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We study the sea quark contributions to the electromagnetic form factors of Σ baryons with nonlocal
chiral effective theory. Both octet and decuplet intermediate states are included in the one loop calculation.
Gu

Σ− and Gd
Σþ could be priority observables for the examination of sea quark contributions to the baryon

structure because these quantities are much larger than the strange form factors of nucleons. It will be less
difficult for the lattice simulation to determine the sign of these pure sea quark contributions
unambiguously. In Σ0, the light sea quark form factors Gu

Σ0 and Gd
Σ0 are identical. Since the light sea

quark form factors in protons are different, it will be more meaningful to compare the lattice result of the
light sea quark form factors in Σ0 with that obtained from an effective field theory.

DOI: 10.1103/PhysRevD.105.016006

I. INTRODUCTION

Electromagnetic form factors of nucleons are among the
most important observables of these building blocks of the
ordinary matter in the Universe. A lot of theoretical and
experimental efforts have been made for many years to get
the precise values of the form factors. The form-factor data
have triggered much activity in the determination of the
flavor separated form factors of the dressed up, down, and
strange quarks in the nucleon. It is well known that a
complete characterization of the baryon substructure must
go beyond three valence quarks. In particular, the strange
quark contribution to the nucleon electromagnetic form
factors is of special interest because it is purely from the sea
quark. The strange form factors of the proton Gs

E and Gs
M

have been obtained by a number of groups, such as
SAMPLE at Bates [1], A4 at Mainz [2,3], and G0 [4,5]
and HAPPEX [6–9] at Jefferson Lab, etc. However, up to
now, the experiments are not able to determine the signs of
Gs

E andGs
M unambiguously although the global analyses do

tend to suggest that Gs
M < 0 is favored [10,11].

Theoretically, strange form factors of nucleons were
investigated in various phenomenological models that give
different predictions [12–22]. They were also studied in
chiral perturbation theory (ChPT) or effective field theory
(EFT) [23–25]. Historically, most formulations of ChPTare

based on the dimensional or the infrared regularization.
Though ChPT is a successful and systematic approach, for
the nucleon electromagnetic form factors, it is only valid for
Q2 < 0.1 GeV2 [26]. When vector mesons are included,
the results are close to the experiments with Q2 less than
0.4 GeV2 [27]. Because of the unknown low energy
constants appearing in the chiral Lagrangian, the capacity
to predict the strange form factors is much limited. In other
words, the strangeness vector current matrix elements that
one wants to predict are the same quantities one needs to
know in order to make such predictions. [23,25].
An alternative regularization method, namely the finite-

range regularization (FRR), has been proposed. Inspired by
quark models that account for the finite size of the nucleon
as the source of the pion cloud, effective field theory with
FRR has been widely applied to extrapolate the vector
meson masses, magnetic moments, magnetic form factors,
strange form factors, charge radii, first moments of GPDs,
and the nucleon spin, etc. [28–30]. With the regulators,
the loop integrals are convergent. One advantage of ChPT
with the FRR is that strange form factors can be predicted
with the assumption that there is no valence contribution
from the tree level. No low energy constants are needed to
cancel the loop divergence for predicting the strange form
factors [31,32].
In recent years, we proposed a nonlocal chiral effective

theory, which makes it possible to study the form factors at
relatively large Q2 [33–35]. With the introduction of the
gauge links, the nonlocal Lagrangians are locally gauge
invariant. The nonlocal interaction generates both the
relativistic regulators, which make the loop integrals con-
vergent, and theQ2 dependence of form factors at tree level.
The obtained electromagnetic form factors and strange form
factors of nucleon are very close to both experimental data
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and lattice results [33,34]. This nonlocal EFT was further
applied to study the parton distribution functions [36,37].
For the sea quark form factors of proton, the light sea quark
contributions obtained in nonlocal EFT are quite different
from the lattice results, though the strange quark contribu-
tions are comparable with each other [38–40]. There is an
obvious flavor asymmetry of the u sea and d sea in nonlocal
EFT, while the light sea quark contributions are the same for
u and d in the lattice simulation.
Therefore, to get a better understanding of the sea quark

properties, in this paper, we investigate the sea quark
contributions to the electromagnetic form factors of Σ
hyperons. For Σþ (Σ−), the d (u) quark contribution is
purely from the sea, which is the same as the s quark
contribution in nucleon. However, because the d (u) quark
contribution in Σþ (Σ−) comes from the π meson loop, it is
much larger than the strange quark contribution in the
nucleon, concerning which the latter comes from the K
meson loop. It will be easier to get an unambiguous number
for the lattice simulations, in spite of the statistic errors. For
the experimentalists, it may also be possible to determine
the signs of the light sea quark contributions in Σ hyperons,
since the magnetic moments of Σþ and Σ− have been
measured precisely for many years. The investigation of the
d (u) quark contribution to Σþ (Σ−) form factors will

definitely shed light on the signs of nucleon strange form
factors. As pointed in Ref. [22], the signs of the strange
form factors will indicate the possible configuration of
uudss̄ components of the proton. It could inform us
whether the sea quark is in the baryon-meson configura-
tion, or in the diquark configuration.
The flavor asymmetries of light sea quark will be also

obvious in Σþ and Σ− as those in proton. We hope further
lattice simulations could distinguish these sea quark asym-
metries. To make the comparison between lattice simu-
lation and nonlocal EFT meaningful, we calculate the light
sea quark contributions in Σ0 as well, where the u sea and d
sea do have the same contributions. In this case, one can
make a direct comparison between these two calculations.
This paper is organized in the following way. The nonlocal
Lagrangian is introduced in Sec. II. Numerical results will
be discussed in Sec. III. Section IV is a short summary. The
loop expressions of sea quark contributions are presented in
the Appendix.

