%) /
" (St) = — i(C12+ 36’22)sz§* s i(012 + 352)02”2% wAK (A32)
/ 18f%(4m3. + Q%) Of*(4m3 + Q%)
(e +36)CPmz iz
I (zF) = AR (A33)

182 (4mE + Qz)

where the integral I’; M g expressed as
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4 B2
1™ = u(p')F(q) / ((217:{)4 gﬁik o K+ akr)
X p/,_kl_mTSau(P’ _ k)iaﬂlcup_kl_mTSW)(p - k)(kp + zyp}f)u(p). (A34)

The contributions for the intermediate octet-decuplet transition diagrams Figs. 1(k) and 1(I) are expressed as

CIC(D - F) w, XS

FII:-H u(2+) = W k+l > (A35)
¢,CD ZAr c|CF sxr , ¢iC(D—F) ANz
Fk+ld(z+) 12f2 z—%—l 12f2 ’/:—H 6f2 IIIz—H ’ (A36)
C1C<D - F) = EK
F’;+IT(Z+> :WIZ+I N (A37)
where the integral 7} +l M is written as
- d*k F (k)? 1 1
Iﬂ ,TBM _ 5 / F / Up —
k41 M(p ) (q) (2”)4 DM( ) k 5 k mB< 4}/5>p/_ k_ mTS (p k)(kp + Z}/pk)
1
+ Kys WV }’squS”p(P - k)(k, + zr,k)
1 1
k 75’”/’ Moy N~
+(u+dfn)p4_k (P =k)(=aqyy Vs)ﬁ_k_mBMs
1
+ (k, +zHy,) ————S™(p' = k)gqy 7%/ }u D). A38
The contributions for the Kroll-Ruderman diagrams Figs. 1(m) and 1(n) are written as
C? xn O AK
F/;Hrn u(2+) 24f2 ]I:n+n 6—f2 I/ranrn ) (A39)
¢ s, C AK
DoY) =15 7 i T2 et (A40)
c? S
F}:,th s<2+) 12f2 I/;Hn ’ (A41)
where the integral I’ +n is written as
m = ap)F) [ PO ) -+ ) (a%2)
" 2r) Dy (k) 17— f =y P
1
+(go + 21"70) ————— 87 (p = k) (k, + z1,K) pu(p). (A43)
P —K—my

Finally, the contributions for the additional diagrams with intermediate decuplet states Figs. 1(0) and 1(p) are expressed as

Cz z* Cz AK
Topu(E5) = szlﬁﬂf + 6_f2]l;+p ; (A44)

016006-11



MINGYANG YANG and PING WANG

PHYS. REV. D 105, 016006 (2022)

Cz

CZ

Poepa®) = g lets +gality (Ad5)
ro ) =5 pEk A46
o+p,s( )_sz o+p > ( )
where the integral I’;Iﬁl is written as
= d*k  F(k)
IﬂsTM — (' F /
o+p M(p) (Q) (277:)4 DM(k)
(=2k+q)* - . 1
5 (F(k—q) = F(k))(k — S (p' = k)((k — -
| G (Flk= ) = P+ )70 = (= )+ 2, )
(2k +4q)"

2kqg + ¢*

(F(k+q) = F(k)((k+ q), + 2K+ 4)r,)

ﬁs‘”@ — k)(k, + zypk)}u(p). (A47)

Using Package-x [49] to simplify the loop integral, we have gathered the results for the electromagnetic form factors.
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