II. NONLOCAL EFFECTIVE LAGRANGIAN

The lowest order chiral Lagrangian involving baryons,
pseudoscalar mesons, and their interactions can be written
as [33,37,41,42]

L ¼ iTrB̄ðγμDμ −mBÞBþ T̄abc
μ ðiγμναDα −mTγ

μνÞTabc
ν þ f2

4
Tr½DμUðDμUÞ†�

þDTrðB̄γμγ5fAμ; BgÞ þ FTrðB̄γμγ5½Aμ; B�Þ þ C
f
εabcT̄de

μ;aðgμν þ zγμγνÞBceDνϕbd þ H:c:; ð1Þ

where D, F, and C are the coupling constants and z is
the off shell parameter. ϕ is the matrices of pseudoscalar
meson fields, B is the matrix of octet baryons, T is the fully
symmetric tensor for decuplet baryons, and Aμ represents
the photon field. In the meson sector, the chiral covariant
derivative is defined as DμU ¼ ∂μU − ieAμ½λq; U�,
while in the octet baryon sector, Dμ is defined as
DμB ¼ ∂μBþ ½Γμ; B�. The pseudoscalar meson octet cou-
ples to the baryon field, via the vector and axial-vector
combinations, respectively,

Γμ ¼
1

2
ðζ∂μζ

† þ ζ†∂μζÞ þ
1

2
ieAμðζ†λqζ þ ζλqζ

†Þ;

Aμ ¼
i
2
ðζ∂μζ

† − ζ†∂μζÞ −
1

2
eAμðζλqζ† − ζ†λqζÞ; ð2Þ

where

ζ2 ¼ U ¼ exp

�
2iϕ
f

�
; f ¼ 93 MeV: ð3Þ

In the decuplet sector, Dν is defined as DνTabc
μ ¼

∂νTabc
μ þ ðΓν; TμÞabc, with ðΓν; TμÞabc ¼ ðΓνÞadTdbc

μ þ
ðΓνÞbdTadc

μ þ ðΓνÞcdTabd
μ , where γμνα and γμν are the anti-

symmetric matrices expressed as

γμν ¼ 1

2
½γμ; γν�; γμνρ ¼ 1

4
f½γμ; γν�; γρg: ð4Þ

In the above equations, to calculate the contributions to the
form factors from each quark with unit charge, the matrices
λq are introduced as

λu¼

0
B@
1 0 0

0 0 0

0 0 0

1
CA; λd ¼

0
B@
0 0 0

0 1 0

0 0 0

1
CA; λs¼

0
B@
0 0 0

0 0 0

0 0 1

1
CA:

The total form factors can be obtained by replacing λq with
the charge matrix Qq ¼ diagð2=3;−1=3;−1=3Þ expressed
as Qq ¼ 2

3
λu − 1

3
λd − 1

3
λs.

The octet, decuplet, and octet-decuplet transition oper-
ators for magnetic interactions are needed in the one loop
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calculations. The anomalous magnetic Lagrangian of octet
baryons is written as

Loct ¼
e

4mB
½c1TrðB̄σμνfFþ

μν; BgÞ þ c2TrðB̄σμν½Fþ
μν; B�Þ

þ c3TrðB̄σμνBÞTrðFþ
μνÞ�; ð5Þ

where

Fþ
μν ¼ −

1

2
F μνðζ†λqζ þ ζλqζ

†Þ: ð6Þ

The above Lagrangian will contribute to the Pauli form
factor Ff;Σ

2 , which is defined in Eq. (18). At the lowest
order, the contribution of quark q with unit charge to the
octet magnetic moments, can be obtained. After expansion
of the above equations, it is found that, taking Σ hyperons
as an example,

Fu;Σþ
2 ¼ c1þc2þc3; Fd;Σþ

2 ¼ c1−c2þc3; Fs;Σþ
2 ¼ c3;

Fu;Σ−

2 ¼ c1−c2þc3; Fd;Σ−

2 ¼ c1þc2þc3; Fs;Σ−

2 ¼ c3:

ð7Þ

Comparing with the results of the constituent quark model,
where Fd;Σþ

2 ¼ 0, and Fu;Σ−

2 ¼ 0, we get

c3 ¼ c2 − c1: ð8Þ

The above relationship is consistent with that there is no
strange quark contribution in bare nucleon.
The magnetic moment operators of decuplet and octet-

decuplet transition are expressed as

Ldec ¼ −
ieFT

2

4MT
T̄μ;abcσρλFρλTμ;abc ð9Þ

and

Ltrans ¼
ieμT
4mB

Fμνðϵijkλq;ilB̄jmγ
μγ5Tν;klm

þ ϵijkλq;liT̄μ;klmγνγ5BmjÞ; ð10Þ

respectively.
The gauge invariant nonlocal Lagrangian can be

obtained using the method in [33,34,43]. For instance,
the local interaction between Σ hyperons and πþ meson can
be written as

Llocal
Σπþ ¼ −F

f
Σ̄þðxÞγμγ5Σ0ðxÞð∂μ þ ieAμðxÞÞπþðxÞ: ð11Þ

The corresponding nonlocal Lagrangian follows,

Lnl
Σπþ ¼

−F
f

Z
d4yΣ̄þðxÞγμγ5Σ0ðxÞ

×

�
∂μþ ie

Z
d4aAμðx−aÞFðaÞ

�
Fðx−yÞ

×exp

�
ie
Z

y

x
dzν

Z
d4bAνðz−bÞFðbÞ

�
πþðyÞ; ð12Þ

where Fðx − yÞ is the correlation function. From the
Lagrangian, one can see that the baryon fields are located
at x, while the meson and photon fields are displaced.
To make the Lagrangian locally gauge invariant, the gauge
link exp ½ie R y

x dzν
R
d4bAνðz − bÞFðbÞ� is introduced.

Therefore, the photon could be emitted or annihilated from
either the minimal substitution term or the gauge link term.
The correlation functions are associated with each photon
field and meson field. With the correlation function, the
regulator and momentum dependence of form factors at tree
level can be generated automatically. In the numerical
calculation, the correlation function in momentum space is
chosen to be a dipole form.
The nonlocal baryon-photon interactions are obtained in

the same procedure. For example, the local interaction
between Σþ and photon is written as

Llocal
EM ¼ −eΣ̄þðxÞγμΣþðxÞAμðxÞ

þ ðc1 þ 3c2Þe
12mΣ

Σ̄þðxÞσμνΣðxÞþF μνðxÞ: ð13Þ

The corresponding nonlocal Lagrangian is expressed as

Lnl
EM ¼ −e

Z
d4aΣ̄þðxÞγμΣðxÞþAμðx − aÞF1ðaÞ

þ ðc1 þ 3c2Þe
6

Z
d4aΣ̄þðxÞ

×
σμν

2mΣ
ΣðxÞþF μνðx − aÞF2ðaÞ; ð14Þ

where F1ðaÞ and F2ðaÞ are the correlation functions for the
nonlocal electric and magnetic interactions.
The momentum dependence of the form factors at tree

level can be easily obtained with the Fourier transformation
of the correlation function. As in our previous work
[33,34], the correlation function is chosen such that the
charge and magnetic form factors at tree level have the
same momentum dependence as the baryon-meson vertex,
i.e., GB;tree

M ðqÞ ¼ μBG
B;tree
E ðqÞ ¼ μBF̃ðqÞ, where F̃ðqÞ is the

Fourier transformation of the correlation function FðaÞ.
Therefore, the corresponding functions F̃1ðqÞ and F̃2ðqÞ of
Σþ, for example, are expressed as
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F̃Σþ
1 ðqÞ ¼ F̃ðqÞ 12m

2
Σ þ ð3þ c1 þ 3c2ÞQ2

3ð4m2
Σ þQ2Þ ;

F̃Σþ
2 ðqÞ ¼ F̃ðqÞ 4ðc1 þ 3c2Þm2

Σ
3ð4m2

Σ þQ2Þ ; ð15Þ

where Q2 ¼ −q2 is the momentum transfer.
From Eq. (12), two kinds of Σ − π-photon vertices can be

obtained. One is the normal coupling,

Lnorm ¼ −ie
F
f

Z
d4yΣ̄þðxÞγμγ5Σ0ðxÞ

×
Z

d4aAμðx − aÞFðaÞFðx − yÞπþðyÞ: ð16Þ

This interaction is similar to the traditional local
Lagrangian except the correlation function. The other is
the additional interaction, obtained by the expansion of the
gauge link,

Ladd ¼ −ie
F
f

Z
d4yΣ̄þðxÞγμγ5Σ0ðxÞ∂x;μ

×

�
Fðx − yÞ

Z
y

x
dzν

Z
d4aAνðz − aÞFðaÞπþðyÞ

�
:

ð17Þ
The additional interaction is crucial to guarantee the charge
conservation. With the nonlocal Lagrangian above, we can
calculate the electromagnetic form factors.

The contributions of individual quark flavor f (f ¼ u,
d, s) to the Dirac and Pauli form factors of Σ hyperons are
defined as

hΣðp0ÞjJfμjΣðpÞi

¼ ūðp0Þ
�
γμF

f;Σ
1 ðQ2Þ þ iσμνqν

2mΣ
Ff;Σ
2 ðQ2Þ

�
uðpÞ; ð18Þ

where q ¼ p0 − p. The electromagnetic form factors are
defined as the combinations of the above form factors,

Gf;Σ
E ðQ2Þ ¼ Ff;Σ

1 ðQ2Þ − Q2

4m2
Σ
Ff;Σ
2 ðQ2Þ;

Gf;Σ
M ðQ2Þ ¼ Ff;Σ

1 ðQ2Þ þ Ff;Σ
2 ðQ2Þ: ð19Þ

According to the Lagrangians, the one-loop Feynman
diagrams that contribute to the Σ electromagnetic form
factors are shown in Fig. 1. The matrix element of Eq. (18)
can be evaluated. The π meson loops have the dominant
contributions, while the contributions from K meson loops
are much smaller due to the large K meson mass. The
contributions from η and η0 loops are even smaller, which
are neglected in our calculation. The inclusion of these
mesons does not affect the main conclusion below. For each
diagram in Fig. 1, there exist quenched and disconnected
diagrams. In order to obtain the sea quark contribution, we
need to find the coefficients for the disconnected diagrams.

FIG. 1. One-loop Feynman diagrams for the hyperon electromagnetic form factors. The solid, double-solid, dashed, and wave lines are
for the octet baryons, decuplet baryons, pseudoscalar mesons, and photons, respectively. The rectangle and black dot represent magnetic
and additional interacting vertex.
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The coefficients for the quenched and disconnected
loop diagrams can be extracted separately as in
Ref. [44], using the quark flows of Fig. 2. The obtained
coefficients are the same as those extracted within the
graded symmetry formalism in quenched chiral perturba-
tion theory [45].
Here, as an example, we show how to separate the

quenched and sea contributions of strange quark to Σþ in
the intermediate Ξ0 rainbow diagram. In Fig. 2, the quark-
flow diagrams and the corresponding Feynman diagrams
are plotted. The strange quark contribution of Fig. 2(a)
includes the quenched [Fig. 2(b)] and sea [Fig. 2(c)]
contributions, while the strange quark contribution of
Fig. 2(d) is only from the sea diagram Fig. 2(e). The
coefficient of Fig. 2(a) for the total contribution is
ðDþ FÞ2=2f2, which is the sum of the coefficients of
Figs. 2(b) and 2(c). Due to the SU(3) symmetry, the
coefficient of the sea contribution of Fig. 2(c) is the same
as that of Fig. 2(e), where the s-quark loop is replaced by
the d-quark loop. The coefficient of Fig. 2(e) can be
obtained by summing the coefficients for the intermediate
Σ0 and Λ states, which is ðD2 þ 3F2Þ=3f2. Therefore,
subtracting the coefficient of Fig. 2(c) from that of
Fig. 2(a), we can get the coefficient for the quenched
diagram Fig. 2(b), which is ðD2 þ 6DF − 3F2Þ=6f2. With
the same method, all the quenched and sea contributions of
u, d, and s quarks can be obtained and the coefficients are
listed in Table I.
With the obtained coefficients for the sea quark dia-

grams, the sea quark form factors of u, d, and s in Σ
hyperons can be evaluated by summing up all the con-
tributions in Fig. 1. The expressions for the intermediate
octet and decuplet baryons of each diagram are written in
the Appendix. In the next section, we will discuss the
numerical results.

III. NUMERICAL RESULTS

The coupling constants between octet baryons and
mesons are determined by two parameters D and F. In
the numerical calculations, the parameters are chosen to be
D ¼ 0.76 and F ¼ 0.50 (gA ¼ Dþ F ¼ 1.26) [46]. The
coupling constant C is chosen to be 1.0, which is the same
as in Refs. [33,34]. The off shell parameter z is −1 [47].
Besides, the physical masses are used for mesons and octet
and decuplet baryons. The covariant regulator is chosen to
be a dipole form [34,35]

F̃ðkÞ ¼ Λ4

ðk2 −m2
j − Λ2Þ2 ; ð20Þ

where mj is the meson mass for the baryon-meson
interaction, and it is zero for the hadron-photon interaction.
It was found that when Λ is around 0.9 GeV, the obtained
electromagnetic and strange form factors were very close to
the experimental data and lattice simulation. The low
energy constants c1 and c2 are determined by fitting the
experimental magnetic moments of octet baryons. They are
found to be 1.736 and 0.329, which give the minimal χ2 of
the octet magnetic moments.
The sea quark contributions to the magnetic form factor

of Σþ baryon versus momentum transfer Q2 are plotted in
Fig. 3. The solid, dashed, and dotted lines are for u, d, and s
quark with unit charge, respectively. The lines colored red,
green, and blue are for Λ ¼ 0.8, 0.9, and 1.0 GeV,
respectively. To obtain an impression on the order of
magnitude of the sea quark contributions, the total mag-
netic form factor of Σþ calculated within the same
framework is also plotted at the corner. The total μΣþ is
about 2.4, which is consistent with the experimental

(a)

(b)

(c)

(d)

(e)

FIG. 2. Quark flow diagrams for Kþ and πþ. (a) is the
quenched diagram for Kþ. (b) and (c) are the disconnected sea
diagrams for Kþ and πþ, respectively.

TABLE I. The coefficients of u, d, and s quark in Σ, for both
quenched and sea quark-flow diagrams.

Configurations Σ − π Λ − π N − K Ξ − K

Σþ
u;quench − D2þ6DF−3F2

6f2

Σþ
u;sea D2þ3F2

6f2

Σþ
d;sea

F2

f2
D2

3f2
ðD−FÞ2
2f2

Σ0
u;quench

D2−18DFþ9F2

36f2
8D2−9ðDþFÞ2

36f2

Σ0
u;sea

2D2

9f2
D2

6f2
2D2

9f2

Σ0
d;quench

D2−18DFþ9F2

36f2
8D2−9ðDþFÞ2

36f2

Σ0
d;sea

2D2

9f2
D2

6f2
2D2

9f2

Σþ
s;quench

D2þ6DF−3F2

6f2

Σþ
s;sea D2þ3F2

3f2

Σ0
s;quench − D2−18DFþ9F2

18f2
D2þ18DFþ9F2

18f2

Σ0
s;sea

4D2

9f2
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value [48]. From the figure, one can see that all the
sea quark contributions to the magnetic form factors of
Σþ are negative. When Q2 ¼ 0, the sea quark magnetic
moments μu;Σ

þ
, μd;Σ

þ
, and μs;Σ

þ
are −0.251� 0.025,

−0.676� 0.083, and −0.067� 0.022, respectively. They
remain negative, and their magnitudes decrease with the
increasing momentum transfer. Compared with the sea

quark contribution in the nucleon, Gf;Σþ
M is larger than the

corresponding Gf;N
M . It is expected the light quark con-

tribution is much larger than the strange quark contribution,
as in the nucleon case. The magnitude ofGd;Σþ

M is the largest
one, and it is much larger than Gu;Σþ

M . Similarly as in the
nucleon, the asymmetry of u sea and d sea is obvious. This
flavor asymmetry is not raised by the mass difference of u
and d quarks. It is because of the different numbers of
valence quarks u and d in Σþ. For example, in Fig. 1, there
is only πþ loop that contributes to the form factor of the d
sea quark. No π− diagram exists which contributes to the
form factor of u sea quark. It is interesting to see whether
this sea quark asymmetry could be obtained from lattice
simulation. Currently, lattice simulations have not shown
this asymmetry in proton, where the light quark form
factors are somewhat like the average of the u and d
contributions. Since the difference between u sea and d sea
is very large, to make the direct comparison between EFT
calculation and lattice simulation meaningful, we will show
the light sea quark contributions to the form factors of Σ0

hyperon latter, where the sea contributions from u and d
quark are the same.
In the Σþ hyperon, there is no valence d quark. All the

contributions of the d quark is from the sea. This is
comparable with the strange quark contribution in nucleon.
The difference is that Gd;Σþ

M is generated from the π loop,
while Gs;N

M is from the K loop. As a result, Gd;Σþ
M is much

larger than the strange magnetic form factor of the nucleon,
which makes it easy for lattice simulation to get an
unambiguous sign for this pure sea quark contribution.
If lattice confirms thatGd;Σþ

M is negative, then it will suggest
the meson-loop scenario; i.e., the antiquark in the nucleon
should be in the state with orbital angular momentum
1 [22].
The sea quark contributions to the electric form factor of

Σþ hyperon with the same choice ofΛ, are plotted in Fig. 4.
The total electric form factor of Σþ is plotted in the inset as
well. Because the contributions of quark and antiquark are
from the sea, their electric form factors are zero at Q2 ¼ 0.
The additional diagrams are important to get Gf;Σ

E ð0Þ ¼ 0.
They are generated from the additional interaction, which
guarantees the local gauge invariance. All the electric form
factors of sea quark increase first, and then decrease with
the increasing Q2. Again, there is a large sea quark
asymmetry between Gu;Σþ

E and Gd;Σþ
E . Gd;Σþ

E is more than
twice bigger thanGu;Σþ

E . WhenQ2 is around 0.3 GeV,Gd;Σþ
E

is about 0.038� 0.008. Compared with the strange electric
form factor, Gd;Σþ

E is about 10 times larger. Therefore, for
both electric and magnetic form factors, Gd;Σþ

E and Gd;Σþ
M

are good physical observables for lattice simulation. The
hyperon form factors would not only shed light on the
structure of hyperons, but also provide information on
nucleon. Since the contributions of u, d, and s quark with
unit charge in Σ− are the same as d, u, and s quark
contributions in Σþ, we will not show the results for Gf;Σ−

EðMÞ.
Now, we discuss the sea quark contributions to the form

factors of Σ0. As we have pointed out, in nucleon or Σþ,
there is a large asymmetry between u sea and d sea.
However, in Σ0, the sea quark contributions from u and d
are the same if we ignore the mass difference between
them. We can make a direct comparison of the light sea
quark form factors between lattice simulation and EFT. The
total and sea quark contributions to the magnetic form
factor of Σ0 hyperon versus momentum transfer Q2 are

FIG. 4. Same as Fig. 3 but for the electric form factors.FIG. 3. The sea quark contributions to the magnetic form
factors of Σþ hyperon versus momentum transfer Q2. The solid,
dashed, and dotted lines are for the contributions from u sea, d
sea, and s sea, respectively. The lines with color red, green, and
blue are for Λ ¼ 0.8, 0.9, and 1.0 GeV, respectively. The small
figure at the corner is for the total magnetic form factor of Σþ.
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plotted in Fig. 5. From the figure one can see that the sea
quark form factors are negative and the shape of the

momentum dependence of Gf;Σ0

M is close to Gf;Σþ
M . The

sea contribution from strange quark in Σ0 has a similar
magnitude as that in the nucleon and Σþ. For the light quark
contribution, the magnitude of Gl;Σ0

M is slightly bigger than
Gu;Σþ

M and much smaller than Gd;Σþ
M . At Q2 ¼ 0 with

central-valued Λ, μl;Σ0 ¼ −0.310, and μs;Σ
0 ¼ −0.031.

The total and sea quark contributions to the electric form
factors of Σ0 baryon are plotted in Fig. 6. As for the

magnetic case, in Σ0, Gu;Σ0

E ¼ Gd;Σ0

E ¼ Gl;Σ0

E , and Gl;Σ0

E lies

between Gu;Σþ
E and Gd;Σþ

E . When Q2 ¼ 0.3 GeV2, Gl;Σ0

E ∼
0.019 with central-valued Λ. For the sea quarks with unit
charge, their electric form factors are all positive, no matter
the total charge of the baryon is 1, −1, or 0. Here, the sea
quark form factors from the quark pair are obtained from
the meson loop. In the baryon-meson scenario, the baryon

is surrounded by the meson where the charge of antiquark
is −1. The positive electric form factors of sea quark are
consistent with this meson loop scenario.
With the calculated form factors, the contribution to the

radii can be obtained as

hr2MðEÞi ¼ −6
dGMðEÞ
dQ2

����
Q2¼0

; ð21Þ

where the magnetic form factors are not divided by the
corresponding magnetic moments. Since all the sea quark
form factors increase with the increasing Q2 at low
momentum transfer, the radii are all negative. The magnetic
and charge radii of d sea in Σþ is larger than those of u sea,
and both of them are more than 10 times larger than the
strange radii.

IV. SUMMARY

The sea quark contributions to the electromagnetic form
factors of Σ hyperons are studied within the nonlocal chiral
effective theory. Both the octet and decuplet intermediate
states are included in our calculation. The correlation
functions in the nonlocal Lagrangian make the loop
integrals ultraviolet convergent. The gauge links guarantee
that the nonlocal Lagrangians are locally gauge invariant.
The expansion of the gauge links generates the additional
diagrams and, as a result, the electric form factors of sea
quarks are zero at Q2 ¼ 0. The obtained sea quark
magnetic form factors of u, d and s are all negative, while
the electric form factors are all positive. They are consistent
with the scenario of baryon-meson configurations in
dressed baryons. When Q2 ¼ 0, μd;Σ

þ
(μu;Σ

−
) is much

larger than the strange magnetic form factor μs;N. For
the charge form factors, Gd;Σþ

E (Gu;Σ−

E ) is also much larger
than Gs;N

E . Since there is no valence quark contributions to
Gd;Σþ

(Gu;Σ−
) as Gs;N , Gd;Σþ

(Gu;Σ−
) could be a better

physical observables for studying sea quark properties in
baryons, for lattice simulations or possible experimental
measurements. We also found there are large asymmetries
of light sea quark form factors in charged Σ hyperons. For
both magnetic and electric form factors, the contributions
of d sea are significantly larger than those of u sea. To make
the direct comparison of light sea quark form factors
between lattice simulation and EFT, we calculated the
sea quark contributions in Σ0. In this case, Gu;Σ0

equals to
Gd;Σ0

. The calculations of the sea quark form factors in
hyperons, will not only shed light on the structure of
hyperons, but also provide important information on
nucleon structure. As a summary, we list the magnetic
moments and radii of sea quarks in Σ hyperons in Table II.
The corresponding values for proton are also listed for
comparison.

FIG. 5. The sea quark contributions to the magnetic form
factors of Σ0 hyperon versus momentum transfer Q2. The solid
and dashed lines are for the contributions from light sea and s sea,
respectively. The lines with color red, green, and blue are for
Λ ¼ 0.8, 0.9, and 1.0 GeV, respectively. The inset is for the total
magnetic form factor of Σ0.

FIG. 6. Same as Fig. 5 but for the electric form factors.
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APPENDIX: LOOP EXPRESSIONS

In this appendix, we show the expressions of sea quark
contributions in Σþ hyperon for each diagram. The con-
tributions of Fig. 1(a) are written as

Γμ
a;uðΣþÞ ¼ D2 þ 3F2

6f2
Iμ;Σπa ; ðA1Þ

Γμ
a;dðΣþÞ ¼ D2

3f2
Iμ;Λπa þ F2

f2
Iμ;Σπa þ ðD − FÞ2

2f2
Iμ;NK
a ; ðA2Þ

Γμ
a;sðΣþÞ ¼ D2 þ 3F2

3f2
Iμ;ΞKa ; ðA3Þ

where the integral Iμ;BMa is expressed as

Iμ;BMa ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðqþ kÞF̃ðkÞ
DMðkþ qÞ

−ð2kþ qÞμ
DMðkÞ

ð=kþ qÞγ5
1

p − =k −mB
=kγ5uðpÞ: ðA4Þ

DMðkÞ is defined as

DMðkÞ ¼ k2 −m2
M þ iε:

mB and mM are the masses of the intermediate octet baryon B and meson M, respectively. The formulas for Σ0 are similar
but with different coefficients. The contributions of Fig. 1(b) are expressed as

Γμ
b;uðΣþÞ ¼ D2ððc1 þ 3ðc2 − c1Þ þ 3ÞQ2 þ 12m2

ΣÞ þ 6c1DFQ2 þ 9F2ððc2 þ 1ÞQ2 þ 4m2
ΣÞ

18f2ð4m2
Σ þQ2Þ Iμ;Σπb ; ðA5Þ

Γμ
b;dðΣþÞ ¼ Dððc1 þ 3ðc2 − c1Þ þ 3ÞDQ2 þ 3c1FQ2 þ 12Dm2

ΛÞ
9f2ð4m2

Λ þQ2Þ Iμ;Λπb ðA6Þ

þFðc1DQ2 þ 3Fððc2 þ 1ÞQ2 þ 4m2
ΣÞÞ

3f2ð4m2
Σ þQ2Þ Iμ;Σπb þ ðD − FÞ2ððc2 − c1ÞQ2 þ 4m2

N þQ2Þ
2f2ð4m2

N þQ2Þ Iμ;NK
b ; ðA7Þ

Γμ
b;sðΣþÞ ¼ D2ððc1 þ 3ðc2 − c1Þ þ 3ÞQ2 þ 12m2

ΞÞ þ 6c1DFQ2 þ 9F2ððc2 þ 1ÞQ2 þ 4m2
ΞÞ

9f2ð4m2
Ξ þQ2Þ Iμ;ΞKb ; ðA8Þ

where the integral Iμ;BMb is written as

Iμ;BMb ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

=kγ5
1

p0 − =k −mB
γμ

1

p − =k −mB
=kγ5uðpÞ: ðA9Þ

Figure 1(c) is similar to Fig. 1(b), except the former is for the magnetic interaction. The contributions of this diagram are
written as

Γμ
c;uðΣþÞ ¼ imΣð3ðc2 − c1ÞðD2 þ 3F2Þ þ c1ðDþ 3FÞ2Þ

9f2ð4m2
Σ þQ2Þ Iμ;Σπc ; ðA10Þ

TABLE II. The magnetic moments (in units of the nucleon magneton μN), magnetic and charge radii of sea quarks in Σ hyperons and
proton.

Baryon μusea μdsea μssea hr2Miusea hr2Midsea hr2Missea hr2Eiusea hr2Eidsea hr2Eissea
Σþ −0.251�0.025 −0.676�0.083 −0.067�0.022 −0.294�0.013 −0.811�0.029 −0.049�0.006 −0.041�0.003 −0.119�0.007 −0.005�0.002
Σ0 −0.310�0.035 −0.310�0.035 −0.031�0.008 −0.394�0.015 −0.394�0.015 −0.024�0.002 −0.061�0.003 −0.061�0.003 −0.003�0.001
p −0.111�0.005 −0.375�0.045 −0.037�0.011 −0.142�0.011 −0.418�0.018 −0.026�0.003 −0.036�0.002 −0.074�0.005 −0.004�0.001
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Γμ
c;dðΣþÞ ¼ 2iDmΛðc1ðDþ 3FÞ þ 3ðc2 − c1ÞDÞ

9f2ð4m2
Λ þQ2Þ Iμ;Λπc þ 2iFmΣðc1ðDþ 3FÞ þ 3ðc2 − c1ÞFÞ

3f2ð4m2
Σ þQ2Þ Iμ;Σπc ðA11Þ

þ iðc2 − c1ÞðD − FÞ2mN

f2ð4m2
N þQ2Þ Iμ;NK

c ; ðA12Þ

Γμ
c;sðΣþÞ ¼ 2imΞð3ðc2 − c1ÞðD2 þ 3F2Þ þ c1ðDþ 3FÞ2Þ

9f2ð4m2
Ξ þQ2Þ Iμ;ΞKc ; ðA13Þ

where Iμ;BMc is

Iμ;BMc ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

=kγ5
1

p0 − =k −mB
iσμνqν

1

p − =k −mB
=kγ5uðpÞ: ðA14Þ

Figures 1(d) and 1(e) are the Kroll-Ruderman diagrams. The contributions of these two diagrams are written as

Γμ
dþe;uðΣþÞ ¼ D2 þ 3F2

6f2
Iμ;Σπdþe ; ðA15Þ

Γμ
dþe;dðΣþÞ ¼ D2

3f2
Iμ;Λπdþe þ F2

f2
Iμ;Σπdþe þ ðD − FÞ2

2f2
Iμ;NK
dþe ; ðA16Þ

Γμ
dþe;sðΣþÞ ¼ D2 þ 3F2

3f2
Iμ;ΞKdþe ; ðA17Þ

where

Iμ;BMdþe ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
=kγ5

1

p0 − =k −mB
γμγ5 þ γμγ5

1

p − =k −mB
=kγ5

�
uðpÞ: ðA18Þ

Figures 1(f) and 1(g) are the additional diagrams that are generated from the expansion of the gauge link. The contributions
of these two diagrams are expressed as

Γμ
fþg;uðΣþÞ ¼ D2 þ 3F2

6f2
Iμ;Σπfþg ; ðA19Þ

Γμ
fþg;dðΣþÞ ¼ D2

3f2
Iμ;Λπfþg þ F2

f2
Iμ;Σπfþg þ

ðD − FÞ2
2f2

Iμ;NK
fþg ; ðA20Þ

Γμ
fþg;sðΣþÞ ¼ D2 þ 3F2

3f2
Iμ;ΞKfþg ; ðA21Þ

where

Iμ;BMfþg ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ
DMðkÞ

�ð2k − qÞμ
2kq − q2

½F̃ðk − qÞ − F̃ðkÞ�=kγ5
1

p0 − =k −mB
ð−=kþ qÞγ5

þ ð2kþ qÞμ
2kqþ q2

½F̃ðkþ qÞ − F̃ðkÞ�ð=kþ qÞγ5
1

p − =k −mB
=kγ5

�
uðpÞ: ðA22Þ

Now we show the expressions of one loop integrals for decuplet intermediate states. The contributions for Fig. 1(h) can
be written as
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Γμ
h;uðΣþÞ ¼ C2

24f2
Iμ;Σ

�π
h þ C2

6f2
Iμ;ΔKh ; ðA23Þ

Γμ
h;dðΣþÞ ¼ C2

12f2
Iμ;Σ

�π
h þ C2

6f2
Iμ;ΔKh ; ðA24Þ

Γμ
h;sðΣþÞ ¼ C2

12f2
Iμ;Ξ

�K
h ; ðA25Þ

where the integral Iμ;TMh is expressed as

Iμ;TMh ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðqþ kÞF̃ðkÞ
DMðkÞ

2ðkþ qÞμ
DMðqþ kÞ

× ððkþ qÞσ þ zð=kþ qÞγσÞ 1

p − =k −mT
Sσρðp − kÞð−kρ − zγρ=kÞuðpÞ: ðA26Þ

mT is the mass of the decuplet intermediate state and SσρðpÞ is expressed as

SσρðpÞ ¼ −gσρ þ
γσγρ
3

þ pσpρ

3m2
T
þ γσpρ − γρpσ

3mT
:

The contributions for Fig. 1(i) are written as

Γμ
i;uðΣþÞ ¼ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Σ� Þ
72f2ð4m2

Σ� þQ2Þ Iμ;Σ
�π

i þ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2
ΔÞ

18f2ð4m2
Δ þQ2Þ Iμ;ΔKi ; ðA27Þ

Γμ
i;dðΣþÞ ¼ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Σ� Þ
36f2ð4m2

Σ� þQ2Þ Iμ;Σ
�π

i þ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2
ΔÞ

18f2ð4m2
Δ þQ2Þ Iμ;ΔKi ; ðA28Þ

Γμ
i;sðΣþÞ ¼ C2ððc1 þ 3c2 þ 3ÞQ2 þ 12m2

Ξ� Þ
36f2ð4m2

Ξ� þQ2Þ Iμ;Ξ
�K

i ; ðA29Þ

where the integral Iμ;TMi is written as

Iμ;TMi ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

ðkσ þ z=kγσÞ

×
1

p0 − =k −mT
Sσαðp0 − kÞγαβμ 1

p − =k −mT
Sβρðp − kÞðkρ þ zγρ=kÞuðpÞ: ðA30Þ

The contributions for Fig. 1(j) are written as

Γμ
j;uðΣþÞ ¼ −

iðc1 þ 3c2ÞC2mΣ�

36f2ð4m2
Σ� þQ2Þ I

μ;Σ�π
j −

iðc1 þ 3c2ÞC2mΔ

9f2ð4m2
Δ þQ2Þ Iμ;ΔKj ; ðA31Þ

Γμ
j;dðΣþÞ ¼ −

iðc1 þ 3c2ÞC2mΣ�

18f2ð4m2
Σ� þQ2Þ I

μ;Σ�π
j −

iðc1 þ 3c2ÞC2mΔ

9f2ð4m2
Δ þQ2Þ Iμ;ΔKj ; ðA32Þ

Γμ
j;sðΣþÞ ¼ −

iðc1 þ 3c2ÞC2mΞ�

18f2ð4m2
Ξ� þQ2Þ I

μ;Ξ�K
j ; ðA33Þ

where the integral Iμ;TMj is expressed as
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Iμ;TMj ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

ðkσ þ z=kγσÞ

×
1

p0 − =k −mT
Sσνðp0 − kÞiσμλqλ

1

p − =k −mT
Sνρðp − kÞðkρ þ zγρ=kÞuðpÞ: ðA34Þ

The contributions for the intermediate octet-decuplet transition diagrams Figs. 1(k) and 1(l) are expressed as

Γμ
kþl;uðΣþÞ ¼ c1CðD − FÞ

24f2mΣ
Iμ;Σ

�Σπ
kþl ; ðA35Þ

Γμ
kþl;dðΣþÞ ¼ c1CD

12f2mΛ
Iμ;Σ

�Λπ
kþl −

c1CF
12f2mΣ

Iμ;Σ
�Σπ

kþl þ c1CðD − FÞ
6f2mN

Iμ;ΔNπ
kþl ; ðA36Þ

Γμ
kþl;sðΣþÞ ¼ c1CðD − FÞ

12f2mΞ
Iμ;Ξ

�ΞK
kþl ; ðA37Þ

where the integral Iμ;TBMkþl is written as

Iμ;TBMkþl ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
=kγ5

1

p0 − =k −mB
ð−qγ5Þ

1

p − =k −mT
Sμρðp − kÞðkρ þ zγρ=kÞ

þ =kγ5
1

p0 − =k −mB
γμγ5qν

1

p − =k −mT
Sνρðp − kÞðkρ þ zγρ=kÞ

þ ðkν þ z=kγνÞ
1

p0 − =k −mT
Sνρðp0 − kÞð−qργμγ5Þ

1

p − =k −mB
=kγ5

þ ðkν þ z=kγνÞ
1

p0 − =k −mT
Sνμðp0 − kÞqγ5

1

p − =k −mB
=kγ5

�
uðpÞ: ðA38Þ

The contributions for the Kroll-Ruderman diagrams Figs. 1(m) and 1(n) are written as

Γμ
mþn;uðΣþÞ ¼ C2

24f2
Iμ;Σ

�π
mþn þ C2

6f2
Iμ;ΔKmþn ; ðA39Þ

Γμ
mþn;dðΣþÞ ¼ C2

12f2
Iμ;Σ

�π
mþn þ C2

6f2
Iμ;ΔKmþn ; ðA40Þ

Γμ
mþn;sðΣþÞ ¼ C2

12f2
Iμ;Ξ

�K
mþn ; ðA41Þ

where the integral Iμ;TMmþn is written as

Iμ;TMmþn ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ2
DMðkÞ

�
ðkσ þ z=kγσÞ

1

p0 − =k −mT
Sσρðp0 − kÞðgμρ þ zγργμÞ ðA42Þ

þðgμσ þ zγμγσÞ
1

p − =k −mT
Sσρðp − kÞðkρ þ zγρ=kÞ

�
uðpÞ: ðA43Þ

Finally, the contributions for the additional diagrams with intermediate decuplet states Figs. 1(o) and 1(p) are expressed as

Γμ
oþp;uðΣþÞ ¼ C2

24f2
Iμ;Σ

�π
oþp þ C2

6f2
Iμ;ΔKoþp ; ðA44Þ
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Γμ
oþp;dðΣþÞ ¼ C2

12f2
Iμ;Σ

�π
oþp þ C2

6f2
Iμ;ΔKoþp ; ðA45Þ

Γμ
oþp;sðΣþÞ ¼ C2

12f2
Iμ;Ξ

�K
oþp ; ðA46Þ

where the integral Iμ;TMoþp is written as

Iμ;TMoþp ¼ ūðp0ÞF̃ðqÞ
Z

d4k
ð2πÞ4

F̃ðkÞ
DMðkÞ

×
�ð−2kþ qÞμ
−2kqþ q2

ðF̃ðk − qÞ − F̃ðkÞÞðkσ þ z=kγσÞ
1

p0 − =k −mT
Sσρðp0 − kÞððk − qÞρ þ zγρð=k − qÞÞ

þ ð2kþ qÞμ
2kqþ q2

ðF̃ðkþ qÞ − F̃ðkÞÞððkþ qÞσ þ zð=kþ qÞγσÞ
1

p − =k −mT
Sσρðp − kÞðkρ þ zγρ=kÞ

�
uðpÞ: ðA47Þ

Using Package-X [49] to simplify the loop integral, we have gathered the results for the electromagnetic form factors.
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